当前位置: 仪器信息网 > 行业主题 > >

水平衡碳酸盐处理平台

仪器信息网水平衡碳酸盐处理平台专题为您提供2024年最新水平衡碳酸盐处理平台价格报价、厂家品牌的相关信息, 包括水平衡碳酸盐处理平台参数、型号等,不管是国产,还是进口品牌的水平衡碳酸盐处理平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水平衡碳酸盐处理平台相关的耗材配件、试剂标物,还有水平衡碳酸盐处理平台相关的最新资讯、资料,以及水平衡碳酸盐处理平台相关的解决方案。

水平衡碳酸盐处理平台相关的资讯

  • 北京水利学会发布团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)
    各有关单位及专家: 根据《北京水利学会团体标准管理办法》(京水学〔2022〕1号)有关规定,由我会组织相关单位编制的团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》已完成征求意见稿(见附件1)。现向有关单位及专家(名单见附件2)征求意见,请认真研究并填写意见表(见附件3),并于2023年6月30日前反馈我会。 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》团体标准征求意见材料和意见表可登陆北京水利学会官网(http://www.bjslxh.org.cn),于公告栏中下载。 联 系 人:徐斌010-68183703、魏工 010-88613202 电子邮箱:18600597703@163.com、shuilxh@126.com 单 位:北京水利学会 通讯地址:北京市海淀区玉渊潭南路普慧北里北京水务综合楼305室 邮政编码:100036 附件:1. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》征求意见材料 2. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)征求意见单位及专家名单 3. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)专家(单位)意见表   北京水利学会2023年6月12日 附件1-1:水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法(征求意见稿)V1.0.pdf附件1-2:编制说明V1.0.pdf附件3:专家(单位)意见表-0612.pdf附件2:征求意见单位及专家名单-0613-徐(4).pdf
  • 北京水利学会关于批准发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准
    经理事长专题办公会批准,决定发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准,现予以公告。标准自2023年10月1日起实施。标准名称标准编号批准日期实施日期《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》T/BHES 0001—20232023.8.252023.10.1北京水利学会2023年8月25日
  • 北京兴东达泰公司推出碳酸盐组份分析技术
    北京兴东达泰公司推出碳酸盐组份分析技术,这个分析技术可以直接将碳酸钠和碳酸氢钠组份直接测试出结果,测试过程不需要标准样品,测试精度可达+/-0.3%。详细内容欢迎直接登录我公司电子展台下载。
  • 自然资源部发布《地质样品同位素分析方法》共37项行业标准公示稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《地质样品同位素分析方法》第1-37部分共计37项行业标准(见附件)。现已通过全国自然资源与国土空间规划标准化技术委员会审查,拟公示后报部审定发布实施。2023年11月28日,正式发布公示,公示时间为5个工作日。37项标准中有11项采用质谱法,5项采用能谱法,具体标准测试项目和方法目录见下表:序号标准名称1《地质样品同位素分析方法 第1部分:总则和一般规定》2《地质样品同位素分析方法 第2部分:锆石 铀-铅体系同位素年龄测定 热电离质谱法》3《地质样品同位素分析方法 第3部分:锆石 微区原位铀-铅年龄测定 激光剥蚀-电等离子体感耦合质谱法》4《地质样品同位素分析方法 第4部分:地质样品 钐-钕体系同位素年龄和钕同位素比值测定 热电离质谱法》5《地质样品同位素分析方法 第5部分:地质样品 铷-锶体系同位素年龄和锶同位素比值测定 热电离质谱法》6《地质样品同位素分析方法 第6部分:脉石英 铷-锶体系同位素年龄测定 热电离质谱法》7《地质样品同位素分析方法 第7部分:辉钼矿 铼-锇体系同位素年龄测定 电感耦合等离子体质谱法》8《地质样品同位素分析方法 第8部分:地质样品 钾-氩体系同位素年龄测定 熔炉法》9《地质样品同位素分析方法 第9部分:地质样品 氩-氩同位素年龄及氩同位素比值测定 熔炉法 》10《地质样品同位素分析方法 第10部分:地质样品 碳-14地质年龄测定 液闪能谱法》11《地质样品同位素分析方法 第11部分:碳酸盐岩 铀系不平衡地质年龄和铀钍同位素比值测定 α能谱法》12《地质样品同位素分析方法 第12部分:沉积物 铅-210地质年龄测定 α能谱法13《地质样品同位素分析方法 第13部分:沉积物 铅-210地质年龄测定 γ能谱法》14《地质样品同位素分析方法 第14部分:沉积物 铯-137地质年龄测定 γ能谱法》15《地质样品同位素分析方法 第15部分:地质样品 铅同位素组成测定 热电离质谱法》16《地质样品同位素分析方法 第16部分:地质样品 铅同位素组成测定 多接收电感耦合等离子体质谱法》17《地质样品同位素分析方法 第17部分:岩石 锇同位素组成测定负热电离质谱法》18《地质样品同位素分析方法 第18部分:锆石 微区原位铪同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法》19《地质样品同位素分析方法 第19部分:硫化物矿物 硫同位素组成测定 二氧化硫法》20《地质样品同位素分析方法 第20部分:硫酸盐矿物 硫同位素组成测定 二氧化硫法》21《地质样品同位素分析方法 第21部分:硫化物矿物 硫同位素组成测定 六氟化硫法》22《地质样品同位素分析方法 第22部分:地质样品 硅同位素组成测定 四氟化硅法》23《地质样品同位素分析方法 第23部分:硅酸盐和氧化物矿物 氧同位素组成测定 五氟化溴法》24《地质样品同位素分析方法 第24部分:水和非含氧矿物包裹体水 氧同位素组成测定 五氟化溴法》25《地质样品同位素分析方法 第25部分:天然水 氧同位素组成测定 二氧化碳-水平衡法》26《地质样品同位素分析方法 第26部分:水 氧同位素组成测定 连续流水平衡法》27《地质样品同位素分析方法 第27部分:碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法》28《地质样品同位素分析方法 第28部分:碳酸盐岩和矿物 碳氧同位素组成测定 磷酸法》29《地质样品同位素分析方法 第29部分:微量碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法》30《地质样品同位素分析方法 第30部分:水中溶解无机碳 碳同位素组成测定 连续流磷酸法》31《地质样品同位素分析方法 第31部分:水中颗粒有机碳 碳同位素组成测定 连续流燃烧法》32《地质样品同位素分析方法 第32部分:水中溶解有机碳 碳同位素组成测定 燃烧法》33《地质样品同位素分析方法 第33部分:天然气单体烃 碳同位素组成测定 连续流燃烧法》34《地质样品同位素分析方法 第34部分:水和含氢矿物 氢同位素组成测定 锌还原法》35《地质样品同位素分析方法 第35部分:水 氢同位素组成测定连 续流水平衡法》36《地质样品同位素分析方法 第36部分:水 氢氧同位素组成测定 激光光谱法》37《地质样品同位素分析方法 第37部分:富硼矿物 微区原位硼同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法》附件:P020231128545963201409.zip
  • 69项!这些地矿行业新规10月1日起实施
    自然资源部近日发布35号、36号、37号公告,公布了69项涉及地质矿产领域的行业标准。这69项标准自2024年10月1日起实施。标准编号及名称:DZ/T 0184.1-2024地质样品同位素分析方法 第1部分:总则和一般规定(代替DZ/T 0184.1-1997)DZ/T 0184.2-2024地质样品同位素分析方法 第2部分:锆石 铀-铅体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.2-1997、DZ/T 0184.3-1997)DZ/T 0184.3-2024地质样品同位素分析方法 第3部分:锆石 微区原位铀-铅年龄测定 激光剥蚀-电感耦合等离子体质谱法DZ/T 0184.4-2024地质样品同位素分析方法 第4部分:地质样品 钐-钕体系同位素年龄和钕同位素比值测定 热电离质谱法(代替DZ/T 0184.6-1997)DZ/T 0184.5-2024地质样品同位素分析方法 第5部分:地质样品 铷-锶体系同位素年龄和锶同位素比值测定 热电离质谱法(代替DZ/T 0184.4-1997)DZ/T 0184.6-2024地质样品同位素分析方法 第6部分:脉石英 铷-锶体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.5-1997)DZ/T 0184.7-2024地质样品同位素分析方法 第7部分:辉钼矿 铼-锇体系同位素年龄测定 电感耦合等离子体质谱法DZ/T 0184.8-2024地质样品同位素分析方法 第8部分:地质样品 钾-氩体系同位素年龄测定 熔炉法(代替DZ/T 0184.7-1997)DZ/T 0184.9-2024地质样品同位素分析方法 第9部分:地质样品 氩-氩同位素年龄及氩同位素比值测定 熔炉法(代替DZ/T 0184.8-1997)DZ/T 0184.10-2024地质样品同位素分析方法 第10部分:地质样品 碳-14年龄测定 液闪能谱法(代替DZ/T 0184.9-1997)DZ/T 0184.11-2024地质样品同位素分析方法 第11部分:碳酸盐岩 铀系不平衡地质年龄和铀钍同位素比值测定 α能谱法(代替DZ/T 0184.10-1997)DZ/T 0184.12-2024地质样品同位素分析方法 第12部分:沉积物 铅-210地质年龄测定 α能谱法(代替DZ/T 0184.11-1997)DZ/T 0184.13-2024地质样品同位素分析方法 第13部分:沉积物 铅-210地质年龄测定 γ能谱法DZ/T 0184.14-2024地质样品同位素分析方法 第14部分:沉积物 铯-137地质年龄测定 γ能谱法DZ/T 0184.15-2024地质样品同位素分析方法 第15部分:地质样品 铅同位素组成测定 热电离质谱法(代替DZ/T 0184.12-1997)DZ/T 0184.16-2024地质样品同位素分析方法 第16部分:地质样品 铅同位素组成测定 多接收电感耦合等离子体质谱法DZ/T 0184.17-2024地质样品同位素分析方法 第17部分:岩石 锇同位素组成测定 负热电离质谱法DZ/T 0184.18-2024地质样品同位素分析方法 第18部分:锆石 微区原位铪同位素组成测定 激光剥蚀-电感耦合等离子质谱法DZ/T 0184.19-2024地质样品同位素分析方法 第19部分:硫化物矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.14-1997)DZ/T 0184.20-2024地质样品同位素分析方法 第20部分:硫酸盐矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.15-1997)DZ/T 0184.21-2024地质样品同位素分析方法 第21部分:硫化物矿物 硫同位素组成测定 六氟化硫法(代替DZ/T 0184.16-1997)DZ/T 0184.22-2024地质样品同位素分析方法 第22部分:地质样品 硅同位素组成测定 四氟化硅法(代替DZ/T 0184.22-1997)DZ/T 0184.23-2024地质样品同位素分析方法 第23部分:硅酸盐和氧化物矿物 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.13-1997)DZ/T 0184.24-2024地质样品同位素分析方法 第24部分:水和非含氧矿物包裹体水 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.20-1997)DZ/T 0184.25-2024地质样品同位素分析方法 第25部分:天然水 氧同位素组成测定 二氧化碳-水平衡法(代替DZ/T 0184.21—1997)DZ/T 0184.26-2024地质样品同位素分析方法 第26部分:水 氧同位素组成测定连续流水平衡法DZ/T 0184.27-2024地质样品同位素分析方法 第27部分:碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法DZ/T 0184.28-2024地质样品同位素分析方法 第28部分:碳酸盐岩和矿物 碳氧同位素组成测定 磷酸法(代替DZ/T 0184.17-1997)DZ/T 0184.29-2024地质样品同位素分析方法 第29部分:微量碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法(代替DZ/T 0184.18-1997)DZ/T 0184.30-2024地质样品同位素分析方法 第30部分:水中溶解无机碳 碳同位素组成测定 连续流磷酸法DZ/T 0184.31-2024地质样品同位素分析方法 第31部分:水中颗粒有机碳 碳同位素组成测定 连续流燃烧法DZ/T 0184.32-2024地质样品同位素分析方法 第32部分:水中溶解有机碳 碳同位素组成测定 燃烧法DZ/T 0184.33-2024地质样品同位素分析方法 第33部分:天然气单体烃 碳同位素组成测定 连续流燃烧法DZ/T 0184.34-2024地质样品同位素分析方法 第34部分:水和含氢矿物 氢同位素组成测定 锌还原法(代替DZ/T 0184.19-1997)DZ/T 0184.35-2024地质样品同位素分析方法 第35部分:水 氢同位素组成测定 连续流水平衡法DZ/T 0184.36-2024地质样品同位素分析方法 第36部分:水 氢氧同位素组成测定 激光光谱法DZ/T 0184.37-2024地质样品同位素分析方法 第37部分:富硼矿物 微区原位硼同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法DZ/T 0475-2024区域地质调查规范(1∶50 000)DZ/T 0476-2024覆盖区区域地质调查规范(1∶50 000)DZ/T 0477-2024深部矿产远景调查技术要求DZ/T 0478-2024固体矿山矿产资源储量三维动态管理技术要求DZ/T 0479-2024压覆矿产资源调查评估规范DZ/T 0480-2024砂石矿山综合利用规范DZ/T 0481-2024水热型地热资源回灌技术要求DZ/T 0482-2024水热型地热资源开发与保护监测规范DZ/T 0483-2024水热型地热资源开发利用技术要求DZ/T 0484-2024遥感地质术语DZ/T 0485-2024微动探测技术规程DZ/T 0486-2024固体矿产勘查钻孔质量要求DZ/T 0487-2024绳索取心钻杆作业规程DZ/T 0488-2024煤层底板分支孔定向技术规范DZ/T 0489-2024煤层底板地面探查与注浆技术规范DZ/T 0490-2024工程建设项目地质资料汇交规范DZ/T 0491-2024观赏石鉴评 灵璧石DZ/T 0492-2024观赏石鉴评 大化彩玉石DZ/T 0493-2024观赏石鉴评 雨花石DZ/T 0466.1-2024地质资料馆藏管理规范 第1部分:实物DZ/T 0069-2024地球物理勘查图图式图例及色标(代替 DZ/T 0069-1993)DZ/T 0225-2024浅层地热能勘查评价规范(代替 DZ/T 0225-2009)DZ/T 0260-2024地热钻探技术规程(代替 DZ/T 0260-2014)DZ/T 0494-2024矿产地质勘查规范 海砂DZ/T 0495-2024鸡血石 鉴定DZ/T 0461.4-2024矿产资源定期调查规范 第4部分:成果报告编制DZ/T 0461.6-2024矿产资源定期调查规范 第6部分:图例图式DZ/T 0462.11-2024矿产资源“三率”指标要求 第11部分:火山渣、火山灰、浮石、粗面岩、麦饭石、硅藻土DZ/T0462.12-2024矿产资源“三率”指标要求 第12部分:宝石、水晶、玛瑙、金刚石DZ/T 0462.13-2024矿产资源“三率”指标要求 第13部分:黏土类矿产DZ/T 0462.14-2024矿产资源“三率”指标要求 第14部分:饰面石材和建筑用石料矿产DZ/T 0462.15-2024矿产资源“三率”指标要求 第15部分:地热、矿泉水
  • 37项地质样品同位素分析标准发布,LA-ICP-MS、TIMS等技术成关键
    2024年8月2日,《地质样品同位素分析方法 第1部分:总则和一般规定》等37项行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,经2024年第5次部长办公会审议通过,现予批准、发布,自2024年10月1日起实施。多项标准涉及热电离质谱法(TIMS)、激光剥蚀-电感耦合等离子质谱法(LA-ICP-MS)、能谱法等。详细的标准编号及名称见附表。为聚焦国家重大战略需求,进一步激发地质矿产的创新活力,推动最新科研成果广泛交流,仪器信息网将于2024年8月22日举办“第六届现代地质及矿物分析测试新技术与应用”网络研讨会,聚焦LA-ICP-MS、直读光谱、原子探针、TIMS等技术的最新应用展开讨论,日程如下,点击预约参会》》》。时间报告专家单位报告方向9:00-9:30郭冬发核工业北京地质研究院锂分析方法与地质分析实践9:30-10:00陈剑峰布鲁克(北京)科技有限公司布鲁克地质及矿物中元素分析解决方案10:00-10:30杨阳德国斯派克分析仪器 销售经理地矿样品中的稀土元素的解决方案10:30-11:00罗涛中国地质大学(武汉)LA-ICP-MS副矿物U-Th-Pb定年技术及标样研究进展11:00-11:30待定上海凯来仪器有限公司待定11:30-12:00董学林湖北省地质实验测试中心固体进样电弧直读光谱技术在战略性矿产分析中的应用14:00-14:30许春雪国家地质实验测试中心战略性矿产标准物质研制现状和需求分析14:30-15:00谢士稳中国地质科学院地质研究所原子探针层析技术及其在矿床研究中的应用15:00-15:30冯兰平中国地质大学(武汉)动态多接收TIMS方法高精度测定锶同位素组成附表标准编号及名称DZ/T 0184.1-2024地质样品同位素分析方法 第1部分:总则和一般规定(代替DZ/T 0184.1-1997)DZ/T 0184.2-2024地质样品同位素分析方法 第2部分:锆石 铀-铅体系同位素年龄测定 热电离质谱法(代替DZ/T0184.2-1997、DZ/T 0184.3-1997)DZ/T 0184.3-2024地质样品同位素分析方法 第3部分:锆石 微区原位铀-铅年龄测定 激光剥蚀-电感耦合等离子体质谱法DZ/T 0184.4-2024地质样品同位素分析方法 第4部分:地质样品 钐-钕体系同位素年龄和钕同位素比值测定 热电离质谱法(代替DZ/T 0184.6-1997)DZ/T 0184.5-2024地质样品同位素分析方法 第5部分:地质样品 铷-锶体系同位素年龄和锶同位素比值测定 热电离质谱法(代替DZ/T 0184.4-1997)DZ/T 0184.6-2024地质样品同位素分析方法 第6部分:脉石英 铷-锶体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.5-1997)DZ/T 0184.7-2024地质样品同位素分析方法 第7部分:辉钼矿 铼-锇体系同位素年龄测定 电感耦合等离子体质谱法DZ/T 0184.8-2024地质样品同位素分析方法 第8部分:地质样品 钾-氩体系同位素年龄测定 熔炉法(代替DZ/T 0184.7-1997)DZ/T 0184.9-2024地质样品同位素分析方法 第9部分:地质样品 氩-氩同位素年龄及氩同位素比值测定 熔炉法(代替DZ/T 0184.8-1997)DZ/T 0184.10-2024地质样品同位素分析方法 第10部分:地质样品 碳-14年龄测定 液闪能谱法(代替DZ/T 0184.9-1997)DZ/T 0184.11-2024地质样品同位素分析方法 第11部分:碳酸盐岩 铀系不平衡地质年龄和铀钍同位素比值测定 α能谱法(代替DZ/T 0184.10-1997)DZ/T 0184.12-2024地质样品同位素分析方法 第12部分:沉积物 铅-210地质年龄测定 α能谱法(代替DZ/T 0184.11-1997)DZ/T 0184.13-2024地质样品同位素分析方法 第13部分:沉积物 铅-210地质年龄测定 γ能谱法DZ/T 0184.14-2024地质样品同位素分析方法 第14部分:沉积物 铯-137地质年龄测定 γ能谱法DZ/T 0184.15-2024地质样品同位素分析方法 第15部分:地质样品 铅同位素组成测定 热电离质谱法(代替DZ/T 0184.12-1997)DZ/T 0184.16-2024地质样品同位素分析方法 第16部分:地质样品 铅同位素组成测定 多接收电感耦合等离子体质谱法DZ/T 0184.17-2024地质样品同位素分析方法 第17部分:岩石 锇同位素组成测定 负热电离质谱法DZ/T 0184.18-2024地质样品同位素分析方法 第18部分:锆石 微区原位铪同位素组成测定 激光剥蚀-电感耦合等离子质谱法DZ/T 0184.19-2024地质样品同位素分析方法 第19部分:硫化物矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.14-1997)DZ/T 0184.20-2024地质样品同位素分析方法 第20部分:硫酸盐矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.15-1997)DZ/T 0184.21-2024地质样品同位素分析方法 第21部分:硫化物矿物 硫同位素组成测定 六氟化硫法(代替DZ/T 0184.16-1997)DZ/T 0184.22-2024地质样品同位素分析方法 第22部分:地质样品 硅同位素组成测定 四氟化硅法(代替DZ/T 0184.22-1997)DZ/T 0184.23-2024地质样品同位素分析方法 第23部分:硅酸盐和氧化物矿物 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.13-1997)DZ/T 0184.24-2024地质样品同位素分析方法 第24部分:水和非含氧矿物包裹体水 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.20-1997)DZ/T 0184.25-2024地质样品同位素分析方法 第25部分:天然水 氧同位素组成测定 二氧化碳-水平衡法(代替DZ/T 0184.21—1997)DZ/T 0184.26-2024地质样品同位素分析方法 第26部分:水 氧同位素组成测定 连续流水平衡法DZ/T 0184.27-2024地质样品同位素分析方法 第27部分:碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法DZ/T 0184.28-2024地质样品同位素分析方法 第28部分:碳酸盐岩和矿物 碳氧同位素组成测定 磷酸法(代替DZ/T 0184.17-1997)DZ/T 0184.29-2024地质样品同位素分析方法 第29部分:微量碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法(代替DZ/T 0184.18-1997)DZ/T 0184.30-2024地质样品同位素分析方法 第30部分:水中溶解无机碳 碳同位素组成测定 连续流磷酸法DZ/T 0184.31-2024地质样品同位素分析方法 第31部分:水中颗粒有机碳 碳同位素组成测定 连续流燃烧法DZ/T 0184.32-2024地质样品同位素分析方法 第32部分:水中溶解有机碳 碳同位素组成测定 燃烧法DZ/T 0184.33-2024地质样品同位素分析方法 第33部分:天然气单体烃 碳同位素组成测定 连续流燃烧法DZ/T 0184.34-2024地质样品同位素分析方法 第34部分:水和含氢矿物 氢同位素组成测定 锌还原法(代替DZ/T 0184.19-1997)DZ/T 0184.35-2024地质样品同位素分析方法 第35部分:水 氢同位素组成测定 连续流水平衡法DZ/T 0184.36-2024地质样品同位素分析方法 第36部分:水 氢氧同位素组成测定 激光光谱法DZ/T 0184.37-2024地质样品同位素分析方法 第37部分:富硼矿物 微区原位硼同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法
  • 三价钛(III)还原法硝酸盐18O与水中18O之间零同位素交换
    在研究氮的来源、循环和去向的时候,最重要的是有一个可靠的样品制备方法。三价钛(III)还原法提供了一种低成本、快速和简单的方法,与成熟的细菌和镉还原+叠氮化方法相比,该方法优于其他方法。重要的是,在将溶解的硝酸盐转化为N2O气体的过程中,硝酸盐(或中间化合物)和水之间没有氧原子的交换,这使得该方法测定的氧同位素值反映了硝酸盐的氧同位素组成。将硝酸盐样品溶解在δ18OWater值明显不同的水中(-10.9‰和-40.7‰),一式三份,用三价钛(III)还原法处理样品验证硝酸盐和水是否存在氧交换。样品在N2O模式下使用EnvirovisION系统进行硝酸盐同位素分析,在40℃的水平衡模式下使用iso FLOW顶空分析仪进行δ18OWater分析。表1 两组硝酸盐样品的分析结果结果表明,在样品制备过程中没有发生氧交换,证明了三价钛(III)还原法对自然丰度样品的适用性(表1)。对于溶解的硝酸盐的同位素分析,NO3 -一旦转化为N2O,从样品气体中分离CO2和N2O气体也很重要,因为它们具有相同的质量,无法用IRMS进行区分。EnvirovisION利用低温预浓缩、化学捕集和气相色谱技术完全分离气体,进行CO2、CH4和N2O的高精度同位素分析。德国元素硝酸盐样品氮氧同位素分析的最新解决方案EnvirovisION。EnvirovisION是环境样品分析的理想解决方案,通过isoprime visION与iso FLOW GHG结合的轻松操作,采用三价钛还原法分析硝酸盐样品,大大降低了样品预处理的技术门槛,同时保持了最高水平的精确度和准确性,避免了繁琐的样品多步处理、厌氧细菌培养的维护和剧毒化学品的使用。
  • SPE应用文集005:尿液样品净化检测硝酸盐及亚硝酸盐
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《尿液样品净化检测硝酸盐及亚硝酸盐》(Clean-up of Urine samples before Determination of Nitrite and Nitrate) 应用领域:临床医疗 目标分析物:硝酸盐、亚硝酸盐 样品基质:尿液 萃取柱:BAKERBOND spe&trade C18, 100 mg, 1mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 小柱活化:加入2X1mL甲醇活化,2X1mL水平衡,保持过程中小柱始终处于润湿状态 上样与清洗:缓慢加入2X500uL尿液样品,以1mL/min的速度抽出,收集滤液,用2000uL流动相稀释 分析方法:离子交换色谱法 以上即为固相萃取步骤,相关产品信息如下: B7020-01 BAKERBOND spe&trade C18, 100 mg, 1mL B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_175681.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 总有机碳TOC分析仪有哪些模式,哪一种适合您?
    图1:碳的类型*可吹扫有机碳POC也称为挥发性有机碳(VOC)。如果用户需要监测水的有机物或评估总有机碳(TOC)仪器,首先需要通过几个英文缩写了解不同的监测模式。用户可能已有TOC分析仪的相关经验,了解需使用的模式或合规报告需使用的模式(这种情况下更容易确定应该使用哪种模式)。然而,如果不是以上任一种情况,则可能难于区分不同模式之间的差别和确定需使用的模式。本文为您简单介绍不同模式间的差别。以下是TOC分析仪的各种模式列表及其说明和用途。虽然TOC分析仪可能有多种模式用于不同的用途,但大多数仪器并不具有所有模式。TC:总碳总碳模式可用于检测样品的所有碳形态,即同时包括有机和无机两种形态。此模式并不涉及样品酸化或吹扫(详见以下“无机碳”部分),也就是说,是对原始样品进行原状检测。总碳模式最适合以下情况:不需要区分有机碳和无机碳不需要对样品进行预处理只需要获取趋势分析信息总碳模式的最佳应用:冷凝水回流IC:无机碳无机碳模式的对象是特定的化合物,例如碳酸氢盐、碳酸盐、溶解二氧化碳等。通过吹气,或者降低pH以转化平衡为CO2状态,无机碳化合物被吹扫出来。如果对样品不进行吹扫与酸化,无机化合物仍留在溶液中,会被计为TC的部分。这是一种平衡的关系,我们看待TOC时会理解更深刻。无机碳模式最适合以下情况:过程监测需要检测无机化合物,为设备和管道提供保护需要监测水的缓冲能力pH值稳定的样品需要防止锅炉结垢(避免产生碳酸盐沉淀)需要监测薄膜脱气无机碳模式的最佳应用:污水处理厂锅炉给水饮用水TOC:总有机碳在总有机碳模式中,样品的总碳减去无机碳得出总有机碳(TC-IC=TOC)。与其他模式比较,TOC模式更准确,可达到ppb级或以下。总有机碳模式最适合以下情况:需要对过程进行监测,例如排水、清洗或回用必须满足合规要求需要低浓度检测的灵敏度和准确度与总有机碳比,无机碳值相对较低样品的挥发性有机化合物(VOC)含量较高样品的基质在搅拌时会起泡总有机碳模式的最佳应用:制药超纯水(UPW)和清洁验证锅炉给水半导体制造(超纯水)饮用水工艺用水(食品饮料、油气、化工等)NPOC:不可吹扫有机碳不可吹扫有机碳不可吹扫有机碳模式是工艺监测中有机物监测的公认最常用模式。在NPOC模式中,对样品进行酸化将无机化合物转化为二氧化碳。然后,使用不含二氧化碳的空气进行吹扫,以去除无机化合物或可吹扫化合物。对样品中残留的有机碳(即不可吹扫有机碳)进行分析。如果可吹扫有机碳(POC)极少,则总有机碳与不可吹扫有机碳基本相等。不可吹扫有机碳的准确度可达到ppm级。不可吹扫有机碳模式最适合以下情况:需要监控工艺过程样品基质中可吹扫有机碳含量较低不可吹扫有机碳模式的最佳应用:废水排放(工业或市政)POC/VOC:可吹扫/挥发性有机化合物可吹扫/挥发性有机化合物可吹扫或挥发性有机化合物模式用于检测挥发性或半挥发性有机物。有两种途径检测VOC:采用光电离检测(PID)技术直接检测VOC;使用公式VOC=TOC-NPOC计算VOC。PID通过检测样品吹扫分离的中间的带正电荷的碳离子,实现挥发性有机化合物的检测。这些离子通过电极进行收集并检测所产生的电流。此模式可通过NPOC结果与POC结果求和得出TOC值。可吹扫/挥发性有机化合物模式最适合以下情况:为满足控制和安全要求,需要监测挥发性有机化合物不需要区分样品所含的不同种挥发性有机化合物的种类(只需要了解总体值)可吹扫/挥发性有机化合物模式的最佳应用:石化废水冷却塔和排污BOD/COD:生物/化学需氧量生物/化学需氧量BOD和COD是几十年来一直用于确定有机物含量的两个基本参数。BOD确定降解微生物所需的氧气量,而COD确定化学氧化存在的污染物所需的氧气量。这些方法通过测量消耗的氧气量来间接确定有机污染 — BOD需要数天时间,COD需要数小时时间。除了分析时间较长外,这两种方法都存在可能造成干扰的化合物。氯和盐会干扰BOD,而硫化物、氯化物、亚硝酸盐和二价铁会干扰COD。有些化合物能够耐受COD的化学氧化,例如苯。最初,BOD和COD值通过实验室化验获得,但由于前文所述的缺点,目前已有几种分析仪可以通过特定地点的数据相关性来提供这些值。TOC分析仪直接检测和量化样品中存在的碳,并可以提供转换为BOD和COD浓度的实时数据。BOD/COD模式最适合以下情况:相关法规要求报告BOD/COD需要分析仪数据与实验室结果之间的比较样品中不含会干扰BOD/COD的化合物BOD/COD模式的最佳应用:废水排放(工业或市政)结论选择TOC分析仪的模式并非仅选择默认或最常用的模式。监测有机物的最适用模式取决于样品基质、应用以及用户的数据用途。从一开始就选择合适的模式可确保实施过程无缝衔接,使得此后生成的数据非常可靠。作者:Sara SpeakSara Speak是Sievers分析仪的产品应用专员,为化工、石化、食品饮料、市政污水等行业客户提供支持和应用的相关专业意见。Sara与客户合作,提供相关培训,为产品的安装提供支持,优化设备的应用并验证不同检测应用的可行性。在担任产品应用专员之前,Sara曾任工厂服务技术员,负责Sievers仪器的维修和故障排除。Sara曾在食品饮料行业工作(MillerCoors和Leprino Foods),任QA实验室技术员。Sara拥有丹佛大都会州立大学(Metropolitan State University of Denver)化学学士学位和小提琴演奏音乐学士学位。◆ ◆ ◆联系我们,了解更多!
  • 你想要的答案在这里!第三次全国土壤普查常见技术问题答疑手册修订版发布
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,基于新发布的《第三次全国土壤普查技术规程(修订版)》等技术规程规范,对关于平台应用、外业调查采样、内业样品制备与检测等问题进行更新完善,形成《第三次全国土壤普查常见技术问题答疑手册(修订版137问)》,供各地参考。《第三次全国土壤普查常见技术问题答疑手册(第1期139问)》自即日起废止。检测相关问题部分解答如下:1.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定,阳离子交换量、交换性盐基等土壤样品检测,应根据土壤样品酸碱性选择对应的检测方法。pH7.5为碱性土壤,pH 6.5~7.5(包含6.5和7.5)为中性土壤。2.有效态铁、锰、铜、锌检测方法为《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为pH6的土壤,pH6的土壤样品如何检测?答:农业行业标准《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)规定了采用二乙三胺五乙酸(DTPA)浸提剂提取土壤中有效态锌、锰、铁、铜,以原子吸收分光光度法或电感耦合等离子体发射光谱法加以定量测定的方法,该标准规定适用于pH6的土壤。《土壤分析技术规范》(第二版)(中国农业出版社,2006)引用了该标准,并明确pH6的土壤也可参照使用。经内业技术组专家研究确定,NY/T 890-2004标准适用于所有土壤有效态锌、锰、铁、铜含量的测定。3.全氮检测方法为《土壤检测第24部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012),其中样品前处理规定了“6.3.1不包括硝态氮和亚硝态氮的消煮”“6.3.2包括硝态氮和亚硝态氮的消煮”两种方法,如何选择?答:鉴于土壤样品硝态氮和亚硝态氮含量很低,对土壤全氮量的测定结果影响很小,经内业技术组专家研究确定,除含硝态氮高的土壤外,其余耕地园地、林地草地土壤样品可采用标准中不包括硝态氮和亚硝态氮的方法进行全氮检测样品前处理。4.按照《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)和《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)检测镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、钼(Mo)、镍(Ni)、铅(Pb)、锌(Zn)、铁(Fe)、铝(Al)、钙(Ca)、镁(Mg),对是检测土壤试样的浸出液还是检测土壤试样,前处理如何操作?答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理。具体检测方法已列入培训教材,并在“检测小课堂”中发布。5.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成的测定》(LY/T 1225-1999)方法检测?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》明确,机械组成检测依据《土壤分析技术规范》(第二版),5.1吸管法。6.水溶性硝酸根离子含量过高的土壤,水溶盐离子加和总量与水溶盐总量检测结果超出《森林土壤水溶性盐分分析》(LY/T1251–1999)中表4允许偏差超范围。答:建议检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,对可能影响加和离子的原因进行排查,并提供影响加和的其他阴阳离子含量的测定原始记录等备查。7.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定碳酸钙检测采用《土壤分析技术规范》(第二版),15.1土壤碳酸盐的测定 气量法。8.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定土壤中交换性盐基总量和交换性盐基的检测方法,对于pH≤7.5的样品,采用《土壤分析技术规范》(第二版),13.1酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)方法测定;对于pH>7.5的样品,采用《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)方法测定。9.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁ICP法测定方法。答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》增加了交换液中钾、钠、钙、镁离子的等离子体发射光谱法。具体检测方法见培训教材,并在“检测小课堂”中发布。10.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,应对可能影响加和离子的原因进行排查,并做好影响加和的其他阴阳离子含量的测定原始记录等。附:第三次全国土壤普查常见技术问题答疑手册(修订版137问).docx
  • 土壤三普常见技术问题答疑手册发布 讨论了这些仪器和方法
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,对试点期间各地反馈的关于平台应用、外业调查采样、内业样品制备与检测等问题进行梳理总结与分析研判,初步形成常见技术问题答疑手册,第1期共139问。其中,答疑手册第三部分专门就样品检测过程中的问题进行了解释,包括制样器具选择、样品前处理的步骤、相关的标准方法以及所使用的仪器等,包括原子吸收分光光度法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法、X 射线衍射法、火焰光度法等。仪器信息网摘录部分如下:102.国家层面是否统一制样器具的类别、材质和型号?答:《土壤样品制备与检测技术规范(试行)》中 2.4 对样品制备所需工具和材质已做明确要求,承担样品制备任务 的实验室应结合本省任务安排及实际情况,确定相应样品制 备器具。103.第三次全国土壤普查工作平台上样品制备的起止时间如何界定?答:一般样品和剖面样品的制备起止时间为粗磨开始和粗磨结束。水稳性大团聚体的制备起止时间为风干开始和风干结束。104.1 mm 土壤样品如何细磨?答:按照《土壤样品制备与检测技术规范(试行)》中 2. 6.1“一般样品制备”有关要求,采用四分法或多点取样法,在 送检样品中分取约 50g 样品(具体数量依据相关检测方法要 求),用木辊或在瓷(玛瑙)研钵中研磨,使之全部过 1 mm 样品筛,用于速效钾、缓效钾等指标检测。105.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《土壤样品制备与检测技术规范(试行)》规 定,阳离子交换量、交换性盐基等土壤样品检测,应根据土 壤样品酸碱性选择对应的检测方法。依据《中国土壤》(中 国农业出版社,1998),pH7.5 为碱性土壤,pH 6.5~7.5(包含 6.5 和 7.5)为中性土壤。106.有效态铁、锰、铜、锌检测方法为《土壤有效态 锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为 pH6 的土壤,pH6 的土壤。《土壤分析技术规范》(第二版)(中国农业出 版社,2006)引用了该标准,并明确 pH答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22 种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微 波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢 氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本 方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理110.《土壤样品制备和检测技术规范(试行)》中未写明土壤矿物、凋萎系数检测具体方法。 答:《土壤样品制备与检测技术规范(试行)》和第三次 全国土壤普查内业检测培训教材中规定了土壤田间持水量和凋萎系数采用压力膜(板)法,并明确了具体操作步骤和有关要求,土壤矿物测定采用 X 射线衍射法。112.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成 的测定》(LY/T 1225-1999)方法检测?答:《土壤样品制备与检测技术规范(试行)》规定土壤 机械组成测定采用《土壤分析技术规范》(第二版)吸管法 和比重计法,两种方法均可用于土壤机械组成的检测。《土 壤样品制备与检测技术规范(试行)》规定的检测方法主要采用标准方法或权威方法,且经过专家多次研讨确定,在方法未经大量试验验证前不得随意改变。《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)土壤质地分类与颗 粒分级采用美国制,与现有技术规范规定不一致。115.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计? 答:《土壤分析技术规范》(第二版)中非水滴定法测定 结果是以 CO2计,此次三普土壤样品测定结果以碳酸钙含量计。117.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合? 答:对于碱性森林土壤(石灰性土壤或盐渍化土壤), 不能采用《森林土壤阳离子交换量的测定》(LY/T 1244-19 99),因为该标准采用乙酸铵交换-容量法会溶解石灰性土 壤碳酸钙中游离钙离子,导致交换性盐基总量大于阳离子交 换量。鉴于碱性森林土壤的交换性盐基总量目前尚未有明确 的国家或行业标准规定,建议采用《石灰性土壤交换性盐基 及盐基总量的测定》(NY/T 1615-2008)方法测定交换性盐 基总量。118.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁 ICP 法测定方法。答:目前没有 ICP 法测定交换性盐基离子标准,应按照 《土壤样品制备与检测技术规范(试行)》规定方法检测。119.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水 溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。更多详情请关注:第三次全国土壤普查常见技术问题答疑手册.pdf
  • 聚焦BCEIA | 盛瀚“产品力”“权威力”“引领力”震撼现场!
    9月6-8日,两年一度的科学仪器行业盛会——第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)在北京中国国际展览中心顺义馆成功举办! 时隔两年,盛瀚再次来到北京,相聚BCEIA 2023。展会现场人潮涌动,行业大咖群聚,热闹非凡!产品力王牌产品VS解决方案展台首秀!D500+震撼亮相展会现场,盛瀚直播CIC-D500+多功能多维色谱仪展台首秀!CIC-D500+一登场就获得线上线下观众的热切关注,多元联用、智控操作、终身质保等特点备受好评!多检测器联同使用整机采用DIY设计理念,可自由搭配;标配4套检测器,种类丰富。联用项目一体化扩展可联用MS、MS-MS、ICP、在线燃烧前处理等其他模块,满足复杂体系样品分析,可提供成熟联用方案提供。多通道同时运作标配双通道同时监测,效率加倍;满足多通道扩展需求,可延展到十通道检测。全新升级工作站一款软件解决多检测器分析要求,操控简便;新功能加入,非常规检测结果更加精准。现场验证!5750解决方案为满足客户需求,展台现场推出5750标准专项解决方案。D260双通道离子色谱仪搭配ShineLab智能软件,可实现标准中消毒副产物、高氯酸盐、丙烯酸、草甘膦等方法检测。5750专项解决方案满足标准合规性,同时兼容碳酸盐和氢氧根体系,无需手动更换,节省平衡时间,防止交叉污染,操作便捷;还可实现部分进样、无需更换色谱柱和定量环,即可实现碳酸盐和氢氧根双体系同时运行,效率翻倍!展会现场,盛瀚向参展客户展示样品处理,样品谱图基线平稳、分离度良好,完全满足客户使用需求,同时新增智能算法和基线矫正,得到客户一致好评。权威力专家大咖 齐聚逛展本届BCEIA2023,盛瀚展台迎来多批专家团和行业大咖,专家大咖的考察为盛瀚印上权威认可。辽宁分析测试协会专家团莅临盛瀚展台,十余位专家学者参观交流,对盛瀚产品和解决方案十分认可。仪器信息网组织的周琦、彭涛等三十余人专家团莅临盛瀚展位。专家大咖对盛瀚D500+多功能多维色谱仪颇感兴趣,在交流探讨中,专家大咖切实体验到盛瀚的精工匠制,为国产精品点赞赋能!引领力坚守初心 引领创新盛瀚展台人流如潮,吸引国内外众多专家学者、合作友商驻足参观。9月7日,工业和信息化部党组成员、副部长,国家国防科技工业局局长、党组书记张克俭莅临盛瀚色谱 & 青源峰达太赫兹科技展台交流指导,鼓励国产仪器厂商坚持自主研发、持续创新!盛瀚深耕离子色谱21年,实现从整机到关键部件、智能软件、数据库等全产业链自主可控,坚守初心、持续创新,争做行业引领者! 聚焦BCEIA2023盛瀚精彩亮相展现出“产品力”“权威力”“引领力”三力协同跑出国产仪器加速度
  • 一探前沿丨Orbitrap 助力环境ding级研究匠心独运
    北京冬奥会完满收官,在这场特殊背景下举办的体育盛事,中国向quan世界wan美诠释了绿色、环保、节能、简约的可持续发展理念。而在另一个方面,全球的科学家们也在使用赛默飞高性能色谱质谱产品,让世界更健康,更清洁,更安全。Orbitrap 技术发展至今,凭借其卓yue的分辨率、灵敏度、多项创新技术等“硬实力”,圈“粉”无数,平均每小时就有一篇文章问世,也逐渐成为全球科学家实现ding级科研创新的有力伙伴。继上一篇解读环境领域ding级期刊ES&T微信发文,后台有众多科研工作者纷纷点赞,飞飞今天整理了近一年内ES&T发表的前沿研究,让我们一起探索科学的奥秘!1# 创新方法非靶向筛查助力解密水资源污染事件前沿概览水作为人类最赖以生存的天然资源,探寻湖泊-河流系统中有机微污染物 (OMP) 的产生、来源和去向是近年来研究热点。研究者们创新性地使用Orbitrap超高分辨率液质联用系统对纽约中部奥内达加湖水中的OMP进行非靶向分析,再结合一系列组学统计分析发现其中的4种主要污染标记物(加拉索酮、二苯基次膦酸、N-丁基苯磺酰胺和三异丙醇胺)有空间分布特征。Compound Discoverer组学工作站在本次研究中提供了从数据预处理,峰提取,RT对齐,MS/MS定性峰归属,信号归一化校正,聚类分析等完整数据处理解决方案。此外,研究者还shou次将非靶向组学研究与湖泊-河流系统质量平衡模型相结合,解释了美国水污染史shang具有重要意义的湖泊-河流系统中的OMP动态分布变化,可以在未来的定点监测、网格化水体管理等工作提供重要理论依据。向上滑动阅览# 前沿技术环境暴露组学研究迎创新前沿概览环境污染物往往具有未知性、成分可变、复杂的反应副产物以及生物来源性等特征(简称UVCBs物质),这也给环境风险评估带来了很大挑战。研究者结合了顶空固相微萃取(HS-SPME)与GC-Orbitrap超高分辨率气质联用,对膳食鱼类体内多种疏水性UVCBs成分进行表征,并进行消除动力学研究。研究者在目前没有可参考分析标准的背景下,使用HS-SPME/GC-Orbitrap鉴定并定量分析了不同疏水性UVCBs组分,发现其潜在生物累积性,并开发了相关的数据库。这些动力学模型及数据库可以更好地探究不同疏水性UVCBs的生物累积潜力与化学结构特征的关系,并减少长周期的动物实验,是研究环境暴露中UVCBs潜在影响的有力手段。# 独树一帜助力探索日用品对人体健康风险前沿概览全氟和多氟烷基物质(PFAS)在新化工时代来源复杂,稳定性极qiang且不易降解,有明确的生物毒副作用,一直是业内的研究重点。研究者针对目前市场上的防雾产品(除雾配方、防水喷雾、防水衣物等),推断其中可能使用了含有PFAS的配方。为了更好地覆盖PFAS组分,研究者们结合了GC-Orbitrap气质和LC-Orbitrap Fusion Lumos三合一超高分辨率液质等分析手段。研究结果表明所有购买来的产品中均检测到了含氟聚醇 (FTOH) 和含氟聚乙氧基化物 (FTEO)。喷雾剂产品中的总有机氟 (TOF) 测定含量为 190 至 20,700 μg/mL,防水衣物中甚至高达 44,200 至 131,500 μg/克(布重)。此外,防雾产品在小鼠 3T3-L1 细胞中表现出显着的细胞毒性和脂肪形成活性(甘油三酯积累或脂肪相关细胞增殖),其中FTEO 是防水喷雾脂肪形成活性的重要来源。研究警示了对含有PFAS的除雾及防水产品,我们需要更多的研究来充分了解它带来的健康风险。# 独出心裁解析全球气候变化全新思路前沿概览我们知道全球气候变化跟CO2等含碳温室气体排放密切相关,而全球约30% 的土壤碳储量储存在泥炭地中。有研究表明微生物酪氨酸酶 (TYRs)通过降解土壤中酚类物质而有固碳作用,被视为土壤中碳储存的关键调节剂。近几十年来由于ji端天气频发(夏季长期干旱或持续性内涝)严重影响了TYRs活性。研究者们首先通过TYRs部分氨基酸序列鉴定发现泥炭地中天然存在一个TYR酶群落,这是由包括变形菌纲和放线菌纲在内的多种细菌系统多样性产生。然后从富含碳酸盐的内陆盐沼中鉴定出一种出现的了异源表达与纯化的胞外 TYR (SzTYR);通过Orbitrap 超高分辨率液质联用正离子模式测算其分子量约为30891.8 Da。其后的光谱及动力学研究将其确认为一种酪氨酸酶,并证明了其对泥炭地中天然存在的单酚(香豆酸)、二酚(咖啡酸、原儿茶酸)和三酚(没食子酸)具有降解活性。这或许为研究全球气候变化提供一种全新思路。(点击查看大图)如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 戴安提供完全符合《饮用天然矿泉水》新国标溴酸盐检测方法
    新《饮用天然矿泉水》国家标准将于10月1日起实施。记者获悉,新标准最受关注的是新增了饮用天然矿泉水中的溴酸盐指标限量。新国标被公认为最大的亮点就是:增加了溴酸盐的限量指标,每1L(升)饮用天然矿泉水中的溴酸盐含量不得超过0.01mg(毫克)。据了解,溴酸盐是在各个饮用水行业厂家大量使用臭氧进行杀菌的过程中,不可避免产生的一种毒副产物。溴酸盐在国际上被定为2B级潜在致癌物。 现行饮用天然矿泉水国标GBT8538-2008规定的溴酸盐检测使用的是离子色谱法,同时包含使用氢氧根系统淋洗液和碳酸盐系统淋洗液,分别使用IonPac AS19(250mm× 4 mm)分析柱、ASRS-ULTRAⅡ型抑制器和IonPac AS9-HC分析柱,两者直接进样矿泉水500&mu L,最低检测质量浓度都达到了0.005 mg/L。戴安公司提供完全符合现行矿泉水国标GBT8538-2008和10月1日即将实施的新《饮用天然矿泉水》国家标准检测方法,提供包括氢氧根系统和碳酸根离子色谱仪、色谱柱及抑制器,戴安最新推出的AS23高容量柱被推荐为AS9-HC的替代色谱柱,除了分离效果更佳以外,还具有柱容量更高,可以耐受更复杂基体的特点。 有需要了解这方面客户请联系戴安中国北京应用中心010-62849182,戴安中国市场部010-64436740转市场部或点击www.dionex.com.cn。 我国自来水等城镇供水的消毒方式主要以二氧化氯消毒为主,但是瓶装水的消毒则有部分采用臭氧消毒。溴酸盐是用臭氧对饮用水进行消毒时产生的一种消毒副产物。研究表明,当人们终生饮用含溴酸盐为5.0 µ g/L或0.5 µ g/L的饮用水时,其致癌率分别为万分之一和十万分之一。臭氧对溴氧化生成溴酸盐的过程如下: 由于溴酸盐的致癌作用,各国政府和国际组织对溴酸盐的毒性给予了极大关注,对饮用水中的溴酸盐进行了大规模的研究,并且制定了饮用水中溴酸盐的最大容许浓度。美国国家环境保护局(EPA)在第一阶段饮用水控制法案中规定饮用水中BrO3-的最大容许浓度为10&thinsp µ g/L;世界卫生组织(WHO)规定为25&thinsp µ g/L&thinsp 。我国规定的溴酸盐的最高允许浓度为10&thinsp µ g/L,这个规定从2005年6月1日已经开始实施。 戴安中国市场部 戴安公司成立于1975年(纳斯达克股票:DNEX),位于美国硅谷Sunnyvale。公司奋斗目标是不断为全球化学工作者提供高科技产品,帮助减少繁复而耗时的实验室工作环节。戴安公司成立同年推出了世界第一台商用离子色谱,该项革命性的分析技术使得全球化学工作者能够从混合物中快速分离鉴别出各项离子成分。历经几十年的发展,到目前为止戴安各项成熟技术已被大大扩展,包括离子色谱仪IC,高效液相色谱HPLC包括毛细管和微流量液相色谱Nano-LC氨基酸直接分析仪AAA-Direct,快速溶剂萃取仪ASE和固相萃取仪Autotrace及在线分析仪器等。 Dionex Corporation was founded in 1975 with the goal of helping chemists become more productive by providing them with products that eliminate repetitive, time-consuming tasks. At the time, Dionex was developing ion chromatography (IC), an innovative analytical technique that enabled chemists to quickly separate, isolate, and identify ionic components of chemical mixtures. Since then, the scope of Dionex technology has expanded to include a broad range of techniques, including IC, high-performance liquid chromatography (HPLC) including capillary and nano LC, AAA-Direct,accelerated solvent extraction (ASE), automation, and on-line process analys.
  • 【好文】牛奶中左旋咪唑残留量测定的前处理方法
    不敢独享!牛奶中左旋咪唑残留量测定的前处理方法坛墨质检标准物质中心 昨天左旋咪唑的危害及检测目的左旋咪唑作为一种广谱型抗线虫药,药源丰富,被广泛应用于畜禽养殖企业,效果良好。但不合理地使用左旋咪唑会造成动物产品中残留,研究表明,人体摄入过量左旋咪唑可引起畸变、癌变等症状,严重危害人类健康。为此我国农业农村部和国家市场监督管理总局2019年发布的gb 31650-2019《食品安全国家标准食品中兽药最/大残留限量》中明确规定了左旋咪唑在动物靶组织中的残留限量,并且规定泌乳期和产蛋期禁用。本文阐述了如何将左旋咪唑从样品基质中分离提取出来,并经过净化后,转化成高效液相色谱仪可以检测的形式。以提取、净化为重点,依据国标gb 29681-2013,为检测人员和相关领域研究人员提供一定的参考。检测项目:左旋咪唑应用范围:牛奶高效液相色谱法方法原理:试料中残留的左旋咪唑,用碳酸盐缓冲液和乙酸乙酯溶液提取,c18柱净化,甲醇洗脱,高效液相色谱测定,外标法定量。前处理仪器:分析天平(感量0.00001 g和0.01 g);均质机;冷冻高速离心机;电热恒温水浴锅;旋涡混合器;茄形瓶(50 ml);离心管;滤膜(0.45 μm)。检测仪器: hplc-pda 试样的制备与保存取适量新鲜或冷藏的空白或供试牛奶,混合均质。取均质后的供试样品,作为供试试料;取均质后的空白样品,作为空白试料;取均质后的空白样品,添加适宜浓度的标准工作液,作为空白添加试料。试料于零下20 ℃以下保存。前处理方法1.提取称取试料5 g± 0.05 g,于离心管中,加碳酸盐缓冲液5 ml,加乙酸乙酯10 ml,混匀,6000 r/min离心10 min,取上清液于茄形瓶中,再加乙酸乙酯10 ml萃取一次,合并两次上清液,于50 ℃水浴旋转蒸发至干,加碳酸盐缓冲液5 ml溶解残余物,备用。2.净化c18柱(3 ml/500 mg)依次用水3 ml、甲醇3 ml和碳酸盐缓冲液3 ml活化,取备用液过柱,用水3 ml淋洗,用甲醇5 ml洗脱,收集洗脱液,于50 ℃水浴氮气吹干,用流动相1.0 ml溶解残余物,滤膜过滤,供高效液相色谱测定。国标解读及注意事项1.左旋咪唑用甲醇配成1 mg/ml的标准储备液,在2 ℃~4 ℃保存,可使用3个月。2.本方法使用碳酸盐缓冲液提取,乙酸乙酯萃取,c18固相萃取柱净化的方式进行目标化合物的提取净化。3.本方法采用两次萃取的方式,提高目标化合物的回收率。4.为保证固相萃取净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。水淋洗后完全抽干小柱,再进行洗脱。5.左旋咪唑也可以使用液质联用仪进行检测,同时添加相对应的盐酸盐同位素内标,进行回收率的校正。参考文献gb 29681-2013 食品安全国家标准 牛奶中左旋咪唑残留量的测定 高效液相色谱法图1 牛奶中左旋咪唑残留量测定的前处理流程图左旋咪唑标准物质信息表我是一个闪光的标题左旋咪唑标准品信息表本文版权归坛墨质检,未经许可请勿转载 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 2023年离子色谱新品盘点:自主DIY搭建多场景离子检测平台
    2023年是国产离子色谱40周年。《生活饮用水标准检验方法》2023版新标将离子色谱纳入高氯酸盐、甘草膦、一氯乙酸、一溴乙酸等化合物的标准检测方法。苏州市计量测试学会发布的团体标准规定采用离子色谱法测定人唾液中葡萄糖的浓度。......一系列相关标准的颁布意味着离子色谱在水/废水、食品、石油化工、环境空气等领域的应用将更加广泛,离子色谱的市场规模将进一步增长。编辑对2023年发布的离子色谱新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充。据仪器信息网统计,2023年中国市场共推出6台离子色谱新品,主要涉及4家厂商(以下厂商按照品牌简称首字母排序),包括谱临晟1台、盛瀚3台,赛默飞1台和皖仪1台。(1)谱临晟IC-50IC-50 超级离子分析系统包含一套全PEEK流路的MSS-2多功能样品处理系统、一套高压离子色谱仪、一套柱后衍生系统、一套高通量自动进样器、一套色谱工作站,以及与AFS 和ICPMS联机的接口等。IC-50离子色谱仪在常规的离子色谱仪的基础上,新增设一个四元比例阀和混合器,可实现多种流动相梯度;还可以选配不同类型的检测器,电导检测器、电化学检测器和紫外检测器。产品可与前处理产品MSS-2多功能样品处理系统联用组成在线前处理系统,或者与MSS-2多功能样品处理系统配合构成二维色谱,可以实现海洋、食品、环境、地质、饮用水、农残等领域的高基体复杂样品测试。(2)盛瀚 CIC-D120+ CIC-D160+ CIC-D260CIC-D120+采用全PEEK流路系统,搭配气液分离器,进一步保证流路中气泡的去除。PEEK材质具有极高的酸碱耐受性、极低的离子溶出,PEEK色谱柱在强酸碱淋洗液、强酸碱样品、痕量离子、重金属离子检测等方面表现出更好的稳定性,基线噪声更低,具有明显优势。采用自动量程技术替代传统电导检测器,一次进样即可完成相差4 个数量级浓度的多种离子检测,即ppb级和ppm级浓度离子的同时检测。此产品采用内置循环式立体恒温柱温箱技术,采用变频控制循环风立体加热模式,加热效果均匀;智能程序控制升温和保温,效率优先兼顾功耗;拥有高强度簧片式柱卡,兼容更多型号色谱柱。此产品拥有强大的色谱分析系统,自主研发的氢氧根体系阴离子色谱柱、碳酸盐体系阴离子色谱柱、阳离子色谱柱,低容量到高容量全系列多款色谱柱可选,满足阴阳离子、消毒副产物、糖、氰根、碘离子、小分子有机酸等的分析;色谱柱兼具实监测检测功能,实时反馈耗材应用情况;全方位安全保障系统采用压力报警、漏液报警、淋洗液液位监控等多种手段,确保仪器异常时及时反馈到使用人员。CIC-D160+在智能化软件方面进一步升级,包括自动量程技术、耗材监控功能、安全保障系统等。色谱柱和抑制器等关键耗材部件进行实时监控,对产品的使用次数和周期实时记录。新更换耗材可自动识别,鉴别新产品的型号和编号,同时根据需求复制成熟的测试方法使用。除以上技术优化外,仪器还开发了免试剂技术,日常操作只需加水,即可根据设置自动产生所需浓度淋洗液,实现梯度洗脱。CIC-D260核心部件均由盛瀚自主设计开发,其余部件均实现国产化。产品采用双通道设计,一次进样可实现阴阳离子同时检测;除传统的CD检测器外,还可以与ECD、UV、DAD、ICP-OES、AFS、MS等检测器联用,应用场景广泛。高压色谱泵采用全新设计的串联式双柱塞泵,最大耐压可达42MPa,最大流量可达10ml/min,压力脉动低于1%;高压进样阀寿命可达10万次以上;进样采用CLICK进样模式,摒弃注射器,点击按键即可完成进样。(3)赛默飞Dionex Inuvion离子色谱系统有三种配置:Dionex Inuvion Core离子色谱系统、Dionex Inuvion离子色谱系统和具有免试剂(RFIC)的Inuvion离子色谱系统。Dionex Inuvion Core可以升级到Dionex Inuvion(带RFIC)。Dionex Inuvion离子色谱系统可以根据用户需求选择配件(电解抑制和自动电解淋洗液发生器等),利用多款4μm填料色谱柱和化学试剂加快分析速度并提高结果质量。(4)皖仪IC6600IC6600系列多功能离子色谱仪采用全新的模块化设计,配制灵活,功能全面,操作简便。可通过配置电导检测器、安培检测器、紫外检测器,实现对常规阴、阳离子及氰根、碘离子、糖、小分子有机酸、六价铬(铬酸雾)、过渡金属等所有与离子色谱相关项目的检测。进样器可实现一针进样阴阳离子同时分析;一机多能,满足客户常规检测的同时,可升级柱后衍生、在线富集、在线基体消除等功能。其高灵活系统,能应对潜在的挑战以及高级应用场景。IC6600是一款环境友好,免试剂型离子色谱,采用“只加水”模式的淋洗液发生器,可在线产生氢氧根、碳酸根、甲烷磺酸多种类型淋洗液,降低成本,减少污染。自主开发的色谱工作站功能强大, 数字信号接入,最大可四通道同时采集;软件可以实现系统部件的有效集成和控制,对皖仪提供色谱类产品可无缝式增加,可以轻松的实现多维色谱(柱切换)及多种仪器联用等功能。如今,离子色谱应用越来越广泛,今年推出的新产品更加注重多场景应用,根据客户需求进行检测器、色谱柱的配备;还可以搭配其他科研仪器进行联用。不仅如此,离子色谱新产品还大力推进智能化软硬件设计,自动进样器、自动量程技术、多离子同时检测技术等均有效提高产品的自动化和检测效率,更好的为仪器使用者服务。
  • 1159万!中国农科院特产所特种动植物功效成分研究平台和自然资源部第四海洋研究所科学仪器设备采购项目
    一、项目一(一)项目基本情况项目编号:ZJGJ-JLS-HWZB03-20240510项目名称:中国农科院特产所特种动植物功效成分研究平台科学仪器设备购置项目预算金额:749.600000 万元(人民币)最高限价(如有):749.600000 万元(人民币)采购需求:标段编号标段名称采购内容最高限价ZJGJ-JLS-HWZB03-20240510-01中国农科院特产所特种动植物功效成分研究平台科学仪器设备购置项目(第一标段)(1)超高效液相/串联四极杆质谱联用仪(进口);(2)三重四极杆气相色谱-质谱联用仪(进口);290.0000万元ZJGJ-JLS-HWZB03-20240510-02中国农科院特产所特种动植物功效成分研究平台科学仪器设备购置项目(第二标段)(1)实时荧光定量PCR仪(进口);(2)三头梯度PCR仪(进口);(3)凝胶成像仪(进口);(4)高速冷冻离心机;65.5000万元ZJGJ-JLS-HWZB03-20240510-03中国农科院特产所特种动植物功效成分研究平台科学仪器设备购置项目(第三标段)(1)液相色谱-原子荧光联用仪;(2)气相色谱仪;102.1000万元ZJGJ-JLS-HWZB03-20240510-04中国农科院特产所特种动植物功效成分研究平台科学仪器设备购置项目(第四标段)(1)分选型流式细胞仪;(2)全自动液滴数字PCR;(3)汽化过氧化氢空间灭菌器;(4)阳离子交换量前处理系统;292.0000万元 供货地点:中国农业科学院特产研究所(长春)用户指定地点。供货时间:国产设备30个工作日内,进口设备3个月内。质量要求:符合采购内容要求及国家相关行业规定合格标准。合同履行期限:自合同签订之日起至合同履行完毕本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年05月23日 至 2024年05月29日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:中吉国际项目管理有限公司(长春市南关区幸福街与南三环交汇绿地中央广场B8a座22层)方式:凡有意参加投标者,持下列材料的原件及加盖公章的复印件:(1)法人身份证明书;(2)授权委托书及被授权人身份证;(3)营业执照副本;(4)具有良好的商业信誉和健全的财务会计制度,投标人应提供近三年(2021年-2023年)的财务审计报告(新成立不足三年的企业,提供从成立之日起至2023年的财务审计报告。若投标人为2024年以后注册成立的公司,仅提供银行出具的资信证明即可);(5)投标人具有依法缴纳税收和社会保障资金的相关证明材料,提供投标截止时间前六个月内任意三个月的缴纳证明材料(新成立不足三个月的企业提供自成立之日起至今的缴纳证明材料);售价:一标段售价800元、二标段售价500元、三标段售价500元、四标段售价800元。售价:¥0.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业科学院特产研究所地 址:吉林省长春净月高新技术产业开发区聚业大街4899号联系方式:刘先生0431-81919833宋女士0431-819195552.采购代理机构信息名 称:中吉国际项目管理有限公司地 址:长春市南关区幸福街与南三环交汇绿地中央广场B8a座22层联系方式:赵洋0431-85361819-80533.项目联系方式项目联系人:赵洋电 话:0431-85361819-8053二、项目二(一)项目基本情况项目编号:YXR-GXBH-ZB-20240501项目名称:海洋自然资源开发利用与保护修复平台建设-海洋生态系统理化分析仪器采购预算金额:409.500000 万元(人民币)最高限价(如有):409.500000 万元(人民币)采购需求:序号货物名称数量及单位预算金额(万元)简要技术需求或者服务要求1总有机碳分析仪(含总氮附件)1套60.00主要用于高效地测定河流、河口、海洋等水体中的碳和氮。1.需包括下列单元:高温催化燃烧单元、自动进样器、非色散红外(NDIR)检测器系统、化学发光检测器、电子气路控制系统、软件及计算机控制系统。2.高温催化燃烧单元中与燃烧管两端接触部件需为非金属材料,以避免在测定高盐样品的过程中,盐分对连接部件造成腐蚀。具体参数详见采购需求。2实验室洁净培养操作系统1套35.00实验室洁净培养操作系统主要针对痕量污染物分析过程中,室内粉尘、大气以及水体中背景污染普遍存在,对方法干扰较大而无法实现高灵敏分析的问题,提出一套洁净化处理解决方案。操作系统集成水体净化、高温去污、洁净操作空间、培养及破碎处理于一体,通过多路径污染防控实现整个操作过程的洁净操作。可以用于环境及生物样品中高关注痕量污染物的分析,以及体外细胞培养、代谢转化等研究。3伏安极谱仪1台70.00采用极谱法用于海水等高盐基体样品中的Cu,Pb,Zn,Cd,Cr等重金属含量的测定,无需对样品进行复杂的前处理。本产品已进行进口产品采购备案,投标产品可以为进口产品。4全自动多功能离子分析平台1台86.00包含自动进样器和多阀多泵控制系统,由软件控制,可以和各种光谱仪、色谱仪、质谱仪联用,并且提供联用接口。最多可配置4个六/十通切换阀、2个三通切换阀、4个注射泵、1套高压离子色谱恒流泵、1套真空泵、1套蠕动泵、1个温控反应模块,可直接连用离子分析模块或原子吸收、电感耦合等离子体质谱仪等进行全自动样品前处理分析。5全自动固液萃取仪1台46.00全自动固液萃取仪是基于溶剂在高温下连续回流和虹吸原理,实现固体及半固体样品中所需化合物成分充分提取的前处理装备。尤其适用于沉积物、土壤及大气颗粒物等环境样品和生物样品中高关注有害物质,如多氯联苯、二噁英、农药、全氟化合物等的提取,以及生物样品活性成分和脂肪提取。基于实际业务和科研需求,如历年调查航次对多虑联苯和农药的分析,以及环境污染、污染生态、生物资源开发利用等科技项目研究和产业开发项目任务,索氏提取是上述相关样品处理的标准操作方法或优选方法。本产品已进行进口产品采购备案,投标产品可以为进口产品。6总碱度分析仪1台35.00可在实验室和船舶上,分析大洋海水、近岸海水、河口区海水、沉积物间隙水等水体的总碱度,主要用于研究海水中的碳酸盐体系和碳循环。本产品已进行进口产品采购备案,投标产品可以为进口产品。7海水温室气体前处理系统1台77.50对北部湾区域不同水生生态系统中溶解有机质的碳同位素进行分析,进样量小、精度高、可自动进样。本产品已进行进口产品采购备案,投标产品可以为进口产品。 合同履行期限:合同生效后120天内完成设备的到货、安装、调试,并通过验收交付采购人使用。本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年05月23日 至 2024年05月29日,每天上午8:30至12:00,下午14:30至18:00。(北京时间,法定节假日除外)地点:北海市金海岸大道45号北部湾科技创业中心2幢0301号广西亿翔荣工程管理有限责任公司方式:(1)现场获取,供应商携带以下资料至采购文件发售地点获取采购文件;(2)电子邮件获取,供应商将以下资料及采购文件费汇款底单发送至邮箱gxyxr2013@163.com并电话告知。①法定代表人或委托代理人身份证复印件(委托代理人提供法定代表人授权书);②主体资格证明(如营业执照或事业单位法人证书或自然人身份证等)复印件;注:电子邮件报名的供应商,采购文件费请汇至以下账户“开户名称:广西亿翔荣工程管理有限责任公司,开户银行:中国建设银行北海云南路支行,银行账号:45001655103050702000”。以上复印件均须加盖单位公章。售价:¥200.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:自然资源部第四海洋研究所     地址:北海市银海区海景大道海洋科研创新园自然资源部第四海洋研究所        联系方式:张书萌 0779-6850528      2.采购代理机构信息名 称:广西亿翔荣工程管理有限责任公司            地 址:北海市金海岸大道45号北部湾科技创业中心2幢0301号(西海岸国际工社)            联系方式:曾雪 0779-2218733            3.项目联系方式项目联系人:曾雪电 话:  0779-2218733
  • 污水处理厂该检测什么运行指标?
    一、污水的物理性质指标1、温度 对污水、污泥的物理性质、化学性质及生物性质有着直接影响。在活性污泥系统的曝气池中,主要依靠大量活性微生物(菌胶团)进行处理,他们比较适合的温度一般在20~30℃左右,因此,如果要保证较好的有机物处理效果,温度应该尽可能的控制在20~30℃左右。温度监测在现场进行,常用的方法有水温计法、深水温计法、颠倒温度计法和热敏温度计法。2、色度 城市污水处理厂的污水与工业废水的污水不同,其色度并不是很明显,但是并不说对于色度的监测不重要。其实,通过对进入污水处理厂的污水颜色的观察,可以判断污水的新鲜程度。通常,新鲜的城市污水呈灰色,可是如果在管道输送过程中厌氧腐败,DO很少,则污水呈黑色并带有臭味。另外,在我国,由于通常采用将工业废水与生活污水合流排放的排水体制,所以有时城市污水厂的色度有时有较大差异。色度给人以不悦的感觉,我国对于污水厂排放标准中对于色度有排放要求,因此,如果进水的色度较大时,出水的监测指标中色度应该予以重视。3、臭味 水中臭味主要来自有机质的腐败产生的,也会给人带来不快,甚至会影响到人体生理,呼吸困难、呕吐等。因此,臭味是比较重要的物理指标,不过,目前污水厂并没有对臭味进行专门的监测。二、污水的化学(包括生化)性质指标 污水水质化学指标有悬浮物、pH、碱度、重金属离子、硫化物、生化需氧量、化学需氧量、总需氧量、总有机碳、有机氮、溶解氧等等。1、化学需氧量(COD) 化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。 COD的测定是污水处理厂日常主要监测项目,通过对不同构筑物的进出水COD的测定,可以准确掌握构筑物的运行情况,通过对一段时期的数据分析,可以对构筑物的运行进行适当调整,以便保证污水的处理效果。另外,对污水厂出水而言,COD是必须监测的项目,出水应该达到相应国家标准。 化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KmnO4),氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时可以采用。重铬酸钾(K2CrO7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。2、生化需氧量(BOD) 生化需氧量(BOD),是在有氧的条件下,由于微生物的作用,水中能分解的有机物质完全氧化分解时所消耗氧的量称为生化需氧量。它是以水样在一定的温度(如20℃)下,在密闭容器中,保存一定时间后溶解氧所减少的量(mg/L)来表示的。当温度在20℃时,一般的有机物质需要20天左右时间就能基本完,成氧化分解过程,而要全部完成这一分解过程就需100天。但是,这么长的时间对于实际生产控制来说就失去了.实用价值。因此,目前规定在20℃下,培养5天作为测定生化需氧量的标准。这时候测得的生化需氧量就称为五日生化需氧量,用BOD5表示。如果污水中的有机物的数量和组成相对稳定,则两者之间可能有一定的比例关系,可以互相推算求定。生活污水的BOD与COD的比值大致为0.4~0.8。对于一定的污水而言,一般说来,COD BOD20BOD5。BOD5也是污水处理厂日常重要监测项目之一。进行BOD5监测的具体意义基本与COD相同。 不过,由于我国存在的河流之排水体制,因此城市污水厂污水中含有一定量的工业废水,相对与生活污水而言,工业废水水质变化大而且难于降解,通过监测污水厂进水中BOD及COD,可以大致的判断污水的可生化性。 生化需氧量的经典测定方法是稀释接种法。3、溶解氧DO 溶解在水中的分子态氧称为溶解氧,天然水的溶解氧含量取决于水体与大气中氧的平衡。溶解执的饱和含量和空气中氧的分压、大气压力、水温有密切关系。清洁地地表水溶解度一般接近饱和。由于藻类的生长,溶解氧可能过饱和水体受有机、无机还原性物质污染时溶解氧降低。当大气中的氧来不及补充时,水中溶解氧逐渐降低,以全趋近于零,此时厌氧菌繁稍,水质恶化,导致鱼虾死亡。 废水中溶解氧的含量取决于污水排出前的处理工艺过程,一般含量较低,差异很大。鱼类死亡事故多是由于大量受纳污水,使水体中耗氧性物质增多,溶解氧很低,造成鱼类窒息死亡,因此洛解氧是评价水质的重要指标之一。 在污水厂整个运行过程中,十分重视水中溶解氧的测定。 国内外进行城市污水处理的主要是考生物二级处理系统,多为好氧法。顾名思义就是利用好氧微生物的新陈代谢过程分解去除水中的有机物。从中也可以看出,DO氧的控制是十分重要的,首先,应该保证水中有足够的溶解氧,这样好氧微生物才能正常工作,这是取得较好的运行效果的前提。可是,如果充氧过多,就会造成浪费,导致运行成本增加。因此,曝气池中的DO一般控制在2~4mg/L之间。 当由于设备问题或其他原因导致溶解氧不足时,处理系统就会出现故障。例如,曝气池中DO不足,结果多会导致活性污泥的丝状菌膨胀。原因在于,细菌和丝状菌对不足的DO进行竞争,可是在DO不足条件下,丝状菌的竞争力要远远大于细菌,因此,细菌获得的DO会更少,它们的生长受到抑制,相反,丝状菌得到机会大量繁殖,最终结果就是丝状菌膨胀。 在A/O、A2/O等具有一定的脱氮除磷工艺中,对于DO的控制也非常重要。为了得到想应的N、P的去除率,必须保证有合适的DO值。 可见,在污水厂的日常运行的监测中,对于DO的监测是十分有意义的。通唱采用的方法有碘量法及其修正法、膜电极法和现场快速溶解氧仪法。4、总需氧量(TOD) 总需氧量(TOD)。有机物中含C、H、N、S等元素,当右机物全都被氧化时,这些元素分别被氧化为CO2、H20、NO2和SO2,此时的需氧量称为总需氧量(TOD)。 总需氧量测定原理和过程是向氧含量中注入一定数量的水样,并将其送入以铂钢为触媒的燃烧管中,以900℃的高温加以燃烧,水样中的有机物因被燃烧而消耗了载气中的氧,剩余的氧用电极测定,并用自动记录器加以记录,从载气原有的氧量中减去水样燃烧后剩余的氧,即为总需氧量。 此指标的测定,与BOD、COD的测定相比,更为快速简便,其结果也比COD更接近于理论需氧量。5、总有机碳(TOC) 总有机碳(英文缩写TOC)。表示水中所有有机污染物的总含碳量,是评价水中有机污染质的一个综合参数。它是用燃烧法测定水样中总有机碳元素量来反映水中有机物总量的一种综合测定指标。其测定结果以C含量表示,单位为mg/L。 它的测定原理与过程是:将水样加酸,通过压缩空气吹脱水中的无机碳酸盐,以排除干扰,然后将水样定量地注入以铂钢为触媒的燃烧管中,在氧的含量充分而且一定的气流中,以900℃的高温加以燃烧,在燃烧过程中产生二氧化碳,经红外气体分析仪测定,以自动记录器加以记录,然后再折算其中的碳量。 TOC的测定采用燃烧法,因此能将有机物全部氧化,它比BOD5或COD更能直接表示有机物的总量,因此常常被用来评价水体中有机物污染的程度。 近年来,国内外已研制成各种类型的TOC分析仪。按工作原理不同,可分为燃烧氧化一非分散红外吸收法、电导法、气相色谱法、湿法}L化一非分散红外吸收法等:其中燃烧氧化-非分散红外吸收法只需一次性转化,流程简单、重现性好、灵敏度高,因此这种TOC分析仪广为国内外所采用。6、氮(有机氮、氨氮、总氮) 有机氮是反映水中蛋白质、氨基酸、尿素等含氮有机化合物总量的一个水质指标。 若使有机氮在有氧的条件下进行生物氧化,可逐步分解为NH3、NH4+、N02-、NO3-等形态,NH3和NH4+称为氨氮,NO2-称为亚硝酸氮,NO3-称为硝酸氮,这几种形态的含量均可作为水质指标,分别代表有机氮转化为无机物的各个不同阶段。 总氮(英文缩写TN)则是一个包括从有机氮到硝酸氮等全部含量的水质指标。 氨氮( NH3-N )是污水厂出水的重要监测指标,水中氨氮的来源卞要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。 测定水各种形态的氮化合物,有助于评价水体被污染和“自净”状况。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。 以游离氨NH3)或铵盐(NH4-)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。因此,在监测时应该对pH和水温进行足够的注意。氨氮的测定方法,通常有纳氏比色法、气相分子吸收法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。 水中N会导致水体富营养化,污水厂出水中的N应该按照国家及地方政府的相应要求进行处理后达标排放。因此,对于出水中N的监测是污水厂水质监测的重要项目之一。 此外,对于广泛采用二级处理为主的城市污水厂而言,为了保证污水厂的正常运行,必须保证生化池中微生物对营养的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,对于污水厂进水N的监测,有利于对微生物营养的控制,当污水中含磷比例较少时,需要人为的进行补充,以保证微生物的营养需求,进而保证污水处理系统的正常运行。7、磷(总磷、溶解性磷酸盐和溶解性总磷) 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷(如磷脂等),它们存在于溶液中,腐殖质粒子中或水生生物中。 一般天然水中磷酸盐含量不高。化肥、冶炼、合成洗涤剂等行收的工业废水及生活污水中常含有较大量磷。磷是生物生长必需的兀素之一。但水体中磷含量过高(如超过0.2mg/L),可造成藻类的过度繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。磷是评价水质的重要指标。 为了进一步防止水中P导致水体富营养化,污水厂出水中的P应该按照国家及地方政府的相应要求进行处理后达标排放。因此,对于出水中P的监测是污水厂水质监测的重要项目之一。 此外,对于广泛采用二级处理为主的城市污水厂而言,为了保证污水厂的正常运行,必须保证生化池中微生物对营养的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,对于污水厂进水P的监测,有利于对微生物营养的控制,当污水中含磷比例较少时,需要人为的进行补充,以保证微生物的营养需求,进而保证污水处理系统的正常运行。8、pH值 pH值是指示水酸碱性的重要指标,在数值上等于氢离子浓度的负对数。pH值的测定通常根据电化学原理采用玻璃电极法,也可以用比色法。 pH值能表示水的最基本性质,对水质的变化、水处理效果等均有影响,对pH值的测定和控制,对维护污水处理设施的正常运行、防止污水处理及输送设备的腐蚀、保护水生生物的生长和水体自净功能都有重要的实际意义。 污水的pH值如过高或过低,会影响生化处理,因为适宜于生物生存的pH值范围往往是非常狭小的,并且也是很敏感的。比如,在活性污泥法系统的曝气池中,如果由于pH发生了变化,如从正常的6.5~8.5变化到了5.5,那么,系统很有可能出现活性污泥的丝状菌膨胀。这将直接影响出水水质,导致出水恶化。其主要原因在于,在活性污泥中应该细菌占优势地位,其喜欢的最佳pH 范围是6.5~8.5,当pH值正常时,细菌占主要地位,丝状菌数量有限。但是,当pH变化到了5.5后,由于非常适合丝状菌生长,缺抑制了细菌的生长,这样就会导致丝状菌在活性污泥中占优势,致使污泥膨胀。 另外,在污泥或高浓度废水进行厌氧消化处理时,也应该格外注意pH值的控制。因为,在厌氧消化处理过程中,主要是由产甲烷菌群和非产甲烷菌群起作用。其中,产甲烷菌群对于pH值要求非常苛刻,需要控制在6.5~7.5,最好控制在6.8~7.2之间,否则,甲烷产气率就会明显下降,影响消化效果。 一般要求处理后污水的pH值为6~9,当pH值小于5时,就能使一般的鱼类死亡。9、悬浮物(SS) 悬浮物(SS)指不能通过过滤器(滤纸或滤膜)的固体物质。污水中的固体物质包括悬浮固体和溶解固体两类。悬浮固体指悬浮于水中的固体物质。悬浮固体也称悬浮物质或悬浮物,通常用SS表示。悬浮物透光性差,使水质浑浊,影响水生生物的生长,大量的悬浮物还会造成河道阻塞。从国家及地方相应的污水排放标准而言,SS是进行监测的重要项目之一。10、有毒物质 有毒物质是指污水中达到一定的浓度后,能够危害人体健康、危害水体中的水生生物,或者影响污水的生物处理的物质。由于这类物质的危害较大,因此,有毒物质含量是污水排放、水体监测和污水处理中的重要水质指标,有毒物质是人们所普遍关切的,有毒物质可分为无机毒物和有机毒物。 无机物主要代表是一些重金属离子如汞、铬、镉等,这些离子在水中如果不去除或处理效果不好,会进入天然水体或生生系统,最终可通过食物链转移到人体中进行大量付集,最终导致各种公害性疾病的出现。如水俣病、骨痛病等。 有机毒物的典型代表有氰化物、酚、有机氯化物等。这些物质也会导致严重伤害性事故。 因此,对于城市污水处理厂的出水、出泥进行有毒有害物质进行认真、严格、科学的监测是必须的。只有真正达到了排放标准才能排放或做他有。三、生物指标 水是微生物广泛分不布的天然环境,不论是地表水或地下水,甚至雨水或雪水,都含有多种微生物。当水体受到人、畜粪使、生活污水或某些工业废水污染时,水中微生物的数量可大量增加。因此,城市污水厂出水的细菌学测定,特别是肠道细菌的检验,在环境质量评价、环境卫生监督等方面具有重要的意义。但是,在直接检查水中各种病原微生物,方法较复杂,有的难度大,而且检查结果为阴性也不能保证绝对安全。所以,在实际工作中经常以检查水的细菌总数,特别是检查作为粪便污染的指示菌,来间接判断水体污染状况。水中含有细菌总数与水污染状况有一定的关系,但是不能直接说明是否有病原微生物存在。粪便污染指示菌一般是指如有该指示细菌存在于水体中,即表示水体曾有过粪便污染,也就有可能存在肠道病原微生物。那么该水反在卫生学上是不安全的。1、细菌总数 细菌总数是指lmL水中所含有各种细菌的总数。反映水所受细菌污染程度的指标。 在水质分析中,是把一定量水接种于琼脂培养基中,在37℃条件下培养24小时后,数出生长的细菌菌落数,然后计算出每毫升水中所含的细菌数。 细菌总数测定是测定水中好氧菌、兼性厌氧菌和厌氧菌密度的方法。因为细菌能以单独个体、成双成对、链状、成簇等形式存在,而且没有任们单独一种培养基能满足一个水样中所有细菌的生理要求。所以,由此法所得的菌落可能要低于真正存在的活细菌总数。2、大肠菌数 大肠菌数是指1L水中所含大肠菌个数。大肠菌本身虽非致病菌,但由于大肠菌在外部环境中的生存条件与肠道传染病的细菌、寄生虫卵相似,而且大肠菌的数量多,比较容易检验,所以把大肠菌数作为生物指标。比较常见的病原微生物有伤寒、肝炎病毒、腺病毒等,同时也存在某些寄生虫。 总大肠菌群的检验方法中,多管发酵法可适用于各种水样(包括底泥),但操作较繁需要时间较长 滤膜法主要适用于杂质较少的水样,操作简单快速。 如果是使用滤膜法,则总大肠菌群可重新定义为:听有能在含乳糖的远腾氏培养基上,于37℃,24h之内生比出带有金属光泽暗色萄落的、需氧的和兼性厌氧的革兰氏阴性无芽孢杆菌。另外,除了应该重视在出水中进行微生物的监测外,其实在运行过程注重对微生物的监测是十分必要的。例如,污水处理厂进行污泥的镜检,主要就是观察生物相的形状、组成等,通过定期的镜检,可以判断运行设施的正常工作与否,甚至可以提前预防一些异常现象,如:如果通过检验,发现污泥中有丝状菌增殖加快的趋势,就可以采取一定的措施,将可能发生的活性污泥丝状菌膨胀消灭在萌芽状态,有效的保证污水厂的运行,保证出水达到要求。 综上所述,如果要想保证正常运行,其根本保证。来源于科学有效的运行管理。从中,对于污水厂的运行指标的定期、准确的监测,并对获得的数据进行分析、统计,从而指导污水厂运行则是污水厂工作的根本。
  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。   过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。   近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。   相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。论文链接 图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • 石油石化污染控制与处理国家重点实验室开放课题开始申报
    石油石化污染物控制与处理国家重点实验室2016年度开放课题申报指南  一、实验室简介  石油石化污染物控制与处理国家重点实验室(以下简称“实验室”)由国家科技部于2015年9月30日批准建设,依托单位为中国石油集团安全环保技术研究院。实验室围绕石油石化行业污染减排的重大技术需求,重点开展固体废物处理与资源化、污水处理与回用、废气处理与温室气体控制、场地污染风险防控与修复、环境检测方法及数据处理等五个技术领域的应用基础研究、竞争前共性研究、技术创新与成果转化 通过引进、创新建成独具行业特色的实验平台,提升行业污染防治技术水平和自主创新能力,引领行业环保技术进步。  二、开放课题设立原则  为提升应用基础理论研究技术水平,产出高水平研究成果,重点实验室面向国内外设立开放基金,立项资助与本实验室研究方向相关的机理、方法、模型等方面的应用基础研究,并提供相应的科研条件,以促进学科发展。申请人请在申请之前认真阅读本指南。  三、拟资助领域和研究方向  根据国内外石油石化污染物控制与处理领域的发展趋势与研究前沿,2016年度重点支持以下五个技术领域的相关研究:  1. 石油石化固体废物处理与资源化:  (1)聚磺钻井液废液及钻屑土壤化作用机理研究。  (2)含油浮渣水热法深度脱水干化机理研究。  (3)油基钻屑的化学除油机制研究。  2. 石油石化污水处理与回用:  (1)电化学氧化反应动力学及传质优化研究。  (2)厌氧氨氧化包埋菌种作用规律研究。  (3)环保型低成本水处理剂研究。  3. 石油石化废气处理与温室气体控制:  (1)二氧化碳流体-碳酸盐岩的水岩反应动力学模拟研究。  (2)非常规油气开发生命周期温室气体排放评价模型研究及优化。  4. 场地污染风险防控与修复:  (1)石油烃污染土壤化学氧化修复中竞争反应规律研究。  (2)原油污染土壤中芳烃生物降解特性与刺激方法研究。  (3)产糖脂类生物表面活性剂制备及作用机制研究。  5. 环境检测方法及数据处理  (1)河道信息快速采集技术研究。  四、开放课题申报要求  1. 申请资格  申请人必须满足下列条件:  (1)申请人在相关领域有较好的研究积累,具有从事同类项目2年以上的科研经历,并取得重要的研究成果(发表1篇及以上SCI论文)   (2)申请人一般应具有高级专业技术职称,不具有高级专业技术职称的申请人,必须具有博士学位且博士毕业后从事所申请方向研究2年及以上科研经历   (3)申请人所在单位具有良好的研究条件,欢迎博士后研究人员来实验室开展研究。  2. 申请和审批程序  (1)每项课题资助额度一般不超过15万元 研究周期原则上不超过2年,研究工作开始时间为次年的1月1日。课题申请每年受理一次,受理周期一般为一个月。  (2)开放课题由实验室相关研究领域的学术带头人进行初审,主要根据实验室的发展目标、研究方向和现有条件,评估课题的科学性和可行性。通过审查的课题再由实验室主任审核后上报实验室依托单位批准。  (3)实验室办公室负责开放基金课题的申请受理工作,并组织项目的评审。获批项目由实验室主任签署审批意见,由实验室办公室下发立项批准书,通知申请者及所在单位。  (4)在申请书的基础上,根据批准通知,认真填写《石油石化污染物控制与处理国家重点实验室开放课题任务合同书》。经所在单位审核同意后报送。  (5)课题以应用基础研究为主,预期研究成果为SCI检索论文或发明专利。在发表成果时,论文与发明专利的第一作者的第一单位应为“石油石化污染物控制与处理国家重点实验室,北京,102206”,英文名称“State Key Laboratory of Petroleum Pollution Control, Beijing, 102206”,并在论文中注明“本研究由石油石化污染物控制与处理国家重点实验室开放课题资助(课题编号:)”,英文书写为“ThisStudy was supported by the Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. XXXX), CNPC Research Institute of Safety and Environmental Technology.”  (6) 申请人应在第一年年底提交阶段总结、第二年年终提交结题总结,包括:学术论文或成果报告。  (7) 开放课题所取得的成果属于实验室所有,申请人及所在单位要应用该成果,必须征得实验室同意。  (8)本次开放课题申请截止日期为2016年12月25日。  五、联系方式  联系人:薛明  邮编:1002206  地址:北京市昌平区黄河北街1号院1号楼612室  传真:010-80169534  电话:010-80169570  附件:  附件1.石油石化污染物控制与处理国家重点实验室开放课题申报书.doc  附件2.石油石化污染物控制与处理国家重点实验室开放课题申报汇总表.xls
  • 北京兴东达泰公司在线元素碳/有机碳分析仪为世博保驾护航
    日前,我公司完成长三角多个站点的在线元素碳/有机碳分析仪安装和维护工作,连续24小时密切监测空气中元素碳/有机碳的变化. 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟的危害. 大气气溶胶粒子中元素碳/有机碳含量的检测已成为国际上关注的热点,随着长三角,株三角等我国重点地区监测装备的提升,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 我公司提供的在线元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 小知识:热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准-EPA NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量,我公司的在线产品同时具备实验室测试功能,仪器中的激光测试部分具备直接测试黑碳功能,而光热结合测试可以对大气气溶胶中的无机碳/有机碳,碳酸盐等成份做准确定量测试,每个样品的测试过程仪器都会完成自动标气内校步骤。
  • 四部门发文:确保2030年前这一行业实现碳达峰,涉及认证、检测
    关于印发建材行业碳达峰实施方案的通知工信部联原〔2022〕149号教育部、科技部、财政部、交通运输部、农业农村部、商务部、人民银行、市场监管总局、统计局、工程院、银保监会、能源局、林草局,各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、发展改革委、生态环境厅(局)、住房城乡建设厅(局),有关协会,有关中央企业:现将《建材行业碳达峰实施方案》印发给你们,请认真贯彻落实。工业和信息化部国家发展和改革委员会生态环境部住房和城乡建设部2022年11月2日建材行业碳达峰实施方案建材行业是国民经济和社会发展的重要基础产业,也是工业领域能源消耗和碳排放的重点行业。为深入贯彻落实党中央、国务院关于碳达峰碳中和决策部署,切实做好建材行业碳达峰工作,根据《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《2030年前碳达峰行动方案》,结合《工业领域碳达峰实施方案》,制定本实施方案。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,坚持稳中求进工作总基调,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,坚持系统观念,处理好发展和减排、整体和局部、长远目标和短期目标、政府和市场的关系,围绕建材行业碳达峰总体目标,以深化供给侧结构性改革为主线,以总量控制为基础,以提升资源综合利用水平为关键,以低碳技术创新为动力,全面提升建材行业绿色低碳发展水平,确保如期实现碳达峰。(二)工作原则。坚持统筹推进。加强顶层设计,强化公共服务,加强建材行业上下游产业链协同,保障有效供给,促进减污降碳协同增效,稳妥有序推进碳达峰工作。坚持双轮驱动。政府和市场两手发力,完善建材行业绿色低碳发展政策体系,健全激励约束机制,充分调动市场主体节能降碳积极性。坚持创新引领。强化科技创新,促进科技成果转化,加快节能低碳技术和装备的研发和产业化,为建材行业绿色低碳转型夯实基础、增强动力。坚持突出重点。注重分类施策,以排放占比最高的水泥、石灰等行业为重点,充分发挥资源循环利用优势,加大力度实施原燃料替代,实现碳减排重大突破。(三)主要目标。“十四五”期间,建材产业结构调整取得明显进展,行业节能低碳技术持续推广,水泥、玻璃、陶瓷等重点产品单位能耗、碳排放强度不断下降,水泥熟料单位产品综合能耗水平降低3%以上。“十五五”期间,建材行业绿色低碳关键技术产业化实现重大突破,原燃料替代水平大幅提高,基本建立绿色低碳循环发展的产业体系。确保2030年前建材行业实现碳达峰。二、重点任务(一)强化总量控制。 1.引导低效产能退出。修订《产业结构调整指导目录》,进一步提高行业落后产能淘汰标准,通过综合手段依法依规淘汰落后产能。发挥能耗、环保、质量等指标作用,引导能耗高、排放大的低效产能有序退出。鼓励建材领军企业开展资源整合和兼并重组,优化生产资源配置和行业空间布局。鼓励第三方机构、骨干企业等联合设立建材行业产能结构调整基金或平台,进一步探索市场化、法治化产能退出机制。(工业和信息化部、国家发展改革委、生态环境部、市场监管总局按职责分工负责)2.防范过剩产能新增。严格落实水泥、平板玻璃行业产能置换政策,加大对过剩产能的控制力度,坚决遏制违规新增产能,确保总产能维持在合理区间。加强石灰、建筑卫生陶瓷、墙体材料等行业管理,加快建立防范产能严重过剩的市场化、法治化长效机制,防范产能无序扩张。支持国内优势企业“走出去”,开展国际产能合作。(工业和信息化部、国家发展改革委、生态环境部、商务部按职责分工负责)3.完善水泥错峰生产。分类指导,差异管控,精准施策安排好错峰生产,推动全国水泥错峰生产有序开展,有效避免水泥生产排放与取暖排放叠加。加大落实和检查力度,健全激励约束机制,充分调动企业依法依规执行错峰生产的积极性。(工业和信息化部、生态环境部按职责分工负责)(二)推动原料替代。4.逐步减少碳酸盐用量。强化产业间耦合,加快水泥行业非碳酸盐原料替代,在保障水泥产品质量的前提下,提高电石渣、磷石膏、氟石膏、锰渣、赤泥、钢渣等含钙资源替代石灰石比重,全面降低水泥生产工艺过程的二氧化碳排放。加快高贝利特水泥、硫(铁)铝酸盐水泥等低碳水泥新品种的推广应用。研发含硫硅酸钙矿物、粘土煅烧水泥等材料,降低石灰石用量。(工业和信息化部、科技部按职责分工负责)5.加快提升固废利用水平。支持利用水泥窑无害化协同处置废弃物。鼓励以高炉矿渣、粉煤灰等对产品性能无害的工业固体废弃物为主要原料的超细粉生产利用,提高混合材产品质量。提升玻璃纤维、岩棉、混凝土、水泥制品、路基填充材料、新型墙体和屋面材料生产过程中固废资源利用水平。支持在重点城镇建设一批达到重污染天气绩效分级B级及以上水平的墙体材料隧道窑处置固废项目。(工业和信息化部、国家发展改革委、生态环境部按职责分工负责)6.推动建材产品减量化使用。精准使用建筑材料,减量使用高碳建材产品。提高水泥产品质量和应用水平,促进水泥减量化使用。开发低能耗制备与施工技术,加大高性能混凝土推广应用力度。加快发展新型低碳胶凝材料,鼓励固碳矿物材料和全固废免烧新型胶凝材料的研发。(工业和信息化部、住房和城乡建设部、科技部按职责分工负责)(三)转换用能结构。7.加大替代燃料利用。支持生物质燃料等可燃废弃物替代燃煤,推动替代燃料高热值、低成本、标准化预处理。完善农林废弃物规模化回收等上游产业链配套,形成供给充足稳定的衍生燃料制造新业态,提升水泥等行业燃煤替代率。(工业和信息化部、农业农村部、能源局、林草局按职责分工负责) 8.加快清洁绿色能源应用。优化建材行业能源结构,促进能源消费清洁低碳化,在气源、电源等有保障,价格可承受的条件下,有序提高平板玻璃、玻璃纤维、陶瓷、矿物棉、石膏板、混凝土制品、人造板等行业的天然气和电等使用比例。推动大气污染防治重点区域逐步减少直至取消建材行业燃煤加热、烘干炉(窑)、燃料类煤气发生炉等用煤。引导建材企业积极消纳太阳能、风能等可再生能源,促进可再生能源电力消纳责任权重高于本区域最低消纳责任权重,减少化石能源消费。(工业和信息化部、生态环境部、能源局、林草局按职责分工负责)9.提高能源利用效率水平。引导企业建立完善能源管理体系,建设能源管控中心,开展能源计量审查,实现精细化能源管理。加强重点用能单位的节能管理,严格执行强制性能耗限额标准,加强对现有生产线的节能监察和新建项目的节能审查,树立能效“领跑者”标杆,推进企业能效对标达标。开展企业节能诊断,挖掘节能减碳空间,进一步提高能效水平。(国家发展改革委、工业和信息化部、市场监管总局按职责分工负责)(四)加快技术创新。10.加快研发重大关键低碳技术。突破水泥悬浮沸腾煅烧、玻璃熔窑窑外预热、窑炉氢能煅烧等重大低碳技术。研发大型玻璃熔窑大功率“火-电”复合熔化,以及全氧、富氧、电熔等工业窑炉节能降耗技术。加快突破建材窑炉碳捕集、利用与封存技术,加强与二氧化碳化学利用、地质利用和生物利用产业链的协同合作,建设一批标杆引领项目。探索开展负排放应用可行性研究。加大低温余热高效利用技术研发推广力度。加快气凝胶材料研发和推广应用。(工业和信息化部、国家发展改革委、科技部、生态环境部按职责分工负责)11.加快推广节能降碳技术装备。每年遴选公布一批节能低碳建材技术和装备,到2030年累计推广超过100项。水泥行业加快推广低阻旋风预热器、高效烧成、高效篦冷机、高效节能粉磨等节能技术装备,玻璃行业加快推广浮法玻璃一窑多线等技术,陶瓷行业加快推广干法制粉工艺及装备,岩棉行业加快推广电熔生产工艺及技术装备,石灰行业加快推广双膛立窑、预热器等节能技术装备,墙体材料行业加快推广窑炉密封保温节能技术装备,提高砖瓦窑炉装备水平。(工业和信息化部、国家发展改革委按职责分工负责)12.以数字化转型促进行业节能降碳。加快推进建材行业与新一代信息技术深度融合,通过数据采集分析、窑炉优化控制等提升能源资源综合利用效率,促进全链条生产工序清洁化和低碳化。探索运用工业互联网、云计算、第五代移动通信(5G)等技术加强对企业碳排放在线实时监测,追踪重点产品全生命周期碳足迹,建立行业碳排放大数据中心。针对水泥、玻璃、陶瓷等行业碳排放特点,提炼形成10套以上数字化、智能化、集成化绿色低碳系统解决方案,在全行业进行推广。(工业和信息化部、国家发展改革委、生态环境部按职责分工负责)专栏 关键低碳技术推广路线图2025年前:重点研发低钙熟料水泥、非碳酸盐钙质等原料替代技术,生物质燃料、垃圾衍生燃料等燃料替代技术,低温余热高效利用技术,全氧、富氧、电熔及“火-电”复合熔化技术等。重点推广水泥高效篦冷机、高效节能粉磨、低阻旋风预热器、浮法玻璃一窑多线、陶瓷干法制粉、岩棉电熔生产、石灰双膛立窑、墙体材料窑炉密封保温等节能降碳技术装备。2030年前:重点推广新型低碳胶凝材料,突破玻璃熔窑窑外预热、水泥电窑炉、水泥悬浮沸腾煅烧、窑炉氢能煅烧等重大低碳技术,实现窑炉碳捕集、利用与封存技术的产业化应用。(五)推进绿色制造。13.构建高效清洁生产体系。强化建材企业全生命周期绿色管理,大力推行绿色设计,建设绿色工厂,协同控制污染物排放和二氧化碳排放,构建绿色制造体系。推动制定“一行一策”清洁生产改造提升计划,全面开展清洁生产审核评价和认证,推动一批重点企业达到国际清洁生产领先水平。在水泥、石灰、玻璃、陶瓷等重点行业加快实施污染物深度治理和二氧化碳超低排放改造,促进减污降碳协同增效,到2030年改造建设1000条绿色低碳生产线。推进绿色运输,打造绿色供应链,中长途运输优先采用铁路或水路,中短途运输鼓励采用管廊、新能源车辆或达到国六排放标准的车辆,厂内物流运输加快建设皮带、轨道、辊道运输系统,减少厂内物料二次倒运以及汽车运输量。推动大气污染防治重点区域淘汰国四及以下厂内车辆和国二及以下的非道路移动机械。(工业和信息化部、国家发展改革委、生态环境部、交通运输部按职责分工负责)14.构建绿色建材产品体系。将水泥、玻璃、陶瓷、石灰、墙体材料、木竹材等产品碳排放指标纳入绿色建材标准体系,加快推进绿色建材产品认证,扩大绿色建材产品供给,提升绿色建材产品质量。大力提高建材产品深加工比例和产品附加值,加快向轻型化、集约化、制品化、高端化转型。加快发展生物质建材。(工业和信息化部、生态环境部、住房和城乡建设部、市场监管总局、林草局按职责分工负责)15.加快绿色建材生产和应用。鼓励各地因地制宜发展绿色建材,培育一批骨干企业,打造一批产业集群。持续开展绿色建材下乡活动,助力美丽乡村建设。通过政府采购支持绿色建材促进建筑品质提升试点城市建设,打造宜居绿色低碳城市。促进绿色建材与绿色建筑协同发展,提升新建建筑与既有建筑改造中使用绿色建材,特别是节能玻璃、新型保温材料、新型墙体材料的比例,到2030年星级绿色建筑全面推广绿色建材。(工业和信息化部、财政部、住房和城乡建设部、市场监管总局按职责分工负责)三、保障措施(一)加强统筹协调。各相关部门要加强协同配合,细化工作措施,着力抓好各项任务落实,全面统筹推进建材行业碳达峰各项工作。各地区要高度重视,明确本地区目标,分解具体任务,压实工作责任,加强事中事后监管,结合本地实际提出落实举措。充分发挥行业协会作用,做好各项工作支撑。大型建材企业要发挥表率作用,结合自身实际,明确碳达峰碳减排时间表和路线图,加大技术创新力度,逐年降低碳排放强度,加快低碳转型升级。(工业和信息化部、国家发展改革委牵头,各有关部门参加)(二)加大政策支持。严格落实水泥玻璃产能置换办法,组织开展专项检查,对弄虚作假、“批小建大”、违规新增产能等行为依法依规严肃处理。加大对建材行业低碳技术研发和产业化的支持力度。建立健全绿色建筑和绿色建材政府采购需求标准体系,加大绿色建材采购力度。在依法合规、风险可控、商业可持续的前提下,支持金融机构对符合条件的建材企业碳减排项目和技术、绿色建材消费等提供融资支持,支持社会资本以市场化方式设立建材行业绿色低碳转型基金。加强建材行业二氧化碳排放总量控制,研究将水泥等重点行业纳入全国碳排放权交易市场。完善阶梯电价等绿色电价政策,强化与产业和环保政策的协同。实行差别化的低碳环保管控政策,适时纳入重污染天气行业绩效分级管控体系。加强建材行业高耗能、高排放项目的环境影响评价和节能审查,充分发挥其源头防控作用。强化企业社会责任意识,健全企业碳排放报告与信息披露制度,鼓励重点企业编制绿色低碳发展报告,完善信用评价体系。(工业和信息化部、国家发展改革委、科技部、财政部、生态环境部、住房和城乡建设部、人民银行、银保监会按职责分工负责)(三)健全标准计量体系。明确核算边界,完善建材行业碳排放核算体系。加强碳计量技术研究和应用,建立完善碳排放计量体系。研究制定重点行业和产品碳排放限额标准,修订重点领域单位产品能耗限额标准,提高行业能效水平。加强建材行业节能降碳新技术、新工艺、新装备的标准制定,充分发挥计量、标准、认证、检验检测等质量基础设施对行业碳达峰工作的支撑作用。推动建材行业建立绿色用能监测与评价体系,建立完善基于绿证的绿色能源消费认证、标准、制度和标识体系。研究制定水泥、石灰、陶瓷、玻璃、墙体材料、耐火材料等分行业碳减排技术指南,有效引导企业实施碳减排行动。推动建材行业将温室气体管控纳入环评管理。加强低碳标准国际合作。(国家发展改革委、统计局、工业和信息化部、生态环境部、市场监管总局、能源局、林草局按职责分工负责)(四)营造良好环境。建立建材行业碳达峰碳减排专家咨询委员会,发挥战略咨询、技术支撑、政策建议等作用。整合骨干企业、科研院所、行业协会等资源,建设建材重点行业碳达峰碳减排公共服务平台,提供排放核算、测试评价、技术推广等绿色低碳服务。加快“双碳”领域人才培养,建设一批现代产业学院。积极推动建材行业节能降碳设施向公众开放,保障公众知情权、参与权和监督权。定期召开行业大会,加大对建材行业节能降碳典型案例、优秀项目、先进个人的宣传力度,全面动员行业力量,广泛交流经验,形成建材行业绿色低碳发展合力。(工业和信息化部、国家发展改革委、教育部、生态环境部、中国工程院按职责分工负责)
  • 基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用
    基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用在国家环保市场利好的大环境下,环境检测数据质量要求不断提高、检测任务不断加重,人员配置不断缩减,引发环保检测领域对于自动化分析设备的持续大力投入,实验室分析检测作为短期内不可变更的检测需求,传统人工分析检测方法的弊端已经日益凸显,作为依循标准的自动化检测设备对于终端实验室具有极强的适用性。安杰科技的APA-500 全自动高锰酸盐指数分析仪,依循《GBT 11892-1989 水质 高锰酸盐指数的测定》设计开发,专用于《GB 3838-2002地表水环境质量标准》、《GB 5749-2006 生活饮用水卫生标准》 等标准中水质高锰酸盐指数的自动化分析检测,能够实现无人值守式流程操作、数据分析、待机维护、数据推送等人性化、智能化功能,从繁琐的手工分析操作中彻底解放实验员。由于APA-500拥有成熟三轴移液模块、样品杯架模块、多通道注射进样模块和滴定分析功能,同时根据市场的需求,在APA-500的基础上拓展了两个滴定实验的项目,分别是:总硬度 GB/T 7477-1987《水质钙和镁总量的测定 EDTA滴定法》,食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》。水质总硬度是指水中Ca2+、Mg2+的总量,标准中规定用EDTA滴定法测定地下水和地面水中钙和镁的总量。在pH 10的条件下,用EDTA溶液络合滴定钙离子和镁离子。铬黑T作指示剂,与钙和镁生成紫红色或紫色溶液。滴定中,游离的钙离子和镁离子首先与EDTA反应,跟指示剂络合的钙离子和镁离子随后与EDTA反应,到达终点时溶液的颜色由紫变为天蓝色。此过程可以完全使用APA-500进行自动化分析。人工只需做以下操作:准备试剂,将管路放入试剂中;使用样品杯量取样品放入样品盘中;进行样品信息设置等软件操作。APA-500测试总硬度时加快了滴定速度,其测试单个样品的平均时间为2min,测试30个样品只需要1h。对自来水和2.5mmol/L的样品进行9次测试,滴定体积差均小于GB7477-87上±0.2滴(±0.04mmol/L)的测试要求,测定不同浓度的在质控均在范围内。碘是人体正常新陈代谢是必不可少的一种微量元素,在食盐中加入碘酸钾可以保证碘的摄入,因此食盐中的碘是食品检测重要的项目。食品安全国家标准《食用盐碘含量》GB 26878-2011中明确,在食用盐中加入碘强化剂后,食用盐产品(碘盐)中碘含量的平均水平(以碘元素计)应为20mg/kg-30mg/kg。依据食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》3.1直接滴定法。在酸性介质中,试样中的碘酸根离子氧化碘化钾,析出碘单质。使用淀粉溶液做指示剂,用硫代硫酸钠标准溶液进行滴定,从而测定碘的含量。滴定过程中的颜色变化:样品+碘化钾+磷酸→黄色(颜色深浅与浓度有关)+硫代硫酸钠→黄色变浅+加淀粉→蓝色+硫代硫酸钠→蓝色消失(终点)。同样,此过程可以完全使用APA-500进行自动化分析。仪器的测试范围是5~40mg/kg。对市售食盐进行7次测定,结果绝对差值小于标准中给出的2.0mg/kg。对12.1mg/kg和12.1mg/kg质控样品进行测试,均在指控范围内。以上是APA-500的两个扩展应用,该仪器将进行更多扩展应用。充分发挥仪器的优势。为推动仪器行业发展贡献绵薄之力。
  • 橡树岭国家实验室《ACS AMI》:高能球磨法有效提高硅基材料的循环性能
    碳酸乙烯酯(VC)和聚环氧乙烷(PEO)被认为是硅(Si)的固态电解质界面(SEI)的功能剂,已知VC和PEO分别作为电解质添加剂和SEI组分有助于硅基锂离子电池的稳定性。在这项工作中,橡树岭国家实验室的研究人员通过用VC和PEO高能球磨Si颗粒的简便方法实现了共价表面功能化。热重分析、X射线光电子能谱和魔角自旋核磁共振(MAS NMR)光谱表明,添加剂与Si颗粒结合明显,MAS NMR显示Si−R或Si−O−R基团,证实了在VC或PEO中研磨后Si的官能化。与纯Si制备的电极相比,通过VC和PEO球磨的硅负极材料制成的电极的拉曼图谱显示Si和碳导电添加剂的分布更均匀。此外,与纯Si的半电池相比,与VC研磨的Si在半电池和全电池中都表现出更好的电化学性能,高出的容量超过200mAh g−1。相关研究成果以“Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries”为题发表在ACS Applied Materials & Interfaces上。硅基锂离子电池(LIB)在锂化和脱锂过程中,Si发生严重的体积变化(~300%),对应于Li15Si4合金的形成,这导致Si的粉碎和不稳定的SEI。此外,SEI在循环过程中也会发生溶解,因此,研究者不断寻求方法来最小化Si体积膨胀的影响,并有效地调整Si表面的SEI,从而提高电池性能。获得硅负极稳定SEI的最常见方法之一是在电解质中使用牺牲型添加剂,如碳酸氟乙烯酯(FEC)和碳酸乙烯酯(VC)。这两种添加剂通过与其他碳酸盐和羧酸盐化合物一起形成交联的聚环氧乙烷(PEO)型物质,从而在硅表面上形成聚合物膜,这种PEO型物质的存在与良好的容量保持率和高库仑效率有关。除了直接改变硅表面的SEI之外,另一种用于最小化与硅相关的断裂和容量衰减的方法是使用纳米颗粒,该尺度下的硅体积变化相对减小,防止颗粒粉碎,但硅纳米级颗粒由于其高表面积,与电解质的反应性也更高。因此,粒径和相关副反应之间的平衡对于减轻电极开裂和电解质连续分解都很重要。预计应变引起断裂的硅颗粒的临界直径通常在300至150nm之间。利用VC和PEO的稳定性,作者将这些材料直接结合到Si表面有助于提高SEI的界面稳定性。高能球磨已被有效地用于硅材料来制备亚微米或纳米颗粒,以及用于锂离子电池负极的Si基复合材料/合金和结构。在这项工作中,作者采用高能球磨作为唯一步骤,通过将添加剂(VC和PEO)添加到新切割和暴露的Si中来实现Si的颗粒尺寸减小和表面功能化。研究了VC和PEO对研磨后Si的影响以及对其电化学性能的影响,具有VC功能化颗粒的硅基电池的比容量明显增加。使用传统的聚丙烯酸(PAA)和聚酰亚胺型(P84)粘结剂制备电极,与常见的PAA相比,聚酰亚胺粘结剂对硅基锂电池性能提高有更明显的效果。使用DLS、PALS、TGA、XPS、拉曼映射和魔角自旋核磁共振谱(MAS NMR)对粉末和电极进行表征,揭示了功能化硅对加工和界面性能的重要影响。这项工作首次报告了通过简单的高能球磨法用VC对Si表面进行功能化,增强了硅基锂离子电池的性能。(文:李澍)图1 高能球磨前后粒度变化图2 高能和低能球磨对Si颗粒的粒度、分散指数和团聚的影响示意图图3 纯硅粉末和用VC和PEO研磨的硅的C1s光谱图4 Si粉末的固态MAS NMR谱图5 使用PAA和P84粘结剂的的Si电极的XPS光谱图6 (a)纯Si、(b)Si-VC、(c)Si-PEO电极与PAA粘结剂的拉曼光谱;(d)具有P84(聚酰亚胺)粘结剂的纯Si电极
  • 北京兴东达泰公司完成元素碳/有机碳北京客户的分点服务
    北京兴东达泰公司日前完成客户在线有机碳/元素碳分析仪的分点布局服务,经过长时间的同点多台数据比对论证,我公司的在线有机碳/元素碳分析仪被证明台间数据精度符合要求,其精度已达到同台数据精度。此次分点布局,用于城市内和郊区点的有机碳/元素碳数据连续监测。 我公司的在线有机碳/元素碳分析仪(RT-4)日前已在国内多个国家空气监测项目中使用,可连续测试黑碳,元素碳,有机碳,碳酸盐等指标,并具备实验室采样测试的功能。我公司的有机碳/元素碳分析仪也是EPA5040标准制定实验所使用的仪器。秉承一贯领先的原则,我公司的有机碳/元素碳分析仪已形成:单独实验室分析仪,在线分析仪(同时具备实验室分析功能)系列产品。 其数据可有效反映危害人及环境的细粒子中占比最大的空气气溶胶中碳类各组分的直接数据,可反映污染来源(如汽车排放污染,沙尘,工厂废气污染等等),环境气象变迁提供直接的科学数据,为国家防治空气污染提供战略数据基础,也可以监测森林火灾,秸秆焚烧等事件。
  • 强强联合打造前沿科研平台|上海凯来与南京大学国际同位素效应研究中心成立飞秒原位同位素技术合作实验室
    2024年8月15日,上海凯来仪器有限公司与南京大学国际同位素效应研究中心达成战略合作,正式成立《飞秒原位同位素技术合作实验室》,揭牌仪式在南京大学国际同位素效应研究中心(现代工程与应用科学学院大楼)三楼举行。 上海凯来仪器有限公司与南京大学国际同位素效应研究中心成立的《飞秒原位同位素技术合作实验室》,聚焦地球科学和行星科学中在高空间分辨率上亟待解决的关键科学问题,将联合研发飞秒原位同位素测试技术,包括碳酸岩碳氧同位素,有机碳同位素,黄铁矿硫同位素,叁氧和多硫同位素的微米级高空间分辨率原位高精度同位素分析测试方法。中心主任鲍惠铭教授、彭永波教授、上海凯来总经理胡勇刚、副总经理梁燕共同为联合实验室揭牌。 揭牌仪式现场中心主任鲍惠铭教授表示:“飞秒原位同位素技术合作实验室旨在加强原位同位素分析技术发展和方法开发。未来双方需要共同努力,推动技术创新和科研发展,为同位素效应理论与应用研究打开新的大门。”中心彭永波教授表示:“目前对全样样品的同位素研究已经到达极限,需要从微米级空间分辨率进行原位分析,从而寻求空间分辨率和分析精度之间的平衡发展。上海凯来全自研的国产飞秒激光剥蚀系统性能远超国际水平,与上海凯来的合作将为中心提供更多技术支持和创新动力,双方将共同努力打造前沿科研平台。”上海凯来胡勇刚总经理表示:“飞秒激光剥蚀系统短脉宽、低分馏的特点在原位同位素分析的应用前景广阔。GenesisGEO新型飞秒激光剥蚀系统是全国首台全自研国产飞秒激光系统,我们一直坚持创新自主研发,做靠谱的高端国产仪器。公司与南京大学国际同位素效应研究中心达成正式合作,期待通过双方在仪器开发优化、原位同位素技术方法开发等方面的紧密合作,在飞秒原位同位素研究领域取得创新和突破性成果。” 仪式适逢2024同位素效应研学营召开,本次课程为期两天,来自全国各个高校及研究机构的近百名参会代表参加课程,并共同见证了合作仪式。揭牌仪式结束后,中心实验室负责老师和上海凯来工程师带领现场参加揭牌仪式和参加暑期同位素效应研学营的老师同学们参观了中心实验室,并现场演示上海凯来自主研发的新型飞秒激光剥蚀系统。南京大学国际同位素效应研究中心国际同位素效应研究中心(ICIER)是国家级引进人才鲍惠铭教授全职回国在南京大学创立的跨学科的独立的研究中心。中心以研究同位素效应为核心,促进各学科的交叉,融合和突破,解决重大交叉科学问题为使命,涉及的主要学科包括:地球、行星,大气、海洋,环境,考古,生态,材料,生命等科学。凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。
  • 抢先看生活饮用水新标准GB/T 5750.7变化之 ——高锰酸盐指数检测-电位滴定法
    GB 5749-2022《生活饮用水卫生标准》于2022年3月15日经国家市场监督管理总局(国家标准化管理委员会)批准发布,代替GB 5749-2006《生活饮用水卫生标准》,自2023年4月1日起实施。相应的水质检测方法按照GB/T 5750执行,2022年1月4日全国标准信息公共服务平台上发布了新《生活饮用水标准检验方法》GB/T 5750的征求意见稿。一、标准变化GB 5749-2022《生活饮用水卫生标准》更改了3项指标名称,调整了 8 项指标的限值,都包含了高锰酸盐指数(以O2计),其检测方法按照GB/T 5750.7执行。标准GB 5749-2006《生活饮用水卫生标准》GB 5749-2022《生活饮用水卫生标准》名称耗氧量(COD Mn法,以O2计)高锰酸盐指数(以O2计)限值3 mg/L,原水6 mg/L 时为 5 mg/L3 mg/L检测方法l GB/T 5750.7-2006《生活饮用水标准检验方法 有机物综合指标》l 1耗氧量l 1.1酸性高锰酸钾滴定法l 1.2碱性高锰酸钾滴定法l GB/T 5750.7-XXXX《生活饮用水标准检验方法 第7部分:有机物综合指标》l 4 高锰酸盐指数(以O2计)l 4.1 酸性高锰酸钾滴定法l 4.2 碱性高锰酸钾滴定法l 4.3 分光光度法l 4.4 电位滴定法高锰酸盐指数是指在酸性或碱性介质中,以高锰酸钾为氧化剂,处理水样时所消耗的氧化剂的量。可反映出水体中有机及无机可氧化物质的污染程度。水中高锰酸盐指数浓度增加,说明水中有机物含量增加,提示可能存在更大的微生物危险和化学危险。随着人们生活水平的提高,生活饮用水的安全和质量问题越来越受到人们的关注,因此,水中高锰酸盐指数的检测具有重要的意义。本文将介绍雷磁ZDJ-5B型自动滴定仪在饮用水高锰酸盐指数测定中的应用。二、方法概括GB/T 5750.7-XXXX《生活饮用水标准检验方法 第7部分:有机物综合指标》中说明,电位滴定法适用于氯化物质量浓度低于300 mg/L(以Cl-计)的生活饮用水及其水源水,zui低检测质量浓度(取100 mL水样时)为0.09 mg/L(以O2计),zui高检测质量浓度为6.0 mg/L(以O2计)。三、高锰酸盐指数的检测(电位滴定法)1. 原理高锰酸钾在酸性溶液中将还原性物质氧化,过量的高锰酸钾用草酸钠还原。根据高锰酸钾消耗量表示高锰酸盐指数(以O2计),通过滴定过程中电位滴定仪自动记录高锰酸钾体积变化曲线和一阶微分曲线,测量氧化还原反应所引起的电位突变确定滴定终点。2MnO4- +5C2O42- +16H+ —2Mn2++10CO2+8H2O2. 测定:1) 滴定杯处理:向滴定杯内加入1 mL硫酸溶液及少量高锰酸钾标准使用溶液。煮沸数分钟,取下自动滴定瓶,用草酸钠标准使用溶液滴定至微红色,将溶液弃去。2) 校正高锰酸钾标准使用溶液,计算校正系数 K 值。3) 高锰酸盐指数的测定:用单标移液管准确吸取100.0mL样品(若水样中有机物含量较高,可取适量水样以纯水稀释至 100mL),置于处理过的滴定杯中,加入5mL硫酸溶液,准确加入10.00mL高锰酸钾标准使用溶液,置于沸水浴中30 min,取下滴定杯,放于自动滴定仪上,迅速加入 10.00mL草酸钠标准使用溶液,充分搅拌,用高锰酸钾标准使用溶液滴定至终点(电位突变),记录体积 V1(mL)。如水样用纯水稀释,则另用单标移液管吸取100.0 mL 纯水,同上述步骤滴定,记录高锰酸钾标准使用溶液消耗量V0(mL)。ZDJ-5B型自动滴定仪在饮用水高锰酸盐指数测定中的应用工作电极231-01pH玻璃电极982241 铂环ORP滴定电极参比电极213型铂电极ZDJ-5B自动滴定仪滴定参数设置等量滴定模式,单次添加量设置0.02-0.05mL设定预加体积V,设定预加后延迟50s平衡时间3s,zui大等待时间10s终点突跃设置500mV/mL滴定曲线ZDJ-5B型自动滴定仪支持方法编辑和计算公式编辑,检测过程中的计算可以在本机上编辑存储,直接显示结果,方便后续调取直接测量,方便高效。雷磁在自动滴定仪产品和应用方法方面积累有丰富的经验,不断地为客户提供稳定可靠、应用方法适用性强的检测方案。
  • 江西省碳达峰实施方案印发!支持绿色低碳创新平台建设,引进相关高层次人才
    日前,江西省人民政府印发《江西省碳达峰实施方案》。该方案明确主要目标,到2025年,非化石能源消费比重达到18.3%,单位生产总值能源消耗和单位生产总值二氧化碳排放确保完成国家下达指标,为实现碳达峰奠定坚实基础;到2030年,非化石能源消费比重达到国家确定的江西省目标值,顺利实现2030年前碳达峰目标。该方案提出重点任务,包括能源绿色低碳转型行动、工业领域碳达峰行动、城乡建设碳达峰行动、交通运输绿色低碳行动、节能降碳增效行动、循环经济降碳行动、科技创新引领行动、固碳增汇强基行动、绿色低碳全民行动、碳达峰试点示范行动。在科技创新引领行动中,将实施省级碳达峰碳中和科技创新专项,加快能源结构深度脱碳、高效光伏组件、生物质利用、零碳工业流程再造、安全高效储能、固碳增汇等关键核心技术研发;加大二氧化碳捕集利用与封存技术研发力度,针对碳捕集、分离、运输、利用、封存及监测等环节开展核心技术攻关;采取“揭榜挂帅”等创新机制,持续推进低碳零碳负碳和储能关键核心技术攻关,将绿色低碳技术创新成果与转化应用纳入高校、科研院所、国有企业相关绩效考核;全面推进鄱阳湖国家自主创新示范区建设,深入实施国家级创新平台攻坚行动、引进共建高端研发机构专项行动,扶持节能降碳和能源技术产品研发重大创新平台和新型研发机构;深入实施省“双千计划”等人才工程、开展组团赴外引才活动,着力引进低碳技术相关领域的高层次人才,培育一批优秀的青年领军人才和创新创业团队。该方案全文如下:江西省人民政府关于印发江西省碳达峰实施方案的通知各市、县(区)人民政府,省政府各部门:现将《江西省碳达峰实施方案》印发给你们,请认真贯彻执行。2022年7月8日(此件主动公开)江西省碳达峰实施方案为深入贯彻党中央、国务院关于碳达峰碳中和重大战略决策,全面落实《中共江西省委 江西省人民政府关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的实施意见》,扎实推进全省碳达峰行动,制定本方案。一、总体思路以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届历次全会精神,深化落实习近平生态文明思想和习近平总书记视察江西重要讲话精神,按照省第十五次党代会部署要求,把碳达峰碳中和纳入生态文明建设整体布局和经济社会发展全局,坚持“全国统筹、节约优先、双轮驱动、内外畅通、防范风险”的总方针,处理好发展和减排、整体和局部、长远目标和短期目标、政府和市场的关系,聚焦“确保2030年前实现碳达峰”目标,实施能源绿色低碳转型行动、工业领域碳达峰行动、城乡建设碳达峰行动、交通运输绿色低碳行动、节能降碳增效行动、循环经济降碳行动、科技创新引领行动、固碳增汇强基行动、绿色低碳全民行动、碳达峰试点示范行动“十大行动”,完善统计核算、财税价格、绿色金融、交流合作、权益交易“五大政策”,有力有序有效做好碳达峰工作,推动生态优先绿色低碳发展走在全国前列,全力打造全面绿色转型发展的先行之地、示范之地。二、主要目标“十四五”期间,产业结构和能源结构明显优化,重点行业能源利用效率持续提高,煤炭消费增长得到有效控制,新能源占比逐渐提高的新型电力系统和能源供应系统加快构建,绿色低碳技术研发和推广应用取得新进展,绿色生产生活方式普遍推行,有利于绿色低碳循环发展的政策体系逐步完善。到2025年,非化石能源消费比重达到18.3%,单位生产总值能源消耗和单位生产总值二氧化碳排放确保完成国家下达指标,为实现碳达峰奠定坚实基础。“十五五”期间,产业结构调整取得重大进展,战略性新兴产业和高新技术产业占比大幅提高,重点行业绿色低碳发展模式基本形成,清洁低碳安全高效的能源体系初步建立。经济社会发展全面绿色转型走在全国前列,重点耗能行业能源利用效率达到国内先进水平。新能源占比大幅增加,煤炭消费占比逐步减少,绿色低碳技术实现普遍应用,绿色生活方式成为公众自觉选择,绿色低碳循环发展政策体系全面建立。到2030年,非化石能源消费比重达到国家确定的江西省目标值,顺利实现2030年前碳达峰目标。三、重点任务(一)能源绿色低碳转型行动。能源是经济社会发展的重要物质基础,也是碳排放的主要来源。要坚持安全平稳降碳,在保障能源安全的前提下,大力实施可再生能源替代,加快构建清洁低碳安全高效的能源体系。1. 推动化石能源清洁高效利用。有序控制煤炭消费增长,合理控制石油消费,大力实施化石能源消费减量替代。统筹煤电发展和保供调峰,做好重大风险研判化解预案,保障能源安全稳定供应。大力推动化石能源清洁高效利用,积极推进现役煤电机组节能降碳改造、灵活性改造和供热改造“三改联动”,推动煤电向基础性和系统调节性电源并重转型。推进瑞金二期、丰城三期、信丰电厂、新余二期等已核准清洁煤电项目建设,支持应急和调峰电源发展。统筹推进煤改电、煤改气,推进终端用能领域电能替代,推广新能源车船、热泵、电窑炉等新兴用能方式,全面提升生产生活终端用能设备的电气化率。严格控制钢铁、建材、化工等行业燃煤消耗量,保持非电用煤消费负增长。加快全省天然气的发展利用,有序引导天然气消费,优化天然气利用结构,优先保障民生用气,支持车船使用液化天然气作为燃料。(省发展改革委、省能源局、省生态环境厅、省工业和信息化厅、省住房城乡建设厅、省交通运输厅、省国资委、国网江西省电力公司等按职责分工负责)2. 大力发展新能源。以规划为引领,加大新能源开发利用力度,大力推进光伏开发,有序推进风电开发,统筹推进生物质和城镇生活垃圾发电发展。坚持市场导向,集中式与分布式并举,创新“光伏+”应用场景,积极推进“光伏+水面、农业、林业”和光伏建筑一体化(BIPV)等综合利用项目建设。积极对接国家核电发展战略,稳妥推进核电。加大地热能勘查开发力度,因地制宜采用太阳能、风能、地热能、生物质能等多种清洁能源与天然气、电力耦合供热。鼓励利用可再生能源电力实现建筑供热(冷)、炊事、热水,推广太阳能发电与建筑一体化。到2030年,风电、太阳能发电总装机容量 达到0.6亿千瓦,生物质发电装机容量力争达到150万千瓦左右。(省能源局、省发展改革委、省水利厅、省农业农村厅、省自然资源厅、省生态环境厅、省国资委、省住房城乡建设厅、省林业局、省气象局等按职责分工负责)3. 加快建设新型电力系统。推动能源基础设施可持续转型,建立健全新能源占比逐渐提高的新型电力系统。优化提升能源输送网络,加快构建“1个中部核心双环网+3个区域电网”的供电主网架、“十”字形输油网架、多点互联互通“县县通气”的输气网架。加快能源基础设施智能化改造和智能系统建设。大力提升电力系统综合调节能力,加快灵活调节电源建设,引导自备电厂、传统高载能工业负荷、工商业可中断负荷、电动汽车充电网络、虚拟电厂等参与系统调节,建设坚强智能电网。鼓励投资建设以消纳可再生能源为主的智能微电网。加强赣南等原中央苏区、罗霄山脉片区和其他已脱贫地区等区域农网改造。积极引入优质区外电力,新建通道可再生能源电量比例原则上不低于50%。加快拓展清洁能源电力特高压入赣通道,推进闽赣联网工程。加强源网荷储协调发展、新型储能系统示范推广应用,发展“新能源+储能”,推动风光储一体化,推进新能源电站与电网协调同步。推动电化学储能、抽水蓄能等调峰设施建设,提升可再生能源消纳和存储能力。到2025年,新型储能装机容量达到100万千瓦。到2030年,抽水蓄能电站装机容量力争达到1000万千瓦,全省电网具备5%左右的尖峰负荷响应能力。(省能源局、省发展改革委、省科技厅、省自然资源厅、省水利厅、国网江西省电力公司等按职责分工负责)4. 全面深化能源制度改革。持续深化电力体制改革,探索建设江西电力现货市场,丰富交易品种,完善交易机制,扩大电力市场化交易规模、交易多样性和反垄断性。稳步推进省级天然气管网改革,加快以市场化方式融入国家管网,推动管网基础设施公平开放。探索城镇燃气特许经营权改革。创新能源监管和治理,完善能源监测预警机制,做好精准科学调控。(省发展改革委、省能源局、省国资委、省住房城乡建设厅、省市场监管局、省统计局、国网江西省电力公司等按职责分工负责)(二)工业领域碳达峰行动。工业是二氧化碳排放的主要领域之一,对全省实现碳达峰具有重要影响。要加快工业低碳转型和高质量发展,推进重点行业节能降碳。1. 推动工业低碳发展。优化产业结构,依法依规淘汰落后产能,打造低碳产业链。聚焦航空、电子信息、装备制造、中医药、新能源和新材料等优势产业,延伸产业链、提升价值链、融通供应链。强化能源、钢铁、石化化工、建材、有色金属、纺织、造纸、食品等行业间耦合发展,推动产业循环链接,支持钢化联产、炼化一体化、林纸一体化等模式推广应用。鼓励龙头企业联合上下游企业、行业间企业开展协同降碳行动,构建企业首尾相连、互为供需、互联互通的产业链。建设若干制造业高质量发展中心,培育一批绿色工厂、绿色设计产品、绿色园区和绿色供应链企业。大力实施数字经济做优做强“一号发展工程”,推进制造业数字化智能化迭代升级,推动先进制造业和现代服务业深度融合发展,推广协同制造、服务型制造、智慧制造、个性化定制等“互联网+制造”新模式。优化工业能源消费结构,推动化石能源清洁高效利用,提高可再生能源应用比重。(省工业和信息化厅、省发展改革委、省科技厅、省生态环境厅、省商务厅、省国资委、省能源局等按职责分工负责)2. 推动钢铁行业碳达峰。深入推进钢铁行业供给侧结构性改革,严格执行产能置换政策,严禁违规新增产能,依法依规淘汰落后产能,优化存量。依托重点骨干企业,重点开发先进制造基础零部件、新能源汽车、高端装备、海洋工程等用钢和其他高品质特殊钢技术和产品。推进上下游产业链整合,提高产业集中度和产业链完整度。促进工艺流程结构转型,推进风能、太阳能、氢能等清洁能源替代。推广绿色低碳技术与生产工艺,有序推进钢铁行业超低排放改造。开展非高炉炼铁技术示范,完善废钢资源回收利用体系,推进废钢铁利用产业一体化,提升技术工艺和节能环保水平,积极发展全废钢冶炼。(省工业和信息化厅、省发展改革委、省科技厅、省生态环境厅、省国资委等按职责分工负责)3. 推动有色金属行业碳达峰。加快铜、钨、稀土等产业生产工艺流程改造,推广绿色制造新技术、新工艺、新装备,推进清洁能源替代,提升余热回收水平,推动单位产品能耗持续下降。推进有色金属行业集中集聚集约发展和生产智能化、自动化、低碳化,建设以鹰潭为核心的世界级铜产业集群和以赣州为核心的世界级特色钨、稀土产业集群,打造以新余、宜春为核心的全球锂电产业高地。加快再生有色金属产业发展,提高再生铜、再生铝、再生稀贵金属产量。引导有色金属生产企业建立绿色低碳供应链管理体系。(省工业和信息化厅、省发展改革委、省生态环境厅、省国资委、省能源局等按职责分工负责)4. 推动建材行业碳达峰。坚持绿色、高端、多元发展方向,做优水泥等传统基础产业,做强玻璃纤维、建筑陶瓷等特色优势产业,大力发展非金属矿物及制品、新型绿色建材等新兴成长产业。加快推进低效产能退出,严禁违规新增水泥熟料、平板玻璃产能,引导建材企业向轻型化、集约化、制品化转型。因地制宜提升风能、太阳能、水能等可再生能源利用水平,提高电力、天然气消费比重。做好水泥常态化错峰生产,加强原料、燃料替代,推广新型胶凝材料、低碳混凝土等新型建材产品,开展木竹、非碳酸盐原料替代。提高水泥生料中含钙固废资源替代石灰石比重,鼓励企业使用粉煤灰、工业废渣、尾矿渣等作为原料或水泥混合材。开展全省砂石资源潜力调查评价,优化开采布局和产业结构,形成绿色砂石供应链。对建筑陶瓷等高碳低效行业开展提升整治行动,引导陶瓷行业有序发展,重点发展高技术含量、高附加值的高端陶瓷、精品陶瓷。加大节能技术装备推广使用力度,开展能源管理。(省工业和信息化厅、省发展改革委、省科技厅、省生态环境厅、省住房城乡建设厅、省自然资源厅、省能源局、省国资委、省市场监管局等按职责分工负责)5. 推动石化化工行业碳达峰。优化产业布局,推进化工园区达标认定和规范建设,提高产业集中度和化工园区集聚水平。鼓励石化企业和化工园区建设能源综合管理系统,实现能源系统优化和梯级利用。严格项目准入,落实国家石化、煤化工等产能控制政策,深入推动炼化一体化转型,鼓励企业“减油增化”,有效化解结构性过剩矛盾。鼓励企业以电力、天然气作为煤炭替代燃料。加大富氢原料使用,提高原料低碳化比重,推动化工原料轻质化。加强有机氟硅材料应用开发,发展高端专用化学品和精细化学品,优化氯碱产品结构,着力提升石油化工、有机硅、氯碱化工、精细化工等优势产业链。鼓励企业实施清洁低碳生产升级改造,全流程推动工艺、技术和装备升级,推进余热余压利用和物料循环利用。到2025年,原油一次性加工能力控制在0.1亿吨,主要产品产能利用率稳定在80%以上。(省工业和信息化厅、省发展改革委、省生态环境厅、省应急厅、省能源局等按职责分工)(三)城乡建设碳达峰行动。加快推动城乡建设绿色低碳发展,在城市更新和乡村振兴中落实绿色低碳要求。1. 推动城乡建设绿色低碳转型。倡导低碳规划设计理念,推进城乡绿色规划建设,科学合理规划城市建筑面积发展目标。实施绿色建设、绿色运行管理,推动城市组团式发展,建设绿色城市、生态园林城市(镇)、“无废城市”。推进城市安全体系建设,大力实施海绵城市建设,完善城市防洪排涝系统,提高城市防灾减灾能力,打造适应气候变化的韧性城市。实施绿色建筑创建行动,加大绿色建材推广应用,推行施工管理和绿色物业管理。加快推进新型建筑工业化,大力发展装配式建筑,重点推动钢结构装配式住宅建设,推动建材循环利用。建立健全绿色低碳为导向的城乡规划建设管理机制,落实建筑拆除管理制度,杜绝大拆大建。持续推动城镇污水处理提质增效,加快城镇污水管网建设,全面提升城镇污水处理能力。(省住房城乡建设厅、省发展改革委、省自然资源厅、省生态环境厅等按职责分工负责)2. 加快提升建筑能效水平。严格落实建筑节能、绿色建筑、市政基础设施等领域节能降碳标准。加强建筑节能低碳技术研发应用,引导超低能耗、近零能耗建筑、零碳建筑发展,推动高质量绿色建筑规模化发展。加快推进居住建筑和公共建筑节能改造。严格执行绿色建筑标准,发展高星级绿色建筑。提升城镇建筑和基础设施智能化运行管理水平,强化建筑能效监管,推行建筑能效测评标识。加快推广合同能源管理服务模式,降低建筑运行能耗。建立公共建筑能耗限额管理制度和公示制度。到2025年,城镇新建建筑全面执行绿色建筑标准。(省住房城乡建设厅、省发展改革委、省生态环境厅、省市场监管局、国网江西省电力公司等按职责分工负责)3. 大力优化建筑用能结构。深化可再生能源建筑应用,推广光伏发电与建筑一体化应用。因地制宜推行浅层地温能、燃气、生物质能、太阳能等高效清洁低碳供暖。充分利用工业建筑、仓储物流园、公共建筑、民用建筑屋顶等资源实施分布式光伏发电工程。提高建筑终端电气化水平,探索建设光伏柔性直流用电建筑。鼓励发展分户式高效取暖,逐步提高采暖、生活热水等电气化水平。到2025年,城镇建筑可再生能源替代率达到8%,新建公共机构建筑、新建厂房屋顶光伏覆盖率力争达到50%。(省住房城乡建设厅、省能源局、省发展改革委、省管局、省自然资源厅、省生态环境厅、省科技厅、省市场监管局等按职责分工负责)4. 推进农村建设和用能低碳转型。构建农村现代能源体系,因地制宜有序推动绿色农房建设和既有农房节能改造。推进以光伏为主的农村分布式新能源建设,提高农村能源自给率。加强农村电网升级改造,提升农村用能电气化水平。积极推广节能环保农用装备和灶具。因地制宜发展农村沼气,鼓励有条件的地区以农业废弃物为原料,建设规模化沼气或生物天然气工程,推进沼气集中供气、发电上网。(省住房城乡建设厅、省能源局、省农业农村厅、国网江西省电力公司等按职责分工负责)(四)交通运输绿色低碳行动。加快构建绿色高效交通运输系统,打造智能绿色物流,确保交通运输物流领域碳排放增长保持在合理区间。1. 推动运输工具装备低碳转型。扩大电力、氢能、天然气、先进生物液体燃料等新能源、清洁能源在交通运输领域的应用。推广应用新能源汽车,逐步降低传统燃油车在新车产销和汽车保有量中的比例,推动公共交通、物流配送等城市公共服务和机场运行车辆电动化替代。推广电力、氢燃料为动力的重型货运车辆。加快老旧船舶更新改造,发展电动、液化天然气动力船舶,推进船舶靠港使用岸电,积极推进鄱阳湖氢能动力船舶应用。到2025年,公交车、出租汽车(含网约车)新能源汽车分别达到72%、35%。到2030年,营运车辆、船舶单位换算周转量碳排放强度比2020年分别下降10%、5%。(省交通运输厅、省发展改革委、省工业和信息化厅、省生态环境厅、省管局、省邮政管理局、省能源局、省公安厅、南昌铁路局、省机场集团公司等按职责分工负责)2. 构建绿色高效交通运输体系。统筹综合交通基础设施布局,重点推进铁路、水路等多种客运、货运系统有机衔接和差异化发展,推动各种交通运输方式独立发展向综合交通运输一体化转变。发展智能交通,依托大数据、物联网等技术优化客货运组织方式,推动大宗货物和中长距离货物运输“公转铁”“公转水”。加快综合货运枢纽集疏运网络和多式联运换装设施建设,逐步实现主要港口核心港区铁路进港,畅通多式联运枢纽站场与城市主干道的连接,提高干支衔接能力和转运分拨效率。减少长距离公路客运量,提高铁路客运量。加大城市交通拥堵治理力度,打造高效衔接、快捷舒适的公共交通服务体系。完善城市慢行系统,引导公众选择绿色低碳交通方式。到2030年,城区常住人口100万以上的城市绿色出行比例不低于70%。(省交通运输厅、省发展改革委、省生态环境厅、省住房城乡建设厅、省公安厅、省商务厅、南昌铁路局、省机场集团公司等按职责分工负责)3. 加快绿色交通基础设施建设。坚持将绿色节能理念贯穿到交通规划、设计、建设、运营、管理、养护全过程,降低全生命周期能耗和碳排放。加快城市轨道交通、公交专用道、快速公交系统等大容量城市公共交通基础设施建设,完善现代化综合立体交通网布局。积极谋划绿色公路、绿色港口、生态航道,推进工矿企业、港口、物流园区等铁路专用线建设,加快打造赣州国际陆港、九江红光国际港、南昌向塘国际陆港等多式联运示范工程,推动赣粤运河和浙赣运河研究论证。开展交通基础设施绿色化提升改造,持续推动铁路电气化改造,完善充换电、配套电网、加气站、港口、机场岸电等基础设施建设。加快建设适度超前、快充为主、慢充为辅的高速公路和城乡公共充电网络,完善住宅小区居民自用充电设施。鼓励在港口、航运枢纽等区域布设光伏发电设施,加快推进港口岸电设施和船舶受电设施改造,推动交通与能源领域融合发展。到2030年,民用运输机场场内车辆装备等力争全面实现电动化。(省交通运输厅、省发展改革委、省自然资源厅、省水利厅、省生态环境厅、省住房城乡建设厅、省能源局、南昌铁路局、省机场集团公司等按职责分工负责)4. 打造智能绿色物流。推进物流业绿色低碳发展,促进物流业与制造业、农业、商贸业、金融业、信息产业等深度融合,培育一批绿色流通主体。优化物流基础设施布局,推进多式联运型和干支衔接型货运枢纽(物流园区)建设,推行物流装备标准化,提高水路、铁路货运量和集装箱铁水联运量。支持智能化设备应用,推动物流全程数字化,培育智慧物流、共享物流等新业态,打造智能交通、智能仓储、智能配送等应用场景。发展壮大现代物流企业和产业聚集区,支持公共物流信息平台建设,全面推行“互联网+货运物流”模式,释放物流空载力。加快构建集约、高效、绿色、智慧的城乡配送网络,推进城市配送业态和模式创新。“十四五”期间,集装箱铁水联运量年均增长15%。到2030年,水路和铁路货运量占比达到23%。(省发展改革委、省交通运输厅、省商务厅、省工业和信息化厅、省邮政管理局、省供销联社、南昌铁路局、省机场集团公司等按职责分工负责)(五)节能降碳增效行动。落实节约优先方针,完善能源消费强度和总量双控制度,严格能耗强度控制,加强高耗能、高排放、低水平项目管理,合理控制能源消费总量,推动能源消费革命,建设能源节约型社会。1. 增强节能管理综合能力。加强对各地区能耗双控目标完成情况分析预警,强化固定资产投资项目节能审查,统筹项目用能和碳排放情况综合评价。加强重点用能单位能源消耗在线监测系统建设,强化重点用能单位节能管理和目标责任,推动高耗能企业建立能源管理中心。健全省、市、县三级节能监察体系,建立跨部门联动的节能监察机制。开展节能监察行动,加强重点区域、重点行业、重点企业节能事中事后监管,综合运用行政处罚、信用监管、阶梯电价等手段,增强节能监察约束力。大力培育一批专业化的节能诊断服务机构和人才队伍,全面提升能源管理专业化、社会化服务水平。(省发展改革委、省工业和信息化厅、省市场监管局、省管局等按职责分工负责)2. 坚决遏制高耗能、高排放、低水平项目盲目发展。强化高耗能高排放项目常态化监管,实行高耗能高排放项目清单管理、分类处置、动态监控。深入挖掘存量高耗能高排放项目节能潜力,加大节能改造和落后产能淘汰力度。全面排查在建项目,推动在建项目能效水平应提尽提。科学评估拟建项目,严格高耗能高排放项目准入管理。对于产能已饱和的行业,新建、扩建高耗能高排放项目应严格落实国家产能置换政策;产能尚未饱和行业新建、扩建高耗能高排放项目要按照有关要求,对标行业先进水平提高准入门槛;推进绿色技术在能耗量较大新兴产业中的应用,提高能效水平。(省发展改革委、省工业和信息化厅、省生态环境厅、省自然资源厅、省住房城乡建设厅、省金融监管局、人行南昌中心支行、江西银保监局、省国资委、省市场监管局、省能源局等按职责分工负责)3. 实施节能降碳重点工程。实施重点城市节能降碳工程,开展建筑、交通、照明、供热等基础设施节能升级改造,推进先进绿色建筑技术示范应用,推动城市综合能效提升。实施园区节能降碳工程,推动园区制定落实碳达峰碳中和要求的相关措施,鼓励和引导有需求、有条件的园区加快推进集中供热基础设施建设,推动能源系统优化和梯级利用,引导打造节能低碳园区。实施重点行业节能降碳工程,严格落实行业能耗限值,推动高耗能高排放行业和数据中心等开展节能降碳改造,提高能源资源利用效率。实施重大节能降碳技术示范工程,推广高效节能技术装备,推动绿色低碳关键技术产业化示范应用。(省发展改革委、省科技厅、省工业和信息化厅、省生态环境厅、省住房城乡建设厅、省商务厅、省能源局等按职责分工负责)4. 推进重点用能设备节能增效。全面提升电机、风机、水泵、压缩机、变压器、换热器、锅炉、窑炉、电梯等重点设备的能效标准。推广先进高效产品设备,加快淘汰落后低效设备。加强重点用能设备节能审查和日常监管,强化生产、经营、销售、使用、报废全链条管理,严厉打击违法违规行为,全面落实能效标准和节能要求。(省发展改革委、省工业和信息化厅、省市场监管局等按职责分工负责)5. 促进新型基础设施节能降碳。优化新型基础设施空间布局,科学谋划数据中心等新型基础设施建设,切实避免低水平重复建设。优化新型基础设施用能结构,推广分布式储能、“光伏+储能”等多样化能源供应模式。提升通讯、运算、存储、传输等设备能效水平,加快淘汰落后设备和技术。积极推广使用高效制冷、先进通风、余热利用、智能化用能控制等绿色技术,推动现有设施绿色低碳升级改造。加强新型基础设施用能管理,将年综合能耗超过1万吨标准煤的数据中心全部纳入重点用能单位在线监测系统。(省发展改革委、省科技厅、省工业和信息化厅、省自然资源厅、省市场监管局、省能源局等按职责分工负责)(六)循环经济降碳行动。抓住资源利用这个源头,大力发展循环经济,优化资源利用方式,健全资源利用机制,全面提高资源利用效率,充分发挥减少资源消耗和降碳的协同作用。1. 推进开发区(园区)循环化发展。以提升资源产出率和循环利用率为目标,优化园区产业布局,深入开展园区循环化改造。推动园区企业循环式生产、产业循环式组合,促进废物综合利用、能量梯级利用、水资源循环使用,推进工业余压余热、废气废液废渣的资源化利用,实现绿色低碳循环发展。推广钢铁、有色金属、石化、装备制造等重点行业循环经济发展模式。深入推进开发区基础设施和公共服务共享平台建设,全面提升开发区管理服务水平。加强低碳工业示范园区、生态工业示范园区建设。到2030年,省级以上园区全部实施循环化改造。(省发展改革委、省工业和信息化厅、省生态环境厅、省水利厅、省科技厅、省商务厅等按职责分工负责)2. 提升大宗固废综合利用水平。实施矿产资源高效利用重大工程,着力提升矿产资源合理开采水平,提高低品位矿、共伴生矿、难选冶矿、尾矿等的综合利用水平。稳步推进金属尾矿有价组分高效提取及整体利用,探索尾矿在生态环境治理领域的利用。支持粉煤灰、煤矸石、冶金渣、工业副产石膏、建筑垃圾、农作物秸秆等大宗固废大掺量、规模化、高值化利用,替代原生非金属矿、砂石等资源,加大在生态修复、绿色开采、绿色建材、交通工程等领域的利用。加强钢渣等复杂难用工业固废规模化利用技术研发应用,在确保安全环保前提下,探索磷石膏在土壤改良、井下充填、路基材料等领域的应用。推动建筑垃圾资源化利用,推行废弃路面材料再生利用,推广沥青刨铣料再生利用技术。全面实施秸秆综合利用行动,完善收储运系统,加快推进离田产业化、高值化利用。鼓励开展大宗固废和工业资源综合利用示范建设。到2025年,秸秆年综合利用率达到95%。(省发展改革委、省工业和信息化厅、省自然资源厅、省应急厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅等按职责分工负责)3. 加强资源循环利用。建立健全废旧物资回收网络,统筹推进再生资源回收网点与生活垃圾分类网点“两网融合”,依托“互联网”提升回收效率,实现线上线下协同,推动再生资源应收尽收。完善废弃有色金属资源回收、分选加工、再生利用和销售网络,深化新余、贵溪、丰城国家级“城市矿产”示范基地建设,推动再生资源规范化、规模化、清洁化利用。加强废旧动力电池、光伏组件、风电机叶片等新兴产业废弃物循环利用。促进汽车零部件、工程机械、文办设备等再制造产业高质量发展,建设若干再制造基地。加强资源再生产品和再制造产品推广应用。实施生产者责任延伸制度,完善废旧家电回收利用网络。到2025年,废钢铁、废铜、废铝、废铅、废锌、废纸、废塑料、废橡胶、废玻璃9种主要再生资源循环利用量达到0.4亿吨,到2030年达到0.8亿吨。(省商务厅、省供销联社、省发展改革委、省住房城乡建设厅、省工业和信息化厅、省生态环境厅等按职责分工负责)4. 推进生活垃圾减量化资源化。扎实推进生活垃圾分类,建立涵盖生产、流通、消费等领域的各类生活垃圾源头减量机制,鼓励使用可循环、可再生、可降解产品。加快健全覆盖全社会的生活垃圾收运处置系统,全面实现分类投放、分类收集、分类运输、分类处理。加强塑料污染全链条治理,推进快递包装绿色化、减量化、循环化,整治过度包装。推进生活垃圾焚烧发电设施建设,提高资源化利用比例,探索厨余垃圾资源化利用有效模式。到2025年,城乡生活垃圾分类闭环体系基本建成,城镇生活垃圾资源化利用率提升至60%左右,到2030年提升至70%。(省发展改革委、省住房城乡建设厅、省生态环境厅、省市场监管局、省商务厅、省农业农村厅、省邮政管理局、省能源局等按职责分工负责)(七)科技创新引领行动。充分发挥科技创新引领作用,完善科技创新体制机制,强化创新能力,推进绿色低碳科技革命。1. 加快绿色低碳技术研发推广应用。实施省级碳达峰碳中和科技创新专项,加快能源结构深度脱碳、高效光伏组件、生物质利用、零碳工业流程再造、安全高效储能、固碳增汇等关键核心技术研发,推动低碳零碳负碳技术实现重大突破。聚焦可再生能源大规模利用、节能、氢能、永磁电机、储能、动力电池等重点领域深化研究。瞄准储能电池中关键基础材料,集中力量开展关键核心技术攻关。积极发展氢能技术,推进氢能在工业、交通、建筑等领域规模化应用。鼓励重点行业、重点领域合理制定碳达峰碳中和技术路线图,在钢铁、有色金属、建材等重点行业实施全流程、集成化、规模化示范应用项目。完善绿色技术目录,加大绿色低碳技术推广,开展新技术示范应用。(省科技厅、省发展改革委、省工业和信息化厅、省自然资源厅、省交通运输厅、省住房城乡建设厅、省教育厅、省科学院等按职责分工负责)2. 推进碳捕集利用与封存技术攻关和应用。加大二氧化碳捕集利用与封存技术研发力度,针对碳捕集、分离、运输、利用、封存及监测等环节开展核心技术攻关。加强成熟二氧化碳捕集利用与封存技术在全省电力、石化、钢铁、陶瓷、水泥等行业的应用。开展全省碳封存资源分布及容量调查,适时启动碳封存重大工程。鼓励开展二氧化碳资源化利用技术研发及应用,积极探索二氧化碳资源化利用的产业化发展路径。(省科技厅、省生态环境厅、省工业和信息化厅、省发展改革委、省自然资源厅、省教育厅、省科学院等按职责分工负责)3. 完善绿色低碳技术创新生态。采取“揭榜挂帅”等创新机制,持续推进低碳零碳负碳和储能关键核心技术攻关。将绿色低碳技术创新成果与转化应用纳入高校、科研院所、国有企业相关绩效考核。强化企业技术创新主体地位,支持企业承担绿色低碳重大科技项目,完善科研设施、数据、检测等资源开放共享机制。建立区域性市场化绿色技术交易综合性服务平台,创新绿色低碳技术评估、交易机制和科技创新服务,促进绿色低碳技术创新成果引进和转化。加强绿色低碳技术知识产权保护与服务,完善金融支持绿色低碳技术创新机制,健全绿色技术创新成果转化机制,完善绿色技术创新成果转化扶持政策,推动绿色技术供需精准对接,推进“产学研金介”深度融合。(省科技厅、省发展改革委、省工业和信息化厅、省教育厅、省国资委、省生态环境厅、省市场监管局、省金融监管局等按职责分工负责)4. 支持绿色低碳创新平台建设。全面推进鄱阳湖国家自主创新示范区建设,深入实施国家级创新平台攻坚行动、引进共建高端研发机构专项行动,扶持节能降碳和能源技术产品研发重大创新平台和新型研发机构。发挥省碳中和研究中心、南昌大学流域碳中和研究院等创新平台作用,积极争创国家科技创新平台。推动创新要素向科创城集聚,支持赣州、九江、景德镇、萍乡、新余、宜春、鹰潭立足本地优势创建科创城。依托中科院赣江创新研究院、国家稀土功能材料创新中心,全面提升有色金属领域创新能力。引导有色金属、建材等行业龙头企业联合高校、科研院所和上下游企业共建绿色低碳产业创新中心、协同创新产业技术联盟。(省科技厅、省发展改革委、省工业和信息化厅、省生态环境厅、省自然资源厅、省教育厅、省市场监管局、省科学院等按职责分工负责)5. 加强碳达峰碳中和人才引育。深入实施省“双千计划”等人才工程、开展组团赴外引才活动,着力引进低碳技术相关领域的高层次人才,培育一批优秀的青年领军人才和创新创业团队。鼓励省内重点高校开设节能、储能、氢能、碳减排、碳市场等专业,构建与绿色低碳发展相适应的人才培养机制,引进培育一批碳达峰碳中和专业化人才队伍。探索多渠道师资培养模式,加快相关专业师资培养和研究团队建设,聚焦碳达峰碳中和目标推进产学研深度融合。(省委组织部、省科技厅、省教育厅、省发展改革委、省人力资源社会保障厅、省工业和信息化厅、省生态环境厅、省科学院等按职责分工负责)(八)固碳增汇强基行动。坚持系统观念,积极探索基于自然的解决方案,推进山水林田湖草沙一体化保护和修复,提升生态系统质量和稳定性,提升生态系统碳汇增量。1. 巩固生态系统碳汇成果。强化国土空间规划和用途管制,严守生态保护红线,严控生态空间占用,严禁擅自改变林地、湿地、草地等生态系统用途和性质。严控新增建设用地规模,盘活城乡存量建设用地。严格执行土地使用标准,大力推广节地技术和模式。进一步完善林长制,深化集体林权制度改革。加强以国家公园为主体的自然保护地体系建设,争创井冈山国家公园,加大森林、湿地、草地等生态系统保护力度,加强生物多样性与固碳能力协同保护,防止资源过度开发利用,稳定固碳作用。科学使用林地定额管理、森林采伐限额,严格凭证采伐制度,加强森林火灾预防和应急处置,提升林业有害生物防治能力,加强外来物种管理,实施松材线虫病疫情防控攻坚行动,稳定森林面积,减少森林资源消耗。(省林业局、省自然资源厅、省农业农村厅、省生态环境厅、省应急厅等按职责分工负责)2. 提升生态系统碳汇能力。从生态系统整体性和流域性出发,统筹推进山水林田湖草沙系统治理、重要生态系统保护和修复重大工程。科学挖掘造林绿化潜力,持续推进国土绿化,推动废弃矿山、荒山荒坡、裸露山体植被恢复。科学开展森林经营,充分发挥国有林场带动作用,采取封山育林、退化林修复、森林抚育等措施,优化森林结构,提高森林质量,提升森林碳汇总量。加快建设城乡贯通绿网,推进湿地沙化、石漠化和红壤丘陵地水土流失综合治理,加大鄱阳湖湿地、武功山山地草甸等保护修复力度,全面提升生态系统质量。到2030年,全省活立木蓄积量达到9亿立方米。(省林业局、省自然资源厅、省水利厅、省发展改革委、省科技厅、省生态环境厅、省住房城乡建设厅等按职责分工负责)3. 加强生态系统碳汇基础支撑。依托和拓展自然资源调查监测系统,利用好在赣的国家野外台站监测基础和林草生态综合监测评价成果,建立健全全省生态系统碳汇监测核算制度。开展森林、草地、湿地、土壤等碳汇本底调查、储量评估、潜力评价,实施生态保护修复碳汇成效监测评估。加强典型生态系统碳收支基础研究和乡土优势树种固碳能力研究。健全生态补偿机制,将碳汇价值纳入生态保护补偿核算内容。按照国家碳汇项目方法学,推动生态系统温室气体自愿减排项目(CCER)开发,加强生态系统碳汇项目管理。(省自然资源厅、省林业局、省科技厅、省发展改革委、省生态环境厅、省财政厅、省金融监管局按职责分工负责)4. 推进农业减排固碳。以保障粮食安全和重要农产品有效供给为根本,全面提升农业综合生产能力,推行农业清洁生产,大力发展低碳循环农业。加强农田保育,开展耕地质量提升行动,推进高标准农田建设,推动秸秆还田、有机肥施用、绿肥种植,提高农田土壤固碳能力,增加农业碳汇。实施化肥农药减量替代计划,规范农业投入品使用,大力推广测土配方施肥、增施有机肥和化肥农药减量增效技术。开展畜禽规模养殖场粪污处理与利用设施提档升级行动,推进畜禽粪污资源化利用、绿色种养循环农业试点,促进粪肥还田利用。到2025年,累计建成高标准农田3079万亩,主要农作物农药化肥利用率达43%,畜禽粪污综合利用率保持在80%以上、力争达到90%。(省农业农村厅、省发展改革委、省生态环境厅、省自然资源厅、省市场监管局等按职责分工负责)(九)绿色低碳全民行动。增强全民节约意识、环保意识、生态意识,倡导绿色低碳生活方式,引导企业履行社会责任,把绿色理念转化为全民的自觉行动。1. 加强全民宣传教育。加强绿色低碳发展国民教育,将生态文明教育融入教育体系,生态宣传内容列入思政教育、家庭教育,开展生态文明科普教育、生态意识教育、生态道德教育和生态法制教育,普及碳达峰碳中和基础知识。充分利用报纸、广播电视等传统新闻媒体和网络、手机客户端等新媒体,打造多维度、多形式的绿色低碳宣传平台。加强对公众的生态文明科普教育,开发绿色低碳文创产品和公益广告。深入开展世界地球日、世界环境日、全国节能宣传周、全国低碳日、省生态文明宣传月等主题宣传活动,不断增强社会公众绿色低碳意识。(省委宣传部、省教育厅、省发展改革委、省生态环境厅、省自然资源厅、省管局、省气象局、省妇联、团省委等按职责分工负责)2. 倡导绿色低碳生活。坚决遏制奢侈浪费和不合理消费,着力破除奢靡铺张的歪风陋习,坚决制止餐饮浪费行为,减少一次性消费品和包装用品材料使用量。开展绿色低碳社会行动示范创建活动,持续推进节约型机关、绿色(清洁)家庭、绿色社区、绿色出行、绿色商场、绿色建筑等创建活动,把绿色低碳纳入文明创建及有关教育示范基地建设要求,总结宣传一批优秀示范典型,大力营造绿色生活新风尚。完善公众参与制度,发挥民间组织和志愿者的积极作用,鼓励各行业制定绿色行为规范。倡导绿色消费,增加绿色产品供给,畅通绿色产品流通渠道,推广绿色低碳产品。扩大“江西绿色生态”标志覆盖面,提升绿色产品在政府采购中的比例。(省发展改革委、省教育厅、省管局、省住房城乡建设厅、省交通运输厅、省工业和信息化厅、省财政厅、省委宣传部、省国资委、省市场监管局、省妇联、团省委等按职责分工负责)3. 引导企业履行社会责任。引导企业主动适应绿色低碳发展要求,强化环境责任意识,加强能源资源节约利用,提升绿色创新水平。重点行业龙头企业,特别是国有企业,要制定实施企业碳达峰实施方案,发挥示范引领作用。重点用能单位要全面核算本企业碳排放情况,深入研究节能降碳路径,“一企一策”制定专项工作方案。相关上市公司和发债企业要按照环境信息依法披露要求,定期公布企业碳排放信息。充分发挥行业协会等社会团体作用,督促企业自觉履行社会责任。(省国资委、省发展改革委、省生态环境厅、省工业和信息化厅、江西证监局等按职责分工负责)4. 强化领导干部培训。把碳达峰碳中和作为干部教育培训体系重要内容,分阶段、分层次对各级领导干部开展碳达峰碳中和专题培训,深化各级领导干部对碳达峰碳中和重要性、紧迫性、科学性、系统性的认识。加强全省各级从事碳达峰碳中和工作的领导干部培养力度,掌握碳达峰碳中和方针政策、基础知识、实现路径和工作要求,增强绿色低碳发展本领。(省委组织部、省委党校、省碳达峰碳中和工作领导小组办公室按职责分工负责)(十)碳达峰试点示范行动。统筹推进节能降碳各类试点示范建设,以试点示范带动绿色低碳转型发展。1. 组织开展城市碳达峰试点。以产业绿色转型、低碳能源发展、碳汇能力提升、绿色低碳生活倡导、零碳建筑试点等为重点,深入推进以低碳化和智慧化为导向的“绿色工程”。鼓励引导有条件的地方聚焦优势特色,创新节能降碳路径,开展碳达峰试点城市创建。支持乡镇(街道)、社区开展低碳试点创建,加快绿色低碳转型。到2030年,争取创建30个特色鲜明、差异化发展的碳达峰试点城市(县城)。(省碳达峰碳中和工作领导小组办公室,有关市、县〔区〕人民政府等按职责分工负责)2. 创建碳达峰试点园区(企业)。组织实施一批碳达峰试点园区,在产业绿色升级、清洁能源利用、公共设施与服务平台共建共享、能源梯级利用、资源循环利用和污染物集中处置等方面打造示范园区。支持有条件的开发区依托本地优势产业开展绿色低碳循环发展示范,推进能源、钢铁、建材、石化、有色金属、矿产等行业企业建设标杆企业,探索开展二氧化碳捕集利用与封存工程建设。(省发展改革委、省科技厅、省工业和信息化厅、省商务厅、省国资委、省自然资源厅、省生态环境厅,有关市、县〔区〕人民政府等按职责分工负责)3. 深化生态产品价值实现机制试点。充分挖掘绿色生态资源优势和品牌价值,以体制机制改革创新为核心,以产业化利用、价值化补偿、市场化交易为重点,积极争取全省域开展生态产品价值实现机制试点,持续提高生态产品供给能力,探索兼顾生态保护与协调发展的共同富裕模式。深化抚州生态产品价值实现机制国家试点,鼓励婺源县、崇义县、全南县、武宁县、浮梁县、井冈山市、靖安县等地创新探索,总结推广可复制可推广的经验模式。支持因地制宜开展生态产品价值实现路径探索,打造一批生态产品价值实现机制示范基地。(省发展改革委、省自然资源厅、省生态环境厅、省林业局、省金融监管局,有关市、县〔区〕人民政府等按职责分工负责)4. 开展碳普惠试点。加强碳普惠顶层设计,聚焦企业减碳、公众绿色生活、大型活动碳中和、固碳增汇等领域开展试点,形成政府引导、市场化运作、全社会广泛参与的碳普惠机制。以公共机构低碳积分制为引领,开展碳普惠全民行动,建立碳币兑换等激励机制,鼓励医疗、教育、金融等机构和商超、景区、电商平台创建碳联盟,积极纳入碳普惠平台。(省管局、省生态环境厅、省发展改革委、省体育局、省商务厅、省国资委、省教育厅、省金融监管局、省林业局等按职责分工负责)四、政策保障(一)建立碳排放统计核算制度。按照国家统一规范的碳排放统计核算体系有关要求,建立完善碳排放统计核算办法。加强遥感技术、大数据、云计算等新兴技术在碳排放监测中的应用,探索建立“天空地”一体化碳排放观测评估技术体系,开展碳源/碳汇立体监测评估,推广碳排放实测技术成果。利用物联网、区块链等技术实施监测与数据传输,进一步提高碳排放统计核算水平。深化“生态云”大数据平台应用,建立完善统计、生态环境、能源监测及相关职能部门的数据衔接、共享及协同机制,构建碳达峰大数据管理平台,实现智慧控碳。(省碳达峰碳中和工作领导小组办公室、省统计局、省工业和信息化厅、省生态环境厅、省自然资源厅、省市场监管局、省气象局等按职责分工负责)(二)加大财税、价格政策支持。统筹财政专项资金支持碳达峰重大行动、重大示范和重大工程。完善绿色产品推广和消费政策,加大对绿色低碳产品采购力度。强化税收政策绿色低碳导向,全面落实环境保护、节能节水、资源循环利用等领域税收优惠政策,对符合规定的企业绿色低碳技术研发费用给予税前加计扣除。完善差别电价、阶梯电价等绿色电价政策。(省财政厅、省税务局、省发展改革委、省生态环境厅按职责分工负责)(三)发展绿色金融。深化绿色金融改革创新,鼓励有条件的地方、金融机构、行业组织和企业设立碳基金。拓宽绿色低碳企业直接融资渠道,鼓励发行绿色债券,支持符合条件的绿色企业上市融资。鼓励金融机构创新碳金融产品,推进应对气候变化投融资发展。建立健全碳达峰碳中和项目库,加强项目融资对接,引导金融机构加强对清洁能源、节能环保、装配式建筑等领域的支持,鼓励金融机构开发碳排放权、用能权抵押贷款产品。发挥绿色保险保障作用,鼓励保险机构将企业环境社会风险因素纳入投资决策与保费定价机制。积极推进金融机构环境信息披露,引导金融机构做好相关风险监测、预警、评估与处置工作。(省金融监管局、人行南昌中心支行、省财政厅、江西银保监局、江西证监局、省发展改革委、省生态环境厅按职责分工负责)(四)加强绿色低碳交流合作。开展绿色经贸、技术与金融合作,持续优化贸易结构,巩固精深加工农产品和劳动密集型产品等传统产品出口,大力发展高质量、高技术、高附加值的绿色产品贸易。鼓励战略性新兴产业开拓国际市场,提高节能环保服务和产品出口,加强绿色低碳技术、产品和服务进口。积极开展绿色低碳技术合作交流,持续开展国家级大院大所产业技术及高端人才进江西活动,进一步深化绿色低碳领域合作交流层次与渠道。(省商务厅、省工业和信息化厅、省发展改革委、省市场监管局、省生态环境厅、省国资委、省外办按职责分工负责)(五)发展环境权益交易市场。积极参与全国碳排放权交易市场相关工作,严格开展碳排放配额分配和清缴、温室气体排放报告核查,加强对重点排放单位和技术服务机构的监管。积极推进排污权有偿使用与交易,探索开展用能权有偿使用和交易试点,建立健全用能权、绿色电力证书等交易机制,培育交易市场,鼓励企业利用市场机制推进节能减污降碳。实行重点企(事)业单位碳排放报告制度,支持重点排放企业开展碳资产管理。利用好森林、湿地、草地、生物质、风能、太阳能、水能等自然资源,开发碳汇、可再生能源、碳减排技术改造等领域的温室气体自愿减排项目。支持省公共资源交易中心建设用能权、排污权、用水权、林业碳汇等交易平台。(省生态环境厅、省发展改革委、省能源局、省财政厅、省林业局、省市场监管局、国网江西省电力公司等按职责分工负责)五、组织实施省碳达峰碳中和工作领导小组加强对各项工作的整体部署和系统推进,研究重大问题、制定重大政策、组织重大工程。各成员单位按照省委、省政府决策部署和领导小组工作要求,扎实推进相关工作。省碳达峰碳中和工作领导小组办公室加强统筹协调,定期对各地区和重点领域、重点行业工作进展情况进行调度,督促各项目标任务落实落细。各设区市、各部门要按照《中共江西省委江西省人民政府关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的实施意见》和本方案确定的工作目标与重点任务,抓好贯彻落实和工作年度评估,有关工作进展和重大问题要及时向省碳达峰碳中和工作领导小组报告。各类市场主体要积极承担社会责任,主动实施有针对性的节能降碳措施,加快推进绿色低碳发展。各设区市要科学制定本地区碳达峰行动方案,经省碳达峰碳中和工作领导小组综合平衡、审核通过后,由各设区市自行印发实施。(省碳达峰碳中和工作领导小组办公室牵头,各设区市人民政府、各有关部门按职责分工负责)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制