当前位置: 仪器信息网 > 行业主题 > >

表面振动压实仪

仪器信息网表面振动压实仪专题为您提供2024年最新表面振动压实仪价格报价、厂家品牌的相关信息, 包括表面振动压实仪参数、型号等,不管是国产,还是进口品牌的表面振动压实仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面振动压实仪相关的耗材配件、试剂标物,还有表面振动压实仪相关的最新资讯、资料,以及表面振动压实仪相关的解决方案。

表面振动压实仪相关的资讯

  • 深圳先进院等研发出用于远场高分辨成像的新型柔性声学超表面功能器件
    声人工结构超表面是一种可产生特殊物理效应的新颖声学结构,其独特之处在于能够对声波的相位、振幅进行完全控制,可个性化定制任意波场,在高/超分辨医学成像、精准操控给药和可穿戴器件等方面具有重要应用前景。   声学超表面结构通常是刚性而固定的,厚度在毫米以上,甚至与波长相当。同时,这些超表面的工作频率通常在较低的频率,高频高性能应用受限。尽管高精度三维打印技术的快速发展,使得加工更小的超表面构件成为可能。然而,更复杂的是,当超表面的工作媒介为水等液体介质时,将面临新挑战。例如,为了实现所需的波前工程,声学中的质量定律约束了水下超表面具有结构紧凑而尺寸庞大的特征,这限制了声学超表面的潜在应用场景。此外,不可避免的固液耦合引起的结构振动,可导致所设计的声学超表面器件失效,成为应用的突出瓶颈。   近日,中国科学院深圳先进技术研究院研究员郑海荣与华中科技大学教授祝雪丰等合作,研发了二氧化硅纳米颗粒修饰的细菌-纤维素柔性超表面元材料(图1)。这种材料在水中具有优异的稳定性、出色的机械加工性能、超薄厚度、超轻重量、细菌可修复能力和生物相容性。利用这种柔性超表面元材料,研究进一步基于剪纸工艺开发出功能性声学超表面,可加工~10 μm精度的复杂图案。得益于这种超表面材料的Cassie-Baxter效应产生的完美超声绝缘性,该研究设计制造出超薄(~20 μm)、超轻( 20 mg)的芯片级声学器件,如非局域全息超透镜和三维成像超透镜,实现了复杂全息声场和远场高分辨三维超声脉冲-回波成像(图2、3)。本研究为开发柔性可生物降解的新型超材料器件提供了变革性技术,并为相关生物医学仪器应用开辟了新方向。   相关研究成果以《修饰的细菌-纤维素超声超表面》(Decorated bacteria-cellulose ultrasonic metasurface)为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、广东省卓越青年团队项目、深圳市基础研究专项重点项目等的支持。图1. 细菌-纤维素超声超表面的加工和性能表征图2. 剪裁加工的非局域全息超透镜及其复杂全息声场图3. 剪裁加工的成像超透镜及其远场高分辨二维、三维超声脉冲-回波成像
  • 显微红外光谱仪半导体行业表面异物分析——之主料篇
    显微红外光谱仪半导体行业表面异物分析——之主料篇https://www.instrument.com.cn/netshow/SH102204/news_633372.htm在上一篇文章中我们提到了如何用布鲁克Lumos II显微红外对晶圆包装盒的异物进行分析和鉴定,本次我们再结合类似的应用案例来介绍如何通过显微红外对晶圆表面的异物进行鉴定,具体如下:某半导体晶圆厂商在产品过程质检时发现晶圆背面有异物,异物分布位置不固定、无明显规律性,内部排查怀疑和几个工序相关。各对应工序负责人均认为非本工序产生,异物产生原因调查陷入僵局。如果需要进一步判定原因,则需要了解晶圆背面的异物是什么?我们采用布鲁克Lumos II 显微红外光谱仪对该晶圆背面异物进行测试和分析。Lumos II测试条件 分辨率:4cm-1 扫描次数:32次 波数范围:4000-650cm-1 测试方法:Ge晶体ATR 检测器:液氮制冷MCT检测器 6” 晶圆不破坏直接测试 ATR自动压力调整,保证晶圆的完整性从可见光照片上可以看到异物是呈薄膜状附着在晶圆背面表面,大小和形状不一,基本尺寸约100um。利用Lumos II 同轴光路高精度ATR分别对异物点进行测量,对应红外谱图见图1。其中蓝色和红色均是异物点谱图,谱图一致。图1 晶圆背面边缘易物点对怀疑异物源(UV膜)取样在相同测试条件下用Lumos II测试,测试结果参见图2。图2 高度怀疑异物源样品红外谱图利用OPUS软件将异物点和怀疑样品谱图堆叠在一起做比较,对部分特征峰标注峰位,匹配度较高,详见图3。对于差异部分则是由于UV膜在贴于晶圆背面之后需要进行一系列工序处理,这些工序的处理会引起UV膜表面胶体的变性,这种变化引起部分特征峰的变化。在随后的模拟实验中这部分推断得到验证,该部分内容由于涉及到厂家工艺信息我们在此就不在详细介绍。图3 异物点与污染源谱图比较北京实验室有Lumos II样机,欢迎感兴趣的客户提供样品亲自上机操作体验联系方式:刘经理,13581697130.
  • 新型表面等离子体共振光谱仪研制成功
    4月10日,中科院计划财务局组织专家对长春应用化学研究所承担的院科研装备研制项目“集成电化学方法的表面等离子体共振及其高通量分析仪器”进行了现场验收。验收专家分别听取了项目的结题、财务和用户使用报告,审阅了项目组提交的验收材料,并实地考察了研制样机的示范性实验操作,一致同意该项目通过验收。专家现场考察样机  表面等离子体共振光谱(SPR)技术是一种全新的生物化学分析方法,具有实时、免标记等独特的检测优点,可广泛应用于生物分析、无机材料、化学分析和材料科学等领域,逐渐成为国际传感器领域的研究热点。实现具有时间分辨采集功能的SPR仪器方法,开发具有我国自主知识产权的新型电化学传感器、检测器和联用仪器是当前科技生产的迫切需求。  项目组以开发研制具有时间分辨测量能力、电化学检测系统、高通量成像分析模块的表面等离子体共振分析检测系统为目标,经过2年多的努力,研制开发出具有自主知识产权的具有时间分辨、电化学联用、成像测量等功能模块的表面等离子体共振光谱仪,可应用于界面小分子吸附反应动力学及涉及小分子相互作用的分析测量中,并可实现与多种电化学暂态、稳态技术方法的联用;该仪器设计新颖,利用二像素光学位置阵列传感器件,极大地提高了SPR光谱测量的时间响应;通过与多种电化学暂态及稳态技术方法的联用,拓宽了SPR光谱仪器的应用领域。  该项目研制开发的表面等离子体共振光谱及其联用仪器设备已经通过长春市产品质量监督检验院技术测试认证,现已小规模研制工程样机15台,并在清华大学、吉林大学、长春应化所、化学所、西北师范大学、东南大学、福州大学等科研和教学单位试用,效果良好。  该集成仪器系统将可广泛应用于电极界面纳米结构复合材料的电化学制备、修饰、电化学衍生及电极界面的自组装、生物芯片分析、医疗卫生、食品、毒品毒物分析等领域,是对目前SPR领域仪器方法的有益补充,具有广阔的市场前景。  该项目研制期间发表科研论文21篇;申请发明专利7项,4项已获授权;培养博士研究生7名,硕士研究生2名。
  • 【瑞士步琦】基于喷雾干燥技术的表面增强拉曼光谱研究进展
    基于喷雾干燥技术的表面增强拉曼光谱研究进展水污染是一个全球性问题,威胁着人类健康并损害生态系统的健康。水污染物含有多种对人体健康和生态系统产生不利影响的重金属和有机化合物,需要及时发现和分析以维持环境,同时可以尽量减少对人类健康的危害和对生态系统健康的损害。水样中重金属的检测常用检测方法如下原子吸收光谱法(AAS)阳极溶出伏安法(ASV)电感耦合等离子体质谱法(ICP-MS)电化学检测除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳米颗粒的聚集程度是 SERS 中拉曼信号增强效果的关键决定因素。喷雾干燥法是将储存溶液中的微小液滴雾化,研究者可以通过改变液滴的大小和液滴内纳米颗粒的浓度来控制纳米微粒的聚集程度。纳米微粒的形成是由于液滴内部溶剂蒸发的结果(图1)。同时,喷雾干燥法也可以在不添加表活物质的情况下制备纳米微粒。该方法获得的纳米微粒可以在使用中将探针分子困在热点中,获得比使用传统 SERS 衬底的方法更有效的信号增强效果。在使用传统 SERS 方法时,通常需要通过将待分析溶液滴到衬底上的方式使探针分子分散到热点附近。也可以将 SERS 制备成溶胶,在测试过程中需要添加表面活性剂,这导致在目标物质信号被放大的同时,表面活性剂的拉曼信号也被放大,会干扰测试。而采用喷雾干燥法制备的纳米微粒可避免这些情况的发生。▲图1,用于制备纳米银微粒的喷雾干燥系统示意图本研究采用喷雾干燥方法制备纳米微粒用于探针分子的痕量分析。首先,研究者采用定制化的喷雾干燥系统制备纳米微粒。之后研究制备的银纳米微粒的大小如何影响探针分子(罗丹明B)的 SERS 信号。最后,我们雾化了银纳米粒子和探针分子罗丹明 B 的预混合溶液,以促进探针分子在热点的捕获,从而进一步增强探针分子拉曼信号。1材料在本研究中选择银纳米颗粒(AgNPs)。购买主粒径为 30 nm的AgNP颗粒(Ag Nanocolloid H-1, Mitsubishi Materials Corporation),用超纯水(18.2 MΩ cm)稀释,得到 0.01wt% 和 0.1wt% AgNP 溶胶。罗丹明 B (RhB)作为探针分子。所有材料均未经进一步提纯使用。2采用喷雾干燥法制备 AgNP 微粒用含有 AgNP 的雾化液滴制备用于 SERS 测试的 AgNP 微粒。实验装置示意图如图1所示。液滴雾化使用了一个定制的系统,该系统带有加压双流体喷嘴。当加压气体被引入时,液体样品通过喷嘴内出现的负压被吸入系统。在喷嘴内形成一层液体膜,然后在剪切应力的作用下分解成液滴。在雾化之前,将超纯水与 AgNPs 溶胶混合,以进一步稀释溶胶中任何浓度的潜在污染物。使用氮气作为干燥气和雾化气,将雾化后的液滴从喷嘴输送到加热区。再以 4.5 L/min 的流量将 N2 气体引入加热区,将雾化后的液滴加热至 150℃,促进溶剂蒸发,使 AgNP 气溶胶干燥。雾化系统总流量为 6.9 L/min,液滴停留时间为 0.93s。最后,使用定制的冲击器将干燥气溶胶形式的 AgNPs 沉积在直径为 14mm 的铜制圆形基板上。撞击喷嘴直径为 1mm,因此 AgNPs 以 17L/min 的流速加速撞击。在 SERS 实验前,将沉积的 AgNP 在常温常压下保存 24h。本次共制备四种不同粒径的 AgNPs 微粒,并对其在 SERS 分析中的敏感性进行了检验。雾化 0.01wt.% 的溶胶得到的 AgNP 微粒粒径最小,雾化 0.1wt.% 的溶胶得到的 AgNP 微粒粒径最大。溶胶中 AgNP 的浓度直接影响单个液滴中 AgNPs 的数量。此外,采用差分迁移率分析仪对制备的四种 AgNPs 微粒进行颗粒度分析,四种微粒的平均粒径分别为 48、86、151 和 218nm。3SERS 分析将制备的四种不同大小的 AgNPs 微粒用于微量罗丹明 B 溶液的 SERS 信号获取。 将 100μL 一定浓度的罗丹明 B 标准水溶液滴在铜基底上制备的 AgNP 微粒上。采用 532nm 激光器,在激光功率为 0.157mW,曝光时间为 1s 的条件下获得 SERS 谱图。每个样品在不同位置获得十几张 SERS 光谱。利用数据处理软件对所得光谱进行背景减除,并获得罗丹明 B 位于 1649 cm&minus 1 处的峰强度。4尺寸和形态表征图2 显示了用浓度分别为 0.01wt% 和 0.1wt% 的 AgNg 溶胶喷雾制备的微粒的尺寸分布。可以看到二者的平均尺寸分别约为 38nm 和 66nm,前者微粒的大小与纯 AgNP 颗粒(~ 30nm)的大小大致一致,这证明前者微粒中主要为纯 AgNP 颗粒。后者微粒增大可归因于 AgNPs 浓度的增加,即溶胶浓度的增加。这表明由 0.1wt% 溶胶喷雾干燥得到的微粒中有聚集。由此可知,用该喷雾干燥系统得到的微粒大小可通过气溶胶浓度的大小控制。▲ 图2,由 0.01wt%、0.1wt% 和 0wt% 的纳米银溶胶喷雾干燥获得的纳米银微粒的粒径大小▲ 图3,沉积后纳米银微粒的SEM图像和尺寸分布。(a, e) 48 nm, (b, f) 86 nm, (c, g) 151 nm, (d, h) 218 nm图3 的 SEM 图像分别显示了在未添加探针分子(即RhB)情况下沉积在铜板上的四种纳米银微粒的相应尺寸分布。由 0.01wt% 的纳米银溶胶喷雾干燥获得的微粒形成了亚单层膜(图3a),颗粒的平均测量尺寸为 48nm(图3e),与制备溶胶前的纯颗粒尺寸(30nm)和气溶胶颗粒尺寸(38nm)基本一致,这表明滴在铜板上的纳米银微粒并未明显聚集。如 图3f 和 图3g 所示 3b 和 3c 的纳米银微粒的尺寸为 86 和 151nm。由 0.1wt% 溶胶制备得到的纳米银微粒形成了更大的球形聚集体(图3d),尺寸为 218nm (图3h),是气相测量中发现的 AgNP 气溶胶(图2)的两倍多。气相测量和 SEM 观察之间的这种尺寸差异可能归因于颗粒反弹效应。只有大的 AgNPs 微粒才能更好地沉积,因为微粒与基底之间的接触面积较大,所以具有较高的附着力。最终使用两种浓度的溶胶和 DMA,我们制备了四种不同尺寸的微粒:48、86、151 和 218 nm。5拉曼增强效果与微粒尺寸大小有关图4 显示了不同浓度的罗丹明 B(分别为 10&minus 6、10&minus 8 和 10&minus 10 M),用四种纳米银微粒(尺寸分别为 48、86、151 和 218nm 时)获得的 SERS 光谱。在罗丹明浓度为 10&minus 6 M 时,采用四种纳米银微粒获得的谱图在 500-1700 cm&minus 1 处都均能清晰地观察到罗丹明 B 的所有特征峰(图4a)。表1 列出了罗丹明 B 的拉曼特征峰归属。其中,1649 cm&minus 1 处的 C-C 伸缩振动信号最为强烈,因此被用作计算 AEF,用于评价拉曼信号的增强情况。在未采用 SERS 增强时,没有观察到罗丹明 B 的特征峰(图4a),这证实了纳米银微粒对罗丹明 B 的拉曼信号起到了增强作用。▲ 图4,(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 浓度下罗丹明 B 溶液的 SERS 光谱。箭头表示罗丹明 B 的拉曼特征峰(表1)表1,罗丹明 B 的主要特征峰及特征峰归属拉曼位移(cm-1)特征峰归属1199C-C 键的伸缩振动1281C-H 键的弯曲振动1360芳香基 C-C 键的弯曲振动1528C-H 键的伸缩振动1649C-C 键的伸缩振动6AgNPs 溶胶和探针分子混合后喷雾干燥图4 和 图5 表明,尺寸为 86nm 的 AgNP 微粒是信号增强效果是最好的。研究者又过在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶进行预混合(即采用预混合雾化途径),制备微粒。进一步探索了微粒的拉曼增强效果。图6显示了浓度为 10&minus 6、10&minus 8 和 10&minus 10 M 的罗丹明 B 溶液在 86nm AgNP 微粒中的 SERS 光谱。▲图5,粒径为 48、86、151和 218nm 的 AgNP 微粒在 浓度为 10-6 和 10-8 M 罗丹明 B 的 AEF 值。部分测试未获得罗丹明 B 特征峰,因此未计算 AEF 值▲图6 采用 AgNP 溶胶与罗丹明 B 预混后获得的微粒对浓度分别为(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 的罗丹明 B 溶液进行信号放大获得的 SERS 光谱▲图7 喷雾干燥制得 86nm 纳米银颗粒后加入罗丹明 B 溶液和罗丹明 B 溶液与 86nm 纳米银微粒预混后喷雾干燥后的 AEF 值▲图8 (a)喷雾干燥后滴入罗丹明B溶液 (b)罗丹明B 溶液与微粒预混后喷雾干燥7结论本研究采用喷雾干燥方法制备高灵敏度的纳米银微粒。使用定制的系统制备了粒径为 48、86、151 和 218nm 的 AgNP 微粒。滴入10&minus 6 M 罗丹明 B 溶液后,48、86、151 和 218nm AgNP 微粒的 AEF 值分别为 2.4 × 103、4.2 × 103、3.3 × 103 和 4.0 × 103,而滴入 10&minus 8 M 罗丹明 B 溶液后,86 和 151nm 微粒的 AEFs 为 3.4 × 104 和 2.2 × 104。我们发现 86nm 的 AgNP 微粒是本研究中最敏感的纳米结构。与 218nm AgNP 微粒相比,86nm AgNP 微粒的拉曼增强效果更好,这是由于高浓度溶胶制备的 AgNPs 微粒中电子云变形,降低了它的拉曼增强效果。在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶预混后获得的拉曼增强效果较喷雾干燥后加入罗丹明 B 溶液更强。在测试浓度为 10&minus 6 M 和 10&minus 8 M 的罗丹明 B 溶液时,预混后喷雾干燥得到 86nm 微粒的 AEF 值分别为 5.1 × 104 和 3.7 × 106。该方式获得的 AEF 值分别是喷雾干燥后加入方式的 12 倍和 110 倍。该方法应该是更适合用于环境污染物痕量分析的方法。8文献引用Chigusa M. etc. Development of spray‐drying‐based surface‐enhanced Raman spectroscopy. Scientific Reports (2022)12:4511雷尼绍公司总部位于英国,自上世纪九十年代 开始提供显微拉曼光谱仪,是最早的商用显微拉曼供应商之一,一直在拉曼光谱领域是公认的领导者。雷尼绍为一系列应用生产高性能拉曼系统,具有完备的光谱产品系列:inVia 系列显微共焦拉曼光谱仪、 RA802 药物分析仪、 RA816 生物组织分析仪、Virsa 高性能光纤拉曼系统、Raman-AFM 联用系统接口、 Raman-SEM 联用系统等。 凭借优越的产品性能及完善的售后服务, 雷尼绍光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于高校科研和制药、材料、新能源、光伏等多个领域研发中。瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 新技术可将光信号变成沿金属表面行进的波
    有助于下一代单芯片光子互联的实现  据物理学家组织网4月22日报道,美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。研究发表在4月19日出版的《科学》杂志上。  科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。  该研究的合作者、哈佛大学工程和应用科学学院的研究生巴尔萨泽穆勒说:“如果你想朝一块拥有很多元件的小芯片周围发送一个数据信号,那么,你需要能精确地控制信号的行进方向。如果你无法做到这一点,信号就有可能丢失。方向是信号能否成功传递的重要因素。”  过去,科学家们也能通过改变光射入连接设备表面的角度来控制这些波的行进方向。但就像穆勒所说的:“这实在很麻烦,光学电路很难成一条直线,因此,为了给信号设定方向而不断重新调整角度非常不实际。”  新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。该研究的主要作者、哈佛大学工程与应用科学学院的费德里科卡帕索教授指出:“迄今为止,科学家们一直采用一系列平行的沟槽(格栅)来做这类事情,虽然它也能完成,但很多信号会丢失,而新设备上的新结构则能采用一种非常简单和优雅的方式来控制信号的行进方向。”  现在,光只需要垂直地射入即可,新设备会做其他事情。它会将入射光变成表面等离子体激元(在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的疏密波)。它也会阅读入射光波的偏振方向——直线、左旋圆极化还是右旋圆极化,然后为其安排合适的路径。新设备甚至能将一束光分成两部分并朝不同方向发送不同的部分,这就使得多通路信息传送成为可能。  新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内——纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。
  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 缅怀!中国振动行业前辈王孝忠先生逝世
    p style="text-align: justify text-indent: 2em "据东菱振动消息,中国共产党员,苏州市第十四届、十五届、十六届人大代表,苏州东菱振动试验仪器有限公司创始人,王孝忠先生因病医治无效,不幸于2020年8月14日凌晨在苏州逝世,享年66岁。王孝忠先生告别仪式定于2020年8月16日苏州殡仪馆松鹤厅举行。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/49d54aec-c170-4491-a95e-d980c9ae497e.jpg" title="王孝忠.png" alt="王孝忠.png"//pp style="text-align: justify text-indent: 2em "王孝忠先生于1954年出生,出生时父亲已经48岁,生存生计颇为艰难。他16岁进的工厂——苏州试验仪器厂,17岁进学习班,18岁被借调市机械局,然后民兵,消防,保卫,宣讲团,车间,等等。1982年的时候上电大学了企业管理,然后办公室,计划科,综合科,销售部,副厂长。/pp style="text-align: justify text-indent: 2em "1995年,已在国有企业干了25年的王孝忠,毅然决定下海创办东菱公司。/pp style="text-align: justify text-indent: 2em "20世纪,世界上电动振动台有两大王牌企业,一个是英国的“菱”公司(即LING DYNAMIC SYSTEMS LTD),另一是美国的“菱”公司(即LING ELECTRONICS LTD),他们掌握着振动试验台的高端制造技术,垄断了振动行业,也阻碍了振动行业的发展进步。/pp style="text-align: justify text-indent: 2em "王孝忠先生曾经说过,取名东菱,意即“东方之菱”,是对国际振动行业两大王牌制造商——英国“菱”公司和美国“菱”公司提出的挑战。东菱标志的设计也很有特色,形似“中”,寓意中国之菱,民族之菱。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b012853b-1277-45d6-89d1-bc3c14fc0e79.jpg" title="捕获.PNG" alt="捕获.PNG"//pp style="text-align: justify text-indent: 2em "创业时的艰难困苦可想而知,成功从来不是轻而易举的事。/pp style="text-align: justify text-indent: 2em "2001年后我国启动了人才引进战略,王孝忠先生团队和国内的一些顶尖专家合作,先后打破中国的多项纪录:风冷式5吨级、6吨级试验台相继研制成功;制造了世界最大推力的7吨级风冷式电动振动台;国内最大的16吨级水冷式振动台问世。这些成果打破了美国、英国、日本等国家对中国振动试验台的封锁。/pp style="text-align: justify text-indent: 2em "中国神舟五号载人飞船研制成功后,需做火箭零部件及可靠性振动试验,东菱振动研制的5吨级电动振动台一举中标,参与中国载人航天工程研制建设试验的协作配套工作,为我国首次载人航天飞行任务圆满成功作出贡献。 /pp style="text-align: justify text-indent: 2em "2004年3月,国际航空航天展在德国汉堡举行,苏州东菱振动试验仪器有限公司是惟一的中国参展厂家。/pp style="text-align: justify text-indent: 2em "2005年,苏州东菱为神舟六号载人飞船保驾护航,研制的16吨电动式振动试验系统和50000G高加速度冲击台,通过国防科工委组织的专家鉴定。/pp style="text-align: justify text-indent: 2em "2006年,在东菱诞生了世界上最大的35吨振动台。此后,东菱的产品以其颇高的性价比,出口到了36个国家和地区,而这些国家和地区几乎包括所有的西方发达国家。/pp style="text-align: justify text-indent: 2em "2011年,东菱自主研制成功50吨推力超大型电动振动试验系统。该系统为世界首创,单台推力全球最大,综合技术指标达到世界领先水平。/pp style="text-align: justify text-indent: 2em "在短短的十多年里,东菱科技连续缔造行业神话,成为世界振动行业的后起之秀。东菱科技的存在,让中国成为继美、英之后的振动行业第三大国。/pp style="text-align: justify text-indent: 2em "从“东方之菱、民族之星”到“东菱振动、振动世界”,从“造振动精品、创国际品牌”到“中国振动的骄傲、科技创新的沃土”,东菱已成为了中国乃至世界振动试验行业的火车头——“从制造走向智造”的民族企业样本,成为了中国创新发展的历史缩影… … /pp style="text-align: justify text-indent: 2em "br//pp style="text-align: center "span style="color: rgb(127, 127, 127) "strong沉痛悼念并深切缅怀/strong/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "strong王孝忠先生!/strong/span/p
  • 突破!原位电镜揭示双金属催化剂反应状态下的真实活性表面
    p style="text-align: justify text-indent: 2em "近日,中国科学院大连化学物理研究所能源研究技术平台电镜技术研究组副研究员刘伟、杨冰与中国科学院上海高等研究院研究员髙嶷团队及南方科技大学副教授谷猛团队合作,在观察和确认NiAu催化剂在CO2加氢反应中的真实表面方面取得进展。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "催化研究中,常规静态显微分析只能提供催化剂反应前或反应后的非工况结构信息。然而在热振动、气体分子吸/脱附等作用下,催化剂的表面原子难免发生迁移导致表面重构,变化后的表面才是与催化反应活性相关的真实表面,要看清这一表面状态需要借助原位表征技术。尤其对于容易发生表面重构的多元金属催化体系而言,无法原位观测反应气氛下催化剂的原子结构,就不能确认贡献催化活性的真实表面,更无法建立可信的催化构效关系。在以往的研究中,具有宏观统计特性的原位谱学手段已经从精细的能量维度对动态催化过程做出了先驱性探索,例如原位FTIR、原位XPS(AP-XPS)以及原位XAS。在此基础上,实空间下直接观测反应中催化剂的表面原子排布是研究人员长期追寻的目标。针对此问题诞生了环境透射电子显微技术(ETEM),ETEM是主要基于TEM成像的原位手段,适用于原子分辨下追踪气固相反应中催化剂的结构演化过程。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/69a53f56-f8b2-4cb7-adbb-cf19e4397bed.jpg" title="原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" alt="原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg"//span/pp style="text-align: justify text-indent: 2em "在本工作中,研究团队基于环境透射电镜以及特殊设计的mbar级负压定量混气系统,研究了NiAu/SiO2体系催化CO2加氢反应过程。初期静态显微结果表明,该催化剂以Ni为核心,表面包裹2至3层Au原子壳层,为一种典型的Ni@Au核壳构型。而考虑到Ni具有强大的加氢活性,会导致反应的CH4选择性,因此,该核壳构型可合理地解释本工作中CO2加氢高达95%以上的CO选择性。/pp style="text-align: justify text-indent: 2em "但是,环境透射电镜原位观测发现,该催化剂在反应气氛和温度下,内核Ni原子会逐渐偏析至表面与Au合金化;在降温停止反应时,会退合金化返回Ni@Au核壳型结构。原位谱学手段(包括原位FTIR和原位XAS)的结果很好地证实了上述显微观测结果。理论计算和原位FTIR结果表明,反应中原位生成的CO与NiAu表面合金化起到了关键而微妙的相互促进作用,这是该催化剂构型演变及高CO选择性的原因。/pp style="text-align: justify text-indent: 2em "该工作为研究核壳型双金属催化过程提供了启发,例如反应条件下核壳表面是否真实存在,是否贡献催化活性?又如催化剂制备中追求构建核壳表面是否有必要?该工作是一套原位环境下微观结构表征与宏观状态统计的综合应用案例,突出局域原子结构显微观测的同时,借助原位谱学手段,尤其是原位XAS技术,确保了电子显微发现与材料宏观工况性能的关联置信度。从而为发展原位、动态、高时空分辨的催化表征新方法和新技术提供了范例,也为设计构筑特定结构和功能催化新材料提供了借鉴和思考。/pp style="text-align: justify text-indent: 2em "此外,期刊特别邀请审稿人撰写并独立刊发了题为The dynamic of the peel 的工作评述(news & views),以表明本工作对于催化研究的独特启发。/pp style="text-align: justify text-indent: 2em "相关成果发表在《span style="color: rgb(0, 112, 192) "自然-催化/span》(Nature Catalysis)上。该工作得到国家自然科学基金项目、大连市人才项目、中科院青年创新促进会等的资助,尤其得到了研究员苏党生的大力支持。/p
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • “表面等离子共振分子相互作用分析仪验证评价”项目启动会成功召开
    2023年10月17日,由中国仪器仪表学会科学仪器设备验证评价中心(生命科学站) (以下简称“验评中心”)牵头组织的“表面等离子共振分子相互作用分析仪验证评价”项目启动会在北京召开。会议现场中国仪器仪表学会科技咨询部主任杨娟首先在致辞中表示,中国仪器仪表学会自2021年6月开始,联合多家单位着力于国产仪器的验评工作。经过两年多的发展,验评中心的工作得到了大家的认可,有越来越多的企业和单位参与。表面等离子共振分子相互作用分析仪是验评中心继液相色谱、气相色谱、数字PCR仪之后,启动的第四个验评机种。希望通过学会的验评工作能够帮助国产仪器进入高端市场,助推国产仪器更好地发展。验评中心工程师杨佳莹介绍了表面等离子共振分子相互作用分析仪验证评价方案、工作计划与合作机制。随后,与会专家就验评方案当中的相关问题,从用户最关注的性能参数、技术指标、实际样品测试比对、仪器耐用性、综合运行成本等方面进行了讨论并提出了指导意见。据悉,此项目是受北京英柏生物科技有限公司委托,由验评中心牵头,联合中国科学院生物物理研究所、清华大学蛋白质研究技术中心、北京大学医学部、中国计量科学研究院前沿计量科学中心、中国医学科学院医药生物技术研究所、北京百普赛斯生物科技股份有限公司共同完成。
  • 新型傅立叶型表面等离子共振监测仪会议邀请(第一轮通知)
    表面等离子体共振技术(简称“SPR”,Surface Plasmon Resonance)是利用了金属薄膜的光学耦合产生的一种物理光学现象。自从1982年 Nylander 等首次将SPR 技术用于免疫传感器领域以来,表面等离子体光学生物传感器得到了深入研究和广泛的应用,已经成为研究生物分子相互作用(Biomolecular Interaction Analysis,简称“BIA”)的主要手段。仅在近 3、4 年间,有关这方面的文章多达几千篇,其研究内容涉及蛋白质-蛋白质、蛋白质-DNA、DNA-DNA、抗原-抗体及受体-配体等的相互作用。商品化的光学生物传感器可在无标记的情况下实时地进行生物分子间相互作用的研究,有力地推动了分子识别这一学科的发展,已经成为生命科学和医药研究中的一种重要手段。目前市场上的商品化SPR检测仪几乎都是通过角度测量实现对生物体系的测定。而在多年的实践中,其测量方式(依靠角度表征)的局限使其在灵敏度、动态范围、测试速度及稳定性等方面都出现了不可逾越的阻碍。有鉴于此,热电科技仪器有限公司(Thermo Electron Corporation)分子光谱部(既原来的美国尼高力仪器公司)以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术(U.S. Patent No. 6330062)推出了崭新的傅立叶变换型表面等离子共振检测仪,突破了传统角度表征型SPR检测仪理论设计极限。为了更好的将FT-SPR介绍给中国的生命科学专家学者,我们邀请了美国的 Eric Y. Jiang 博士准备在长春、上海和北京等地举办系列FT-SPR专题技术讲座。时间大约在2006年7月。请感兴趣的专家填写回执,我们将根据回执发送第二轮通知,谢谢!回执请寄:热电(上海)科技仪器有限公司 分子光谱部 北京市金融街23号 平安大厦1018室 邮编:10003电话: +86 10 5850 3588-3238 传真: +86 10 6621 0845 Email: ming.xin@thermo.com idealsky@sohu.com 联系人:辛 明
  • 专为高通量设计|布鲁克发布SPR #64表面等离子体共振仪新品
    2024年2月5日美国马萨诸塞州波士顿——在SLAS2024国际会议暨展览会上布鲁克公司(Nasdaq:BRKR)重磅推出突破性新品—— "Triceratops" SPR #64表面等离子体共振仪(Surface Plasmon Resonance, SPR)。SPR #64系统从底层开始设计,旨在通过提高SPR检测通量、增强灵敏度和数据质量来加速药物发现。在现代药物发现中,SPR以其实时、非标记检测的优势,已经是分子相互作用生物物理特性表征不可或缺的分析手段。布鲁克 SPR #64 表面等离子共振仪"Triceratops" SPR #64系统将超高灵敏度的检测技术与卓越的微流控性能相结合,通过8通道流通池正交旋转设计,实现对64个传感器检测点位的同时检测。这一巧妙的设计进一步突破了以往SPR系统的瓶颈,加速了药物筛选、动力学、表位表征、条件探索、浓度分析和热力学等方面的研究。借助"Triceratops" SPR #64系统,布鲁克如今能够向药物发现客户提供行业领先的高通量解决方案,并确保优异的数据质量标准。SPR #64系统配备内置触摸屏,可实现即时访问与可视化操控,确保用户可直接与仪器进行快速交互。同时,该设备可通过其专属API实现直接控制,或使用可选的外部机械臂实现完全自动化操作。这在基于SPR技术的生物制药研究领域,标志着达到了新的便捷性与智能化的里程碑。SPR #64软件从数据采集到最终报告的每一个阶段都实现了高性能、灵活性和易用性的完美整合,每个模块的设计均直观易懂,并针对重点应用领域,如SPR亲和力与动力学测定、热力学分析及表位表征等提供向导式流程指引。SPR #64 微流控系统示意图美国犹他州盐湖城Biosensor Tools LLC公司总监David Myszka博士表示:“能与布鲁克公司的工程师们合作设计这款新型SPR #64仪器,我感到非常激动。'Triceratops'系统提供了灵活性、灵敏度以及通量的完美组合,彻底改变了以往繁琐的耦合化学测试以及表面密度测定过程。得益于8个独立通道的设计,我们可以在单次实验中同步探索多种条件组合并找到最佳实验条件。想象一下,在SPR #64的帮助下,研究者只需进行一次实验就能得到精准且理想的实验数据,这样的体验无疑令任何科研工作者都倍感满意与欣喜。”德国莱比锡弗劳恩霍夫细胞治疗与免疫学研究所药物设计与靶标验证部门生物分析组组长Martin Kleinschmidt博士表示:“在与布鲁克公司的合作中,我测试了他们的新型表面等离子体共振仪SPR #64。我们成功地分析了针对于8个不同靶标的1000多个含抗体样本,在获得稳定数据结果的同时,较以往SPR系统大幅节省了分析时间。这款新的'Triceratops' SPR #64系统显著提升了分析通量。”布鲁克道尔顿公司生物制药非标记技术副总裁Meike Hamester博士总结道:“我们的新款高端SPR药物发现系统——'Triceratops' SPR #64,与我们现有的SPR-24 Pro和SPR-32 Pro系统完美搭配,能够满足任何通量需求。”想要了解更多详细信息,请点击查看:布鲁克 SPR #64 表面等离子共振仪———————————————————————————————————“3i奖-2023年度科学仪器行业优秀新品奖”最终获奖结果将于ACCSI2024中国科学仪器发展年会现场揭晓并颁发证书。时间:4月17-19日地点:苏州狮山国际会议中心报名点击链接或扫码:https://www.instrument.com.cn/accsi/2024/index 日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct
  • 360万!大连理工大学表面等离子共振仪采购项目
    项目编号:DUTASZ-2022732项目名称:大连理工大学表面等离子共振仪采购项目预算金额:360.0000000 万元(人民币)最高限价(如有):338.0000000 万元(人民币)采购需求:表面等离子共振仪1台。可以实时检测细胞、细菌、病毒、蛋白、核酸、脂类、多肽、糖类、小分子化合物等各种分子间的相互作用,无需标记,高通量定量计算生物分子结合的亲和力、动力学数据和浓度数据;检测灵敏度高,可快速筛选小分子化合物、天然产物、抗体药物等。具体要求详见招标文件。注:本项目已经财政部门审核,接受进口产品投标,本文件所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。合同履行期限:供货期:自合同签订之日起3个月内货到采购人指定地点安装调试。质保期:货到采购人指定地点安装调试验收合格之日起,免费质保不低于1年。本项目( 不接受 )联合体投标。
  • 借力表面增强拉曼 中科院实现对水体中Hg(II)免标记定量检测
    p  近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员黄青课题组,利用表面增强拉曼光谱(SERS)技术,实现了对水体中汞离子的选择性、免标记、半定量的检测。该项成果对实现实际水样中重金属离子的高选择性及准确检测具有一定的科学意义和实用价值,相关成果在线发表在Sensors and Actuators B: Chemical上。/pp  表面增强拉曼光谱(SERS:surface enhanced Raman spectroscopy)作为一种正在快速发展的技术,因其快速、无损和痕量检测等特点,得到广泛关注并开始走向实际应用。汞是一种毒性极强的重金属,对人体及生物体有很大危害。Hg(II)作为汞在环境中的一种常见的存在形式,对其进行快速、可靠、有效测量具有必要性和迫切性,但基于SERS技术对其特异性和相对定量检测存在一定难度。为此,黄青等设计了能够有效的捕捉水样中的汞离子并产生拉曼散射增强效应的纳米粒子——适配体复合检测体系。研究人员在SiO2@Au纳米粒子表面修饰上能有效捕获汞离子的DNA适配体,利用DNA分子中T碱基和Hg(II)形成T-Hg2+-T结构的特性,能够高效捕获Hg2+,并产生SERS信号改变。实验结果表明,在加入Hg(II)后,设计DNA分子中的腺嘌呤(A)产生736cm-1SERS信号与鸟嘌呤(G)产生的位于660cm-1的SERS信号的峰强的比值会随检测Hg(II)浓度增加而减小,并出现一些特征新峰,如550cm-1。计算表明,它来源于汞离子取代了T上的H在两个DNA分子间形成N-Hg-N结构而发生的伸缩振动。利用这些变化,可以对Hg(II)的进行快速、特异性和半定量的痕量检测。/pp  研究工作得到国家自然科学基金、国家重点基础研究发展计划等的支持。/pp  论文题目:A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/ca52438b-c746-4230-bd80-e8cad9d9affa.jpg"//pp style="text-align: center "strong合肥研究院实现对水体中Hg(II)高选择性、免标记的定量检测/strong/pp /p
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。官网:https://www.bmftec.cn/links/10
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。 近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c09648图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。
  • 基于表面增强拉曼光谱的新传感器或彻底改变新冠筛查方式
    随着技术的进步以及相关应用的拓展,拉曼光谱技术呈现了越来越诱人的应用前景,特别是在生命科学领域,不仅引领了前沿研究,而且与人类的生活越来越贴近。拉曼光谱作为一种无损、无需标记的分析方法,能够从分子层面对生命科学领域的样品提供丰富的信息,可在不损伤细胞的条件下实时动态地监测细胞分子结构变化,而且拉曼成像还可以提高疾病的早期检测技术水平。疾病快速筛查、手术辅助治疗、癌症标志物检测等领域的一系列应用已经为大家勾画了美好的蓝图,让大家对其产生了更多期待。随着新冠疫情的蔓延,新冠病毒检测新方法的开发一直是大家关注的焦点。不少业内人士都表示,希望拉曼光谱技术可以在新冠病毒检测方面发挥作用,据悉目前国内外有不少单位或者课题组正在开展相关的研究。据科技日报报道,美国约翰斯霍普金斯大学开发出一种基于表面增强拉曼光谱方法的新冠病毒传感器,可同时提高准确性和检测速度,有望彻底改变病毒检测方式。据介绍,该传感器基于大面积纳米压印光刻、表面增强拉曼光谱和机器学习技术,可通过一次性芯片形式在刚性或柔性表面进行大规模测试。它不需要样品制备和操作专业知识,与现有的检测方法相比具有强大的优势,特别适用于大规模群体检测。该技术的关键是研究人员开发的大面积、柔性场增强金属绝缘体天线(FEMIA) 阵列。唾液样本被放置在材料上并使用表面增强拉曼光谱进行分析,该光谱使用激光来检查样本分子如何振动。由于纳米结构的FEMIA显著增强了病毒的拉曼信号,因此该系统可快速检测病毒的存在,即使样本中仅存在少量痕迹。该系统的另一项重大创新是使用先进的机器学习算法来检测光谱数据中非常微妙的特征,使研究人员能够查明病毒的存在和浓度。传感器材料可放置在从门把手、建筑物入口到口罩等任何类型的表面上。图片来源:KAM SANG KWOK和AISHWARYA PANTULA/约翰斯霍普金斯大学“这项技术就像在设备上滴一滴唾液,然后得到阴性或阳性结果一样简单。”约翰斯霍普金斯大学机械工程副教授伊桑巴曼说,其新颖之处在于这是一种无标记技术,这意味着不需要分子标记或抗体功能化等额外化学修饰。传感器最终可用于可穿戴设备。巴曼称,这项新技术产品尚未在市场上销售,它弥补了两种最广泛使用的新冠病毒检测方式的局限性。PCR(聚合酶链式反应)检测非常准确,但需要复杂的样品制备,在实验室处理结果需要数小时甚至数天;另一种抗原检测则在检测早期感染和无症状病例方面不太成功,还可能导致错误的结果。新传感器几乎与PCR检测一样敏感,并且与快速抗原检测一样方便。在初始检测期间,该传感器在检测唾液样本中的新冠病毒方面表现出92%的准确度,与PCR检测不相上下。该传感器在快速确定其他病毒方面也非常成功,包括H1N1和寨卡病毒。“我们的平台超越了当前的新冠病毒检测。”巴曼说,“我们可将其用于针对不同病毒的广泛检测,例如,区分新冠病毒和H1N1,甚至是变体。这是当前快速测试无法轻易解决的主要问题。”
  • 我国学者与海外合作者突破光学超构表面偏振复用极限
    图 引入光学响应噪声调控,突破超构表面偏振复用极限在国家自然科学基金项目(批准号:12234010、61975078、11974177)等资助下,南京大学彭茹雯教授、王牧教授研究组联合美国东北大学刘咏民教授研究组,创新性地引入光学响应噪声调控,成功突破光学超构表面偏振复用极限,为发展高容量光学显示、信息加密、数据存储提供了新范式。该成果以“利用噪声工程突破光学超构表面偏振复用极限(Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise)”为题,于2023年1月20日在《科学》(Science)杂志刊发。偏振是光的基本性质,在信号传输、传感探测等方面起着重要的作用,被广泛应用于光子学和信息技术的多个领域。比如光的偏振可应用于大容量的复用技术,将信息通过多个独立通道传递到预定目标。随着光学器件的小型化,人们发现在诸如光学超构表面的二维平面系统中,二阶琼斯矩阵能够完整刻画偏振光与其相互作用,从而该体系最多只有3个独立偏振通道,造成偏振复用存在内禀极限。近年来尽管基于机器学习和迭代优化等逆向设计方案很好地优化了偏振复用技术,但是,3个独立偏振通道的物理极限始终存在。打破该物理上限对于发展高容量的光学显示、信息加密、数据存储等应用至关重要。最近,南京大学彭茹雯和王牧研究组与美国东北大学刘咏民研究组合作,创新性地在超构表面系统中,引入光学响应关联噪声来产生新的偏振通道,引入非关联噪声来减弱或消除信号串扰,从而突破超构表面偏振复用的物理极限,理论演绎并实验证实利用单一超构表面成功获得高达11个独立偏振通道,该超构表面在不同偏振的单色可见光照射下可观测到11种独立的全息图像(图)。该研究结果为目前光学超构表面偏振复用的最高独立通道数,并且通过改变阈值条件,该物理上限还可以进一步提升。基于该理论策略,研究团队又进一步证实这种新型的偏振复用技术能够与其它复用技术(比如空间复用,角动量复用等)相融合。作为示例,研究团队将偏振复用与空间位置复用结合,利用单一超构表面(大小仅为0.33mm × 0.33mm)在可见光波段产生出36重独立的全息图像,形成光学全息键盘图案。众所周知,噪声在科学和工程领域通常是有害无益却又不可避免的。但是,该项工作通过创新性地人为引入光学响应噪声调控,成功突破了光学超构表面偏振复用极限,为发展高容量光学显示、信息加密、数据存储等提供了新的范式,结合其它复用技术(比如空间复用、角动量复用、波长复用等)可以进一步提高多功能复用容量,可望应用于光通信和互联、光计算、光传感与探测、AR/VR技术等众多领域。
  • 表面改性纳升电喷雾针提高质谱灵敏度
    大家好,本周为大家分享一篇发表在J. Am. Soc. Mass Spectrom上的文章,Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry [1] 。该文章的通讯作者是来自美国亚利桑那大学的Michael T. Marty教授。非变性质谱(NMS)和电荷检测质谱(CD-MS)已成为表征各种蛋白质和高分子复合物的多功能工具。两者通常使用硼硅酸盐针进行纳米电喷雾电离(nESI)。但由于蛋白质在中性pH值下通常带正电荷,可能会吸附在带负电荷的玻璃nESI针表面,从而降低灵敏度,影响数据分析。为了提高NMS和CD-MS的灵敏度,作者用惰性表面改性剂修饰了nsEI针的表面。通过将聚乙二醇(PEG)共价连接到硅烷醇表面,钝化了玻璃表面,以减少非特异性吸附。首先,为确定表面改性是否能提高质谱灵敏度,作者团队采用PEG涂层的玻璃nESI针检测了两种非特异性吸附玻璃的蛋白:牛血清白蛋白(BSA)和溶菌酶。结果发现,相比于对照组,BSA和溶菌酶的信号强度均提高了2倍左右(图1)。PEG 涂层显着提高了nESI针头对标准蛋白质的MS灵敏度。图1.(A) 未涂层对照针和 (B) PEG 涂层针的 BSA 原始质谱显示信号强度。(C) 溶菌酶和 (D) BSA的PEG涂层(浅蓝色)和对照(灰色)nESI针的信号强度。接下来,作者利用搭载PEG表面涂层nESI针的CD-MS检测完整腺病毒 (AAV) 衣壳。结果发现,与采用未改良针的对照组相比,在较低浓度下,PEG改良针所收集的离子总数高出8倍以上(图2)。相比于一般的CD-MS检测,采用改良针的CD-MS检测的样品浓度更低,采集时间缩短。图2. AAV2 衣壳的 CD-MS 分析。(A) 对照组; (B) PEG 涂层针。 (C) 从空AAV2衣壳的5分钟 CD-MS 采集中收集的单个离子总数。接下来,作者研究了nESI针尖端尺寸和几何形状变化对实验结果的影响。实验发现,虽然改良针在较低浓度下显著提高了信号强度,但其针间差异很大。作者团队假设信号强度的偏差是由人工修剪nESI针的尖端直径差异引起的。为了最大限度地减少nESI针尖端尺寸和几何形状的变化,作者开发了一个针头拉拔器程序,以重复生产具有2 μm吸头直径的nESI针头。结果发现,PEG修饰的2 μm针的可明显提高检测信号强度,并且每次运行差异较小。相比于人工修剪的针头,2 μm针信号提升幅度更大。0.1 μm nESI针与2μm针两者检测到的蛋白的信号强度相似(图3)。基于以上结果,作者推测2 μm针检测到的信号值更高的原因可能是2 μm针的锥度更短。较短的锥度可能会在针尖附近产生更高的涂层密度。而手动剪断的针头具有较长的锥度,在拉拔过程中在尖端附近损坏PEG涂层,因此检测到的信号值偏低。而0. 1μm和2μm针尖上的锥度都比较短,涂层在接近针尖表面时可能完好无损,因此两者检测到的信号强度相似。图3. 具有 2 μm(左)和 0.1 μm(右)尖端直径的PEG涂层(浅蓝色)和未涂层对照(灰色)nESI 针的 BSA 最丰富电荷状态的信号强度。通过以上实验,作者已证实了PEG 修饰nESI可提高NMS与CD-MS的灵敏度。接下来,作者对其作用机制进行深入研究。首先,作者测试了灵敏度的提高是否是由于减少了对玻璃的非特异性吸附引起的。作者采用两种化学性质不同的涂层:PEG与多氟分子PFDCS修饰针头,两者均可减少蛋白的非特异性吸附,理论上均可改善质谱灵敏度。但结果发现,仅有PEG涂层针头可改善信号强度。之后,作者采用两种针头检测了泛素信号值。泛素在中性条件下不与玻璃发生吸附作用,理论上两者信号值无统计学差异,但结果发现,相比于PFDCS 修饰针头,PEG修饰针头组检测到的信号值提高了3倍。由此得出结论,PEG涂层针头不是通过减少蛋白与玻璃之间的非特异性吸附来提高质谱信号值的机制。最后,作者研究了表面改性针的毛细管作用,发现无修饰的硼硅酸盐毛细管毛细管作用最强,PEG毛细管具有中等强度的毛细管作用,而PFDCS毛细管几乎没有毛细管作用(图4A)。然后,在没有流体泵送或施加压力的静态条件下研究了不同nESI针的流速(图4B)。结果发现,PEG修饰的nESI针流速最高,而PFDCS修饰和对照nESI针的流速没有统计学差异。作者假设灵敏度的提高可能是由nESI针的流速增加导致的。由于传统针头中较高的毛细力,液体会紧紧地附着在玻璃上,降低给定ESI电压下的液体流量。而PEG修饰降低了毛细阻力,可能会增加流向尖端的液体,从而增加信号。而PFDCS修饰针头虽然具有较低毛细作用,但其流速较小,原因可能是需要一定强度的毛细作用才能获得最佳的流动速度。作者未来的实验将进行深入探索这一假设。ESI针的毛细作用照片。 (B) PFDCS修饰 (深蓝色)、PEG修饰 (浅蓝色)和未修饰 (灰色) 针的流速。总而言之,作者证明了PEG修饰的nESI针增加了多种分析物的质谱信号强度和灵敏度,展示了一种可以在较低浓度下提高难分析物的灵敏度、相对快速且成本低廉的方法。作者推测表面改性通过提高nESI针尖端流速以发挥提高质谱检测灵敏度的作用,但该推测仍需进一步证明。[1]Kostelic MM, Hsieh CC, Sanders HM, Zak CK, Ryan JP, Baker ES, Aspinwall CA, Marty MT. Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. J Am Soc Mass Spectrom. 2022 Jun 1 33(6):1031-1037. doi: 10.1021/jasms.2c00087. Epub 2022 May 19. PMID: 35588532.
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 【赛纳斯】使用表面增强拉曼光谱技术快速检测芬太尼
    现阶段,贩毒手段花样百出,毒贩们把The drug进行多层伪装,意图骗过检查而谋取暴利,The drug的快速检测对于推断The drug来源、抑制The drug传播和打击The drug犯罪都起着重要作用。公安以及海关缉毒等部门通常采用先快速筛查、再确证的方法查毒,也就是先用试剂盒或试纸条等快速判断The drug是否存在,然后用气相色谱-质谱联用技术进行最终的确认。试剂盒或试纸条一般基于胶体金免疫层析技术,具有简便和低成本优势,但是受限检测环境温度和人为操作的影响,干扰因素多,检测准确性低。而且对于混合物检测效果不明显,毒贩会在The drug中添加一些稀释剂(如葡萄糖、淀粉等)和一些掺假剂(如咖啡因、非那西汀等),这些掺入的成分分子量较大,分子极性强,它们与The drug构成的混合物会进明显干扰试剂盒或试纸条的可靠性,以至于对于浓度稍低的The drug混合物,试剂盒或试纸条经常出现假阳性或测不出结果。色谱、质谱等方法则操作复杂,耗材昂贵,检测时间长,不适合现场快速检测环节。厦门赛纳斯科技有限公司的革新技术(表面增强拉曼光谱技术)在The drug现场快速检测方面有着明显的优势。拉曼光谱作为分子振动光谱技术的一种,可以高灵敏度分析化学物质的结构和组成。其突出优点是可以实现非接触性和无损性检测;所需样品量很少,也无需进行复杂预处理,检测速度也很快,操作也简便;结合表面SERS增强技术,拉曼可以对The drug实现高灵敏度的探测。厦门赛纳斯手持式拉曼光谱仪SHINS-P1000,它采用1064nm激光光源,具有抗荧光干扰强,灵敏度高等卓越的光谱性能,轻巧便携的体积,采用革新技术(表面增强拉曼光谱技术)能够百万倍地增强痕量物中的拉曼信号,一键采集,无需接触样品,支持自建谱库,同时配有齐全的谱图库和强大的分析软件,几十秒内快速给出检验结果,现场执法拍照取证,智能辅助,并支持多种数据传输和数据管理,实现功能性与用户需求完美合一,为执法部门进行The drug快筛提供了一个很好的新工具。鉴于低纯度The drug的检测更具有实际意义,我们将海洛因、阿法甲基硫代芬太尼待测The drug稀释到100ppm,将样品滴在增强拉曼芯片上,使用厦门赛纳斯手持式拉曼光谱仪SHINS-P1000拉曼设备使用进行检测。下图展示了The drug检测结果由上图可以看出,这两种The drug均有丰富的拉曼特征位移峰,并且拉曼峰的信噪比较高,各种The drug的特征峰峰位相互间均有较大差异,比较容易区分出来。经过sers增强后,样品检测下限很低,并且检测时间可以控制在三十秒以内。测试过程中样品处理过程简单,这非常有助于现场快速筛查。
  • 1.5GHz固体核磁共振技术助力固体材料表面研究
    近日,中国科学院大连化学物理研究所固体核磁共振及催化化学创新特区研究组研究员侯广进团队与美国高场实验室博士甘哲宏等合作,在超高场(1.5GHz)固体核磁共振(NMR)技术应用于固体材料表面结构表征研究中取得新进展。氧化铝是重要的催化剂和催化剂载体,其表面的五配位铝被称为“Super-five”。五配位铝在金属活性中心分散,γ-Al2O3烧结相变,以及醇脱水反应中都起到关键作用。γ-Al2O3结晶度低,其表面五配位铝仅占总铝含量的3%左右,因此难以实现表面五配位铝的结构表征。目前,所有关于五配位铝的结构特征均是基于理论计算推测得到。本研究中,得益于超高场条件下显著提高的27Al NMR灵敏度和分辨率,科研团队采用高场多核、多维固体核磁共振技术,直接实验观测到五配位铝相关空间结构信息,首次揭示了γ-Al2O3表面的五配位铝以聚集态形式存在,且在水的作用下易于发生结构重构。科研人员制备了富含五配位铝的无定形氧化铝纳米片(Al2O3-NS)与γ-Al2O3进行对比研究,借助超高场27Al MAS NMR对Al2O3-NS和γ-Al2O3的铝物种分别进行定量分析。研究通过超高场的27Al-27Al DQ双量子相关实验,以及高场多核、多维固体核磁共振技术发现,γ-Al2O3表面与Al2O3-NS的不同配位铝物种的Al(n)-O-Al(n)链接方式相同,且表面羟基分布及铝与羟基的链接方式也十分相似,进而表明γ-Al2O3表面存在一层富含五配位铝的无定形结构。该研究有助于进一步剖析γ-Al2O3在金属分散、催化剂烧结等应用方面的“构-效”关系。相关研究成果以Nature of Five-coordinated Al in γ-Al2O3 Revealed by Ultra-high Field Solid-state NMR为题,发表在ACS Central Science上,并被选为内封面论文。研究工作得到国家自然科学基金、国家重点研发计划、辽宁省“兴辽英才计划”、大连市青年科技之星等项目的支持。
  • 2013科学仪器优秀新品入围名单:物性测试仪器、光学及表面分析仪器
    仪器信息网讯 第八届&ldquo 科学仪器优秀新产品&rdquo 评选活动于2013年3月份开始筹备,截止到2014年2月28日,共有247家国内外仪器厂商申报了561台2013年度上市的仪器新品。经仪器信息网编辑初审、2013中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有三分之一进入了入围名单。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在&ldquo 2014年中国科学仪器发展年会&rdquo 上揭晓并颁发证书,评审结果将在多家专业媒体上公布。  本届申报的新品中共有22台2013年度上市的物性测试仪器和5台2013年度上市的光学及表面分析类仪器新品入围&ldquo 科学仪器优秀新产品&rdquo ,入围名单如下(排名不分先后):仪器名称型号创新点上市时间公司名称表界面物性测试全自动六站动态法快速比表面测试仪BELSORP-MR6查看2013年4月大昌华嘉商业(中国)有限公司多站扩展式全自动快速比表面与孔隙度分析仪ASAP 2460查看2013年5月麦克默瑞提克(上海)仪器有限公司高性能多通道全自动比表面与孔隙分析仪TriStar II Plus查看2013年5月麦克默瑞提克(上海)仪器有限公司高温纳米压痕仪HT&mdash UNHT查看2013年7月瑞士CSM仪器股份有限公司北京代表处热分析仪器TMA4000 热机械分析仪TMA4000查看2013年11月珀金埃尔默仪器(上海)有限公司(PerkinElmer)差示扫描量热仪 DSC 214 Polyma DSC 214 Polyma查看2013年7月德国耐驰热分析试验机金属摆锤冲击试验机飞天查看2013年5月深圳三思纵横科技股份有限公司PLW-1000型电液伺服锚具疲劳试验机PLW-1000查看2013年5月上海百若试验仪器有限公司振动试验台LD-L查看2013年1月北京鸿达天矩试验设备有限公司AutoX 750 全自动接触式引伸计750查看2013年2月英斯特朗(上海)试验设备贸易有限公司(Instron)粒度/颗粒/粉末分析仪器BT-9300ST激光粒度仪BT-9300ST查看2013年1月丹东百特仪器有限公司 LA 960激光粒度仪LA-960查看2013年9月HORIBA,LTD株式会社堀场制作所多角度粒度分析仪EliteSizer查看2013年7月美国布鲁克海文仪器公司全自动&Chi 光沉降粒度分析仪 SediGraph Ⅲ PlusSediGraph Ⅲ Plus查看2013年3月麦克默瑞提克(上海)仪器有限公司Viscosizer 200测量系统Viscosizer 200查看2013年7月英国马尔文仪器有限公司在线粒度分析仪APAS查看2013年1月博盛技术(中国)有限公司流变仪/粘度计MCR702 TwinDrive流变仪MCR702查看2013年6月奥地利安东帕(中国)有限公司EMS粘度计EMS-1000查看2013年9月可睦电子(上海)商贸有限公司-日本京都电子(KEM)无损检测/无损探伤仪器数字化35um微焦斑X射线系统WSM-35um查看2013年1月咸阳威思曼高压电源有限公司其它物性测试仪器ASCA-6400多样品一体型密度折光仪ASCA-6400查看2013年3月可睦电子(上海)商贸有限公司-日本京都电子(KEM)新一代数字式密度计DDM2911-S3-Plus查看2013年2月大昌华嘉商业(中国)有限公司VH3100 自动化维氏/努氏硬度计VH3100查看2013年5月美国标乐光学纳米检测显微镜 LEXT OLS4500 OLS4500查看2013年6月奥林巴斯(中国)有限公司工业激光共焦显微镜 LEXT OLS4100OLS4100查看2013年6月奥林巴斯(中国)有限公司新一代光谱成像椭偏仪Nanofilm_EP4查看2013年6月欧库睿因科学仪器(上海)有限公司SOC710GX机载可见/近红外高光谱成像光谱仪SOC710GX查看2013年3月北京安洲科技有限公司精密阻尼隔振光学平台OTR查看2013年6月北京卓立汉光仪器有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2012年度上市新品基本持平。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2013年上市的仪器新品,请您于2014年3月27日前向&ldquo 年会新品评审组&rdquo 举报和反映情况,一经核实,新品评审组将取消其入围资格。  传真:010-82051730  Email:xinpin@instrument.com.cn  查看更多科学仪器优秀新品
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • HORIBA用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移
    撰文:李俊博研究背景一般情况下利用拉曼光谱技术可以非常方便的鉴定物质成分,获得结构信息。但是,一些化学物质直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,提高拉曼信号信噪比,从而检测出待检物质。表面增强共振拉曼(SERS)活性基底的快速发展促进了人们对SERS机理的探究,这使SERS的应用范围拓宽至更广的领域。大量的研究表明SERS的增强机理主要有两种:表面等离子体共振及电荷转移机理。对于过渡金属基底来说,其增强能力取决于自身的性质及材料的表面形态,电磁场与化学增强的共同作用使之产生增强的拉曼信号。然而,目前只有几种有机小分子在过渡金属上能够被选择性的增强,这限制了过渡金属的实际应用。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授等人制备了四种SERS活性基底(两种过渡金属和两种贵金属),并通过细胞色素c (Cyt c)在基底上SERS光谱的变化,讨论了Cyt c与这些活性基底间的电子转移路径与机理。本研究中, SERS光谱的采集采用了HORIBA LabRam系列拉曼光谱仪,所有的拉曼数据则通过LabSpec软件进行分析。下面让我们走进该项研究:﹀﹀﹀1为什么选择Cyt c 细胞色素c是一种水溶性的血红素蛋白质并常作为呼吸链中的电子载体。大部分Cyt c的SERS光谱的获得是通过电化学结合拉曼光谱的方法,从而研究氧化还原蛋白质在基础及应用科学领域的结构与反应动力学。基于Cyt c的电子转移的能力,Cyt c常用作新型的探针来探究SERS活性基底与吸附生物分子之间的电子转移。图1. 细胞色素c与SERS活性材料之间的电子转移示意图。2具体的研究过程作者通过紫外光谱表征发现过渡金属镍和钴纳米粒子可将氧化态的Cyt c还原,并且通过SERS光谱发现二者与还原剂连二硫酸钠的作用相同,二者作为良好的还原剂与Cyt c之间发生了电子转移,且通过谱峰的对比证实了在过渡金属的作用下,蛋白质仍保持着良好的二级结构。另一方面,对惰性金属Au和Ag纳米粒子也进行了相同的实验,通过紫外图的表征说明二者对氧化态和还原态的Cyt c均未产生价态上的影响,而SERS光谱则表明Ag纳米粒子能使还原态Cyt c氧化,并且谱峰相对强度的变化意味着Cyt c结构的改变。基于以上现象,作者对Cyt c与金属纳米粒子之间的电子转移机理进行了探究并给出合理解释。氧化态Cyt c与Ni NWs之间的转移方向是从Ni的费米能级至Cyt c的导带,此处由于Cyt c的电导性表现出半导体的行为,因此根据肖特基势垒和欧姆接触可知,金属镍的功函与Cyt c的电子亲和能值十分接近,促移则基于SERS的电子转移机理,实验所用的激发光能量恰能够激发Cyt c HOMO能级上的电子转移至Ag的费米能级。3研究的创新点本研究将氧化还原蛋白质的电子转移与SERS中的电荷转移机理相结合,为电荷转移理论提出了新的见解。并且,Cyt c与过渡金属之间直接的电子转移行为的发现将会拓宽过渡金属在氧化还原蛋白质光谱研究领域的应用。 此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《Chemistry - A European Journal》上: Junbo Li, Weina Cheng, Xiaolei Wang, Haijing Zhang, Jin Jing, Wei Ji, Xiao Xia Han, Bing Zhao, “Electron Transfer of Cytochrome c on Surface-Enhanced Raman Scattering-Active Substrates: Material Dependence and Biocompatibility”. Chem. Eur. J. 2017, DOI: 10.1002/chem.201702307HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 大连化物所等利用超高场固体核磁共振技术揭示伽玛型氧化鋁表面五配位铝性质
    近日,中国科学院大连化学物理研究所固体核磁共振及催化化学创新特区研究组研究员侯广进团队与美国高场实验室博士甘哲宏等合作,在超高场(1.5GHz)固体核磁共振(NMR)技术应用于固体材料表面结构表征研究中取得新进展。  氧化铝是重要的催化剂和催化剂载体,其表面的五配位铝被称为“Super-five”。五配位铝在金属活性中心分散,γ-Al2O3烧结相变,以及醇脱水反应中都起到关键作用。γ-Al2O3结晶度低,其表面五配位铝仅占总铝含量的3%左右,因此难以实现表面五配位铝的结构表征。目前,所有关于五配位铝的结构特征均是基于理论计算推测得到。  本研究中,得益于超高场条件下显著提高的27Al NMR灵敏度和分辨率,科研团队采用高场多核、多维固体核磁共振技术,直接实验观测到五配位铝相关空间结构信息,首次揭示了γ-Al2O3表面的五配位铝以聚集态形式存在,且在水的作用下易于发生结构重构。  科研人员制备了富含五配位铝的无定形氧化铝纳米片(Al2O3-NS)与γ-Al2O3进行对比研究,借助超高场27Al MAS NMR对Al2O3-NS和γ-Al2O3的铝物种分别进行定量分析。研究通过超高场的27Al-27Al DQ双量子相关实验,以及高场多核、多维固体核磁共振技术发现,γ-Al2O3表面与Al2O3-NS的不同配位铝物种的Al(n)-O-Al(n)链接方式相同,且表面羟基分布及铝与羟基的链接方式也十分相似,进而表明γ-Al2O3表面存在一层富含五配位铝的无定形结构。该研究有助于进一步剖析γ-Al2O3在金属分散、催化剂烧结等应用方面的“构-效”关系。  相关研究成果以Nature of Five-coordinated Al in γ-Al2O3 Revealed by Ultra-high Field Solid-state NMR为题,发表在ACS Central Science上,并被选为内封面论文。研究工作得到国家自然科学基金、国家重点研发计划、辽宁省“兴辽英才计划”、大连市青年科技之星等项目的支持。  论文链接 大连化物所等利用超高场固体核磁共振技术揭示伽玛型氧化鋁表面五配位铝性质
  • 2014 科学仪器优秀新品入围名单:物性测试仪器、光学及表面分析仪器
    仪器信息网讯 第九届&ldquo 科学仪器优秀新产品&rdquo 评选活动于2014年3月份开始筹备,截止到2015年2月28日,共有253家国内外仪器厂商申报了587台2014年度上市的仪器新品。经仪器信息网编辑初审、2014中国科学仪器发展年会新品组委会初评,现已确定本届&ldquo 科学仪器优秀新产品&rdquo 的入围名单。所有申报的仪器中约有三分之一入围。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在&ldquo 2015年中国科学仪器发展年会&rdquo 上揭晓并颁发证书,评审结果将在多家专业媒体上公布。  本届申报的新品中共有71台物性测试仪器和92台光学及表面分析仪器通过新品组初审,其中25台物性测试仪器和8台光学及表面分析仪器入围了2014年&ldquo 科学仪器优秀新产品&rdquo ,入围名单如下(排名不分先后): 物性测试仪器序号仪器名称型号创新点上市时间公司名称1DZDR-S 瞬态平面热源法导热仪DZDR-S查看2014年3月南京大展机电技术研究所2激光干涉法热膨胀测试系统CTE 201查看2014年9月上海依阳实业有限公司3马尔文MicroCal VP-Capillary DSC 微量热差示扫描量热仪MicroCal VP-Capillary DSC 微量热差示扫描量热仪查看2014年6月英国马尔文仪器有限公司4电池等温量热仪 IBC 284IBC 284查看2014年7月德国耐驰热分析5RST系列触屏流变仪RST系列查看2014年6月美国Brookfield公司6MCR702 TwinDrive流变仪MCR702查看2014年6月奥地利安东帕(中国)有限公司7马尔文m-VROCi 微流体流变仪m-VROCi查看2014年4月英国马尔文仪器有限公司8麦奇克PartAn 3D颗粒图像分析仪PartAn 3D查看2014年9月大昌华嘉商业(中国)有限公司9全自动干/湿法粒度粒形分析仪OCCHIO 500nano XY查看2014年3月美国康塔仪器公司10马尔文Archimedes阿基米德颗粒计量分析系统Archimedes查看2014年8月英国马尔文仪器有限公司11LS-POP(9)激光粒度仪LS-POP(9)查看2014年7月珠海欧美克仪器有限公司12NanoLab 3D激光粒度仪NanoLab 3D查看2014年12月北京赛普瑞生科技开发有限责任公司13动态颗粒图像分析仪ANALYSETTE 28 ImageSizer查看2014年10月北京飞驰科学仪器有限公司14德国新帕泰克NANOPHOX/R纳米粒度仪NANOPHOX/R查看2014年12月德国新帕泰克有限公司苏州代表处15磁悬浮天平高压吸附分析仪XEMIS查看2014年2月北京英格海德分析技术有限公司16精微高博JW-BK200C研究级双站微孔分析仪JW-BK200C查看2014年1月北京精微高博科学技术有限公司17超高速全自动比表面积分析仪Kubo1108查看2014年6月北京彼奥德电子技术有限公司18美国康塔仪器公司Vstar蒸汽吸附仪Vstar查看2014年5月美国康塔仪器公司19TriboLab机械与性能摩擦测试TriboLab查看2014年11月布鲁克纳米表面仪器部(Bruker Nano Surfaces)20高性能全自动压汞仪AutoPore V查看2014年5月麦克默瑞提克(上海)仪器有限公司21创新型全自动多站气体吸附仪3500查看2014年6月麦克默瑞提克(上海)仪器有限公司22万能试验机 天源A1KN万能试验机TY8000-A1KN查看2014年4月江苏天源试验设备有限公司23百若仪器螺栓防松检测试验机FPL-400查看2014年3月上海百若试验仪器有限公司24D系列电子万能试验机D系列查看2014年5月长春机械科学研究院有限公司25威尔逊 Wilson VH1150VH1150查看2014年6月美国标乐光学及表面分析仪器序号仪器名称型号创新点上市时间公司名称1上海仪电科仪SGW 5自动旋光仪SGW-5查看2014年1月上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司)2上海仪迈IP-digi300/2数字旋光仪IP-digi300/2查看2014年7月上海仪迈仪器科技有限公司3新一代激光成像椭偏仪Nanofilm_EP4SWE查看2014年6月欧库睿因科学仪器(上海)有限公司4安东帕高精度数字式旋光仪MCP500查看2014年9月奥地利安东帕(中国)有限公司5LuphoScan高速非接触式3D非球面光学面形测量系统LuphoScan120/260/420查看2014年7月泰勒-霍普森有限公司6日立高新热场式场发射扫描电镜SU5000SU5000查看2014年8月日立高新技术公司7SEM专用颗粒物分析系统 &mdash AZtecFeatureAZtecFeature查看2014年12月牛津仪器(上海)有限公司8拉曼-扫描电镜联用系统 RISERISE查看2014年4月泰思肯贸易(上海)有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2013年度上市新品基本一致。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2014年上市的仪器新品,请您于2015年3月26日前向&ldquo 年会新品评审组&rdquo 举报和反映情况,一经核实,新品评审组将取消其入围资格。  2014科学仪器优秀新品组联系方式:  咨询电话:010-51654077-8032 刘先生  传真:010-82051730
  • 2012年9月MP-SPR下一代表面等离子体共振分析仪 巡回专题研讨会
    我们非常真诚的邀请您及您的科研团队参加我公司9月份将在哈尔滨、长春、北京举办的MP-SPR表面等离子体共振分析仪巡回专题研讨会。主讲人:芬兰BioNavis 公司的MP-SPR表面等离子体共振分析仪的专家 PhD. Johana Kuncová -Kallio时间、地点:2012年9月14日(周五) 9:00 &ndash 11:30,哈尔滨工业大学2012年9月24日(周一) 9:00 &ndash 11:30,中国科学院长春应用化学研究所2012年9月25日(周二) 9:00 &ndash 11:30,北京大学化学分子工程学院技术背景:MP-SPR表面等离子体共振分析仪是由Janusz Sadowski博士和Ulf Jonsson博士共同合作开发出来的。Janusz Sadowski博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久;Ulf Jonsson博士是Biacore公司的创始人和前任CEO,该公司开创了SPR表面等离子体共振分析仪在蛋白质、药物相互作用研究中的应用先河。MP-SPR技术(多参数表面等离子体共振分析技术)随着技术的发展以及为了满足客户更多方面的需求,我们改良了传统的SPR技术,开发了MP-SPR表面等离子共振分析技术。此项技术除了可以轻松地应用到传统的SPR领域:生命科学领域,用于测量:结合动力学、质量变化、结合/解离速率等之外;还可以有效地对薄膜和纳米材料物理学常数进行测量:厚度和质量、折射率、吸附/吸收、密度、介电常数等,而这些是传统SPR所做不到的。更具体的会议地点,在收到您的回执之后,我公司会另行通知!MP-SPR表面等离子体共振分析仪的相关信息,请浏览我公司网站www.honoprof.com.cn 和Bionavis网站 http://www.bionavis.com/cn届时欢迎您的光临与指导!一起研讨MP-SPR技术将带给我们什么样的强大支持!2012年9月MP-SPR表面等离子体共振分析仪巡回专题研讨会(第一轮)回执(本回执请于2012年8月31日前返回) 姓 名 职称/职务 参会地点 工作单位 邮编 电子邮件 手机 固话 备 注 备注:1、 请将此回执E-mail至 xmli@honoprof.com 2、 参加会议免费,并提供午餐。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制