当前位置: 仪器信息网 > 行业主题 > >

纳米沉积喷墨打印系统

仪器信息网纳米沉积喷墨打印系统专题为您提供2024年最新纳米沉积喷墨打印系统价格报价、厂家品牌的相关信息, 包括纳米沉积喷墨打印系统参数、型号等,不管是国产,还是进口品牌的纳米沉积喷墨打印系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米沉积喷墨打印系统相关的耗材配件、试剂标物,还有纳米沉积喷墨打印系统相关的最新资讯、资料,以及纳米沉积喷墨打印系统相关的解决方案。

纳米沉积喷墨打印系统相关的方案

  • 用于喷墨打印的具有长期分散稳定性的 Cr2O3 基油墨的一步制备
    功能材料的喷墨打印在广告、OLED 显示器、电子印刷和其他需要高精度、无掩模、直写沉积技术的专业用途中显示出广泛的应用。然而,分散在油墨中的功能材料的沉降风险限制了其进一步实施。氧化铬 (Cr2O3) 是一种高性能耐火、耐磨、耐腐蚀无机材料,可用于模拟绿叶的太阳光谱反射特性以达到伪装目的。应用以 Cr2O3 为颜料的喷墨打印技术可以显着简化从设计到涂覆新迷彩图案的过程并降低成本。然而,Cr2O3 的喷墨打印却显见报道,因为基于金属氧化物颗粒的墨水分散稳定性差,容易结块和沉淀,导致打印时喷嘴堵塞。 在颜料油墨制备的步骤中,颜料被研磨至纳米级并使用如树脂、分散剂等助剂分散到溶剂中(自上而下的方法)。该类油墨沉降的风险主要是由于固体颜料颗粒在系统中是人为分散而不是原位生成造成的。为了克服这个问题,该论文提出了自下而上制备颜料油墨,通过控制生长反应,从而可以一步原位制备具有长期分散稳定性的油墨。
  • VSParticle 干法气溶胶纳米打印技术,加速材料研发进程
    增材制造的方法,如纳米打印可以大大简化高比表面积的纳米多孔薄膜的制备工艺。这种薄膜材料的应用很多,包括电催化、化学、光学或生物传感以及电池和微电子产品制造等。因此,VSParticle 提出了一种基于气溶胶的直写方法。VSP-P1 纳米印刷沉积系统能够实现具有独特性能的无机纳米结构材料的打印直写。
  • 天津兰力科:氧化铝模板中直流电沉积镍纳米线
    提出了一种在多孔阳极氧化铝PAA (porous anodic alumina)模板中直流电沉积镍纳米线的新方法。以PAA模板为阴极,在氯化钾溶液中通过电解腐蚀阻挡层,利用极化曲线研究了PAA模板中氢离子和镍离子的电化学行为。用扫描电镜表征了PAA、镍纳米线的形貌 用X射线衍射表征了纳米线的结构。结果表明,腐蚀阻挡层后的PAA伏安图上出现1个阳极氧化峰,镍离子在PAA模板中于- 110 V发生电沉积。扫描电镜显示镍纳米线直径为70~80 nm,与PAA的孔径相符。XRD表征证明了所制得的纳米线阵列为(111)取向的面心立方结构镍。通过电解腐蚀阻挡层后,能够直接在PAA中使用直流电沉积镍纳米材料。
  • 天津兰力科:模板法电化学共沉积Ni2Mo 合金纳米线的研究
    使用多孔阳极氧化铝模板, 电沉积制备了Ni2Mo 合金纳米线。用扫描电镜(SEM) 和表面能谱(XPS) 表征沉积物形貌和组成, 用伏安法研究了Ni2Mo 合金纳米线的沉积条件及催化性能。结果表明, Ni2Mo 合金纳米线的直径在20~30 nm 之间。Ni2Mo 共沉积的伏安图上在- 1. 4 V(vs AgPAgCl) 左右出现一个扩散电流平台。光电子能谱(XPS) 表明, Ni2Mo 合金纳米线的共沉积电位出现在- 1. 4 V 以后, 大于这个电位钼以低价氧化物存在。Mo2Ni 离子浓度比大于2 时扩散电流平台消失。柠檬酸盐浓度达到2~3 倍镍盐浓度时, 扩散电流平台趋于稳定。在较优条件下电沉积的Ni2Mo 合金纳米线显示较高的析氢催化活性。
  • 纳米粒子光刻需要高度有序的粒子沉积
    考虑使用纳米微球光刻技术的人都会很快注意到制备胶体掩膜的一些问题。乍一看,似乎在固体基底上获得纳米颗粒只是将固体浸入到纳米粒子溶液中。对于某些应用来说,这种做法可能是正确的,但对于纳米微球的光刻技术来说,这几乎是不可能成功的。如果要想形成均匀的单层纳米颗粒,则需要一个可控性更好的制备技术。LB膜沉积技术则是首选的方法。
  • 原子层沉积 ALD 在纳米材料方面的应用
    在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。
  • 用作薄膜传感器的MsM钴铁氧体油墨的分散解决方案
    目前,通过沉积和光刻技术制造的MsM具有成本高和易产生废物的局限性,所以有必要开发一种性价比高的制造方法。我们将制得的油墨经过喷墨打印、干燥和烧结后,得到具有理想几何形状的紧凑可靠MsM钴铁氧体薄膜(图1)。而制备薄膜的关键在于MsM纳米粒子墨水的有效分散。但由于纳米粒子具有高的表面能,极易团聚,采用搅拌机等设备没法解决纳米粒子的分散。所以我们采用TRILOS三辊机来分散MsM油墨。
  • 纳米颗粒与磁控溅射综合系统在1纳米颗粒膜制备中的应用
    日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。
  • 干法膜电极:打印纳米催化剂,制氢成本大幅降低
    VSParticle 公司提出一种新型的工艺采用干法电极技术,直接将催化剂颗粒进行涂布,从而避免引入液体溶剂和大量粘结剂。该工艺通过放电等离子体在流动的气氛中形成 0-20nm 的初始气溶胶颗粒,再利用冲压沉积原理配合打印模块进行气溶胶直写沉积。
  • 电泳沉积制备临床应用电极纳米涂层的机械稳定性
    涂层的机械稳定性对于医疗批准和临床应用至关重要。在这里,电泳沉积(EPD)是一种多用途的涂层技术,先前已显示其可显著降低脑刺激铂电极的术后阻抗。然而,前人很少系统地研究所得涂层的机械稳定性。在这项工作中,对Pt基底上由激光生成的铂纳米颗粒(PtNP)的脉冲直流电泳沉积,进行3D神经电极检测,并使用琼脂糖凝胶、胶带和基于超声的应力测试检查体外机械稳定性。EPD生成的涂层在琼脂糖凝胶测试以及体内刺激实验代表模拟大脑环境中高度的稳定。通过循环伏安法,对NP改性表面的电化学稳定性测试,多次扫描可以提高涂层稳定性,这可以通过高侵入性胶带应力测试后更高的信号稳定性来证明。通过激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析大鼠神经刺激后的脑切片。测量显示,与未涂覆的对照相比,涂覆电极刺激区域附近的Pt水平更高。尽管植入电极附近的局部浓度升高,但发现的总铂质量低于系统毒理学相关浓度。大鼠脑内4周DBS后Pt的生物分布:a)用无涂层和PDC涂层电极刺激的脑切片的光学显微镜和LA-ICP-MS叠加图像;和b)注射Pt-NPs的脑切片的光学显微镜和LA-ICP-MS叠加图像。比例尺为2mm。在叠加图片中,红色信号表示磷的强度,绿色信号表示铂的浓度。
  • AN710AccuSizer780系列仪器在喷墨墨水粒度检测中的应用
    喷墨墨水的色素是在溶液中呈胶态分布的。色素的一定分散对避免沉降、不稳定或结块引起的喷墨失败都是很有必要的。为了确保理想配比并生产,我们需要一个可靠的方法来确定最终产品的粒度分布。PSS的AccuSizer系统——单颗粒计数原理(SPOS)是一个理想的工具,它可以测出喷墨墨水是否包含任何可能构成阻塞喷射器、导致性能降低等风险的粒子。本应用阐述了AccuSizer在解决喷墨墨水制造业方面问题的一些例子。
  • 等离子增强原子层沉积系统沉积高均匀性和高保型性介电薄膜
    ★超薄,纳米尺度介电薄膜与金属/金属性薄膜是MEMS/NEMS器件、其它IC部件,传感器,光学器件或催化剂关键部件★IC业中的高精度30器件, 如高深宽比沟槽与穿透性硅通孔, ALO工艺是唯可以在这些器件上实现高保形,平整,无缺陷,无针孔的薄膜材料。★可规模化生产的ALO工艺, 几种金属/金属性材料与介电材料: Pt, Ir, Ru, Cu, Ag, Au, TiN, AIN, TiAIN, ln203与Al203.★沉积工艺可选:传统热ALO或者等离子增强ALD。
  • 原子层沉积技术——精准、逐层“3D打印”催化剂!
    原子层沉积技术(ALD),亦称原子层外延技术(ALE),是一种基于有序、表面自饱和反应的化学气相薄膜沉积技术。由于ALD沉积的绝大多数金属和氧化物材料本身就是某些反应中的催化剂,因此ALD在催化领域的应用也很早就引起了人们的关注。此外,作为一种自下而上的新方法,ALD独有的三维共形性、高均匀性、原子级精准控制和低生长温度等特点,如同“3D”打印一般实现了高均一性催化剂的精细可控合成。
  • 颜料油漆墨水中纳米级颗粒离心沉淀
    颜料、油漆、墨水中微小颗粒的平均直径在数纳米至微米之间,它们的密度都比较低,用一般的(RCF在数万级的)高速离心机很难得到满意的结果。在进行这些样品沉淀材料的分析研究中,一般容量都不会很大,日立微量超速离心机CS150FNX(落地)及CS150NX(台式)是最好的选择。
  • 天津兰力科:铜纳米线阵列的模板组装
    采用电解法溶解多孔阳极氧化铝( PAA) 模板的阻挡层,用直流电沉积的方法在模板中组装了铜纳米线阵列。分别用扫描电镜和X 射线衍射表征铜纳米线阵列的形貌和晶体结构,用电化学法表征了铜纳米线阵列的电催化性能。结果表明,PAA 去阻挡层后,伏安图上出现一个阳极氧化峰。恒电位沉积的铜纳米线直径为22nm ,沿(111) 晶面择优取向。铜纳米线阵列电极能催化亚硝酸根的还原,其催化电流比本体铜电极上大2 倍,峰电位正移80mV 。纳米铜阵列电极可用于亚硝酸盐的电化学检测。
  • 模版法合成金银壳核纳米线及电化学表征
    采用氧化铝模版由交流电沉积法制备纯银纳米线,然后采用氧化还原法,在纳米线表面包裹金壳层,得到具有壳核结构的银金复合纳米线! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • BUCHI纳米喷雾干燥仪B-90在纳米药物悬浮液中的应用
    在医药领域中,通过化学合成方法来制备活性药物是药物研发的最常用方法。但通常这些合成药物大约有60%存在溶解性和低生物利用度问题而限制了药物的使用。如抗精神病药物Aripiprazole(阿立哌唑纳)是一种弱碱性物质,药效好,但为pH依赖性溶解,一般口服制剂难以发挥疗效。本研究采用纳米沉降/酸碱中和均质法制备aripiprazole纳米悬浮液,通过B90纳米喷雾干燥技术制备纳米颗粒,提高了aripiprazole药物的溶出度和口服生物利用度。纳米微粒极大的增加了药物的溶解性能,采用B90制备的纳米颗粒粒径分布均一,多分散指数(polydispersion index)值为0.25,平均粒径为357nm
  • 纳米颗粒光俘获层对薄膜太阳能电池的优化
    使用纳米颗粒(NPs)制备薄膜镀层材料日益受到了人们的重视,并且被广泛应用到如显示器、传感器、医疗器械、储能和能量收集材料等各种现代产品和研究领域。纳米粒子的合成方法已经广为人知,但为了能够在上述应用中使用它们,需要将纳米颗粒从溶液相转移到基材表面。为此,需要一种可控的沉积方法。附件白皮书回顾了在气-液界面处形成纳米颗粒单层膜的方法以及使用Langmuir-Blodgett和Langmuir-Schaefer方法制备薄膜后,将其转移到固体基底上的方法。如果您对如何沉积单层纳米球感兴趣,请下载附件的白皮书。
  • 打印用墨水粘度测定
    3D 喷墨打印技术是根据喷墨打印机的工作原理,在数字信号的激励下使喷嘴腔室中的液体(成型材料)在瞬间形成液滴,并以一定的速度和频率从喷嘴中喷出,并按指定路径逐层固化成型,zui终得到 3D 物体的快速成型技术。3D 打印成型技术具有成型速度快、设备操作简单、适合办公室环境、可多相实体结构成型等特点,相对于一般意义上的快速成型方法,具有精度高、周期短、设备针对面宽和环境友好等特点,在快速建模,医药组织工程,生物制药等领域,已显示出强大的发展潜力。
  • GI-SAXS研究FeO膜的纳米结构
    沉积在硅基底的FeO纳米颗粒GI-SAXS的测量可以通过SAXSess mc² 新的GI-SAXS样品台来实现。
  • 粉末原子层沉积(PALD)技术与吸入式疫苗开发
    有效的包衣涂层可以防止疫苗的活性成分受到环境因素影响,同时实现缓释功能,延长疫苗 的有效时间。制备涂层的方法有很多,但粉末原子层沉积技术(简称 PALD)作为一种精准 可控的纳米包覆技术,近年来被广泛用于新能源,催化,金属粉末的界面改性应用中,但鲜 有应用于药物粉末的研究。
  • 油墨中纳米颗粒的表征方法
    当表征某一特定过程种颗粒体系的特性时不仅需要考虑到多方面因素的影响还要考虑到最终的使用。表征颗粒体系时必须要包括但不仅仅局限于以下几点:粒径分布、表面积、孔隙率、形状和颗粒的带电性。实际上,将所有的表征参数结合起来可以让我们对颗粒有更清晰的认识。通过粉体流动性、分散性、药物疗效、干燥涂层效果、悬浮稳定性、油墨质量、金属粉末成粉及金属框架强度、压片问题、污染物识别、颗粒堆积行为、颗粒聚集、反射效率、球度和注塑成型等特性均可以对颗粒特性进行描述和表征。上述表征参数适合所有的材料,但本文我们会以油墨中的纳米颗粒作为例子进行分析(ISO中对与纳米颗粒的定义为:小于100nm的颗粒,但在本文中讨论的粒径小于1000nm)。油墨生产环节主要包括:化学混合、胶体稳定、研磨和稀释,从早期的研发到最后的产品质量,各个环节均有严格的质量控制。油墨的生产包含多个过程,其中每一个过程都会对颗粒特性产生影响进而最终影响油墨的质量。市面上有很多种油墨,包括胶印油墨、平版印刷油墨、喷墨印刷油墨、柔印油墨和凹版印刷油墨等。虽然油墨种类很多生产过程大体相似,下面中总结了油墨各个生产过程中颗粒特性测试的重要性。需要注意的是,许多产品的生产过程都过包括下述提到的步骤。对于生产过程控制、质量控制和研发来讲可使用一种或多种分析方法。
  • 电化学原子力显微镜(EC-AFM)实时监测铜在金表面的电沉积
    近年来,对电化学过程的理解如电沉积(也称电镀)在各种科学技术中的作用变得非常凸显,包括括微电子、纳米生物系统、太阳能电池、化学等其他广泛应用。〔1,2〕电沉积是一种传统方法,利用电流通过一种称为电解质的溶液来改变表面特性,无论是化学的还是物理的,使得材料可适合于某些应用。基于电解原理,它是将直流电流施加到电解质溶液中,用来减少所需材料的阳离子,并将颗粒沉积到材料的导电衬底表面上的过程[3 ]。此项技术会普遍增强导电性,提高耐腐蚀性和耐热性,使产品更美观。良好的沉积主要取决于衬底表面形貌〔4〕。因此,一项可以在纳米等级上测量,表征和监测电沉积过程的技术是非常必要的。有几种方法被应用到了这种表面表征。例如像扫描电子显微镜(SEM)和扫描隧道显微镜(STM)。这些技术可以进行纳米级结构的测量,但是,其中一些为非实时下的,一些通常需要高真空,而另一些则由于其耗时的图像采集而不适用于监测不断变化的过程。[2,5] 为了克服这些缺点,电化学结合原子力显微镜(通常称为EC-AFM)被引入进来。 这种技术允许用户进行实时成像和样品表面形貌变化的观测,并可以在纳米级的特定的电化学环境下实现。[ 6 ]在此次研究中,成功地验证了铜颗粒在金表面的沉积和溶解。利用Park NX10 AFM在反应过程中观察铜颗粒的形态变化,并在实验过程中使用恒电位仪同时获得电流-电压(CV)曲线。
  • 天津兰力科:稀土化学沉积数据库系统设计与应用研究
    在科技日新月异的今天,新材料的发展水平已经成为衡量一个国家高科技水平和综合国力强弱的重要标志,化学镀是在材料领域中发展起来的一类新兴技术,化学沉积钻基合金不需要电流,可在各种基体材料上沉积以及具有优异的磁学性能,但它存在镀液稳定性差、沉积速度和均镀能力不理想等问题。由于稀土元素在电镀、表面化学热处理中能有效提高镀液稳定性、沉积速度和渗速,可以改善材料的可焊性、硬度和耐磨性等功能特性作用,所以展开了稀土元素介入化学沉积钻基合金的尝试。稀土元素介入化学沉积钻基合金是一个具有良好发展前景的研究方向,为了加速其实际应用的步伐,对在试验过程中获得大量数据,以中文VisualFoxPro6.O为工具,开发出化学沉积数据库系统应用软件。该软件系统分别建立了镀覆工艺、显微硬度和磁学性能三个数据库。以此为基础,开发了六个应用模块,分别为文件管理模块、编辑处理模块、数据管理模块、图片管理模块、打印管理模块、退出系统模块。通过该软件,我们可以方便的管理所有的试验数据。根据试验数据,用数值分析的方法进行数据处理,拟合出试验数据的近似函数表达式。用正交表对基础配方进行分析,得到最佳配方,并进行相应方差分析 用样条函数和最小二乘法分析镀覆工艺试验数据,绘制出三次样条函数和三次近似多项式的图形,获得化学沉积速度最大时各因素浓度所在的区间。本文的研究是对试验数据处理的一种探讨,为稀土化学沉积数据库系统的建立探索出一条途径,为获得最佳的钻基合金镀层性能奠定了基础,具有较大的理论和现实意义。
  • 天津兰力科:油酸囊泡层状液晶作为模板电化学合成银纳米颗粒
    在油酸囊泡的层状液晶中利用电化学沉积法成功地制备了银纳米颗粒。并用扫描隧道显微镜(STM)和透射电子显微镜( TEM)对银纳米颗粒进行了表征 ,发现银纳米颗粒能够均匀地分散在油酸囊泡中 ,并且油酸囊泡能够有效地阻止产生的银纳米颗粒发生聚集反应。此外 ,我们还提出了银纳米颗粒形成的机理。关键词:油酸囊泡 层状液晶 银纳米颗粒 电化学沉积中图分类号:O655. 4 O646 TN16      文献标识码:A
  • Nanotrac纳米粒度仪在打印墨水中的应用
    打印和书写都会涉及到彩色材料或黑色材料的使用,通常这些材料包含在一定的介质中。种被使用的色素材料可以追溯到4000-5000年前的油烟。而现代的打印墨水包含有多种成分,每一种成分都有它特定的作用,比如保色、色泽、分散度、黏度和作为助研磨剂等。下表列出了墨水中常见化学物质的种类及其作用。这些物质给墨水带来特殊的性质,使之适用于打印机及其他终端用途。
  • 一种在离子液体中制备金属纳米颗粒的新型方法
    本研究提出了一种有效制备金纳米颗粒的方法,其策略为将离子液体(ILs)作为捕获介质并与电弧等离子体沉积技术相结合。这种方法不需要化学反应。通过选择离子液体,可以对金纳米颗粒的粒径进行有效地调控,并可以方便地实现宏量制备。
  • 高压微射流在高端墨水上的应用
    随着墨水行业的发展,,使得原先多用于医药、材料行业的高压均质机,现已被广泛用于染料、颜料和喷墨打印墨水等工业生产中。部分取代了砂磨类型的设备,实现了“超细粉碎”工艺的重大变革。数码喷墨和喷墨打印墨水中着色剂的颗粒细度对其有十分重要的影响。若颗粒稍大,必会堵塞打印机的喷头,也会使颜料着色剂易于沉淀,影响图像的形成和稳定性。一定程度上,颜料着色剂分子颗粒越小,墨水的稳定性相对越好。
  • 超级电容器用纳米二氧化锰的合成及其电化学性能
    采样低温气相法和化学沉积法制备4种用于电化学电容器的纳米级二氧化锰!由XRD、SEM和循环伏安法表征和测试其物化性能及电容特性! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • Biolin光学接触角仪Theta系列在喷墨印刷技术中的应用
    该例介绍了attension theta 光学表/界面张力仪及其微量进样器在喷墨印刷技术研究和开发过程中的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制