当前位置: 仪器信息网 > 行业主题 > >

模拟式质量流量控制器

仪器信息网模拟式质量流量控制器专题为您提供2024年最新模拟式质量流量控制器价格报价、厂家品牌的相关信息, 包括模拟式质量流量控制器参数、型号等,不管是国产,还是进口品牌的模拟式质量流量控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟式质量流量控制器相关的耗材配件、试剂标物,还有模拟式质量流量控制器相关的最新资讯、资料,以及模拟式质量流量控制器相关的解决方案。

模拟式质量流量控制器相关的论坛

  • 质量流量控制器

    为您提供,本着严谨的品质和完善的服务,而生产制造的WARWICK(沃威)质量流量控制器,产品有:模拟、数字橡胶密封型,模拟数字共存橡胶密封型,全纯金属模拟、数字密封型,还有带OLED显示可调流量模拟型质量流量控制器。通讯除有485外,还有profibus协议,devicenet协议。详见:www.warwick-ins.com

  • 为什么色谱柱流量是用柱头压控制,用差压式体积流量控制器不是同样也可以搞定吗?

    目前,我看到Alicat Scientific公司的体积流量控制器是一个差压式流量计+比例阀来实现流量控制,我们知道,对于色谱柱最终目的是得到我们要的流量,按我的理解,体积流量控制器应该是可以得到与EPC同样的效果的,请各位大虾指教!以下是Alicat Scientific公司的体积流量控制器介绍:ALICAT气体质量流量控制器和体积流量控制器采用一个比例调节阀与流量计相连,用户可以通过内置的PID控制软件来定位阀门位置以设定所需流量值。气体体积流量控制器仅用来设定和测量气体的体积流量,而气体质量流量控制器可以设定和测量气体的质量流量、体积流量和绝对压力,同时可以测量气体的温度。ALICAT气体质量流量控制器内置气体密度变化的补偿功能。标准结构的流量控制器比例调节阀在上游,但用户可选阀门在下游且无需付费,所有的标准产品具有动态显示屏。同时为了节省用户的时间,ALICAT工程师为用户提供了“配件和可选项”以及“ALICAT用户定制特殊功能”,请详见后面说明。

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • 【原创大赛】气相色谱仪流量控制原理与维护 (一-二) 进样口手工流量控制器和电子流量控制器原理

    【原创大赛】气相色谱仪流量控制原理与维护   (一-二) 进样口手工流量控制器和电子流量控制器原理

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](一)[/font] [font=宋体]进样口手工流量控制器原理[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口手工流量控制的基本原理。[/font][/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流[/font]/[font=宋体]不分流([/font][font=Calibri]Split/Spliless[/font][font=宋体])进样口。进样口流量控制方式有手工流量控制和电子流量控制两种,手工流量控制方式的色谱仪价格较为低廉,抗污染能力强,运行与维护成本较低,目前仍旧在普通化工分析等行业中使用。[/font][/font][font=宋体] [/font][align=center][font=宋体]常见的手工流量控制方式[/font][/align][font=宋体]进样口手工流量控制器大致分流两类,压力控制方式和总流量控制方式。[/font][font=宋体][font=宋体]图[/font]1[font=宋体]所示为压力控制方式,载气由压力控制器调节到适合压力,即为柱前压。[/font][/font][font=宋体]隔垫吹扫流量和分流流量分别由对应的针型阀控制,调节到合适的流量。[/font][font=宋体]柱流量由色谱柱来确定。[/font][font=宋体]压力控制器调节速度较快,适合气体阀进样或者样品气化体积较大的场合。分流流量、隔垫吹扫流量、柱流量各自独立,需要单独测定各流路流量,调节工作量较大。[/font][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010003569364_7168_1604036_3.png!w690x457.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]压力控制方式原理[/font][/font][/align][align=center][img=,690,453]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010004036078_273_1604036_3.png!w690x453.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]总流量控制方式原理[/font][/font][/align][font=宋体]载气由总流量控制器调节,输入进样口固定的流量,进样口压力缓慢上升,当压力达到设定值后,分流控制器开启,使得进样口压力恒定于设定值。[/font][font=宋体]分流控制器一般是背压阀,当输入压力达到设定值时才能开启。进样口的压力最终由分流控制进行调节。[/font][font=宋体]总流量控制方式,进样口流量调节工作量较小,总流量和进样口压力之间有相互影响,系统的调节惯性较大。样品气化气体较大或者气体进样阀进样时一般可能会观测到相对较长时间的压力流量扰动。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]分流[/font]/ [font=宋体]不分流进样口常见控制方式的原理和性能比较。[/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font]------------------[font=宋体][font=宋体][/font][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] (二) 进样口电子流量控制器原理[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以分流/不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口电子流量控制的基本原理。[/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流/不分流([font=Calibri]Split/Spliless[/font])进样口。目前较多使用电子流量控制器,不同仪器厂家对于电子流量控制命名不同,如[font=Calibri]AFC[/font]、[font=Calibri]EPC[/font]、[font=Calibri]EFC[/font]等,其大致原理比较接近,都是采用了基于电磁阀通断气流结合流量控制器和压力计来实现进样口的流量(压力)控制。[/font][font=宋体]图1为常见的分流[font=Calibri]/[/font]不分流进样口电子流量控制器的结构框图,当[font=Calibri]GC[/font]系统开启后,总流量控制器向进样口注入设定的流量,压力计测定的进样口压力会逐渐上升,在分流控制器的调解下,进样口压力达到设定值,进样口的流量状态达到就绪。[/font][font=宋体]隔垫吹扫流量值较低,受进样口压力的限制。[/font][font=宋体]色谱柱流量为计算值,电子流量控制器实际上只控制进样口压力。色谱柱是否安装正确,色谱柱是否堵塞,色谱柱是否断开,实际上进样口并不能感知到。[/font][font=宋体] [/font][align=center][font=宋体] [img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010005202895_1475_1604036_3.png!w690x419.jpg[/img][/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]在分流工作方式下,进样口的总流量等于分流流量、隔垫吹扫流量和柱流量之和。[/font][font=宋体]当由于某种原因,进样口压力发生增大现象,此时GC系统会控制分流控制器增加分流出口流量,以降低进样口压力,使得进样口压力恢复设定值;反之亦然。在进样较大体积的液体或者气体样品时,一般会观察到进样口压力(流量)的瞬间变化。[/font][font=宋体] [/font][font=宋体]在不分流进样状态下,进样瞬间分流控制器将分流流量关闭,此时进样口总流量等于柱流量和隔垫吹扫流量之和。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体] [/font][font=宋体]电子流量控制器,实际上只控制进样口的输入总流量和压力。[/font]

  • 高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对现有技术在印刷或喷绘设备中油墨流量控制不准确,使得油墨粘稠度产生异常造成批量性质量方面的问题,本文提出了相应的串级控制解决方案,即通过双回路形式同时控制油墨的流量和压力。本解决方案不仅可以保证油墨最终流量的控制精度和避免出现质量问题,同时还采用了专门的PID串级控制器,代替传统的PLC控制器且无需再进行编程工作。[/b][/color][/size][align=center][size=16px] [img=高精度级联控制器在印刷和喷绘设备油墨流量控制中的应用,550,300]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161500376435_5330_3221506_3.jpg!w690x377.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 油墨是用于印刷的重要材料,它通过印刷或喷绘将图案、文字呈现在承印物上。油墨中的主要成分和辅助成分主要由连结料(树脂)、颜料、填料、助剂和溶剂等组成,它们均匀地混合并经反复轧制而成一种黏性胶状流体。油墨具有一定的粘稠度,当油墨在管道内输送时,如果流量发生改变或发生其他意外情况,就会导致油墨的粘稠度发生改变,很容易造成批量性的不良品发生。由此可见,油墨流量的精密和稳定控制是印刷和喷绘设备中的核心技术之一。[/size][size=16px] 针对油墨流量精密控制需求,特别是根据客户的要求以及现有技术的不足,希望可以进行技术升级以预防因油路,气路,或者油墨粘度异常造成批量性的问题。为此,为了具体解决油墨流量控制不准确使得油墨粘稠度产生异常造成批量性质量问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案基于流量和压力串级控制原理,即对油墨流量和油墨压力同时进行调整,由此实现高精度的油墨流量控制。解决方案的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.油墨流量和压力精密控制系统结构示意图,690,312]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161502292249_6607_3221506_3.jpg!w690x312.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 油墨流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,解决方案的油墨流量控制系统由压力控制和流量控制两个闭环控制回路构成,这两个控制回路详述如下:[/size][size=16px] (1)压力控制回路:压力控制回路由电气比例阀独立构成,其内部包括压力传感器、调节阀和控制器。压力控制回路的作用是对高压气源压力进行自动减压,并快速恒定控制在压力设定值上。压力控制回路作为串级控制(或双闭环控制)的辅助控制回路(内部闭环回路),主要用来控制加载在油墨桶上的压力,以便快速调节和控制油墨桶的油墨输出流量。[/size][size=16px] (2)流量控制回路:流量控制回路由流量计、串级控制器和压力控制回路构成。在控制过程中,串级控制器检测流量计输出信号并与设定值比较,然后驱动压力控制回路使油墨输出流量稳定在设定流量值上。流量控制回路作为串级控制(或双闭环控制)的主控制回路(外部闭环回路),主要用来检测油墨桶的输出流量并给压力控制回路输出控制设定值。[/size][size=16px] 通过上述两个控制回路的串联最终构成串级控制(级联控制或双闭环)回路,即流量控制回路的输出作为压力控制回路的输入,压力控制回路作为最终流量控制回路的执行机构。[/size][size=16px] 另外需要说明的是,图1只是给出了双闭环控制回路的结构示意图,在具体实施过程中还需根据流量控制精度、耐压范围和油墨喷嘴孔径等工艺参数进行相应的配套器件选择,在此方案中使用了超高精度的PID串级控制器,具有24位AD、16位DA和0.01%最小输出百分比,这样基本就可以满足绝大多数油墨流量控制精度的要求。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文所述的串级控制系统,通过PID串级控制器、电气比例阀、压力传感器和高精密流量计等元件,通过流量控制和压力控制的双闭环控制形式,实现了设定流量和实际流量自动精密控制。由此可预防因油路、气路或者油墨粘度异常造成批量性的不良发生。[/size][size=16px] 本解决方案的特色之一是采用专门的PID串级控制器来代替一般控制中所用的PLC控制装置,通过串级控制器的配套软件可方便进行流量控制,无需再对PLC控制装置进行编程的繁复操作。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 质量流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 质量流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器中的流量传感器 [/font][font=Times New Roman]—— [/font][font=宋体]质量流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的电子流量控制单元的流量测量原理和常见流量传感器(质量流量计)的原理[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]质量流量计[/font][/font][/align][font='Times New Roman'][font=宋体]工业监控中常见的容积式、叶轮式、涡街式流量计都被用来直接测定流体的体积流量(压差式流量计可以通过流体参数的转化计算获得质量流量),质量流量计与其不同,可以用来直接测定流体的质量流量,而不受流体密度、温度或者压力的影响。[/font][/font][font='Times New Roman'][font=宋体]质量流量计的压力损失较低、流量测量范围较大。内部无可动部件,可靠性和精度较好,可以用于较低气体流量的测量和控制。[/font][/font][font='Times New Roman'][font=宋体]质量流量计可以分成科里奥利质量流量计和热式质量流量计两类,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/font][/font][font=宋体]的电子流量控制器[/font][font='Times New Roman'][font=宋体]中气体流量测定的是热式流量计([/font]Thermal Mass Flowmeters[font=宋体],[/font][font=Times New Roman]TMF[/font][font=宋体])。[/font][/font][font='Times New Roman'][font=宋体]热式质量流量计利用流体流过外热源加热的管路时产生的温度场变化来测量流体的质量流量;或者利用加热流体时流体温度上升某一数值所需能量与流体质量之间的关系来测定流体质量流量。[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计利用[/font][/font][font='Times New Roman'][font=宋体]热[/font][/font][font='Times New Roman'][font=宋体]传导原理测定气体的质量流量,即气体的放热量或者吸热量与该气体的质量成正比[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]被测定[/font][/font][font='Times New Roman'][font=宋体]气体流过[/font][/font][font='Times New Roman'][font=宋体]对称排布的两个或者多个温度传感器[/font][/font][font='Times New Roman'][font=宋体]表面[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]在不同的质量流速下,温度传感器表面温度会发生不同变化。在一定的流量范围之内,温度变化与气体质量流量存在确定的对应关系,可以利用此原理来进行流量测定,其基本结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,352,249]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513235212_6069_1604036_3.jpg!w624x442.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]质量流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体]如图[/font]1-a[font=宋体]所示,在气体流经的管路中安装有加热器[/font][font=Times New Roman]Heater[/font][font=宋体],在其前后对称的位置,各安装一个温度传感器[/font][font=Times New Roman]TS[/font][/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]和[/font]TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]当气体流速为[/font]0[font=宋体]时,由于温度场分布是对称于加热器[/font][font=Times New Roman]Heater[/font][font=宋体],那么两个传感器的[/font][/font][font=宋体]测定[/font][font='Times New Roman'][font=宋体]温度相同,均为[/font]T[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]气体质量流量[/font][/font][font=宋体]逐渐增加时[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]气体将逐渐[/font][font='Times New Roman'][font=宋体]携带[/font][/font][font=宋体][font=宋体]加热器[/font][font=Times New Roman]Heater[/font][font=宋体]表面的[/font][/font][font='Times New Roman'][font=宋体]部分热量,[/font][/font][font=宋体]流量计内部[/font][font='Times New Roman'][font=宋体]温度场[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]对称性被破坏,温度传感器[/font]TS[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]表面温度下降[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变成[/font]T[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]温度传感器[/font][font='Times New Roman']TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]表面温度上升[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变为[/font]T[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]在一定的[/font][/font][font=宋体]气体[/font][font='Times New Roman'][font=宋体]流量范围内,两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]([/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [font=Times New Roman]= [/font][/font][font='Times New Roman']T2[/font][font=宋体] [/font][font='Times New Roman']-[/font][font=宋体] [/font][font='Times New Roman']T1[/font][font=宋体] [/font][font='Times New Roman'][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与流体的质量流量有确定定量关系[/font][/font][font=宋体]。[/font][font=宋体]两个温度传感器温度差[/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]会随着质量流量的增加而增加,[/font][font='Times New Roman'][font=宋体]当气体的质量流量趋向于无穷大时,两个温度传感器接触到的几乎都是未被加热的气体,温差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]也趋向于[/font]0[font=宋体],如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,372,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513338640_4809_1604036_3.jpg!w690x307.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]温差与质量流量的关系特性[/font][/font][/align][font=宋体][font=宋体]由温差[/font][font=宋体]——质量流量关系特性曲线可知,[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计[/font][/font][font='Times New Roman'][font=宋体]不适合分析[/font][/font][font=宋体]过高[/font][font='Times New Roman'][font=宋体]的气体流速。[/font][/font][font=宋体]测量微小气体流量由于信号微弱,也存在测量精度较低的问题。[/font][font=宋体]质量流量计测定的[/font][font='Times New Roman'][font=宋体]气体的质量流量[/font]F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'][font=宋体]与两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]关系式为:[/font][/font][align=center][img=,143,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513409949_3356_1604036_3.jpg!w690x138.jpg[/img][font='Times New Roman'] [font=宋体]([/font]1-1[font=宋体])[/font][/font][/align][font='Times New Roman'] [font=宋体]公式[/font]1-1[font=宋体]中:[/font][/font][font='Times New Roman'] F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]气体的质量流量[/font][/font][font='Times New Roman'] E —— [font=宋体]加热器的功率值[/font][/font][font='Times New Roman'] Cp —— [font=宋体]气体的比热容[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [/font][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]温度差[/font][/font][font=宋体][font=宋体]随着现代微电子[/font][font=Times New Roman]-[/font][font=宋体]微机械技术的发展,出现了微型热分布式质量流量计,外观尺寸可以缩小到[/font][font=Times New Roman]cm[/font][font=宋体]级别,可以作为一个单独的电子元件,方便的安装在色谱仪电子流量控制器的线路板上,并且可以成功解决测定微小气体流量的问题。[/font][/font][font=宋体][font=宋体]其基本原理与热式质量流量计相同,但是加热部件和温度传感器部件的排布方式有所不同,其结构原理如图[/font][font=Times New Roman]3[/font][font=宋体]所示[/font][/font][align=center][img=,338,104]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513483717_5810_1604036_3.jpg!w690x213.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热分布式质量流量计结构图[/font][/font][/align][font=宋体]流量计的温度传感器在内部电气线路设计方面被连接成电桥方式,可以感知极微弱的温度差异,并且由于总体部件尺寸的缩小,微型热分布式质量流量计可以测定微小的气体流量。与热式流量计相似,热分布式质量流量计不太适合直接测定过高的气体流量。当需要测定较大流量时,需要配备有分流部件,可以较大范围扩展其测量范围。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]质量流量计的特点和[/font][font='Times New Roman'][font=宋体]使用注意事项[/font][/font][/align][font=宋体]质量流量计具有较高的流量测定精度,比较适合测定微小的气体流量,测量灵敏度较高,使用性能稳定可靠。可以安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口载气电子流量控制器中。[/font][font=宋体][font=宋体]比较差压式流量计,质量流量计的惯性较大,不容易实现迅速的流量控制;[/font][font=宋体]’气体的温度和压力变化对流量计的测量准确性影响较小。[/font][/font][font=宋体]质量流量计的使用注意事项:[/font][font='Times New Roman']1 [font=宋体]气体[/font][/font][font=宋体]的类型设置[/font][font=宋体][font=宋体]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],不同的载气具有不同的比热容,会对流量计的温度[/font][font=宋体]——流量响应关系带来一定的影响[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]在设定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析方法时,需要在色谱仪硬件和色谱数据工作站软件中设置正确的载气类型。[/font][font='Times New Roman'] [/font][font='Times New Roman']2 [/font][font=宋体]质量[/font][font='Times New Roman'][font=宋体]流量[/font][/font][font=宋体]——压力[/font][font='Times New Roman'][font=宋体]校准[/font][/font][font=宋体][font=宋体]与差压式流量计相同,配置有质量流量计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]随着运行时间的增长,电气部件性能会发生逐渐变化,流量计内的管路散热情况也会因为堵塞、污染等问题产生差异,都会影响流量计的温度[/font][font=宋体]——质量流量关系,从而影响流量测定的准确性。[/font][/font][font='Times New Roman']3 [font=宋体]气源的要求[/font][/font][font=宋体]气源要求洁净、不含有油污、水分或者固体颗粒物,尽量避免气源压力和流量的瞬间剧烈变化造成流量计的损坏。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器内置质量流量计的基本原理和使用[/font][font='Times New Roman'][font=宋体]注意事项。[/font][/font]

  • 气相色谱机顶的流量控制器读数不一致问题求助

    [color=#444444]用的是GC-14C[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/color][color=#444444]机顶有两个流量控制器 由于两个流量控制器是由同一根管子进气(用过的应该知道) 所以空气开启后上下两个流量控制器的压力表读数一样[/color][color=#444444]但是今天打开空气阀 发现只有下面的流量控制器上空气表读数正常 而上面的那个几乎没有读数[/color][color=#444444]想问下为什么会有这种问题出现[/color][color=#444444]另外 还特别想知道 为什么要用两个流量控制器?[/color]

  • 关于气体流量控制器的选型问题

    现需要气体流量控制器,实现以下简单功能:流量的设定值动态可控。比如在非稳态测量中,进口流量第一个10s设为10L/min, 根据其他实验数据的同步分析,发现在第二个10s流量要控制在15L/min或其他值。这个功能可以实现吗?

  • 求助微型电子气体流量控制器

    我的朋友要做试验,需要求助微型电子气体流量控制器,不知道那位朋友能够提供帮助。(类似进口[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]用气体流量控制器)谢谢大家

  • 【求助】气体流量控制器在哪里?

    这几天elementar varioEL III 软件面板上显示气体流量只有12ml/min,但机器面板上显示氦气流量很大,进行了检漏,但可以通过测试,工程师说是气体流量控制器坏了,价格极贵。 我想请教一下,气体流量控制器在机器的哪个部位?就是在机器前面板氦气和氧气流量计的后面的一个盒子里吗?

  • 【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流不分流进样口 手工流量控制器的结构原理 [align=center]概述[/align][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口手工流量控制原理简介,各部件介绍和控制方式的特点。[align=center]简介[/align]分流/不分流进样口是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要部件,其气流控制的稳定性、精确度会显著影响[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的结果的重复性、样品的真实性。随着电子技术的发展、手工流量控制器再现性较差,调整不方便等原因,进样口配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]逐渐成为实验室仪器的主流配置。但是手工流量控制因其安装和维护成本低廉、性能可靠等优点,目前仍然在较多的实验室具有一定的存量。尤其是对于色谱行业的初学者,有机会使用手工流量控制类型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],将会有助于较快的学习和领会到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本结构和原理。[align=center]手工流量控制模式[/align]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口的手工流量控制模式大致有两种,压力控制模式和流量控制模式。1.1压力控制模式其结构原理如图1所示,色谱仪通过恒压阀的调节,提供进样口的柱前压力(即控制柱流量);通过分流流路和隔垫吹扫流路针型阀的调节,实现分流流量和隔垫吹扫流量的控制。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903058201_1362_1604036_3.jpg[/img][/align][align=center]图1 压力控制模式基本原理图[/align]下面以较为经典的Shimadzu的GC-2014为例予以说明,其调节阀结构如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059080_3480_1604036_3.jpg[/img][/align][align=center]图2 进样口压力控制模式阀结构图[/align]载气首先经由两级稳压阀的一级减压和二级减压,输送进入进样口,提供稳定的柱前压力,根据色谱柱尺寸、载气种类和操作温度,调节合适的压力。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中分流流量和隔垫吹扫流量的具体调节都通过针型阀来实现。隔垫吹扫流路和分流流路均存在捕集阱,一般填充活性炭、硅胶之类的吸附剂,用以吸附流经气体中的高沸点杂质,用以保护针型阀和分流电磁阀,避免过多的杂质凝结在阀中造成堵塞和开关失效。在分流流路中设计有电磁阀,当进样口需要工作在不分流状态之下时,通过电磁阀的通断操作,实现分流流路的切断和恢复。1.2 压力控制模式的优点和缺点采用控制柱前压力的方法来实现色谱柱流量的控制,执行部件使用了恒压阀,恒压阀的调节速度较快。色谱进样时,由于液体样品的受热迅速膨胀或者进样阀造成的流路瞬间切断,会导致进样口压力变化。采用压力控制方案(即使用恒压阀控制),进样口的压力会快速恢复。恒压阀和针型阀各自独立工作,互相不存在干扰和反馈的问题。其缺陷是结构较为复杂,分析方法开发时,调节不太方便。例如更换不同色谱柱之后,进样口压力、分流流量和隔垫吹扫流量均需要进行调节。此外如果进样口存在一定程度泄漏时,系统并不会有明显的异常。在色谱柱安装之后,一定要仔细检查泄漏。2.1流量控制模式其结构原理如图3所示,色谱仪通过总流量控制器(恒流阀)的调节,向进样口提供正确的进样口载气流量,由分流控制器(背压阀)提供正确的柱前压,同时提供正确的分流比。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059959_5598_1604036_3.jpg[/img][/align][align=center]图3 流量控制模式原理[/align]其阀结构如图4所示,[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903060554_1498_1604036_3.jpg[/img][/align][align=center]图4 进样口流量控制模式阀结构图[/align]载气首先经由稳压阀进行减压,输送给恒流阀,向进样口提供稳定的载气流量。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中隔垫吹扫流量的调节通过针型阀来实现。分流流量通过背压阀来调节,背压阀的工作特性是可以使阀输入的压力保持稳定不变。利用这个特点背压阀可以同时调节进样口压力。通过三通电磁阀的状态切换,实现进样口分流和不分流状态的调整,如图5所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903062977_9863_1604036_3.jpg[/img][/align][align=center]图5 分流和不分流状态阀结构图[/align]流量控制模式结构简单,背压阀的调节较为重要,调节速度和进样口压力扰动的恢复速度比压力模式要低。另外还有一类采用混合控制模式的手工流量控制器,将进样口入口侧的恒流阀改换成恒压阀,进样口压力控制速度得到改善。但是进行方法开发时,稳压阀和背压阀会互相影响,流量调节就会比较耗费时间。

  • 向各位老师请教一下气体质量流量控制器(MFC)的问题。多谢!

    各位老师好: 我想请教一下气体质量流量控制器的问题。前段时间对其工作原理有了一点了解,其检测方法是根据气体的热力学性质。有几个问题向咨询各位老师一下。 (1)MFC的读数是气体的流速。不同气体压力下,相同流速,从出口出来的气体的摩尔数是不是不一样的。也就是说,在混合气体的时候,要保持混气各组分比例不变,不但要保持流速比固定,气体的压力也要固定,否则结果会发生变化。这点我还没有想清楚。 (2)是不是不同种类的气体对应不同的MFC。就是说用于测N2的MFC(0-5scc/min),不能用于CO2,即便量程相同。 (3)除了气体要除颗粒和干燥外,还有没有别的注意事项。 (4)哪个牌子的MFC比较好,如果买国产的,有没有什么牌子不错的。 多谢各位了!

  • 不知道那里有买电子流量控制器?

    朋友需要开展实验用到类似[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]用的电子流量控制器\电子压力控制,不知道那里能够有买.希望知道的朋友提供帮助.谢谢大家.

  • 微流控芯片进样装置高精度压力和流量控制器的国产化替代

    微流控芯片进样装置高精度压力和流量控制器的国产化替代

    [size=16px][color=#339999][b]摘要:针对微流控芯片压力驱动进样系统中压力和流量的高精度控制,本文提出了国产化替代解决方案。解决方案采用了积木式结构,便于快速搭建起气压驱动进样系统。解决方案的核心是采用了串级控制模式,结合高精度的传感器、电气比例阀和PID控制器,通过压力和流量的双闭环PID控制回路可实现微流控芯片内液体流量的高精度控制。另外,解决方案具有强大的拓展功能,可进行手动、自动、程序和周期控制,同时也具备芯片的温度控制功能。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][color=#339999][b][/b][/color][/size][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 微流控芯片是将成百上千的微流道集成于以平方厘米为单位的芯片上,以实现样本的制备、分离、筛选、检测等功能,其特点在于可以用极少量的检测样本有效地完成各类检测,可取代常规的生化实验平台。微流控芯片中的微流道内径非常细小,可以实现低至1微米的空间细胞操作精度,因此在向微流道中进样时,对于流量的控制要求非常高。[/size][size=16px] 目前的微流控进样系统,主要是一些国外进口产品,如法国FLUENT公司基于传统的压力控制元件生产的MFCS-EZ流体驱动-精密压力控制器性能比较优良,达到稳定的时间可低至100ms,压力稳定误差小于0.1%,但价格昂贵;美国ELVEFLOW公司基于压电效应设计的OB1 MK3压力控制器性能更加优异,达到稳定的时间可低至35ms,压力稳定误差小于0.01%,但其功耗较高,售价更为昂贵。[/size][size=16px] 为了实现对微流控芯片内微流体压力和流量的高精度自动控制,特别是为了实现国产化替代,本文提出了一种压力和流量的串级控制解决方案。[/size][size=18px][color=#339999][b]2. 压力驱动的微流量精密控制工作原理[/b][/color][/size][size=16px] 微流控芯片中气压驱动进样系统的工作原理非常简单,如图1所示,即采用可调气压作为驱动力,控制一个装有液体的封闭容器中的气体压力实现液体驱动,控制液体向微流控芯片进行充注。[/size][align=center][size=16px][color=#339999][b][img=01.微流控芯片压力驱动进样系统工作原理图,500,267]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542286750_971_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 压力驱动进样系统工作原理图[/b][/color][/size][/align][size=16px] 充液过程中随着流阻的变化,负载也在不断改变,为保证流经微流控芯片液体流量的恒定在设定值,对应的驱动压力也应随时进行调节。[/size][size=16px] 在微流控芯片气压驱动进样系统中,针对不同的应用场景和要求,目前国外产品普遍采用了两种控制技术,一种是对驱动压力进行控制的开环控制技术,另一种是同时对压力和流量进行控制的闭环控制技术。[/size][size=16px] 如图2所示,在仅对驱动气压进行控制的进样系统中,是在进气端口增加了一个压力调节器。此压力调节器中集成了压力传感器、阀门和PID控制器,通过对高压气源的减压控制,由此用来精密调节和控制密闭容器上部的气体压力。[/size][align=center][size=16px][color=#339999][b][img=02.微流控芯片进样系统纯压力控制工作原理图,600,248]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541131358_1798_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 微流控芯片进样系统纯压力控制工作原理图[/b][/color][/size][/align][size=16px] 从图2可以看出,这种纯压力控制方式尽管可以调节微流控芯片内液体的流量,但无法获知具体流量是多少,这样一种开环控制形式更无法对液体流量进行高精度控制。[/size][size=16px] 为实现对微流控芯片内液体流量的精密控制,在上述开环控制形式的基础上,通过增加液体流量计和PID控制器,与压力调节器组成一个闭环控制回路,如图3所示。在此闭环控制回路中,PID控制器检测流量传感器信号并与设定值进行比较,通过PID控制算法计算后向压力调节器输出控制信号,压力调节器对进气气压进行调节,最终使微流控芯片内的液体流量在设定值处恒定。[/size][align=center][size=16px][color=#339999][b][img=03.微流控芯片进样系统压力和流量串级控制工作原理图,600,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541419942_6786_3221506_3.jpg!w690x333.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 微流控芯片进样系统压力和流量同时控制工作原理图[/b][/color][/size][/align][size=16px] 从图3可以看出,这种压力和流量同时控制的工作原理采用了一个非常典型的PID串级控制(级联控制)结构,即压力调节器作为压力控制的PID辅助控制回路,同时压力调节器作为执行器与流量传感器和PID控制器构成PID主控制回路。这种PID串级控制结构常用于高精度控制领域中,所以采用这种串级控制方法可以实现微流体压力驱动进样系统流量的高精度调节和控制。需要说明的是流量传感器可以布置在微流控芯片的进口端或出口端,具体可以根据微流控芯片的具体结构来进行选择。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 从上述微流控芯片压力驱动进样系统的串级控制工作原理可知,采用串级控制方式在理论上可实现流量的高精度控制,而要实现这种高精度控制,还需要相应的硬件配置提供保证。为此,本解决方案提出的硬件系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.微流控芯片进样系统压力和流量串级控制系统结构示意图,650,366]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542005587_5164_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 微流控芯片进样系统压力和流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的系统中,为实现高精度的压力和流量控制,解决方案中的关键部件配置如下:[/size][size=16px] (1)流量传感器:需根据流量的范围和控制精度需要选择合适的流量传感器,目前市场上有多种国内外的液体流量传感器可供选择。同时要求传感器具有相应的模拟量信号输出。[/size][size=16px] (2)压力调节器:压力调节器可选择电气比例阀,同样需要根据压力调节范围选择相应的型号。另外尽可能采用高精度和高速电气比例阀,特别是更快速度的压电式电气比例阀。[/size][size=16px] (3)超高精度PID控制器:在测量精度和控制精度都满足要求的前提下,主回路PID控制器精度将最终决定流量控制精度,如果PID控制器精度不够,则无法发挥传感器和压力调节器的精度优势。为了,本解决方案选择了超高精度的PID控制器,其具有24位AD、16位DA和采用双精度浮点运行的0.01%最小输出百分比。另外,此控制器具有PID参数自整定功能,并带有标准MODBUS通讯协议的RS485接口,可方便与上位计算机连接。[/size][size=16px] 通过上述高精度器件的配置,可很方便的搭建起微流控气压驱动进样系统并实现高精度的压力和流量控制。另外,采用超高精度PID控制器的高级功能,还可实现以下拓展功能:[/size][size=16px] (1)采用自带的计算机软件,可通过上位计算机直接进行界面操作,无需再进行编程。[/size][size=16px] (2)采用远程设定点功能,可实现手动旋钮调节方式的压力和流量控制。[/size][size=16px] (3)同样采用远程设定点功能以及外置一个周期信号发生器,可对压力和流量按照设定周期和幅度进行周期性变化。[/size][size=16px] (4)采用正反向控制功能以及外置一个TEC半导体制冷模组,可实现对微流控芯片的加热和制冷控制。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案模块式结构以及高精度器件的配置,可灵活和快速搭建起微流控芯片进样系统,并可在很高的精度上实现微流控芯片压力驱动进样系统中的压力和流量控制。[/size][size=16px] 另外,依此解决方案所搭建的压力和流量控制系统还具有强大的拓展功能,可满足各种微流控芯片气压驱动进样系统的使用,完全可以替代进口产品,同时也为后续多通道微流控压力驱动进样系统的国产化替代奠定的技术基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • GC/MS 自动流量控制器漏气

    GC/MS 自动流量控制器漏气

    如图所示:岛津GC/MS 自动流量控制器漏气该怎么办?[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2020/07/202007131527074698_803_3871731_3.jpg!w690x920.jpg[/img]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器[/font][/font][font=宋体]中的比例电磁阀[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],执行流量控制时的常用核心部件是比例电磁阀,其原理类似于气体流路中的可调节阻尼。工作过程中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统通过改变比例电磁阀的开度来调节其阻尼,进而控制气体流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量的调控方式[/font][/align][font='Times New Roman'] [/font][font=宋体]一、机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][align=center][img=,388,253]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647096104_6103_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]调控气体流量的方法主要有三种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路中按顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变其阻尼,实现流量的调节。实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体流路中按顺序安装稳压阀和稳流阀,稳压阀提供恒定压力,通过调节恒流阀的阀针,改变其输出流量。[/font][/font][font=宋体]此种方式仪器硬件成本略高,由于恒流阀一般具有较大的惯性,流量调节速度相对较慢,一般常见于填充柱进样口的流量控制器,实现色谱柱的恒流量控制。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]c[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体] [/font][font=宋体]二、[/font][font=宋体]电子流量控制器流量控制方式[/font][font=宋体][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],一般采用比例电磁阀为核心的流量控制系统来控制气体流量和压力,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。控制系统的输入端气源压力需要保持恒定。[/font][/font][font=宋体] [/font][align=center][img=,392,75]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647174276_6168_1604036_3.jpg!w690x132.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]比例电磁阀与普通电磁阀不同,可以通过调节其输入电压或者电流,获得阀不同的开度,改变电磁阀阻尼[/font][font=宋体]——类似图[/font][font=Times New Roman]1-a[/font][font=宋体]中的针型阀,从而实现气体流量的调节。[/font][/font][font=宋体]流量控制系统在负反馈方式下工作,如果输出气体流量(或压力)小于设定值,流量计(或压力计)检测到此异常反馈给控制器,系统发出命令增大阀的开度,使气体流量重新稳定于设定值。反之,如果输出气体流量(或压力)大于设定值,系统发出命令较小阀开度,使气体流量稳定。[/font][font=宋体][font=宋体]三、阀开度的控制[/font][font=宋体]——占空比[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统一般通过调节比例电磁阀的供电方波电压的占空比来调节阀开度,方波电压占空比的意义如图[/font][font=Times New Roman]3[/font][font=宋体]所示,。[/font][/font][align=center][img=,260,135]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647241020_6000_1604036_3.jpg!w500x260.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]占空比原理图示[/font][/font][/align][font=宋体]一般情况下色谱系统采用较高的恒频率方波电压控制比例阀,方波的高电平状态下电磁阀开启,低电平状态下电磁阀关闭。[/font][font=宋体][font=宋体]高电平工作的时间与方波周期的比例为方波电压的占空比([/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]/T[/font][font=宋体]),方波电压的占空比越高,电磁阀在工作过程中开启的比例越高——即开度越大,比例电磁阀的阻尼越小。[/font][/font][font=宋体][font=宋体]当系统输出气体流量大于设定值时,色谱系统减小比例电磁阀供电方波电压的占空比,此时比例电磁阀开度减小,阀阻尼增大,系统输出气体流量降低恢复到设定值。如图[/font][font=Times New Roman]4[/font][font=宋体]所示:[/font][/font][align=center][img=,313,64]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647306013_696_1604036_3.jpg!w690x141.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]占空比减小[/font][/font][/align][font=宋体][font=宋体]当系统输出气体流量小于设定值时,色谱系统增大比例电磁阀供电方波电压的占空比,此时比例电磁阀开度增大,阀阻尼减小,系统输出气体流量升高恢复到设定值。如图[/font][font=Times New Roman]5[/font][font=宋体]所示:[/font][/font][align=center][img=,319,76]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647379254_2500_1604036_3.jpg!w690x164.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]5 [/font][font=宋体]占空比增加[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][font=宋体]附:[/font][font='Times New Roman'][color=#666666]KOFLOC[/color][/font][font=宋体][font=宋体]公司的电磁阀外观照片,可以在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][font=宋体]EPC/AFC/EFC部件中看到。[/font][/font][font=宋体] [/font][align=center][img=,114,114]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647431813_8832_1604036_3.jpg!w420x420.jpg[/img][font='Times New Roman'] [/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器中比例电磁阀的基本原理[/font][font='Times New Roman'][font=宋体]。[/font][/font]

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 气相色谱仪流量控制原理与维护 —— 稳流阀和电子流量控制器

    气相色谱仪流量控制原理与维护 —— 稳流阀和电子流量控制器

    [font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]稳流阀和电子流量控制器[/font][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]载气和辅助气体流量的稳定,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]至关重要。载气和辅助气体的量如果发生不稳定,会对定性与定量分析结果、基线稳定性、阀切换准确性带来不良影响。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]一般采用稳流阀或者电子流量控制器调节和稳定气体流量,下文简述稳流阀和电子稳流控制器的基本工作原理和使用注意事项。[/font][font='Times New Roman'] [/font][align=center][font=宋体]稳流阀原理简介[/font][/align][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]填充柱进样口的载气流量控制器或者某些型号的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口载气控制器均安装有稳流阀,为色谱柱或者进样口提供流量稳定不变的载气。某些情况下,在检测器气体控制或者阀切换系统中也可以见到稳流阀的安装。[/font][/font][font=宋体][font=宋体]稳流阀(恒流阀)在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统中的常见安装位置,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,527,258]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172218523975_3668_1604036_3.jpg!w690x337.jpg[/img][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]稳流阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的安装位置[/font][/font][/align][font=宋体][font=宋体]较为常见的是膜片反馈式稳流阀,由针型阀和压力反馈部件组成,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]载气经过稳压阀稳定压力之后,由输入端进入稳流阀,并充满腔体[/font][font=Times New Roman]A[/font][font=宋体],其内部压力为[/font][font=Times New Roman]P1[/font][font=宋体]。如果此时针型阀处于关闭状态,腔体[/font][font=Times New Roman]B[/font][font=宋体]内压力较低,膜片在压力作用下移动,封闭稳流阀出口。[/font][/font][font=宋体][font=宋体]当调节阀针使稳流阀开启,输入端的气体充满针型阀阻尼充满腔体[/font][font=Times New Roman]B[/font][font=宋体],使腔体[/font][font=Times New Roman]B[/font][font=宋体]压力升高为[/font][font=Times New Roman]P2[/font][font=宋体],当腔体[/font][font=Times New Roman]A[/font][font=宋体]压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]、膜片弹簧力[/font][font=Times New Roman]F[/font][font=宋体]和腔体[/font][font=Times New Roman]B[/font][font=宋体]压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]达到平衡时,稳流阀可以有稳定的流量输出,输出端的压力为[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体]。[/font][font=宋体]稳流阀的静态平衡式为:[/font][font=宋体][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A = P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F[/font][/font][font=宋体][font=宋体]其中,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]为阀输入压力(腔体[/font][font=Times New Roman]A[/font][font=宋体]压力),[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]为腔体[/font][font=Times New Roman]B[/font][font=宋体]压力、[/font][font=Times New Roman]A[/font][font=宋体]为膜片工作面积,[/font][font=Times New Roman]F[/font][font=宋体]为弹簧压力。[/font][/font][align=center][img=,406,286]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219014946_6417_1604036_3.jpg!w690x486.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]稳流阀[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][align=center][font=宋体]稳流阀流量调节的原理[/font][/align][font=宋体]可以通过调节针型阀的开度来调节针型阀的输出流量。[/font][font=宋体][font=宋体]当调节针型阀使其开度增大,腔体[/font][font=Times New Roman]B[/font][font=宋体]压力上升,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F [/font][font=宋体]> [/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A[/font][font=宋体],此时膜片向上移动,更多气体流出稳流阀,系统达到新的平衡状态,稳流阀输出流量增大并达到稳定。档调节针型阀使其开度减小,腔体[/font][font=Times New Roman]B[/font][font=宋体]压力下降,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F [/font][font=宋体]< [/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A[/font][font=宋体],此时膜片向下移动,更少气体流出稳流阀,系统达到新平衡状态,稳流阀的输出流量减小并达到稳定。[/font][/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]稳流的工作原理[/font][/align][font=宋体]稳流阀内部反馈系统和针型阀协同工作,通过维持针型阀输出输入端固定压力差的方法,实现阀输出流量的恒定。[/font][font=宋体][font=宋体]当稳流阀输出端的阻尼增大(例如柱温升高造成载气粘度增大、色谱柱长度变长等、增加阻尼器等),此时阀输出端压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体][font=宋体]增大,阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]降低,此时[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]上升,导致膜片位置上升,更多气体流出腔体[/font][font=Times New Roman]B[/font][font=宋体],使得[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]下降恢复至[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]-P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]为恒定值,并使阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]恢复至设定值。[/font][/font][font=宋体][font=宋体]当稳流阀输出端阻尼减小(例如柱温降低造成载气粘度减小、色谱柱长度变短、减小阻尼器等),此时阀输出压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体][font=宋体]减小,阀输出流量增加,造成[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]下降,导致膜片位置下降,较少气体流出腔体[/font][font=Times New Roman]B[/font][font=宋体],使得[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]上升恢复至[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]-P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]位恒定值,并使阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]恢复至设定值。[/font][/font][font=宋体][font=宋体]由针型阀的气体流量方程可知,当针型阀的开度一定时,即针型阀的流通面积一定时,对于确定的同种流体,只要维持[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1 [/font][/font][/sub][font=宋体][font=Times New Roman]- P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体]压力差[/font][font=宋体]值不变,就可以实现输出稳定的流量。[/font][img=,142,72]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219095525_1260_1604036_3.jpg!w683x153.jpg[/img][font=宋体] [/font][font=宋体]需要注意:[/font][font=宋体][font=宋体]稳流阀输入端一般需要连接稳压阀的输出端,保证[/font][font=Times New Roman]P1[/font][font=宋体]压力的稳定,否则难以保证稳定工作。如果[/font][font=Times New Roman]P1[/font][font=宋体]发生变化,那么稳流阀将不能输出恒定气体流量。[/font][/font][font=宋体]稳流阀工作时的输入和输出端不可以接反,否则无法正常工作。[/font][font=宋体]稳流阀不可以作为开关阀使用,并且避免将阀针过分拧紧,否则会造成阀针的机械损伤。建议在气路通气之前首先开启稳流阀,然后缓慢调节阀针,按从大到小的顺序调节稳流阀输出流量。[/font][font=宋体]稳流阀的输出端可以空载,即不连接色谱柱或者阻尼,直接放空。稳流阀输出端不可以封闭,此时输入端压力将与输出端压力相同。[/font][font=宋体][font=宋体]由于反馈系统和针型阀阻尼的特性,此外还包含阀出口连接色谱柱阻尼或者其他系统的影响,稳流阀的[/font][font=宋体]“惯性”较大——稳流阀调节时的滞后现象较为明显。色谱柱或者稳流阀输出连接部件的阻力越大,此滞后现象越明显。使用稳流阀调节流量时,需要控制阀旋钮的运行速度和幅度,在观察色谱柱压力和输出流量计的同时,缓慢调节阀旋钮。[/font][/font][font=宋体][font=宋体]稳流阀最终控制的是阀输出流体的绝对量,即质量流量。色谱分析中需要控制的柱后流量稳定,即质量流量稳定。当色谱柱因温度变化等原因产生阻尼增加现象时,必须使稳流阀输出压力[/font][font=Times New Roman]P3[/font][font=宋体]增大,才可以保证流过色谱柱的流体质量不变,反之亦然。在程序升温的场合下,尤其是使用填充柱的情况下,柱温升高,柱前压力随之增大。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]电子稳流器原理[/font][/align][font=宋体]电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]一般安装电子稳流器,给填充柱进样口或者分流不分流进样口提供稳定可靠的流量,其流量精度较高、重现性好、调节滞后性较好,目前在实验室中得到了更广泛的应用。[/font][font=宋体][font=宋体]电子稳流器一般由比例电磁阀、流量传感器和控制线路组成,各个部件在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]计算机控制下,构成负反馈系统,以稳定流路的输出流量,其原理结构如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,452,165]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219179636_8164_1604036_3.jpg!w679x248.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]电子流量控制器系统框图[/font][/font][/align][font=宋体]电子流量控制器工作时,系统内部的流量计(常见的为压差式流量计和质量流量计)不断测定系统输出流量,然后反馈至比例阀的输入端,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统不断比较实际输出流量与系统预设流量之间的偏差,然后给予比例电磁阀合适的控制电压(或电流)。[/font][font=宋体]电子流量控制器的实际输出流量增大,流量计可以感知此流量的变化并反馈至[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总控制器,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统比较输出真实流量与预设流量的偏差大小(并给予一定的延迟、放大、积分或微分等数据处理),然后发出指令改变比例电磁阀的供电电压占空比,使比例电磁阀的开度减小合适的数值,以期望降低输出流量,最终达到输出流量稳定。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统还可以不改变系统的硬件,仅仅通过方便内部软件控制,实现恒定柱后流量、恒定线速度、恒定柱压力等不同的进样口气体程序控制。[/font][font='Times New Roman'] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述稳流阀和电子流量控制器的基本原理是使用注意事项。[/font]

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制