当前位置: 仪器信息网 > 行业主题 > >

铌酸锂电光强度调制器

仪器信息网铌酸锂电光强度调制器专题为您提供2024年最新铌酸锂电光强度调制器价格报价、厂家品牌的相关信息, 包括铌酸锂电光强度调制器参数、型号等,不管是国产,还是进口品牌的铌酸锂电光强度调制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铌酸锂电光强度调制器相关的耗材配件、试剂标物,还有铌酸锂电光强度调制器相关的最新资讯、资料,以及铌酸锂电光强度调制器相关的解决方案。

铌酸锂电光强度调制器相关的资讯

  • 仅细菌大小 迄今世界最小电光调制器问世
    p  据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。/pp  电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发送二进制信号流的光。/pp  俄勒冈州立大学电子与计算机学院副教授王小龙在接受科技日报记者采访时称,此项技术的创新点是在光子晶体的微腔里集成了透明氧化物—硅基MOS(金属氧化物半导体)结构。微腔调制器可以把光场压缩到很小的范围,通过载流子富集形成很强的电光调制效应,从而在很小的区间内实现很大的电光调制。/pp  王小龙表示,新研制的电光调制器可极大降低光互联器件的功耗。目前全球数据中心和超级计算机所使用的能源占据了全球电力使用量的4%—5%,数据中心的大部分功耗主要由互联产生,通过光取代电来降低系统功耗是今后的研究方向。但光互联研究的一个瓶颈在于电光转换,电光转换同样需要消耗大量能源。/pp  此项设计结合了材料和器件的创新,增强电子和光子之间的相互作用,从而使研究人员能够创建出一个更小的电光调制器。新调制器相比主流硅基微环电光调制器在尺寸上缩小了10倍,仅为一个细菌大小(8微米× 0.6微米),有源区更是缩小到了0.06立方微米(仅仅是波长立方尺寸的2%),在理论上可将电光转换的能耗降低2—3个数量级。/pp/p
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
  • 5G电光调制解调器核心部件:王家海教授团队在有机电光材料取得系统性进展
    近年来,人们在居住、工作、休闲和交通等各种不同场景的多样化业务需求推动着新一轮的光子革命。其中,以5G无线通讯为主,对于信息高速传输的需求已经渗透到大数据、机器学习、远程医疗及自动驾驶等领域,使信息突破时空限制进行智能互联。而光子作为载体的信息处理传输材料可以很好的解决传输速率慢的问题,因此制备出高速、低耗能和易于工业化生产的电光材料,从而实现高速率的数据中心光互连,成为学术界和工业界亟待解决的关键问题。在传统的商业化电光材料的研究中,主要是以无机材料铌酸锂作为代表。然而传统铌酸锂材料所制成的电光调制器的信号质量、带宽、半波电压、插入损耗等关键性能参数的提升逐渐遭遇瓶颈,电光系数低,晶体生长、加工困难、体积庞大且与CMOS工艺不兼容等。与无机材料和电子为载体的微电子材料相比,光子为载体的二阶非线性有机电光材料具有电光系数高、光学损伤阈值高、响应速度快、制备过程更易于生产,具有良好的热稳定性、成本低以及选择范围广等优点,并能易与半导体微电子器件实现集成,故而有很大的应用前景。然而有机非线性光学材料运用到商业化的电光调制器等领域也面临着技术瓶颈(难以满足Telecordia GR-468-CORE standards 标准),如何获得兼具大的电光系数(r33值)、光热稳定性、极化取向稳定性的有机电光发色团仍然是行业的难点。1. 高性能交联型有机电光材料的研究针对有机电光材料的研究难点,王家海教授团队首次提出了二元交联材料的基解决方案:将可以交联的蒽和丙烯酸酯基团修饰到发色团QLD1-QLD4的电子给体和电子桥上,发色团在电场的作用下发色极化取向,温度进一步升高,交联反应发生,以网状聚合物的形式固定住已经取向的发色团分子,光热稳定性大幅提升。此外,由于没有小分子/聚合物交联剂的存在,发色团含量高达100wt%,电光系数大幅提升。交联后,QLD1/QLD2和QLD2/QLD4薄膜的电光活性非常高,r33的最大值分别为327 pm/V和373 pm/V, 这是目前文献报告的最高值。经Diels-Alder反应后,其电光薄膜的玻璃化转变温度从~90°C增加至185°C,这高于任何其他纯发色团膜。在85℃退火后,99.63%的r33初始值可保持500 h以上,这些材料具有超高的电光活性和长期长期极化取向稳定性,为有机电光材料的器件化和商业化提供了可能。图 1 电光材料QLD1-QLD4的分子结构该成果发表在化学顶级刊物 Chemical Science, 2022, 13, 13393-13402文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc05231h图 2 发色团数密度与极化效率的关系图;b)长期稳定性测试结果。2. 基于新型双给体的有机非线性光学材料的研究 研发了一种基于(N-乙基-N-羟乙基)苯胺衍生物的可修饰性双给体,并首次将其应用于非线性光学材料。在发色团的给体 和桥上分别引入三个隔离基团,用于减少分子之间的静电相互作 用,从而提高极化效率。基于此,我们开发了一系列非线性光学 发色团 BLD1-4,它们具有相同的双(N-乙基-N-羟乙基)苯胺基 给体、TCF 或 CF3–TCF 受体,和异佛尔酮衍生桥。密度泛函理 论计算表明,这四个发色团由于给体具有强大的给电子能力,比 传统的非线性光学发色团的一阶超极化率更大。纯发色团 BLD1– BLD4 的极化膜由于发色团的大空间位阻和大的一阶超极化率从而展现出非常高的极化效率。含有发色团 BLD3 的纯发色团膜在1310nm 处获得了超高的 r33 值(351pm/V)和极化效率(3.50±0.10 nm2 V-2)。大的电光系数使这些新的给体为有机非线性光学材料提 供了很有价值的参考。图 3 发色团 BLD1-4 的结构图 4 发色团 BLD1-4 的极化效率曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2022, 6,1079-1090.文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/qm/d1qm01577j3. 树枝状有机电光材料的研究图 5 发色团 C1-C3 的结构 开发出具有大电光系数和高稳定性的电光材料,一直是这个领域最具挑战性的话题。一系列基于相同的双(N,N-二乙基)苯胺给体、三亚乙基二氢呋喃受体和异佛尔酮衍生桥的发色团 C1-C3 被合成开发出来。与含有单发色团的树枝状材料 C1 进行比较,我们合成了双枝发色团分子 C2 和三枝发色团分子 C3。这是第一次将双(N,N-二乙基) 苯胺基给体用于 CLD 型发色团和多发色团系统。与 C1 发色团相比, C2 和 C3 多发色团具有更高的电光性系数和玻璃化转变温度。纯发色团 C2 的薄膜上在 1310 nm 处取得了大的 r33 系数 (180 pm/V)和极化效率(1.94±0.08 nm2 V-2),已经实现在。此外,树枝状分子 C2 的玻璃化转变温度高达 122℃。该材料具有良好的稳定性和大的电光系数,具有良好的应用前景。图 6 发色团 C1-C3 的 DSC 曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2021, 5, 8341-8351文章链接 https://pubs.rsc.org/en/content/articlelanding/2021/qm/d1qm01337h4. 自组装型有机电光材料的研究我们已经开发了一系列自组装的树枝状电光材料。通过在发色团的给体和桥部分引入芳香树枝状化合物(HD)、三氟苄基树枝状化合物、五氟苯基树枝状化合物和蒽环,合成了四种交联型树枝状化合物H1、H2、H3 和 HLD1。此外,还合成了含有三枝化三氟苄基的多发色团 H4。基于 HD-PFD/HD-AH/TFD-TFD 的π-π相互作用使得这些分子可以进行超分子自组装的,以最大限度地减少发色团的偶极-偶极相互作用,并在高负载密度下最大限度地提高发色团的极化效率。 对于分别含有发色团 1:1 H1:H3、1:2 H3:HLD1 和 H4 的纯电光膜,已经实现了高 r33 值(328、317 和 279 pm/V)。此外,发色团的长期取向稳定性也得到了改善。在室温下 1000 小时后,自组装型电光薄膜的初始电光系数仍然保持在 95%以上。图 7 发色团 H1-H4 以及 HLD1 的结构该成果发表在材料刊物 Dyes and Pigments, 2022, 202, 110283.文章链接 https://www.sciencedirect.com/science/article/pii/S0143720822002054图 8 发色团 H1-H4 以及 HLD1 的极化效率与分子数密度的关系图团队负责人简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。
  • 科学岛团队研发出一种光控太赫兹相位调制器
    近日,中科院合肥研究院强磁场中心磁光团队成功研发了一种主动的太赫兹相位调制器。相关研究成果发表在ACS Applied Electronic Materials 国际期刊上。   虽然具有优越的波谱特性和广泛的应用前景,太赫兹技术的工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。为了满足不同的应用要求,太赫兹调制器件成为这一领域的研究重点。   强磁场中心磁光团队聚焦太赫兹核心元器件这一前沿研究方向,继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器【Adv. Optical Mater. 6, 1700877(2018)】、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器【ACS Appl. Mater. Inter.12, 48811(2020)】、2022年发明一种基于关联电子材料的主动、智能化太赫兹电光调制器【ACS Appl. Mater. Inter. 14, 26923-26930, (2022)】之后,与固体所苏付海团队合作,经过大量材料筛选与技术探索,发现氧化物晶体NdGaO3可以使太赫兹发生明显相位移动。研究结果表明,NdGaO3晶体在100-400K下可以实现~94°的相位移动,相位移动大小几乎线性依赖于太赫兹频率,并且具有晶体各向异性。采用光控的方式,研究团队实现了太赫兹相位的主动调制,即在20 J/cm2的光照激发下,NdGaO3晶体可以实现稳定的相位调控~78°,通过改变光照激发强度,可以实现多态的太赫兹相位移动。该结果表明NdGaO3晶体是太赫兹移相器的合适候选材料,其灵敏度和稳定性有望在新型太赫兹光学器件中得到良好的应用。   该工作获得了国家重点研发计划、国家自然科学基金,省级重大科技专项计划中国科学院前沿科学重点研究项目的支持。(a)基于NdGaO3的光控相位调制器示意图(b)相位移动随太赫兹频率和光照开关的变化。
  • 分子玻璃用于5G电光调制解调器核心材料:王家海教授团队在国际知名期刊Advanced Science发表最新成果
    近日,化学化工学院王家海教授团队在交联性非线性光学分子发射团取得新的进展。刘锋钢副教授设计了全新的交联性分子玻璃,具备卓越的性能,研究成果发表在国际知名期刊Advanced Science,刘锋钢副教授和王家海教授为共同通讯作者。01研究背景当前,随着云计算、5G通信、高清网络视频、太赫兹场、人工智能/机器学习和物联网等技术的快速发展,对信息的需求正在快速增长,没有任何放缓。随着现有服务的快速发展和新型服务的出现,世界互联网数据流量出现了爆炸式增长。在诸如数据中心网络之类的中短距离通信网络中存在对超大容量光纤通信的需求。对于中短距离光通信系统,如何在光电子器件带宽有限的系统中实现超高速(单波长400Gb s−1以上)信号传输已成为业界的热点问题。为了解决这一问题,研究低成本的单通道、高频谱效率的光通信系统具有重要意义。决定光通信技术应用的关键因素之一是制备高效稳定的二元交联/自组装有机非线性光学分子玻璃,即高性能有机电光材料(二阶非线性光学材料)的制备。早期对二阶非线性光学材料的研究主要是铌酸锂(LiNbO3)等无机晶体材料。这种类型的材料本身有一系列难以克服的缺点,如电光系数低、晶体生长和加工困难、介电常数高、对输入光波信号干扰强。经过多年的发展,有机电光材料的优势越来越明显。有机非线性光学材料具有电光系数高、响应速度快、可加工性和集成性好等优点,广泛应用于电光调制器、光通信、光信息存储、太赫兹等领域02研究内容开发了蒽-马来酰亚胺Diels–Alder(DA)反应以及蒽-五氟苯和苯-五氟苯基的π–π相互作用,以制备高效的二元可交联/自组装树枝状发色团FZL1-FZL4。电场极化取向后,DA反应或π–π相互作用形成共价或非共价交联网络,极大地提高了材料的长期取向稳定性。交联膜FZL1/FZL2的电光系数高达266 pm V−1,玻璃化转变温度高达178°C,自组装膜FZL1/FZL4和FZL3/FZL4由于发色团密度高(3.09–4.02×1020分子cm−3)而达到272–308 pm V−1。长期取向稳定性测试表明,在85°C下加热超过500小时后,极化交联电光膜1:1 FZL1/FZSL2保持了99.73%的初始r33值。极化自组装电光膜1:1 FZL1/FZL4和1:1 FZL3/FZL4在室温下放置500小时后,仍能分别保持原电光系数的97.11%和98.23%以上。该材料优异的电光系数和稳定性表明了有机电光材料的实际应用前景。03研究相关硕士研究生张恋本文的第一作者,刘锋钢副教授和王家海教授为共同通讯作者,广州大学为第一单位。王家海,广州大学化学化工学院教授。团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 、Nano-Micro Letter 、Nano Energy等国际知名期刊。论文链接https://onlinelibrary.wiley.com/doi/10.1002/advs.202304229
  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。 上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。  太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。  美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。  米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。  该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • Meadowlark公司收购CRi空间光调制器业务
    Meadowlark公司收购CRi空间光调制器业务 近日,美国Meadowlark Optics公司与Cambridge Research & Instrumentation(CRi)公司发布联合声明,宣布双方就Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线达成协议。 Meadowlark Optics公司总裁兼CEO Garry Gorsuch先生表示,纳入CRi SLM产品,进一步丰富了美国Meadowlark Optics公司的产品线,充分证明了公司要发展和扩大更多SLM市场的决心,以及公司在空间光调制器生产核心技术方面的信心。作为美国Meadowlark Optics公司在空间光调制器产品线的中国地区独家代理商,昊量光电将一如既往地为客户(包括CRi SLM客户)提供优质的服务与技术支持!关于CRI:CRi公司的P128 SLM和 P640透射式液晶SLM在超快脉冲整形方面具有独特的技术优势,持有多项技术专利。目前CRI公司的SLM产品线已经加入到Meadowlark现有的透射和反射SLM产品线中。 关于Meadowlark Optics公司:2014年7月,Meadowlark收购了Boulder Nonlinear Systems 的商业产品部分,BNS公司的产品包括了SLMs、光学快门,偏振旋转器,可变波片和立体光学镊子系统。截止目前,Meadowlark的SLM产品线已经涵盖了美国原BNS公司的SLM,CRi的的SLM,以及Meadowlark公司原有的SLM生产线。目前Meadowlark公司的液晶空间光调制器的研发技术、生产工艺及拥有的专利技术数量,均处于全球领先地位。 关于上海昊量光电设备有限公司:上海昊量光电设备有限公司作为Meadowlark Optics公司空间光调制器产品线中国地区的独家代理,深耕SLM行业多年。上海昊量光电设备有限公司拥有专业的销售团队及售后技术团队,多年来坚持为客户提供一流的产品和售后服务,在SLM的应用领域得到了客户高度的认可和好评。 调制器 空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器 ? 美国BNS公司(Boulder Nonlinear Systems, Inc.)生产销售适用于各种光电应用的液晶空间光调制器(liquid crystal spatial light modulator),能够根据指定的像素图案对光在空间的分布进行调制,在需要pixel-by-pixel光束控制以优化产品性能的应用领域正扮演着 越来越重要的角色。BNS公司能够提供基于LCoS(liquid crystal on silicon)技术的各种反射式空间光调制器,包括纯相位调制,纯振幅调制,及振幅相位混合调制。其XY(512X512)面阵及 linear(1X4096)线阵空间光调制器被广泛应用于激光光束偏转与可编程相位掩模等热点领域。 BNS公司的空间光调制器具有相位或振幅调制速率高、透过效率高、图形软件操作界面友好等特点。调制器 空间光调制器XY系列偏振无关液晶空间光调制器1x12,288线阵相位型液晶调制器XY系列铁电液晶空间光调制器XY系列向列液晶空间光调制器 专用实验设备 CUBE-便携式光镊系统全息光镊系统
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • 雪景科技推出全球首款无需制冷剂的商业化热调制器
    全二维气相色谱(comprehensive two-dimensional GC, or GC×GC)作为一种全新的色谱分离手段,具有分离能力强,峰容量大,定性有规律等优点。目前已经开始应用在石油化工、环境监测、天然产物分析、食品卫生、生物医药等行业,是复杂样品和痕量样品分析的强大武器。全二维色谱最核心的部件调制器可分为气流式调制器(flow modulator)和热调制器(thermal modulator)。相比气流式调制器,热调制器调制性能更加优异,而且可以直接连接质谱,是当前最主流的调制技术。市场上的热调制器普遍采用气流喷射调制方式,利用液氮或压缩空气以及热空气对色谱炉膛内的调制色谱柱进行冷却和加热,附属设备较多,运行和维护费用较高。加上居高不下的系统价格,使全二维气相色谱技术目前仅限于一些高端实验室和较前沿的科研应用,难以向广大中低端用户和常规检测普及。  雪景科技经过多年的研发,成功推出了全球首款采用半导体制冷元件的商业化固态热调制器(SSM),使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本。由于采用了模块化设计,用户可以方便地将该调制器安装到任意气相色谱平台上,配合专业的全二维色谱数据处理软件,将常规的一维气相色谱升级成全二维气相色谱系统,极大提高现有系统对复杂样品的分析能力。另外,由于该热调制器体积小巧能耗低,可以和其他在线式或者便携式色谱进行联用甚至集成,第一次实现全二维气相色谱在在线监测和野外分析中的应用,为我国日益增长的环境、食品和化工检测需求提供一种全新的技术手段。固态热调制器  雪景科技是一家致力于推广和普及全二维气相色谱技术的公司。主要产品包括全二维气相色谱调制器、全二维色谱数据处理软件、以及全二维气相色谱系统构建和维护、应用解决方案和技术支持等。全二维气相色谱系统
  • 雪景科技携固态热调制器亮相PEFTEC大会
    p  两年一度的石油环境检测技术大会(PEFTEC, Petroleum, Refining, Environment Monitoring Technologies Conference)于2017年11月29-30日在比利时著名港口城市安特卫普召开。本次大会主题包括实验室检测、石油化工产品分析,环境排放监测、便携式与在线采样技术、标准物质与方法、质量控制等。吸引了全球石化炼油、环境检测、以及分析仪器行业的数百名专家学者和仪器厂商参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/dc6bcff0-da1b-47f5-9948-ebbfc43c649f.jpg" style="" title="IMG_20171129_100536_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c619152a-5e82-4c70-9f7f-62dd0963efdd.jpg" style="" title="IMG_20171130_141622_副本.jpg"//pp  雪景科技作为唯一一家中国仪器厂商参加本次大会,展出了公司自主开发的基于半导体制冷技术的全二维气相色谱热调制器SSM1800。全二维气相色谱是一种具有强大分离能力的分析技术,可用于石油化工、环境检测、食品香料等行业中复杂样品的分离分析。相比传统气相色谱,全二维技术可极大提高峰容量和分辨率,一次可同时分析上千种化合物。这项技术在欧洲和北美应用较为广泛,很多实验室都有配备,积累了丰富的实用经验。但传统全二维技术需要使用液氮等制冷剂,运行成本较高,而且附属设备多,操作维护也比较复杂。主要集中于高端实验室。雪景科技开发的SSM1800采用革命性的调制方式,彻底摈弃了制冷剂使用,其独特的设计和方便简捷的操作颠覆了人们对全二维气相色谱技术的认知,吸引了广大参会的色谱应用者前来观看咨询。/pp  在了解了固态热调制器的工作原理和实际效果后,很多用户产生了浓厚的兴趣。他们表示,“SSM1800是一个令人兴奋的产品。它的出现极大简化了全二维分析的操作和维护过程,降低了这项高端分析手段的技术门槛。由于全二维技术在石化和环境行业中针对复杂体系出色的分析效果,固态热调制技术将对今后全二维气相色谱在相关应用中的普及推广起到了非常积极的作用。”/pp  strong雪景电子科技(上海)有限公司简介/strong/pp  雪景科技(J& X Technologies)是一家由海归博士创立的初创公司,致力于新型全二维气相色谱技术的设计、研发、生产、和应用。公司总部设在上海,另外在南京、北京设有分支机构。雪景科技自主开发的全球首款不使用制冷剂的固态热调制器SSM1800于2016年面世,目前已应用于国内多家高校、科研机构和企事业实验室,受到用户的广泛好评。同时雪景科技积极开拓海外市场,目前与一些国外知名分析实验室开展合作,共同推广方便易用的全二维气相色谱技术,实现其在普通实验室和常规分析上的普及应用。/p
  • 滨松推出1550nm光利用率98%的新型空间光调制器
    在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。光通信研究典型光路空间光调制器中的光能损失想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。 当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。155nm处光利用率达98%的新型空间光调制器滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。 目前市面上1550nm附近各主要SLM产品的光利用率对比除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。 滨松1550nm高反射率空间光调制器基本参数一览整体方案提供:InGaAs红外相机+空间光调制器针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。
  • 美国Meadowlark公司推出亚毫秒响应速度的纯相位液晶空间光调制器!
    美国Meadowlark公司推出亚毫秒液晶空间光调制器!目前市面上的纯相位液晶空间光调制器的液晶响应速度均处于50Hz以内(0-2π),无法满足高速调制客户的使用要求。 为满足自适应、通信等领域的用户高速调制的需求,美国Meadowlark公司(原BNS)于2016年推出了目前市面上唯一一款兼具有高液晶响应速度(0-2π)(285Hz-667Hz @ 532nm;166Hz-250Hz@1550nm)、高衍射效率(90-95%)、高填充因子(100%)、的纯相位液晶空间光调制器。 美国Meadowlark Optics公司的超高速液晶空间光调制器采用瞬态向列液晶效应技术(Transient Nematic Effects)、相位环绕技术(Phase Wrapping)、局部校准技术(Regional LUTs),实现了超高速的液晶响应速度。这三项技术均已申请专利。 瞬态向列液晶效应技术超高速液晶空间光调制器与高速型的空间光调制器响应速度对比上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站(http://www.auniontech.com/n/news/v_The_Fastest_Liquid_Crystal_Spatial_Light_Modulator.html)了解更多的液晶空间光调制器产品信息,或直接来电咨询021-34241962。
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 雪景科技发布全二维气相色谱气流调制器产品
    2019年8月23日,雪景科技在第二届全二维色谱技术与应用大会上正式发布了全新的气流调制器 QFM1200 QFM1200系列气流调制器采用雪景科技发明的准止流调制技术(Quasi-stop flow modulation), 通过周期性将进样口直接联通二维柱,(近似)停止一维流动并产生较大的二维流量,将一维馏出物快速释放至二维,实现调制效果。 QFM1200开创了一种全新的气流调制原理,继承了气流调制的优势,包括体积小巧,无需制冷剂,沸点范围宽,运行稳定可靠,重复性好,无需维护等。同时进一步简化了结构和附属设备,省去了目前气流调制技术常用的额外气流控制组件和微流路元件,显著降低了系统复杂度。可以在常规色谱平台上更简便、更快捷、更经济地升级到全二维气相色谱系统。雪景科技同时推出了针对不同应用的多种柱系统配置和优化色谱方法,当方法确定后可长期不间断稳定运行,在常规分析及便携式现场分析领域具有广阔的应用前景。
  • 上海微系统所等开发出可批量制造的新型光学“硅”与芯片技术
    5月8日,中国科学院上海微系统与信息技术研究所研究员欧欣团队在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。相关研究成果以《可批量制造的钽酸锂集成光子芯片》(Lithium tantalate photonic integrated circuits for volume manufacturing)为题,发表在《自然》(Nature)上。随着全球集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切寻找新的技术方案。以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术可以应对这一问题。其中,铌酸锂有“光学硅”之称,近年来备受关注。与铌酸锂类似,欧欣团队与合作者证明单晶钽酸锂薄膜同样具有优异的电光转换特性,在双折射、透明窗口范围、抗光折变、频率梳产生等方面比铌酸锂更具优势。此外,硅基钽酸锂异质晶圆的制备工艺与绝缘体上的硅更接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有应用价值。欧欣团队采用基于“万能离子刀”的异质集成技术,通过氢离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆。进一步,合作团队开发了超低损耗钽酸锂光子器件微纳加工方法,使对应器件的光学损耗降低至5.6 dB m-1,这低于其他团队报道的晶圆级铌酸锂波导的最低损耗值。该研究结合晶圆级流片工艺,探讨了钽酸锂材料内低双折射对于模式交叉的有效抑制,并验证了可以应用于整个通信波段的钽酸锂光子微腔谐振器。钽酸锂光子芯片展现出与铌酸锂薄膜相当的电光调制效率;同时,基于钽酸锂光子芯片,该研究首次在X切型电光平台中产生了孤子光学频率梳,结合电光可调谐性质,有望在激光雷达和精密测量等方面实现应用。当前,该研究已攻关8英寸晶圆制备技术,为更大规模的国产光电集成芯片和移动终端射频滤波器芯片的发展奠定了材料基础。欧欣介绍:“相较于薄膜铌酸锂,薄膜钽酸锂更易制备,且制备效率更高。同时,钽酸锂薄膜具有更宽的透明窗口、强电光调制、弱双折射、更强的抗光折变特性,这种先天的材料优势扩展了钽酸锂平台的光学设计自由度。”上述成果的第一完成单位为上海微系统所。该工作由上海微系统所和瑞士洛桑联邦理工学院合作完成。(论文链接 )钽酸锂异质集成晶圆制备及高性能光子芯片示意图(a)硅基钽酸锂异质晶圆(b)薄膜钽酸锂光学波导制备工艺及波导的扫描透镜显微镜(a)钽酸锂弯曲波导、(b)铌酸锂弯曲波导的色散曲线设计(实线)与实际色散曲线(散点),可观察到铌酸锂波导色散曲线中明显的模式交叉效应(a)薄膜钽酸锂电光调制器;(b)首次实现X切型钽酸锂上的克尔孤子光频梳8英寸硅基薄膜钽酸锂晶圆制备
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 中科院长春光机所在激光光谱气体传感领域取得新进展
    光学频率梳(Optical Frequency Comb,OFC)提供了一把测量频率和时间的标尺,从根本上解决了光频计量问题,极大促进了前沿基础物理研究领域的发展。OFC在频域上表现为一系列相等频率间隔的梳状频谱线,与气体分子作用后进行频域解析,在获得宽光谱覆盖范围的同时亦可获得极高的光谱分辨率,为高精度光谱测量提供了新的技术手段。然而,这种技术往往依赖于高带宽光电探测器和复杂光谱解析技术,而且需要相当长的激光与气体相互作用路径来提高检测灵敏度,严重限制了光频梳光谱在气体传感领域的广泛应用。因此,如何通过原理上的突破,在紧凑结构下便可实现气体传感的宽波段、高分辨、高灵敏探测变得尤为重要。图1 双光梳光热光谱方法概念图近日,中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室王强研究员团队和香港中文大学的任伟教授团队创造性地提出了双光梳光热光谱方法(DC-PTS),首次实现了基于光频梳的气体分子光热光谱测量。DC-PTS的原理如图1所示,采用双光梳光源作为泵浦光源,用其中一列光脉冲在另一列光脉冲的持续时间内等时长移动,周期性调制光脉冲。在频域内,双光梳光源的每一对梳齿的外差拍频可对气体分子吸收实现特定频率的强度调制。由于强度调制引起的光热效应会周期性调制介质折射率,因此当双光梳通过气体介质并被吸收时,介质折射率携有一系列的调制频率。采用光学干涉测量折射率调制并进行傅里叶变换,即可得到对应的宽波段范围内的光谱信息。在原理验证实验中,研究人员采用电光调制器产生了具有天然内禀互相干的双光梳泵浦激光,用一根7cm的反谐振空芯光纤构建了全光纤Fabry–Pérot干涉仪,仅用mW量级的激光便可实现kWcm-2量级的泵浦光强。在空芯光纤28μm的空间尺度内,该光梳可同时以上百个不同频率对气体折射率进行调制,对0.17μL采样体积的气体实现了ppm级的探测灵敏度和超过1THz谱宽的光热光谱测量(如图2所示)。图2 乙炔气体宽波段双光梳光热光谱研究人员所提出的双光梳光热光谱方法不仅具备单波长激光光谱测量的高选择性和快速响应特点,同时光频梳和光热光谱技术的融合使得同时具备宽光谱、高分辨率、极低耗气量和高灵敏度成为可能,为分子探测提供丰富的光谱信息,针对大气监测、深空探测、海洋科学、呼气诊断等不同领域对精密气体探测的需求提供多功能的光谱气体传感技术。该研究成果以Dual-comb Photothermal Spectroscopy为题发表在国际权威期刊Nature Communications,文章链接:https://doi.org/10.1038/s41467-022-29865-6。其中,中科院长光所的王强研究员与香港中文大学的王震博士为该论文的共同第一作者,香港理工大学靳伟教授团队和暨南大学汪滢莹教授团队提供了关键的反谐振空芯光纤器件。该研究得到了国家自然科学基金委项目(62005267、51776179)等的支持。
  • 长春光机所在激光光谱气体传感领域取得新进展
    光学频率梳(Optical Frequency Comb,OFC)提供了一把测量频率和时间的标尺,从根本上解决了光频计量问题,极大促进了前沿基础物理研究领域的发展。OFC在频域上表现为一系列相等频率间隔的梳状频谱线,与气体分子作用后进行频域解析,在获得宽光谱覆盖范围的同时亦可获得极高的光谱分辨率,为高精度光谱测量提供了新的技术手段。然而,这种技术往往依赖于高带宽光电探测器和复杂光谱解析技术,而且需要相当长的激光与气体相互作用路径来提高检测灵敏度,严重限制了光频梳光谱在气体传感领域的广泛应用。因此,如何通过原理上的突破,在紧凑结构下便可实现气体传感的宽波段、高分辨、高灵敏探测变得尤为重要。图1 双光梳光热光谱方法概念图近日,中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室王强研究员团队和香港中文大学的任伟教授团队创造性地提出了双光梳光热光谱方法(DC-PTS),首次实现了基于光频梳的气体分子光热光谱测量。DC-PTS的原理如图1所示,采用双光梳光源作为泵浦光源,用其中一列光脉冲在另一列光脉冲的持续时间内等时长移动,周期性调制光脉冲。在频域内,双光梳光源的每一对梳齿的外差拍频可对气体分子吸收实现特定频率的强度调制。由于强度调制引起的光热效应会周期性调制介质折射率,因此当双光梳通过气体介质并被吸收时,介质折射率携有一系列的调制频率。采用光学干涉测量折射率调制并进行傅里叶变换,即可得到对应的宽波段范围内的光谱信息。 在原理验证实验中,研究人员采用电光调制器产生了具有天然内禀互相干的双光梳泵浦激光,用一根7cm的反谐振空芯光纤构建了全光纤Fabry–Pérot干涉仪,仅用mW量级的激光便可实现kWcm-2量级的泵浦光强。在空芯光纤28μm的空间尺度内,该光梳可同时以上百个不同频率对气体折射率进行调制,对0.17μL采样体积的气体实现了ppm级的探测灵敏度和超过1THz谱宽的光热光谱测量(如图2所示)。图2 乙炔气体宽波段双光梳光热光谱 研究人员所提出的双光梳光热光谱方法不仅具备单波长激光光谱测量的高选择性和快速响应特点,同时光频梳和光热光谱技术的融合使得同时具备宽光谱、高分辨率、极低耗气量和高灵敏度成为可能,为分子探测提供丰富的光谱信息,针对大气监测、深空探测、海洋科学、呼气诊断等不同领域对精密气体探测的需求提供多功能的光谱气体传感技术。 该研究成果以Dual-comb Photothermal Spectroscopy为题发表在国际权威期刊Nature Communications,文章链接:https://doi.org/10.1038/s41467-022-29865-6。其中,中科院长光所的王强研究员与香港中文大学的王震博士为该论文的共同第一作者,香港理工大学靳伟教授团队和暨南大学汪滢莹教授团队提供了关键的反谐振空芯光纤器件。该研究得到了国家自然科学基金委项目(62005267、51776179)等的支持。
  • HORIBA前沿用户报道 | 将传统光信号处理速度提升了近10倍,浙江大学做到了
    作者 | 虞绍良光调制是现代光学技术中的基本环节,通过光与材料的相互作用,实现对光束的调控,在光通信、超快激光和光传感领域有广泛的应用。目前传统的方式是通过电学方法来提高信息处理速度,但快也只能在20~30个皮秒内完成信息处理。基于此背景,浙江大学童利民教授研究组与复旦大学刘韡韬教授等合作,另辟蹊径,以二维材料为基础,采用全光调制,将处理时间提升至2~3个皮秒内,达到传统方法的近十倍速度。具体如何实现?请跟随我们的脚步一起来探究吧。1石墨烯全光调制技术,实现光信号处理速度提升近10倍首先我们了解一下全光调制的基本原理:利用不同材料的非线性效应, 实现一束光对另外一束光强度和相位等物理量的调控。具体来看,研究组将脉冲光和连续光同时作用于石墨烯,在脉冲光的激发下,石墨烯中载流子的跃迁和弛豫过程,会导致导带电子的耗尽和价带能级的填充。因为泡利阻塞,会形成连续光吸收的减少,也就实现了脉冲光对连续光进行强度调控。基于二维材料的光调制的基本原理与响应时间范围石墨烯的线性能带结构使该过程发生在2~3个皮秒内,相比传统电光调制,光信号的处理速度提升了近十倍。2石墨烯超快全光相位调制,实现更高调制效率和更低光损耗率研究中,脉冲光的激发不仅会影响石墨烯对光的吸收,也会改变其折射率,导致连续光相位的移动。为实现更高的调制效率和更低的光损耗率,在基于石墨烯直接光强度调制的基础上,研究人员进一步提出用脉冲光调控连续光相位的构想(即石墨烯超快全光相位调制)。实际实验中,当连续光相位移动时,研究人员观察到连续光强度发生了显著变化。基于石墨烯的全光相位调制,在保持超快速响应的基础上,同时还可以将器件的调制深度大幅提升,插入损耗大幅降低, 这样很好地克服了直接强度调制中这两个参数之间互相制约的问题。相关研究已发表了综述论文。论文中,作者不仅介绍了石墨烯全光调制研究工作,也对二维材料在光调制应用中的发展现状、优势和不足进行了系统分析。相比传统的体材料 ,二维材料由于其特殊的结构尺寸和光学性质,在响应时间、工作波段和高密度集成等方面有着明显的优势。但同时也存在二维材料的线性吸收、热效应等因素,限制了其在大功率器件上的应用,还有待未来的研究工作解决。该系列实验过程中,HORIBA iHR 320光谱仪主要用于对石墨烯转移过程中的层数判断和精确定位。如果您也想了解相关产品信息,可通过文末左下角“阅读原文”提交信息查看相关产品资料。浙江大学童利民教授课题组浙江大学童利民教授课题组长期致力于微纳光子学研究,在微纳尺度光场的产生、约束和调控等方向深耕多年,以一维波导为核心,发展了微纳谐振腔、激光器、调制器、传感器等多种光器件。二维材料超快光调制为课题组近年的研究方向之一。研究组在该方向的系列论文发表于Nano Lett. 14, 955-959 (2014)、Light: Science & Applications 4, e348 (2015)、Optica 3, 541-544 (2016)、Adv. Mater. 29, 1606128 (2017)。该工作得到了科技部、国家科学基金委的资助。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 波长调制光谱(WMS)技术简介
    可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy, 即TDLAS)是一种红外吸收光谱分析技术,利用分子“选频”吸收形成吸收光谱的原理,实现高分辨率的分子浓度定量分析技术。TDLAS能够进行原位非接触式测量,并且具有高精度、高选择性等特性,结合波长调制光谱(WMS)和锁相放大等抑制噪声的技术,可以实现ppm甚至ppb量级的痕量气体分子浓度测量。 之前我们已经介绍过锁相放大的工作原理和其在TDLAS中的应用,今天小编就跟大家聊聊WMS背后的科学还有实际的应用方式吧! TDLAS基本原理及Beer-Lambert定律 了解WMS技术之前,我们先简单复习一下TDLAS的原理:基本方法是通过调谐特定的半导体激光器波长,扫过被测气体分子的特定吸收光谱线,被气体吸收后的透射光由光电探测器接收,经锁相放大模块提取透射光谱的谐波分量,反演出待测气体浓度信息。 为了确定与于目标分子浓度相关的吸收,必须将透射光强度I与入射光强度I0进行比较。这个定量分析的依据来自Beer-Lambert定律: 其中L为光程,α(v) 是由入射光波长和样品中目标分子浓度同时决定的吸收系数。TDLAS技术通过使用Beer-Lambert定律分析吸收光谱的数据,便可以获得分子浓度信息。 图一 TDLAS技术示意图 直接吸收光谱(DAS) 接着,我们来看一下直观的直接吸收光谱(Direct Absorption Spectroscopy, DAS)技术。顾名思义,DAS技术通过检测入射光和透射光强度直接获得光吸收量(如图二),并根据两个信号的比例直接推断出气体特性,典型的DAS方法得到的信号如图三。 图二 DAS示意图:调谐激光器波长扫过被测气体分子的特定吸收光谱线,在吸收峰可以直接看到的投射光强度衰减 图三 直接吸收光谱(DAS)技术的典型透射光强度信号 图三也显示了DAS的潜在问题,其相对简易直接的性质使得DAS对许多噪声源敏感。各种高强度的噪声可能源于激光强度波动、激光波长波动(如果激光波长在吸收曲线内波动,也会导致透射光的强度波动)、探测器噪声、散粒噪声(光子噪声)和其他技术噪声。如果吸收谱线足够强,即吸收物质的浓度足够高、提供足够的信噪比 (SNR),则可以使用DAS进行准确测量。然而,检测低浓度的气体分子需要进一步减少吸收接收信号中的噪声,WMS就是一种在TDLAS技术中广为应用来抑制噪声的方法。 波长调制光谱(WMS) WMS能够改善DAS在信噪比较差的环境中的局限性。将入射激光的波长用一个相对较高频率的载波(通常约为10 kHz)进行调制(如图四),并且将吸收光谱信号以调制频率或该频率的谐波进行解调评估分析,获取特异但有规律可循的谐波波形,从而获取分子浓度信息。由于噪声的影响主要存在于低频,例如二极管的1/f噪声或机械噪声,WMS技术将吸收光谱的检测转移到到了信噪比较优的高频,以此达到抑制噪声的目的。 图四 WMS示意图:调制入射激光的波长至较高频率,将接收端信号以调制频率的谐波进行解调分析 WMS的实现是通过调制可调谐半导体激光器的注入电流,以达到对激光输出的波长和强度的高频调制,并将吸收信号移到了更高的频率。其中,TDLAS系统的线性响应(激光器的线性强度调谐)以调制频率的一次谐波为中心,系统的非线性响应(例如吸收和非线性强度调谐)则反应在调制频率的二次及更高次谐波,因此可以透过对高次谐波信号的分析来提取光谱吸收信息。一般来说,二次谐波分析足以满足大多数的气体分析要求。 要提取并分析在已知载波频率的高频信号,锁相放大器是一个十分强大的工具。利用锁相放大器可以用来创建指定频率的带通滤波器,如果带宽足够窄,便能抑制宽带噪声,所以用于调制的频率必须避开主要的噪声频率。(点击这里了解锁相放大器在TDLAS系统中的功用) 除此之外,WMS技术还提供了另外一种选择,能够通过频分复用的方法同时发射传播多个不同波长的激光。多个激光以不同的频率调制并收集在单个探测器上,谨慎选择的调制频率能够尽量避免谐波重叠或拍频干扰,最终每个激光信号都可以由独立的锁相放大通道器提取。利用昕虹光电数字电路实现的双通道锁相放大器,使得实现这样的一个多组分分子一体化探测系统变得经济而简单,实现对多个目标分子(如多种温室气体N2O,CH4,CO2等)同时进行测量。 参考文献:1. “Absorption spectroscopy”, http://www.atomic.physics.lu.se/fileadmin/atomfysik/Education/Elective_courses/FAF080_AtomoMolekylSpektr/Lab_absorption_spectroscopy_2017.pdf2. Christopher Lyle Strand, 2014, ‘Scanned Wavelength-Modulation Absorption Spectroscopy with Application to Hypersonic Impulse Flow Facilities’, PhD thesis, Standford University, USA.
  • Nat. Commun. 双光梳光热光谱方法
    激光光谱气体传感技术在气候变暖、火星探测、海洋勘探、生物医疗等诸多领域具有举足轻重的地位,全球环境、生态以及能源问题的不断恶化,对光学气体传感的多物质、甚至未知成分的分析能力提出了更高要求。然而,由于缺少理想的相干光源,难以在宽光谱波段范围内快速准确地获取精细光谱信息。光学频率梳(Optical Frequency Comb,OFC)提供了一把测量频率和时间的标尺,从根本上解决了光频计量问题,极大促进了前沿基础物理研究领域的发展。OFC 在频域上表现为一系列相等频率间隔的梳状频谱线,与气体分子作用后进行频域解析,在获得宽光谱覆盖范围的同时亦可获得极高的光谱分辨率,为高精度光谱测量提供了新的技术手段。然而,这种技术往往依赖于高带宽光电探测器和复杂光谱解析技术,而且需要相当长的激光与气体相互作用路径来提高检测灵敏度,严重限制了光频梳光谱在气体传感领域的广泛应用。双光梳光热光谱为了突破该技术瓶颈,来自中国科学院长春光学精密机械与物理研究所的王强研究员团队和香港中文大学的任伟教授团队创造性地提出了双光梳光热光谱方法(DC-PTS),首次实现了基于光频梳的气体分子光热光谱测量。研究成果以 Dual-comb Photothermal Spectroscopy 为题发表在国际权威期刊 Nature Communications。其中,中科院长光所的王强研究员与香港中文大学的王震博士为该论文的共同第一作者,香港理工大学靳伟教授团队和暨南大学汪滢莹教授团队提供了关键的反谐振空芯光纤器件。图1:双光梳光热光谱方法概念图DC-PTS 的原理如图1所示,采用双光梳光源作为泵浦光源,用其中一列光脉冲在另一列光脉冲的持续时间内等时长移动,周期性调制光脉冲。在频域内,双光梳光源的每一对梳齿的外差拍频可对气体分子吸收实现特定频率的强度调制。由于强度调制引起的光热效应会周期性调制介质折射率,因此当双光梳通过气体介质并被吸收时,介质折射率携有一系列的调制频率。采用光学干涉测量折射率调制并进行傅里叶变换,即可得到对应的宽波段范围内的光谱信息。图2:乙炔气体宽波段双光梳光热光谱在原理验证实验中,研究人员采用电光调制器产生了具有天然内禀互相干的双光梳泵浦激光,用一根 7 cm 的反谐振空芯光纤构建了全光纤 Fabry–Pérot 干涉仪,仅用 mW 量级的激光便可实现 kWcm⁻² 量级的泵浦光强。在空芯光纤 28 μm 的空间尺度内,该光梳可同时以上百个不同频率对气体折射率进行调制,对 0.17 μL 采样体积的气体实现了 ppm 级的探测灵敏度和超过 1 THz 谱宽的光热光谱测量(如图2所示)。研究人员所提出的双光梳光热光谱方法不仅具备单波长激光光谱测量的高选择性和快速响应特点,同时光频梳和光热光谱技术的融合使得同时具备宽光谱、高分辨率、极低耗气量和高灵敏度成为可能,为分子探测提供丰富的光谱信息,针对大气监测、深空探测、海洋科学、呼气诊断等不同领域对精密气体探测的需求提供多功能的光谱气体传感技术。前景展望随着光学微腔、量子级联激光器等先进光梳光源和中红外空芯光纤技术的迅速发展,双光梳光热光谱方法有望进一步拓展到气体分子的中红外指纹光谱带,同时结合光学腔增强、高性能相位解析技术,可以实现更强的气体分子探测能力和更小的集成尺寸,为基于激光光谱的前沿科学探索和工程应用研究提供前所未有的可能性。文章信息Wang, Q., Wang, Z., Zhang, H. et al. Dual-comb photothermal spectroscopy. Nat Commun 13, 2181 (2022). https://doi.org/10.1038/s41467-022-29865-6 该研究得到了国家自然科学基金委项目(62005267、51776179)等的支持。
  • 科学岛团队在中红外激光高效率铌酸锂声光调Q技术上取得进展
    近日,中科院合肥研究院健康所医用激光技术实验室江海河研究员课题组与中电科集团合作,在中红外波段声光调Q技术研究方面取得重要进展:首次实现了铌酸锂 (LiNbO3) 晶体声光开关及其在2.79 μm Er,Cr:YSGG激光器中的高效率调Q输出。相关成果已在国际光学期刊Optics Letters上发表。   声光调制器作为调Q开关广泛的应用于激光器来获得高重频、窄脉宽激光输出。虽然3 μm波段的几种声光Q开关已取得初步成果,但其中声光介质和换能器通常是不同的材料,这对器件的制作工艺提出了较高的要求,也增加了超声传播过程中的能量损失。因此,用声光介质和换能器相同的材料制作的性能优良、制作工艺简单的调制器是必要的。   铌酸锂晶体是一种传统的多功能晶体。近年来,极低光学损耗、光电功能丰富的铌酸锂薄膜光子学器件得到了迅速发展,铌酸锂有望在集成光子学领域替代硅材料,为突破通信领域功耗大、速度慢的瓶颈性问题提供解决方案。自1937年发现铌酸锂晶体以来,虽然它具有良好的声光特性,长期以来都被作为换能器材料,但是一直未能实现块状晶体的激光声光调Q开关。本研究实现了声光介质和换能器同质和一体化,即能简化制作工艺,降低辅助成本,也能降低超声能量的损失,使得铌酸锂声光Q开关的衍射效率达到57% (图1),且铌酸锂晶体具有较高的抗损伤阈值(200 MW/cm2)。   自主研制的2.79 μm Er,Cr:YSGG声光调Q激光器验证了所设计的铌酸锂声光Q开关具有良好的声光调Q性能 (图2),在50 Hz的高重复频率下得到了脉冲能量为17.6 mJ、脉冲宽度为55.2 ns、峰值功率为319 kW的激光输出,研制的Er,Cr:YSGG 铌酸锂声光调Q激光器能够实现稳定的、高峰值功率的激光输出。   本研究表明,铌酸锂晶体具有较高的衍射效率、较高的抗损伤阈值和良好的声光调Q性能,是3-5μm中红外波段高功率激光器的新型声光开关。同时,本研究为探索同质材料直接键合成为一体化声光器件的可能性迈进了一步。图1. 铌酸锂声光Q开关的衍射效率随驱动功率的变化曲线图2. PRF=50 Hz时,脉冲能量、脉冲宽度随泵浦能量的变化曲线
  • 昊量光电2024年慕尼黑上海光博会邀请函
    慕尼黑上海光博会将于2024年3月20-22日在上海新国际博览中心(上海市浦东新区龙阳路2345号)举办,届时我们将携前沿光电产品及技术解决方案在W4馆4420亮相,展品涵盖生物显微、半导体检测、激光医疗、光纤传感、精密光谱、机器视觉、偏振测量、光束匀化、光束偏转等热门应用领域,本次慕尼黑上海光博会除了前沿技术产品亮相,还有超赞的干货演讲等活动,诚邀各位新老客户拨冗莅临展位洽谈交流!W4馆4420 主题演讲日程预览 展位活动详情 展品应用速递 PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。在线椭偏仪,在线膜厚测量仪,在线拉曼光谱成像,在线荧光寿命成像,在线荧光光谱成像,自动化光电流成像,超分辨光学微球显微镜、锁相放大器、激光干涉仪,高频激振器,TDTR,266nm窄线宽激光器,波前传感器,激光光束分析仪,激光位置和指向稳定系统,多通道声光调制器AOMC,声光偏转器AODF,非球面匀化镜。2940nm铒激光器,2020nm铥激光器,激光光束分析仪,非球面匀化镜,调温式热封机VTS,混频器,激光传能光纤,激光功率计,生物电阻抗断层成像仪,医用激光光纤(紫外-中红外),医用光纤温度传感器,医用光纤压力传感器 温度解调系统,时域红外光谱仪,扫频激光器,法珀腔医疗压力传感器。PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。共聚焦拉曼光谱仪,共聚焦荧光寿命成像系统,共聚焦荧光成像,超导探测器、单光子计数器、激光稳频器、超稳腔、窄线宽稳频激光器、锁相放大器、任意波形发生器、偏频锁定模块、超快飞秒激光器、单光子相机、光刻机,单腔双光梳激光器,光纤光谱仪,拉曼光谱仪,近红外光谱仪,多光谱相机、高光谱相机,光纤探头,激光光束分析仪,PPLN晶体,声光偏转器AOD,声光调制器AOM,非球面匀化镜,激光位置和指向稳定系统,非线性晶体,F-theta场镜,扩束镜,隔震平台。二维光谱成像测量系统,多光谱相机、高光谱相机、热成像相机,变焦镜头,在线颜色测量,二维光谱颜色测量,线激光3D相机,结构光3D相机,光场相机,高光谱相机,3D傅里叶显微成像仪,光纤传感器。偏振态测量仪(三款),偏振相,锁相放大器,小尺寸宽带偏振态测量仪,高精度偏振(斯托克斯量)测量系统,光弹调制器,托卡马克专用光弹调制器,偏振分析专用锁相放大器,成像型穆勒矩阵测量系统,高精度波片相位延迟测量系统,光弹性系数测量仪,桌面主动隔振台。声光偏转器,电光偏转器,电光偏转系统,KTN电光偏转器,液晶偏振光栅,大角度闭环微型振镜,MEMS扫描镜,压电纳米平移台,液晶空间光调制器,主动隔振台,光纤偏振态测量仪,中空回射器。 昊量展位指引 关于我们
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?  如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。  为什么辉光放电光谱技术受青睐?  辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。  辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。  其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。  另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。  辉光放电光谱的工作原理  辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。辉光放电源的结构示意图,样品作为辉光放电源的阴极  整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。  辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。  氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。  光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。  如何进行定量分析?  和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。  下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。  想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。  辉光放电光谱的主要应用  除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。  1. 半导体-LED芯片  如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。  辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。  2、太阳能光伏电池  太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。  3、锂电池  锂离子电池的正极材料是氧化钴锂,负极是碳。  锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。  同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。  辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。  辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。  总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。  关于HORIBA 脉冲射频辉光放电光谱仪  HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。  脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。  (本文由HORIBA 科学仪器事业部提供)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制