当前位置: 仪器信息网 > 行业主题 > >

手持磁性油墨扫描系统

仪器信息网手持磁性油墨扫描系统专题为您提供2024年最新手持磁性油墨扫描系统价格报价、厂家品牌的相关信息, 包括手持磁性油墨扫描系统参数、型号等,不管是国产,还是进口品牌的手持磁性油墨扫描系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持磁性油墨扫描系统相关的耗材配件、试剂标物,还有手持磁性油墨扫描系统相关的最新资讯、资料,以及手持磁性油墨扫描系统相关的解决方案。

手持磁性油墨扫描系统相关的论坛

  • 使用场发射扫描观察磁性样品的问题

    今年单位刚入了一台日立SU8010,请教各位版友有关磁性材料的测试问题:1. 一般都不建议场发射看磁性样品,如果一定要做,个人目前知道要保证样品粘牢(用导电银胶?有适宜专门用于磁性样品制备的样品台?还有什么更好的手段?对于粉末样品而言),工作距离要大(大于8mm),其次还有什么好的防护办法?2。如何判断送测的样品是否为磁性样品(有的送测人员可能会故意隐瞒)?用一块大磁铁吸吸看?还是用啥别的办法?请大牛们不吝赐教~

  • 【原创大赛】【官人按】扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11)

    [font=微软雅黑][size=16px]【作者按】一直以来的观点都认为磁性材料不适合用电子显微镜来观察。理由似乎无可辩驳:电子显微镜的关键部件,磁透镜,会将磁性材料磁化并在透镜表面形成吸附。造成的影响是电镜性能大大的下降,若情况严重,会使得电镜无法形成图像。正是基于这一缘由,许多电镜室将磁性材料拒之门外,拒绝对这类样品进行检测。[/size][/font][font=微软雅黑][size=16px]虽然我们对磁性材料十分的在意,但对磁性材料的定义却很少能说得清楚,许多过分的误杀也由此产生。[/size][/font][font=微软雅黑][size=16px]什么是磁性材料?扫描电镜的磁透镜和磁性材料之间有何关联?怎样判断测试结果是否受样品磁性的干扰?如何对磁性较强的材料进行测试?怎么避免其对镜筒的污染?所有这些问题,都将在本文中给您一一解答。[/size][/font][font=微软雅黑][b][size=18px]一、什么是磁性材料[/size][size=18px][/size][/b][/font][b][font=微软雅黑][size=16px]1.1 物质磁性的来源[/size][/font][/b][font=微软雅黑][size=16px]“磁性理论”起源于安培的“分子电流假说”:分子中存在回路电流,即分子电流,分子电流相当于一个最小的磁性单元。分子电流对外界的磁效应总和决定磁性是否对外显示。[/size][/font][font=微软雅黑][size=16px]安培理论是建立在当时分子学说体系的基础之上,现在我们知道组成物质的最基本粒子是原子,在原子学说的理论体系中,“分子电流”并不存在,故必须建立新的模型假说。[/size][/font][font=微软雅黑][size=16px]波尔在卢瑟福原子结构模型理论和普朗克量子理论的基础上,提出了被称为经典的原子模型假说(见经验谈4)。[/size][/font][font=微软雅黑][size=16px]基于原子模型假说,对物质磁性来源的解释是:物质的磁性源自物质原子中电子和原子核的磁矩。原子核的磁矩很小可以忽略,故物质的磁性取决于“电子磁矩”。电子的磁矩源自电子运动,电子的轨道运动形成“轨道磁矩”,自旋运动形成“自旋磁矩”。在充满电子的壳层中,电子的在轨运动占满了所有可能方向,各种方向的磁矩相互抵消,因此总角动量为零。我们在考虑物质磁性时只需考虑那些未填满电子的壳层,称为“磁性电子壳层”。物质对外显现磁性的状态,也取决于这个磁性电子壳层的状况。[/size][/font][b][font=微软雅黑][size=16px]1.2 磁性物质的分类[/size][/font][/b][font=微软雅黑][size=16px]物质的磁性源自原子中电子运动所形成的磁矩。任何物质都存在着电子的轨道运动和自旋运动,因此都存在着磁矩,只是依据电子填充核外电子轨道的情况按大类分为:反磁(抗磁)、顺磁、铁磁,这三大类磁性物质。[/size][/font][b][font=微软雅黑][size=16px]1.2.1 反磁性与反磁性物质[/size][/font][/b][font=微软雅黑][size=16px]反磁性也称为抗磁性。定义为:在外加磁场的作用下,电子的在轨运动会产生附加转动(Larmor进动),动量矩将发生变化,产生与外磁场相反的感生磁矩,表现出“反磁性”。应该说所有的物质进入磁场都会表现出反磁的特性,那么为啥还有反磁性物质这一分类呢?[/size][/font][font=微软雅黑][size=16px]反磁性物质:当物质的原子核外电子充满所有轨道时,无论是单质还是配合物所形成的杂化轨道,电子各向磁矩都将完全的相互抵消,因此该类物质在进入磁场后电子只表现出反磁特性。称为反磁性物质。[/size][/font][b][font=微软雅黑][size=16px]1.2.2 顺磁性物质[/size][/font][/b][font=微软雅黑][size=16px]顺磁性物质:物质的分子或原子中含有未成对电子,这些电子的磁矩在各自的原子和分子中无法完全抵消。而热扰动的影响使原子和分子间的未成对电子无序排列,造成个体磁矩的互相抵消,最终合磁矩为零,物质整体对外不显磁性。[/size][/font][font=微软雅黑][size=16px]物体进入磁场后,未成对电子将受磁场作用而趋向磁场排列,同时热扰动的作用使其趋向混乱排列,但综合结果是在磁场方向产生一个磁矩分量,对外表现出磁性,低温会使得磁矩分量加强。常温下拆除磁场后,热扰动的作用会使这些单电子重归无序排列,合磁矩归零,对外不表现磁性。[/size][/font][font=微软雅黑][size=16px]顺磁物质按照磁性强弱可粗分为:弱顺磁、顺磁、超顺磁。“弱顺磁”物质进入磁场,对外表现出的磁性极弱,需极精密设备才能测出。“超顺磁”物质靠近磁场后,表现出的磁性极强接近铁磁。普通顺磁材料的磁性介于两者之间。[/size][/font][font=微软雅黑][size=16px]顺磁物质大致包括以下几大类:过渡元素、稀土元素、还有铝、铂等金属,氮的氧化物、稀土金属的盐,玻璃,水,非惰性气体等等。[/size][/font][b][font=微软雅黑][size=16px]1.2.3 铁磁性物质[/size][/font][/b][font=微软雅黑][size=16px]相对于顺磁性物质,铁磁性物质原子核外的电子轨道上有更多未配对电子。这些未配对电子的自旋方向趋同,形成所谓的 “磁畴”。 “磁畴”可认为是同方向电子的集合,由其形成的“饱和磁矩”要远大于单电子形成的磁矩。[/size][/font][font=微软雅黑][size=16px]铁磁性物质各原子或配合物所形成的磁畴,相互之间大小和方向都不相同。如同顺磁性物质一样,在热扰动影响下这些磁畴杂乱排列,最后形成的合磁矩为零。[/size][/font][font=微软雅黑][size=16px]当铁磁物质进入磁场,这些磁畴在磁场影响下趋向沿磁场方向的趋同排列,而热扰动影响下的杂乱排列趋势相对磁场对磁畴的影响要小很多,故该物质进入磁场后表现出的合磁矩比顺磁性物质要强大得多。当外加磁场达到一定值(饱和值),移除磁场影响后,常规的热扰动无法使得这些磁畴回归无序排列状态,合磁矩保持进入磁场的强度,物质对外继续保持被磁化的状态。该现象被称为“磁滞”现象。[/size][/font][font=微软雅黑][size=16px]高温(500-600度)所形成的热扰动才会使得处于“磁滞”状态的磁畴重新回归无序排列,这就是高温消磁的缘由。一些所谓的交变磁场消磁器也能打乱磁畴的有序排列,但是效果最佳、消磁最彻底的方法,还是高温消磁。[/size][/font][font=微软雅黑][size=16px]“磁滞”现象最先在铁器上被发现,故该磁特性被称为“铁磁性”。过渡族金属及其合金和化合物都具有这种特性。[/size][/font][font=微软雅黑][size=16px]综上所述,物质的磁性来自它们原子核外电子的运动,严格来说所有的物质都带有磁性。依据物质进入磁场后对外所表现出来的磁性可分为:反磁、顺磁以及铁磁性材料。顺磁性材料依据磁性强弱可粗分为弱顺磁、顺磁、超顺磁。[/size][/font][font=微软雅黑][size=16px]反磁或弱顺磁材料进入磁场,对外不表现出磁性或表现出的磁性极其微弱(只有精密仪器才能测得);顺磁及超顺磁性材料进入磁场后会表现出较强的磁性;铁磁性材料不仅进入磁场表现出强磁性,离开磁场后还具有强烈的磁滞现象。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=微软雅黑][size=18px][b]二、电镜对磁性材料的影响[/b][/size][/font][font=微软雅黑][size=16px]电子显微镜的光源是高能电子束,对电子束进行会聚的最佳方案是采用电磁透镜。因此在电镜中充满着各种磁场,不可避免会对进入磁场的那些易被磁化的样品产生影响。[/size][/font][font=微软雅黑][size=16px]扫描电镜对样品产生磁影响的主要部件是物镜。不同类型的物镜对样品的磁影响不同。扫描电镜物镜类型分为三类:外透镜、内透镜、半内透镜。下面将分别加以探讨。[/size][/font][b][font=微软雅黑][size=16px]2.1 外透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]物镜磁场被封闭在物镜内部,样品置于物镜的外围,物镜的磁场对样品产生的影响极其微弱或基本不产生影响。[/size][/font][font=微软雅黑] [/font][align=center][img=1.png]https://img1.17img.cn/17img/images/202008/uepic/8410991c-d00d-4266-b0b6-1091eb88c9ab.jpg[/img][/align][font=微软雅黑][size=16px]从上图可见,外透镜物镜模式,磁场影响不到样品,样品可以极度靠近物镜观察。但由于磁场的封闭,使得进入物镜的样品表面电子信息减少,不利于镜筒内探头对其接收。对观察表面信息较弱的样品,成像质量不如其它透镜模式。[/size][/font][b][font=微软雅黑][size=16px]2.2内透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]样品置于物镜磁场中,物镜磁场对样品磁影响极大。[/size][/font][font=微软雅黑][/font][align=center][img=2.png]https://img1.17img.cn/17img/images/202008/uepic/36bc7008-2663-4aa7-91a8-e46dd75a471c.jpg[/img][/align][font=微软雅黑][size=16px]如上图,样品置于磁场中。物镜磁场将电子束激发并溢出样品的电子信息基本都收集到探头。探头接收到更为充足的样品信息,故成像质量优异,特别适合弱信号样品形成高分辨像。缺点是:样品尺寸不可过大。对样品的磁性质限制大,只允许对反磁性或磁性极弱的弱顺磁样品进行测试。[/size][/font][b][font=微软雅黑][size=16px]2.3半内透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]物镜对样品仓泄漏部分磁场,样品在靠近物镜时(WD≤2mm)进入磁场,受到磁场的强烈影响。但随着工作距离加大,其受磁场的影响逐渐减弱,远离物镜时(WD≥7mm)受磁场影响极小,WD 8mm以后基本不受磁场的影响。[/size][/font][font=微软雅黑][size=16px]以上WD是指样品上最高点到物镜下平面的距离。[/size][/font][align=center][img=3.png]https://img1.17img.cn/17img/images/202008/uepic/aa3a5112-d480-4bb6-a699-15e1a7a9c536.jpg[/img][/align][font=微软雅黑][size=16px]该透镜模式被目前绝大多数追求高分辨性能的扫描电镜所采用。特点是:镜筒内探头对样品电子信息的接收能力介于外透镜和内透镜模式之间;对样品的检测尺寸、磁特性的限制不大;有利于对绝大部分样品进行高分辨观察。[/size][/font][font=微软雅黑][size=16px]高分辨扫描电镜为了帮助镜筒内探头获取更多的二次电子,基本上都采用半内透镜物镜设计,其优势在于兼顾面较为广泛。顺磁性、铁磁性样品只要保持一定工作距离且本身不带有磁性,测试效果与反磁性物质没有区别。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=宋体, SimSun][size=18px][b]三、如何判断样品的磁性[/b][/size][/font][font=微软雅黑][size=16px]如何评判样品磁性的强弱是否适合进行扫描电镜检测。[/size][/font][font=微软雅黑][size=16px]许多实验室都依据样品名称或采用磁铁对样品进行测试。[/size][/font][font=微软雅黑][size=16px]1. 依据名称:把磁性样品等同于铁、钴、镍,并扩展为含[/size][/font][font=微软雅黑][size=16px] 铁、钴、镍的所有材料。[/size][/font][font=微软雅黑][size=16px]2.利用磁铁:只要磁铁可以吸引,就被认为是磁性样品。[/size][/font][font=微软雅黑][size=16px]凡符合以上所罗列的样品,统统列为扫描电镜的禁测样品。实践证明,这种判断方式简单粗暴,错误百出。[/size][/font][font=微软雅黑][size=16px]通过前面的介绍我们知道,材料按磁性区分为反磁性、顺磁性、铁磁性物质。弱顺磁、反磁性物质进入磁场不会受到磁场影响,顺磁、超顺磁、铁磁性材料进入磁场会被磁化。一旦离开磁场,顺磁、超顺磁物质恢复原状,而铁磁性物质会表现出强烈的磁滞现象。[/size][/font][font=微软雅黑][size=16px]依据样品的磁特性和物镜的分类,样品磁特性对电镜测试的影响首先要考虑以下两种情况:[color=#00b0f0][b]样品本身带磁或不带磁[/b][/color]。[/size][/font][font=微软雅黑][size=16px]A) 样品本身带磁:所有电镜都会受到影响。吸附污染镜筒、扰乱电子束影响测试结果,这些都是样品带磁的直接后果。可采用铁制品(薄铁片、大头针)来检测样品是否带磁。[/size][/font][font=微软雅黑][size=16px]B) 样品本身不带磁性:[/size][/font][font=微软雅黑][size=16px]1. 物镜采用内透镜模式,测试时需检测样品是否为顺[/size][/font][font=微软雅黑][size=16px]磁材料。用磁铁,如磁铁能吸引该样品,则不可测。 [/size][/font][font=微软雅黑][size=16px]2. 物镜是半内透镜模式,大工作距离(WD8mm)测试 [/size][/font][font=微软雅黑][size=16px]无限制,小工作距离测试,则需如上检测其顺磁性。[/size][/font][font=微软雅黑][size=16px]3. 外透镜物镜模式,理论上不受工作距离影响。[/size][/font][font=微软雅黑][size=16px]其次,[b][color=#00b0f0]样品的合磁矩会随着物体体积的改变而发生变化,体积越小合磁矩越微弱[/color][/b]。这是量变到质变的关系,因此对于外透镜和半内透镜模式设计的扫描电镜,可采用以下的方式对测试样品进行筛选,并选用与之相匹配的样品处理方式。[/size][/font][font=微软雅黑][size=16px]a. 直径在两、三百纳米以下的小颗粒,合磁矩总量极其微弱,一般不会对测试工作产生太大的影响。充分的分散、采用稍大一些的工作距离,即可放心测试。[/size][/font][font=微软雅黑][size=16px]这类小颗粒材料的堆积体容易使得合磁矩增加,松散的堆积与基底结合不牢,易受电子束轰击溅射并吸附在镜筒上。达一定值,会对仪器性能产生影响,特别是磁性稍强一些的纳米颗粒。故制样时,应极力避免堆积体的形成。[/size][/font][font=微软雅黑][size=16px]b. 微米级别颗粒所形成的合磁矩就应当引起重视。充分的固定和远离镜筒(WD8mm)是保证样品测试的关键。[/size][/font][font=微软雅黑][size=16px]个人体会是绝大部分情况:合磁矩较大的样品,所需观察的表面细节都较大,采用样品仓探头在大工作距离(15mm)下观察,获取的样品信息将会更加充分。[/size][/font][font=微软雅黑][size=16px]固定、分散好样品,控制好工作距离,只要样品本身不带磁(铁片试),进行SEM测试基本都不会有问题。[/size][/font][font=微软雅黑][size=16px][/size][/font][b][font=微软雅黑][size=18px]四、如何对磁性较强的样品进行SEM测试[/size][/font][/b][font=微软雅黑][size=16px]对磁性较强的样品应当排除采用内透镜物镜设计的扫描电镜对其进行测试。下面的讨论主要针对外透镜和半内透镜。[/size][/font][b][font=微软雅黑][size=16px]4.1外透镜物镜模式[/size][/font][/b][font=微软雅黑][size=16px]采用这类物镜模式的扫面电镜。无论物质具有铁磁或是顺磁特性,只要未被磁化,理论上可以在任何位置进行测试。[/size][/font][font=微软雅黑][size=16px]但是样品最好能被充分固定,特别是粉末样品,更要保证每一个颗粒都有很好的固定。否则小工作距离观察,粉末颗粒在电子束轰击下,也容易溅射进镜筒对磁场产生干扰。[/size][/font][b][font=微软雅黑][size=16px]4.2半内透镜物镜模式[/size][/font][/b][font=微软雅黑][size=16px]这类物镜模式由于有部分磁场外泄,因此样品必须远离物镜观察。具体工作距离依据样品合磁矩大小的不同而不同,一般来说大于8mm工作距离是比较安全的。其他操作和外透镜模式基本相同,只是固定必须更为加强。[/size][/font][font=微软雅黑][size=16px]对于大型块状物体建议使用夹持台,以保证测试的安全。[/size][/font][font=微软雅黑][size=16px]如果发现有像散消除不掉的现象,基本说明样品被磁化,可通过高温或消磁器进行消磁处理来排除磁场干扰。[/size][/font][font=微软雅黑][size=16px]铁磁性、顺磁性物质的细节一般都在几十纳米以上,大工作距离下采用样品仓探头观察,将呈现更为丰富的样品信息。[/size][/font][font=微软雅黑][size=16px]前面的文章已经探讨过,小工作距离、镜筒探头组合,适合观察松软样品的几纳米细节信息,拥有这种特性及细节的样品,基本都是反磁或弱顺磁样品,漏磁对其不产生影响。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=微软雅黑][size=18px][b]五、半内透镜物镜测试强磁性样品的实例[/b][/size][/font][align=center][img=4.png]https://img1.17img.cn/17img/images/202008/uepic/916e6529-9bb5-49a2-b8d3-57f48734f16e.jpg[/img][/align][align=center][img=5.png]https://img1.17img.cn/17img/images/202008/uepic/7674d57d-40c8-42c8-bfaf-3d270d6d42b4.jpg[/img][/align][align=center][img=6.png]https://img1.17img.cn/17img/images/202008/uepic/ca2e06fc-9f45-4296-a1b1-717ac9a0af50.jpg[/img][/align][align=center][img=7.png]https://img1.17img.cn/17img/images/202008/uepic/868c5744-d43f-4cdd-acae-e6012c5ba6b5.jpg[/img][/align][font=微软雅黑][size=16px][/size][/font][align=center][img=8.png]https://img1.17img.cn/17img/images/202008/uepic/978c64de-0c97-4b8d-9e4e-5a032c4cacd7.jpg[/img][/align][align=center][img=9.png]https://img1.17img.cn/17img/images/202008/uepic/0ee817bf-2352-4e19-92dd-37e18e7d0f0e.jpg[/img][/align][font=微软雅黑][size=16px][/size][/font][b][font=微软雅黑][size=18px]六、总结[/size][/font][/b][font=微软雅黑][size=16px]物质的磁性主要来自于核外电子的在轨运动,因此所有物质都具有一定磁性。依据物质进入磁场后对外表现出的磁特性可将物质分为:反磁性、顺磁性、铁磁性这三类。[/size][/font][font=微软雅黑][size=16px]反磁性物质由于核外不存在未成对电子,无论是否进入磁场,其合磁矩都为零,对外不表现出磁性。[/size][/font][font=微软雅黑][size=16px]顺磁性物质核外存在未成对电子,故具有一定的个体磁矩。热扰动的影响使得原子或分子间未成对电子排列杂乱,个体磁矩互相抵消,最终合磁矩为零,对外不表现磁性。当这类物质进入磁场,未成对电子受磁场的影响,克服热扰动的束缚而按磁场方向趋同排列,合磁矩不为零,将对外表现出磁性。由于合磁矩较弱,离开磁场后热扰动会使得这些未成对电子重归无序,磁性也随之消失。依据磁性的强弱,顺磁性物质可分为:弱顺磁、顺磁、超顺磁。[/size][/font][font=微软雅黑][size=16px]铁磁性物质的原子核外存在多个方向一致的未成对电子,形成“磁畴”。磁畴的合磁矩要远强于单个未成对电子,因此在离开磁场后,常温下,热扰动无法使这些磁畴重归无序,对外表现出所谓“磁滞”现象。该现象最先出现在铁器上,故被称为“铁磁性”。500度以上的高温,热扰动会使得磁畴重归无序,磁滞现象随即消失,这就是所谓的“高温消磁”。[/size][/font][font=微软雅黑][size=16px]扫描电镜的物镜有三种模式:外透镜、内透镜、半内透镜。[/size][/font][font=微软雅黑][size=16px]外透镜模式:物镜磁场封闭在透镜中不对外泄露,因此样品受磁场影响极小。缺点是镜筒内探头获取的样品信息较少,不利于形成样品的高分辨形貌像。[/size][/font][font=微软雅黑][size=16px]内透镜模式:样品置入物镜磁场,受磁场影响极大。优点是镜筒内探头获取样品信息充分,有利于高分辨像的形成。[/size][/font][font=微软雅黑][size=16px]该物镜模式对样品的限制极大。体积大小是一方面,更关键在于对样品磁性质的限制,故应用面不大,市占率不高。[/size][/font][font=微软雅黑][size=16px]半内透镜模式:物镜对样品仓泄漏部分磁场,小工作距离时样品进入物镜泄漏的磁场,大工作距离样品远离物镜磁场。该透镜模式兼顾了外透镜和内透镜模式的优、缺点。[/size][/font][font=微软雅黑][size=16px]目前外透镜及半内透镜模式是高分辨扫描电镜的两类主力机型。主流的观点认为: 外透镜模式适合磁性材料观察,半内透镜模式适合样品的高分辨观察。[/size][/font][font=微软雅黑][size=16px]通过对物质的磁性及物镜类型的仔细剖析发现,这种观念显得过于简单和偏颇。其存在的根源是基于两个错误概念:[/size][/font][font=微软雅黑][size=16px]1. 小工作距离才能获得高分辨像,并引伸为是进行扫描 电镜高分辨测试的基本选择。[/size][/font][font=微软雅黑][size=16px]2. 磁性材料才有磁性,且一定会被半内透镜物镜所磁化。[/size][/font][font=微软雅黑][size=16px]在样品的测试工作中,常常发现实际情况却是如下表现。[/size][/font][font=微软雅黑][size=16px]样品被磁化:无论哪种物镜模式都不会获得满意的结果。电子束都会被干扰,也都有可能被吸到物镜中去。[/size][/font][font=微软雅黑][size=16px]样品未被磁化:理论上外透镜物镜模式对样品进行测试可不受限制;半内透镜物镜模式,样品需在大工作距离下测试。[/size][/font][font=微软雅黑][size=16px]工作距离和图像分辨力之间并非是一种单调的变化关系。需要获取的样品表面信息细节大于20纳米,采用大工作距离、样品仓探头组合反而有更高的图像分辨力。[/size][/font][font=微软雅黑][size=16px]顺磁性、铁磁性物质的表面细节都较粗,在大工作距离下测试,获得的结果更充分,细节分辨更优异。因此这类样品更适合在大工作距离下采用样品仓探头来观察。[/size][/font][font=微软雅黑][size=16px]近几篇文章都在反复且充分的展示这样的结果:大工作距离测试对于扫描电镜来说极为关键。它不仅能给我们带来更多的样品信息,还充分扩展了应对疑难样品的操作空间。[/size][/font][font=微软雅黑][size=16px]特别是对于磁性较强的样品,扫描电镜在大工作距离测试时的分辨能力越强大,获取的样品表面信息就越充分。[/size][/font][b][font=微软雅黑][size=16px]参考书籍:[/size][/font][/b][font=微软雅黑][size=16px]《扫描电镜与能谱仪分析技术》张大同2009年2月1日[/size][/font][font=微软雅黑][size=16px]华南理工出版社[/size][/font][font=微软雅黑][size=16px]《微分析物理及其应用》 丁泽军等 2009年1月[/size][/font][font=微软雅黑][size=16px]中科大出版社[/size][/font][font=微软雅黑][size=16px]《自然辩证法》 恩格斯 于光远等译 1984年10月[/size][/font][font=微软雅黑][size=16px]人民出版社 [/size][/font][font=微软雅黑][size=16px]《显微传》 章效峰 2015年10月[/size][/font][font=微软雅黑][size=16px] 清华大学出版社[/size][/font][font=微软雅黑][size=16px]日立S-4800冷场发射扫描电镜操作基础和应用介绍[/size][/font][font=微软雅黑][size=16px]北京天美高新科学仪器有限公司 高敞 2013年6月[/size][/font]

  • 看完这些你或许会对磁性玻碳电极有更多的了解

    磁性玻碳电极是玻璃碳电极的简称。玻碳电极可作为惰性电极直接溶于阳极溶出,阴极和变价离子的伏安测定,还可作为化学修饰电极。  磁性玻碳电极的优点是导电性好,化学稳定性高,热胀系数小,质地坚硬,气密性好,电势适用范围宽(约从-1~1V,相对于饱和甘汞电极),可制成圆柱、圆盘等电极形状,用它作基体还可制成汞膜玻碳电极和化学修饰电极等。在电化学实验或电分析化学中得到日益广泛的应用。  因磁性玻碳电极是惰性电极,所以在使用镀扫描材料就是扫描电极,如镀汞,铜,金就是汞膜,铜膜,金膜电极。  磁性玻碳电极是采用石油焦为骨料,煤沥青为粘结剂,经过破碎、配料、混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺生产的一种耐高温抗氧化的导电材料。广泛用于炼钢电弧炉、精炼炉、生产铁合金、工业硅、黄磷、刚玉等矿热炉及其他利用电弧产生高温的熔炼炉中。  磁性玻碳电极有良好的电性能和化学稳定性,在高温下机械强度高,杂质含量少,抗振性能好。是热和电的良好导体。  根据使用时功率和电流的不同,采用不同原材料和生产工艺生产,可分为普通功率石墨电极、高功率石墨电极、超高功率石墨电极。按电极的直径不同,有φ75~600mm不同规格。根据用户的特殊要求,可加工生产特殊规格的石墨电极和异型石墨产品。  当溶出伏安法在较正电位范围内进行时,可采用磁性玻碳电极。玻碳电极有较高的氢过电位、导电性能良好、耐化学侵蚀性强以及表面光滑不易沾附气体及污物。做修饰电极的原电极及氧化还原反应测量。

  • 含顺磁性元素的27Al怎么测?

    含顺磁性元素的27Al怎么测?

    样品是沸石分子筛,离子交换引入稀土元素Ce,因为Ce有顺磁性,造成谱峰展宽,信噪比较低,我的样品只有0ppm和0~100ppm处有峰,其他的峰是什么啊?看上去也不像旋转边带。对这种有顺磁性的样品,能不能只靠增加扫描次数来改善谱图质量?把其他的峰信号压制下去?还需要调节别的参数么?[img=,690,487]https://ng1.17img.cn/bbsfiles/images/2019/07/201907041247598925_3721_2991446_3.jpg!w690x487.jpg[/img]增加扫面次数从1024到4200,结果见下图(红色扫4200次,蓝绿色扫1024次),并没有什么作用,请问这是什么原因啊?而且连信号强度都没有太大变化,不应该是信号强度增强么?[img=,690,487]https://ng1.17img.cn/bbsfiles/images/2019/07/201907041727262150_9405_2991446_3.jpg!w690x487.jpg[/img]

  • 防伪油墨厂家之不同功能的防伪油墨

    见到过一些印刷品在阳光下变色吗?它用的是光敏防伪油墨,防伪油墨是一个极其重要的防伪技术领域, 应用面极广, 涉及到许多学科。而不同种类的防伪油墨功能作用有所不同,防伪油墨厂家向大家介绍一下常见的几种油墨。  防伪油墨厂家之不同功能的防伪油墨  光敏防伪油墨  在光线照射下能发出可见光的油墨。这里所指的光线有: 紫外光、红外光、太阳光等可见和不可见的光线。a. 紫外荧光油墨: 在紫外光( 200nm- 400nm) 照射下, 能发出可见光( 400nm- 800nm) 的油墨。通常指的短波紫外线激发可见荧光防伪印刷油墨, 激发波长为254nm, 长波紫外线激发可见荧光防伪印刷油墨, 激发波长为365nm。b.日光激发变色油墨: 在太阳光照射下, 能发出可见光400nm- 800nm的防伪印刷油墨。这种油墨从应用来看是由于太阳光作用而变色, 实质上也是受紫外线照射而变色的。c. 红外防伪油墨: 利用红外线(700nm- 1500nm)有不同的吸收特点匹配制成的一种油墨, 并能通过仪器检测或识别其印记。把一对对于红外线具有不同吸收特点的物质加入油墨中制成。应用红外油墨印刷而成的制品,在普通光下无任何反应, 而在红外光检测下, 可观测到相应的信号或图文。  热敏防伪油墨  在热作用下, 能发生变色效果的油墨。通常又分为可逆和不可逆热变色防伪油墨 通常所指的变色温度为34 摄氏度- 100 摄氏度。手温变色防伪油墨是热变色防伪油墨的一种, 指在34 摄氏度- 36 摄氏度温度作用下, 能发生变色效果的油墨。热致变色的原理是在加热情况下使变色化合物发生物理变化或化学变化带来自身的吸光性变化。  压敏防伪油墨  在压力磨擦作用下, 能出现颜色的油墨。在油墨中加入特殊化学试剂或变色物质而制成。用这种油墨印刷成的有色或隐形图文, 当用硬质的物件或工具摩擦、按压时, 即发生化学的压力色变或微胶囊破裂染料显漏而出现颜色( 红、蓝、墨、绿、紫、黄等) 。可根据用户的要求选择显示的颜色并设计暗记。  磁性防伪油墨  采用具有磁性的粉末材料作为一种功能成分所制作的防伪印刷油墨。它是最常规应用的防伪油墨, 其突出的特点是外观色深、检测仪器简单, 多应用于票证防伪。  光学可变防伪油墨  采用能发生光学干涉作用的多层光学薄膜片状粉末作为分散料所制作, 印记在光线入射角分别为90 摄氏度和30 摄氏度时, 颜色完全不同的油墨。这一技术极为复杂、昂贵, 能生产的国家很少, 在外国钞票上已有采用。  防涂改防伪油墨  对涂改用的化学物质具有显色化学反应的油墨。常见的种类有防伪荧光粉、温度变色粉、防伪荧光长短纤维、紫外防伪荧光油墨、红外防伪荧光油墨、防伪热敏油墨、加温变色和日光照变色的油墨等( 如阳光下变色和紫外灯下变色的光致变油墨, 可在不同温度下变色的热致变油墨) 。这些防伪产品可广泛用于烟酒、食品、印刷、造纸、纺织、名品服装标牌等领域, 具有独特的防伪效果.

  • 塑料上面的油墨厚度

    请问一下大侠,塑料上面的油墨厚度,用什么仪器可以测,精度要求0.1um,塑料上面是很薄的铜,铜上面是油墨,油墨有磁性,进口测厚仪只能测到1微米。

  • 【转帖】磁性液体性质及应用

    磁性液体性质及应用 一、概述磁性液体是由纳米级(10纳米以下)的强磁性微粒高度弥散于某种液体之中所形成的稳定的胶体体系。60年代美国首先应用于宇航工业,后来逐渐转为民用,现已成为很庞大的产业,在美国、日本、德国等发达国家都有磁性液体公司,全球每年要生产磁性液体器件数百万吨。磁性液体中的磁性微粒必须非常小,以致在基液中呈现混乱的布朗运动,这种热运动足以抵消重力的沉降作用以及削弱粒子间电、磁的相互凝聚作用,在重力和电、磁场的作用下能稳定存在,不产生沉淀和凝聚。磁性微粒和基液浑成一体,从而使磁性液体既具有普通磁性材料的磁性,同时又具有液体的流动性,因此具有许多独特的性质。磁性液体是由强磁性微粒、基液以及表面活性剂三部分组成。为了得到稳定的磁性液体,强磁性微粒必须足够小,如对铁来说,微粒直径要小于3纳米;对Fe3O4来说,直径不能大于10纳米。制备纳米微粒的方法很多,我们采用化学共沉淀技术制备直径10纳米左右、分布均匀的Fe3O4微粒。化学共沉淀技术具有操作简便、成本低,对设备要求不高等优点。选择合适的表面活性剂是制备磁性液体的关键。表面活性剂包覆在微粒表面,具有以下作用:1. 防止磁性颗粒的氧化;2. 克服范德瓦尔斯力所造成的颗粒凝聚;3. 削弱静磁吸引力;4. 改变磁性颗粒表面的性质,使颗粒和基液浑成一体。对表面活性剂总的要求是,活性剂的一端能吸附于微粒表面,形成很强的化学键,另一端能与基液溶剂化。不同基液的磁性液体要选择不同的表面活性剂,有时甚至需要两种以上的表面活性剂。南京大学从八十年代开始进行磁性液体的研制工作,在强磁性微粒的制备,表面活性剂的选择等方面积累了丰富的经验。现已能制备出高质量的水基、煤油基和邻苯二甲酸二异辛脂基磁性液体。 二、磁性液体的性质由于磁性液体同时具有磁性和流动性,因此具有许多独特的磁学、流体力学、光学和声学特性。磁性液体表现为超顺磁性,本征矫顽力为零,没有剩磁;在外磁场下,磁性液体被磁化,满足修正的伯努利方程。与常规伯努利方程相比,添加了一项磁性能,使磁性液体具有其它流体所没有的、与磁性相关联的新性质:例如磁性液体的表观密度随外磁场强度的增加而增大;当光通过稀释的磁性液体时,会产生光的双折射效应与双向色性现象。当磁性液体被磁化时,使相对于磁场方向具有光的各向异性,偏振光的电矢量平行于外磁场方向比垂直于外磁场方向吸收更多,具有更高的折射率;超声波在磁性液体中传播时,其速度及衰减与外磁场有关,呈各向异性;磁性液体在交变场中具有磁导率频散、磁粘滞性等现象。 三、磁性液体的应用磁性液体的特殊性质开拓了许多新的应用领域,一些过去难以解决的工程技术问题,由于磁性液体的出现而迎刃而解。下面简单地介绍几种磁性液体应用的原理。1. 旋转轴动态密封 磁性液体旋转轴动态密封技术是磁性液体较成熟也是最重要的应用之一,现已广泛应用于X-射线转靶衍射仪、单晶炉、大功率激光器、计算机等精密仪器的转轴密封。其结构原理见图1. 磁性液体在非均匀磁场中将聚集于磁场梯度最大处,因此利用外磁场可将磁性液体约束在密封部位形成磁性液体“O”型环,具有无泄露、无磨损、自润滑、寿命长等特点。目前在国外的精密仪器中,磁性液体密封部件作为一个整体出售,售价一般在两、三千美圆,不单独出售磁性液体。南京大学在磁性液体旋转轴动态密封方面做了大量工作,积累了丰富的经验,拥有一项国家实用新型专利。在南京大学、南京师范大学、南京55研究所等单位的仪器上使用我们的磁性液体密封技术,效果良好,真空度可达10-6t .磁性液体密封技术目前重要用于真空、灰尘、气体的动态密封,封水等液体由于难度较大,实际应用的不多。若能在封水、封油等方面取得突破,其应用领域将极为广阔,必将产生巨大的经济效益和社会效益。我们认为可从以下方面开展工作:改进密封件结构,改善磁路设计,研制新型磁性液体。2. 扬声器 将磁性液体注入扬声器的音圈气隙对音圈的运动起一定的阻尼作用,并能使音圈自动定位,同时音圈所产生的热量可以通过磁性液体耗散,因此加入磁性液体可以提高扬声器的承受功率,在同样结构条件下可使输入功率提高2倍,同时改善频率响应,提高保真度。磁性液体用于金属膜扬声器性能更佳。目前国内许多厂家生产磁性液体扬声器,生产线和磁性液体均从国外进口。若能将磁性液体国产化,必将带来非常可观的收益。3. 阻尼器件 利用磁性液体作为旋转与线性阻尼器,以阻尼不需要的系统振荡模式。与一般阻尼介质相比优点在于可挤占籍助外磁场定位。例如在步进马达中使用磁性液体阻尼来消除系统的振荡与共振,使马达精确定位。另外在防振台中使用磁性液体阻尼(图2),可消除外界振动噪音的干扰,以确保精密仪器(天平,光学设备等)正常工作。4. 选矿分离 利用磁性液体的表观比重随外磁场的变化而改变的特点,可用来筛选比重不同的非磁性矿物(图3)。比重差别在10%左右的矿物可用此技术较好地分离,一般采用水基磁性液体,可重复使用。5. 开关 图4为磁性液体无摩擦开关示意图。水银和磁性液体装在一个不导电的容器中,利用外磁场改变水银在容器中的位置,来达到接通和断开电流的目的。图5为不需动力的新型磁性液体离心开关示意图。磁性液体密封在转轴上的非磁性容器中。当转轴静止时,磁性液体位于容器下部,传感器检测不到它;当轴转动时,离心力使磁性液体分布于容器内壁,传感器检测到磁性液体并引发开关动作。6. 精密研磨和抛光 磁性液体研磨是利用磁性液体的浮力将微米级的磨料悬浮于液体表面,与待抛光的工件紧密接触。不论工件的表面形状多么特殊,均可用此技术精密抛光。另外还可用来研磨高级Si3N4陶瓷球(图6),效率比传统方法高40倍。7. 传感器 目前有两种商用磁性液体传感器:一种是在石油勘探工业中用来测量钻头的加速和倾斜(图7),另一种是在建筑工业中用来检测地下管道的倾斜(图8)。8. 其它应用 除此以外,磁性液体还在许多领域有着广泛的应用前景。如:磁性液体印刷、磁性液体薄膜轴承、声纳系统、磁性药物、细胞磁性分离、磁性液体人工发热器、磁性液体涡轮发电、光学开关,磁性液体刹车,等等。 四、当前的重要工作首先将已经成熟的磁性液体旋转轴封真空、封气技术推向市场,以此为突破口占领市场。同时研制用于超高真空的硅油基磁性液体、可封油用的憎油基磁性液体;改善磁路设计和密封件结构,力争在封水、机油等液体介质方面取得突破。

  • 磁性金属测定仪操作规程

    1 操作前准备本机具有以下主要技术参数:电源电压:220v±22V;电机功率:15W;电机转速:50转/分;刮刀转速:50转/分;电磁铁吸力:40±2公斤;最大试样量:1公斤;回收率:不小于95%;操作前要满足以上要求。2 使用方法从平均样品中称试样1公斤,倒入仪器上部的容器内,接通电源,先按下“通磁”开关,再按下电机“运转”开关,然后调节流量控制门,使试样匀速地经过淌槽流到成盛样箱内。试样全部流完后先停止电机运转,再将盛样箱取出,然后把小杯接在淌槽的下部,断磁以后,用毛刷将淌槽上的吸附物全部扫入小杯中,如此重复操作三次,将各次磁性金属物合并于已知重量的坩埚(WO)中,用四氯化碳洗数次,直至粉粒除净,然后烘干、冷却,用万分之一天平称量(W1)。结果计算:磁性金属物含量按下式计算磁性金属物(mg/Kg)=(W1-W0)×1000式中:W0-坩埚重量,g;W1-磁性金属物和坩埚重量,g。双试验以最高含量为测定结果。3 实验前后,应做好仪器使用记录,以保证其正常的工作状态。

  • 【求助】求制备磁性粉末样品方法

    我的样品是磁性粉末,很脆也很硬,以前是通过冷压-手工减薄-离子减薄来制样的,但效果不是很好,这一次我磨一个样,手都磨穿了,大约在150微米的时候却碎了,真是急死人了。后来在网上看到可以用环氧树脂包埋以后再进行减薄不容易碎,我在这儿想问一问大家:1、这种方法对磁性粉末有效么?2、减薄后的样品是否需要喷碳或喷金处理?3、环氧树脂用什么样的成分为好?在这儿县谢谢大家了,望高手给予解答或者告诉我一下可以用于离子减薄的环氧树脂的型号也行啊

  • 磁性转速仪

    磁性转速仪利用旋转磁场,在金属罩帽上产生旋转力,利用旋转力与游丝力的平衡来指示转速。 磁性转速表,是成功利用磁力的一个典范,是利用磁力原理的机械式转速仪;一般就地安装,用软轴可以短距离异地安装。磁性转速仪,因结构较简单,目前较普遍用于摩托车和汽车以及其它机械设备。异地安装时软轴易损坏。

  • 磁性样品在SA模式下看不到光,这是为啥?

    磁性样品,打开col valves colsed,在LM模式下能看到薄区, 但是一放大到M及以上模式下,就完全没有光了。老师来了以后说偏的太远了,调了几下就看到光了,过程中好像转了alpha角,这是啥原理啊?

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 手持式扫描仪故障问题?

    手持式扫描仪故障问题?

    各位版友老师,今天一台扫描仪出现了故障,烦请各位老师解答一下这是什么原因。谢谢!设备为一台手持式,型号:Niton XLt797WZ错误代码为:NDT Unknown type received=0。Invalid r corrupt reading found。http://ng1.17img.cn/bbsfiles/images/2016/03/201603261907_588309_2190021_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603261907_588310_2190021_3.jpg

  • 【原创】顺磁性物质与逆磁性物质

    我们使用的在线分析仪表中有顺磁式氧分仪,现在把顺磁性及逆磁性的概念澄清:任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中被磁化,其本身会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质被外磁场吸引;方向相反时,则被外磁场排斥。为此,把被外磁场吸引的物质称为顺磁性物质,而把会被外磁场排斥的物质称为逆磁性物质。气体介质处于磁场中也会被磁化,而且根据气体的不同也分别表现出顺磁性或逆磁性。如氧气是顺磁性气体,氢气、氮气等式逆磁性气体。

  • 【求助】磁性测试主要怎么分析?谢谢大家!

    【求助】磁性测试主要怎么分析?谢谢大家!

    磁性测试的结果不知道怎么分析,大家帮忙看看啊!有2个磁性测试结果不会分析,有懂得帮我看看啊,这个磁性测试主要怎么分析啊,这两个图怎么描述好呢,谢谢大家!http://ng1.17img.cn/bbsfiles/images/2010/12/201012272114_270196_2162613_3.jpg这是铁黄的磁性测试结果http://ng1.17img.cn/bbsfiles/images/2010/12/201012272114_270197_2162613_3.jpg

  • 磁性分析MA1040

    麦克默瑞提克磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。能够检测出含量极低的铁的含量对原料是否能加工成成品是非常重要的。技术特点· 极高的灵敏度,可最低检测到0.00001%的含磁量· MA1040磁性分析仪占地面积小,使用方便· 被美国ANSI(American National Standards Institute)引用· 磁性分析分辨率达亚ppm级 产品应用磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。麦克默瑞提克(上海)仪器有限公司孔径分析仪,孔径测定仪,纳米粒度仪,粒度仪,粒度粒形分析,Zeta电位,微型反应器,磁性分析

  • 手持终端数据采集器如何使用及注意事项?

    [align=center][/align]  随着互联网的发展和移动应用的普及,电子设备在各个领域应用的越来越广泛。产品的更新速度逐渐加快。往往刚摸透一台仪器就将面临市场淘汰,新的设备一时无法适应导致工作效率大大降低。比如电子[url=http://www.d117w.com/]仪器仪表[/url]设备中手持终端数据采集器的使用,到底该如何使用呢,下面小编就一一给你讲解:  一、使用步骤  初次使用  装上电池,合上电池盖,长按电源键开机。在系统工作状态下,短按电源键键,设备会进入休眠状态 在休眠状态下,短按电源键键系统会唤醒且点亮屏幕。  开机  长按电源键,直到机器振动,屏幕亮起。在深度休眠模式下,按电源按键,可唤醒系统。机器如果电池供电,必须确保电池盖已经合上。  关机  当机器开启后,非休眠状态下,长按电源键2s,打开选项菜单,选择关机,点击确认则正常关机。  重启  当机器开启后,非休眠状态下,长按电源键2s,打开选项菜单,选择重启,点击确认,则正常关机重启。  充电  由于电池在出厂时仅具备少量电力供测试使用,当收到机器时务必先进行充电后才能使用。装入电池后,将机器直接连接适配器进行充电。同时AUTOID 9 系列还可选底座进行充电。电池第一次充电时间需要3.5 个小时,充电时LED 灯长亮红色,充满电时LED 灯长亮绿色。NFC 功能NFC 功能,开启该功能,允许手机在接触其他设备时交换数据,只要将自己的设备与另一台支持NFC 的设备靠在一起,即可以将您设备上的应用内容同步分享给对方。同时安装第三方NFC 软件,可以进行读写射频卡操作。  扫描工具  查找扫描图标 ,打开扫描应用进入界面按扫描即可正常扫描。选择“条码设置”,可进入条码类型设置界面,对所需条码类型进行设置。打开“基本设置”,可对扫描持续时间、角度、超时时间、持续出光模式等进行设置。  二、注意事项  第一点、注意初始化  很多人不解刚买回来的手持终端为什么要做初始化。给机器初始化其实是在释放设备的储存空间、保证设备的安全性、以及降低之后使用过程中错误出现的概率。无论是多么崭新的设备,一定有自己最初的数据源占据了一定的内部空间,为了让手持机的储存空间更大所以要初始化。而且手持机有一个最初默认的系统密码,只有在初始化之后持有者才可以设置属于自己的密码,保证设备的安全。  第二点、下载各类操作  在初始化之后,手持终端保持在一个最干净、最安全的状态,想让它投入到工作当中去,就需要下载各类操作,例如校验时间、系统参数、批次名单、增量名单、全量名单以及管理费比例等等。只有将这些都弄好,手持机才是处于一个完整的工作状态,能够随时投入到使用当中。  第三点、操作要规范  对于一台全新的手持终端,操作时一定要规范。例如当手持机需要充电时,要先将机器关闭再使用标配的5V电源充电 另外使用手持机传输数据时,如果的采集软件未关闭,那么就不可以插拔USB数据线。  盘点管理用手持终端将在架的所有商品的条码和数量读人,然后传送到计算机系统中,与计算机中的在架商品进行比较,就可以进行盘点处理,并由计算机做出损益报告。使用手持终端的数据采集器 避免了用货对单或用单寻货的麻烦,减少了手工处理的漏盘和重复盘货的现象。给经营管理带来了极大的便利。

  • 麦克默瑞提克磁性分析仪MA - 1040

    麦克默瑞提克(上海)仪器有限公司提供孔径分析仪,孔径测定仪,纳米粒度仪,粒度仪,粒度粒形分析,Zeta电位,微型反应器,磁性分析产品简介磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。能够检测出含量极低的铁的含量对原料是否能加工成成品是非常重要的。技术特点· 极高的灵敏度,可最低检测到0.00001%的含磁量· 占地面积小,使用方便· 被美国ANSI(American National Standards Institute)引用· 分辨率达亚ppm级 产品应用磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。

  • 【分享】美研究显示核磁共振脑部扫描有助预知早老性痴呆

    新华网洛杉矶报美国最新研究显示,利用核磁共振成像技术对脑部进行扫描,可以帮助医生预测轻度认知障碍患者今后是否会患阿尔茨海默氏症(早老性痴呆症)。 加利福尼亚大学圣迭戈医学院的研究人员4月6日在《放射学》杂志网络版上撰文说,对核磁共振脑部扫描结果进行分析,可以计算出轻度认知障碍患者在一年内患阿尔茨海默氏症的风险。 研究数据是在2005年至2010年间收集的,包括最初的核磁共振扫描结果及一年之后的复查情况。研究涉及203名健康成人、317名轻度认知障碍患者和164名晚发性阿尔茨海默氏症患者。研究对象平均年龄为75岁。 研究人员分析对比两次核磁共振的检查结果,然后计算出轻度认知障碍患者发展成阿尔茨海默氏症的风险。 研究人员指出,通过核磁共振脑部扫描,可以发现轻度认知障碍患者脑部大脑皮质的退化情况,从而判断患阿尔茨海默氏症的风险。大脑皮质在记忆、注意力、思维和语言方面起着关键作用,而阿尔茨海默氏症的特点之一就是大脑皮质某些部位的细胞消失,导致该部位发生萎缩。 轻度认知障碍是指人出现轻度记忆或其他认知功能障碍,但未达到痴呆标准,其临床表现不仅有记忆障碍,而且还有注意力、词语流畅性、执行能力等其他认知功能方面的障碍。 轻度认知障碍不一定会发展成阿尔茨海默氏症,但随着年龄增长,患者出现智力减退的情况要比正常人严重。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制