当前位置: 仪器信息网 > 行业主题 > >

锂电池隔膜涂层测厚仪

仪器信息网锂电池隔膜涂层测厚仪专题为您提供2024年最新锂电池隔膜涂层测厚仪价格报价、厂家品牌的相关信息, 包括锂电池隔膜涂层测厚仪参数、型号等,不管是国产,还是进口品牌的锂电池隔膜涂层测厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池隔膜涂层测厚仪相关的耗材配件、试剂标物,还有锂电池隔膜涂层测厚仪相关的最新资讯、资料,以及锂电池隔膜涂层测厚仪相关的解决方案。

锂电池隔膜涂层测厚仪相关的论坛

  • 【分享】锂电池材料构成主要有哪些?锂电池主要材料简单介绍

    [font=&]锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,锂电池已经成为了主流。[/font][font=&]一、锂电池材料构成主要有哪些[/font][font=&]碳负极材料:实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。[/font][font=&]锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。[/font][font=&]氮化物:没有商业化产品。[/font][font=&]合金类:包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,也没有商业化产品。[/font][font=&]纳米级:纳米碳管、纳米合金材料。[/font][font=&]纳米氧化物:根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大地提高锂电池的充放电量和充放电次数。[/font][font=&]二、锂电池的四大主要材料[/font][font=&]锂电池材料构成主要包括正极材料、负极材料、隔膜和电解液。[/font][font=&]1、正极材料:在锂电正极材料当中,最常用的材料有钴酸锂,锰酸锂,磷酸铁锂和三元材料(镍钴锰的聚合物)。[/font][font=&]2、负极材料:在负极材料当中,目前锂电池负极材料主要以天然石墨和人造石墨为主。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。[/font][font=&]3、隔膜:市场化的隔膜材料主要是以聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)为主的聚烯烃(Polyolefin)类隔膜。锂电池的结构中,隔膜是关键的内层组件之一。[/font][font=&]4、电解液:电解液由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。[/font]

  • 电池隔膜的质量控制方法

    随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。电池隔膜作为锂离子电池的重要组成部分,在电池中起着防止正、负极短路,同时在充放电过程中提供离子运输通道的作用。其性能的优劣决定了电池的界面结构内阻,进而影响电池的容量、循环性能、充放电电流密度等关键特性。Labthink兰光接下来结合透气性测试仪、智能电子拉力试验机、测厚仪及热缩试验仪对电池隔膜的透气性能、耐穿刺性能、拉伸强度、厚度及热收缩性能检测进行简要的介绍。一、电池隔膜透气性能电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。通常内阻的大小通过其透气率来表征,或者称之为Gurley数,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间。对于相同的电池隔膜,这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。Labthink兰光的BTY-B1P透气性测试仪,采用计算机控制,三测试腔设计,压力差可调,人机交互友好,测试效率高,可满足各种客户对于电池隔膜透气性测试的要求。二、电池隔膜耐穿刺性能及拉伸强度锂电池在使用过程中电池内部会逐渐形成枝状晶体,有可能刺破隔膜,造成内部微短路。在制造过程中由于电极表面涂覆不够平整、电极边缘有毛刺等情况,以及装配过程中工艺水平有限等因素,都要求电池隔膜具有相当的穿刺强度。另外,电池隔膜的拉伸强度也是影响其应用的一个重要因素,如果隔膜在使用过程中破裂,就会发生短路,降低成品率。Labthink兰光的XLW(PC)智能电子拉力试验机,该机具备拉伸强度与变形率、剥离强度,热合强度,撕裂等7项测试功能,并且这些功能均采用菜单式界面,选择相应检测功能,即可执行标准规定的检测。配合专用的测试夹具,还可以对电池隔膜进行刺破性能测试,是目前行业中最为专业的仪器。三、电池隔膜厚度电池隔膜的厚度是否均匀是检测其各项性能的基础。厚度不均匀,会影响到透气率、拉伸强度等性能,对厚度实施高精度控制也是确保质量与控制成本的重要手段。Labthink兰光的CHY-CA测厚仪,采用目前世界测量领域最先进的技术成果,确保测量结果的高精确性,多次测量结果的高度一致性;并且操作调试极其方便,几近于自动化操作,最大限度地减少了人为因素对测量结果带来的影响。该仪器具有手动、自动两种测量模式,对于手动模式测量,可打印输出测量结果;对于自动模式测量,可按照预先设置好的次数自动测试,并对测量结果进行统计、分析、打印输出;接触面积、测量压力、移动速度等严格遵循相关标准的规定。四、电池隔膜热收缩性在电池生产过程中由于电解液对水分非常敏感,大多数厂家会在注液前进行85℃左右的烘烤,要求在这个温度下电池隔膜的尺寸也应该稳定,否则会造成电池在烘烤时,隔膜收缩过大,极片外露造成短路。Labthink兰光的RSY-R2热缩试验仪,采用微电脑控制,PID温度控制,液体加热介质,温度控制精确,受热均匀,用于电池隔膜、热缩管、背板等材料在多种温度下进行热收缩性能及尺寸稳定性的精准测试。当然确保了电池隔膜的透气性能、耐穿刺性能、热收缩性能等指标合格后,还需要对其他的一些指标如浸润度、化学稳定性、孔径及分布、闭孔温度、破膜温度、孔隙率等进行控制,以确保其使用适应性。 以上资料由济南Ulab优班检测提供更多资料www.ulab.cn

  • TT220、TT230涂层测厚仪常见问题

    TT220、TT230涂层测厚仪常见问题1、为什么我的TT220涂层测厚仪近一年没有使用,再次使用不能开机?答:用户在收到新购买的测厚仪时首先要为仪器充电,一般首次充电需要8个小时,如果长期没有充放电,仪器电池容易锁死,同时电池寿命也会受到影响,2个月没有使用的新机器,出现不能开机的现象有可能是电池锁死了,需要对照说明书进行激活。如仍不能开机,请您不要自行打开机器,应返回维修站修理。2、电池锁死后应该如何恢复?答:电池锁死后,用户可以对照相应型号说明书,通过强制复位的方式进行操作,当有文字或数字显示后,即刻进行充电。如仍不能恢复请与维修站联系。3、恢复出厂设置后需要注意什么?答:仪器在强制复位后,必须进行基本校准,校准办法可以对照说明书操作,或者咨询时代销售及维修人员。4、为什么在随机附带的校准试片上校准后,测量工件还是出现测值“不准”?答:影响测值的因素很多,对此说明书上有详细描述,金属材料性质、表面粗糙度等都对测值有影响,随机附带的基材往往与用户现场的金属基材有很大差异,因此我们建议随机带的基材及试片只作为仪器校准使用,实际现场测量工件时要用现场未经喷涂的同种材料作为基材。5、开机出现E字头的错误信息是怎么回事?答:错误提示功能是时代涂层测厚仪的一个特有功能,方便用户进行故障描述,不同的错误信息代表不同的故障,例如E02代表测头磨损,这些说明书后面都有详细表格说明,大家可以参考。6、TT220涂层测厚仪如何关机?答:TT220/230都采用的是自动关机,一般是停止使用后的3-5分钟。7、TT220涂层测厚仪没有充电指示灯,如何判断是否充满电?答:TT220/230充电时间一般新购机器首次充电8小时,正常使用后需要充2-3小时即可。8、充电后仍无法开机?答:首先插上电源按照问题1的解决办法进行强制复位的操作尝试,其次,如果有同类仪器可更换充电器试一下。三,可能电池报废需要更换电池9、测量管材、棒材等曲面材料为什么“不准”?答:曲率变化对涂层测厚仪的影响非常大,如果您在平面的基材上校准零点后直接测量曲面,那么测值肯定有偏差,正确操作是必须在同一曲率半径的未经喷涂工件基材上进行零点校准,然后在测量涂层厚度,这时的测值是准确无误的。10、TT220涂层测厚仪出现“≠”是什么意思?答:表明电池电压低落,需要马上充电11、当出现仪器测量试片准确,测量工件涂层时有“偏差”怎么判断?答:有些用户在使用过程中会出现在随机配的基体试片上测量准确,拿到工件上测量出现偏差,或者不同厂家的仪器在测同一工件出现偏差,遇到这种情况用户往往不知道是自己的工艺出现问题还是仪器本身的问题,是时代仪器准还是其他厂家仪器准。这个问题很好解决,我们只要将随机配带的试片(中国计量院提供)放在用户自己的未经喷涂的工件基材上测量一下就可以了,因为试片的值是恒定的,而且是第三方中国计量院提供的。如果放在工件上测量试片也是准确的,那说明仪器没有任何问题。两台不同厂家的仪器对比采用这个办法也是相同的道理。

  • 【原创大赛】OPTON的微观世界之 锂电池负极材料的显微世界

    [b]概 述[/b] 锂离子电池作为一种新型无污染、可再生的二次能源装置,具有输出电压高、比容量高、寿命长等优点,因此成为了手机、笔记本电脑、电动汽车以及航空航天领域的理想电源之选。正极材料、负极材料、电解液以及隔膜是锂离子电池的核心组成部分,电解液的主要作用是承载着锂离子在正负极之间的传导,组成部分包括锂盐、有机溶剂以及功能添加剂。隔膜起着隔开正、负极材料的作用,防止二者接触造成短路,其主要是由过孔的高分子聚合物薄膜构成,在实际应用过程中,锂离子电池充电/放电就是靠锂离子在正、负极材料中可逆的嵌入/脱出来完成。作为锂电池的核心组成之一——负极材料,今天就随小编来一起探究锂离子电池负极材料的神秘世界吧。[b]一、样品制备[/b] 为了更好地观察锂电池负极材料的内部结构,小编们决定观察负极材料的截面,但是传统的截面样品制备方式或多或少地会使样品形貌失真,比如剪切的话会使样品表面产生应力,为了更好地观察负极材料的真实结构,于是小编们将样品制备在挡板上,采用Gatan的氩离子抛光仪对样品截面进行抛光处理后观察。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/d59890fd-9324-4220-bc05-b6129b4b235c.jpg[/img][/align][align=center]图一:(A)、原始样品[/align][align=center][/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/31c2099e-7941-4619-bc66-b4bb11c4956b.jpg[/img][/align][align=center](B)、将样品剪切合适后粘在挡板上[/align][align=center][/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/34515ad9-b076-402b-b2a6-62a6a1c44dc0.jpg[/img][/align][align=center](C)、抛光处理后的样品[/align][align=center]图一:样品的制备[/align][b]二、锂电池负极材料的SEM分析[/b]采用ZEISS的sigma 500电镜观察样品的形貌,从图二的A图负极材料截面宏观形貌图可以看出锂电池负极材料分为上中下三层, 从图二的B图可以看出负极材料其形貌存在层状结构,从图二的C、D图可以看出出现了不同的成分衬度,代表着不同的元素分布。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/54f50ea6-1628-4294-b576-a938f2f0d2f2.jpg[/img][/align][align=center][/align][b]三、锂电池负极材料的元素分析[/b] 结合图三的A图SEM图和能谱面分布B、C图可以看出,锂电池负极材料的上下两层主要是石墨且掺杂有硅。自锂电池问世以来,石墨一直是负极材料的主流,石墨为层状结构,层与层之间通过范德华力结合在一起,层内碳原子统统以sp[sup]2[/sup]杂化的共价键结合。其具有的优良导电性和高度结晶的层状结构,有利于锂离子的嵌入与脱出,且其具有工作电压平台较低以及稳定性好等特点,但是其理论比容量仅为372mAh/g,实际生产应用的产品已经能达到360mAh/g,接近其理论比容量,因此石墨负极已经难有提升空间。硅理论比容量高达4200mAh/g,而且具有较低的嵌锂电位,然而,硅在电化学循环过程中,体积变化高达400%,严重影响其比容量、库伦效率和循环稳定性等电化学性能,因此为充分利用硅和石墨的优点,同时克服其缺点,在石墨材料中掺硅是获得高比容量负极材料的有效途径。 根据锂电池的工作原理和结构设计,负极材料需涂覆于导电集流体上。金属箔是锂离子电池集流体的主要材料,其作用是将电池活性物质产生的电流汇集起来,以便形成较大的电流输出。通过图三的能谱面分布D图可以看出锂电池负极材料采用的金属箔是铜箔,这主要是铜箔具有良好的导电性、质地较软、制造技术较成熟、价格相对低廉等特点,因而成为锂离子电池负极集流体首选。一般将配好的负极活性浆料均匀涂覆在铜箔表面,活性材料厚度为50~100um,经干燥、滚压、分切等工序,制得负极电极,铜箔在锂离子电池内既可充当负极活性材料的载体,又可充当负极电子收集与传导体。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/03bc2c1f-4f00-4689-bdc3-4a96e324820e.jpg[/img][/align][b]结 论[/b] 通过扫描电镜的显微观察以及能谱分析,可以看出该锂电池的负极材料主要由掺硅的石墨涂覆在铜箔上组成,是一种常见的锂电池负极材料,人们为了获得性能更好的负极材料,已经出现了众多类型的锂电池负极材料,但是随着大家对锂电池负极材料的研究越来越深,锂电池负极材料的种类也将更加丰富。根据锂离子电池的形状锂离子电池可分为圆柱形的锂离子电池、方形的锂离子电池、扣式锂离子电池等,下图是锂离子电池的结构图。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/a4cb349f-76eb-48bd-bc72-8b717a9c2917.jpg[/img][/align][align=center]图五:(A)、圆柱形锂离子电池的结构[/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/e282ac3e-16c0-48da-8675-562c944eedd0.jpg[/img][/align][align=center](B)、方形锂离子电池的结构[/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/cc820147-eda5-4e90-8cfd-00b6e17248f7.jpg[/img][/align][align=center](C)、扣式锂离子电池的结构[/align][align=center]图五:锂离子电池的结构图[/align][align=center][/align]

  • 锂电池交流内阻测试解决方案

    锂电池的内阻是电池性能评估的重要指标之一,已广泛应用于电动汽车系统、储能系统、电子设备和新能源产业等多领域,所以对于锂电池性能参数的快速测试也有了大量需求。内阻影响着锂电池功率性能和放电效率,随着存储时间的增加,电池不断老化,其内阻不断增大。不同类型的锂电池内阻变化程度不同,其初始的内阻大小主要受电池的结构设计、原材料性能和制程工艺的影响。通过测试内阻,可以全面评估电池在高功率应用下的性能表现,是衡量功率性能和寿命的关键参数。因此,内阻的合理控制和优化是提高电池品质、性能和可靠性的重要手段,对锂电池内阻的持续关注和有效管理是不可忽视的重要议题。通过精准测试和控制锂电池内阻,可以更好地满足不同应用场景对电池性能和品质的要求,推动电池技术的不断创新与进步。[img=锂电池内阻测试.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640743873053.png[/img][b]锂电池的内阻[/b]是指电池在工作时,电流通过电池内部时所遇到的电阻。内阻的大小直接影响电池的性能,包括放电效率、温升情况以及电池的寿命。锂电池内阻通常分为欧姆内阻和极化内阻两部分。其中欧姆内阻由电池的总电导率决定,极化内阻由锂离子在电极活性材料中的固相扩散系数决定。[b]欧姆内阻:[/b] 由电极材料、电解液、隔膜电阻以及各部分零件的接触电阻所构成。它是电流通过电池时产生的电阻。极化内阻: 是指电化学反应时由极化引起的电阻,包括电化学极化内阻和浓差极化内阻。两者共同影响电池内阻的变化。[b]解决方案分享[/b]锂电池内阻测量可采用[b]直流内阻测量方法(DCR)和交流内阻测量方法(ACR)两种[/b]。[b]直流内阻测量方法[/b]是测试设备让电池在短时间内(一般为2~3秒)强制通过一个很大的恒定直流电流(一般使用40A~80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。通过公式计算出电池的直流内阻。然而,这方法存在一些问题,如果长时间通过大电流电池内部的电极会发生极化现象,出现极化内阻,影响结果的可靠性。另一种[b]交流内阻测量方法[/b]是通过在电池正负极注入正弦波电流信号,同时通过另外两端在电池正负极检测得到正弦波电压信号,进而可以推导出电池的交流内阻。交流内阻测试通入的电流较小,一般为50mA,且测量时间短,一般发生在毫秒级。现如今交流内阻测量方法得到了广泛的认可,并在实际应用中得到了较多的采用。但无论哪种方法,都存在一些很容易被我们忽视的问题,那就是测试仪器本身的元件误差和用于连接电池的测试线缆问题。一条短短的从仪器到电池的连接线本身也存在电阻(大约也是微欧级),还有电池与连接线的接触面也存在接触电阻,这些都将影响测试结果的准确性。[img=锂电池内阻测试方案图.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640865761075.png[/img]由此可见在测量锂电池交流内阻时,采用高精度的测量仪器至关重要。SBT300电池测试仪是一款高精度、高分辨率的电池测试仪。采用交流四端子测试方法,可更精准地测试锂电池的内阻和电压。电阻最小分辨率可达0.1μΩ,电压最小分辨率可达10μV。内建比较器功能,可自动判断电池参数是否符合标准,以便统计合格率,适合各种电池的检测和分拣。仪器具有RS-232C/LAN通讯接口,支持SCPI通讯协议。为手机锂电池、动力电池、储能电池等各种应用场景提供精准测试支持。[b]主要优势[/b]1、比较器功能:电池测试仪SBT300中的电压和交流内阻测量分别具备独立的比较功能,能够同时进行Pass/Hi/IN/Lo的判断并在画面上显示,且可以向外部I/O口输出综合判断结果。2、模拟输出功能:电池测试仪SBT300可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录交流内阻值的变化,便于使用数据采集仪进行需要长期记录的测量和电池的评估等。3、统计功能:电池测试仪SBT300可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。4、存储功能:电池测试仪SBT300内置2.8G存储空间,测量结果可以使用csv格式或者mat格式存储到仪器内存,并且提供USB接口,能够通过外接U盘导出数据,随时查看相应时间的测量结果。

  • 粉末涂层测厚仪在喷涂施工中的应用

    对于粉末喷涂施工,测量涂层固化前的粉末层厚度也有着重要的意义。粉末涂层测厚仪与湿膜测厚仪的形式有所不同,使用方法也有区别。其中,非接触式粉末厚度测厚仪是一种超声波测厚仪,使用很方便,可以根据粉末的厚度显示出最终涂层的厚度。  传统的粉末涂层测厚仪包括有:干膜测厚仪和湿膜测厚仪。  [b]湿膜测厚仪应用:[/b]  有研究表明,涂层固化过程中会出现应力是不争的事实。大部分涂层在固化过程中会收缩,由此在涂层内部就出现了拉应力 要是在涂层固化过程中涂料分子的结构发生变化,涂层就会膨胀,涂层内部就会存在压应力。  另外,涂层和基材热膨胀系数不同以及各道涂层间性能的差别等因素都会使涂层内部产生应力。如果涂层中的应力超过了涂层的抗拉强度,涂层就会开裂。内应力的存在还可能使涂层的附着力和抗疲劳性能下降,致使涂层的使用寿命缩短。一旦在涂层完全固化后发现涂层厚度不符合设计要求,就很有可能需要将原先的涂层清除干净后重新涂漆,由此造成的损失会很大。因此,我们需要在涂装过程中随时检查涂层的湿膜厚度。  [b]干膜测厚仪应用:[/b]  涂装施工正式结束之前,要按有关要求或标准对涂层的厚度进行全面的检查。检查涂层厚度的方法有很多,但在涂装施工现场,无损检测法是测量涂层厚度最为常用的方法,这种方法操作简便,工作效率高,经济性好,对涂层不会造成破坏性影响。  为了满足用户对粉末涂料固化前的厚度进行非接触、无破坏性测量,TQC新推出一款可用于湿膜和干膜分析的粉末涂层测厚仪,采用光热法,能够非接触,无破坏性对粉末涂料固化前后的厚度进行分析测量。这台轻巧稳健的仪器可快速精准地测量在金属和MDF底材上粉末涂层在固化前后的厚度。测量系统由传感器和显示器组成,通过一条电缆连接。 [b] TQC Powder TAG 粉末涂层测厚仪特点:[/b]  1、操作简便。只需将探头在合适的距离指向测量物品的表面,然后按下“测量”按钮。  2、可测量任意形状和尺寸的样品,包括边框和边缘的样品。  3、测量范围大,测量值极其精准。  4、可测量任意金属底材品如钢、铝及非金属底材如中密度纤维板。  5、适用于固化或未固化粉末涂料。[align=center][url=http://www.tqc-china.com][img=TQC Powder TAG 粉末涂层测厚仪,416,369]http://www.tqc-china.com/system/upload/day_170711/201707111119434805.png[/img][/url][/align][b]关于TQC Powder TAG 粉末涂层测厚仪更多信息,欢迎随时咨询翁开尔热线:400-680-8138,或者登陆:[/b]www.tqc-china.com.

  • 【求助】谁有锂电池方面的书籍啊

    那位大哥 能个小弟提供一些锂电池方面的资料吗?现在我急需这方面的资料,可是在一般的书店你没得买?苦啊~关于 LiCoO2 LiFeO4 LiMnO4 等方面的资料 真的很难找啊还有电解液 隔膜 等等 我的邮箱batteryzhang@sohu.com

  • 铁铝双用涂层测厚仪测厚仪CQ-X5(FN)

    铁铝双用涂层测厚仪测厚仪CQ-X5(FN)双功能技术的测厚仪, 完成磁感应和电涡流测量自动转换 http://www.szjmyiqi.com/up/image/201309/20130906153790149014.jpg http://www.szjmyiqi.com/up/image/201309/20130906153710011001.jpg http://www.szjmyiqi.com/up/image/201309/2013090615270230230.jpg http://www.szjmyiqi.com/up/image/201309/20130906152722842284.jpg 产品简介CQ-X5(FN)涂层测厚仪采用了双功能测量技术即磁性和涡流测厚方法,能够自动识别磁性或非磁性底材,然后采用相应的测试方法,可无损地测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性覆盖层的厚度(如铝、铬、铜、珐琅、橡胶、油漆等) 及非磁性金属基体(如铜、铝、锌、锡等)上非导电覆盖层的厚度(如:珐琅、橡胶、油漆、塑料等)。本涂层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域。该产品已经通过华南国家计量测试中心、广东省计量科学研究院验证,并荣获相关证书,深受各大厂家青睐。 适用范围: CQ-x5(FN)涂层测厚仪是铁铝基材双用的测厚仪,可以测量包括铝或铜底材上的特富龙、珐琅、瓷釉、环氧树脂、阳极氧化层或涂料的厚度测量。测厚仪磁感应测试方法应用的涂镀层包括锌、镉、涂料或粉末喷涂。 测试特点:精度高、稳定性好 铁基和非铁基底材自动识别、仪表能自动识别基材种类 切换LCD会显示“NFe”或“Fe 无需校准、一键操作 一体化探头、小巧实用、测量快速精确 自动开、关机以延长电池使用时间技术参数 测量厚度及精度 0-1999μm ± (3.0%+2μm) 0-40mil ± (3.0%+0.1mil) 公英制转换 μm/mil 双显 数据存储 10组数据 技术优势 零点校准 自动开机 内置防腐探头 LCD180度反转显示 电源 1.5V电池(AAA)×1 机身重 70g 机身尺寸 108mm×46mm×23mm产品结构图 http://www.szjmyiqi.com/up/image/201310/20131002161424492449.jpg CQ-X5(FN)涂层测厚仪面板图 CQ-X5(FN)测厚仪标准清单:CQ-x5(fn)涂层测厚仪主机 * 1台保证卡 * 1本说明书 * 1本[color=#000

  • 【资料】锂电池的原材料市场供应不足新兴产业却遭遇成长“天花板”完善发展机制迫在眉睫

    在全球重点发展电动车、储能电池等性能源产业的今天,锂电池作为公认的理想储能元件,得到了更高的关注。我国也在动力电池领域投入了重大的资金和政策支持,已经涌现了比亚迪、比克、力神、中航锂电等全球电池行业引人注目的骨干企业。正集材料、负极材料、电池隔膜、电解液是锂电池最重要的四项原材料。而六氟磷酸锂主要用作锂离子电池电解质材料。六氟磷酸锂电解液主要用于锂离子电池制造。目前全球锂电池产能急速扩张,作为主要材料的锂电池隔膜产能增长速度呈现滞后的局面。已经有众多的电池厂家不同程度的表示了隔膜紧缺,隔膜材料产能的提高不仅对我国锂电池乃至世界锂电池产业的发展都是一个迫切的要求。因而,在国内尽快的涌现出更多的民族企业是完善我国锂电池行业产业链,提升我国锂电池生产企业竞争和可持续发展能力的重要举措,也是关乎我国新能源汽车产业快速发张的关键环节。尽管未来市场需求空间巨大,但市场主要被跨国公司占据,国内企业受制于技术水平落后而在竞争中处于下风。更让人担心的是“一窝蜂”式的投资使碳纤维、六氟磷酸锂两大行业遭遇了国内企业扎堆低端产品、产能过剩等问题。大规模投资一旦实现投产,跨国公司就会把产品价格大幅下调到企业生产成本线,到时候企业生存都成问题,想收回投资更是难上加难。相关企业负责人、行业专家认为,碳纤维、六氟磷酸锂折射出部分战略性新兴产业的现状。技术和市场已成为战略性新兴产业成长的两大瓶颈,如果不及时化解,战略性新兴产业顺利发展恐难如愿。六氟磷酸锂负重前行技术、市场两头吃亏的现状,是投资火热的碳纤维、六氟磷酸锂面临种种困扰。江苏省如东县洋口化工公园区的一个年产400吨六氟磷酸锂项目正在紧张的建设中。该项目由主业为医药中间体的当地上市企业九九久公司投资。根据规划,该项目将使用九九久公司超募资金8050万元,所有设备预计于2011年3月底前安装结束,4月底进入调试阶段。目前公布要实施六氟磷酸锂项目的上市企业除了九九久公司,还有江苏国泰、多氟多等。江苏国泰下属的亚源高新公司计划新建年产300吨六氟磷酸锂项目,投资总额为8330万元,多氟多投资1.2945亿元建设的年产200吨六氟磷酸锂项目中试已经成功。上市公司中的一些氟化工企业尽管没有公告,但实际都有投资意向。江西兴国氟化工产业园、福建邵武金唐工业园区等资源资源丰富地区的六氟磷酸锂项目正在招商。六氟磷酸锂为何掀起了一波投资热潮?九九久公司董秘陈兵表示,新能源汽车列入战略性新兴产业,作为车用动力电池关键材料之一的六氟磷酸锂,自然也在政策鼓励范围之内。市场前景可能是投资热的另一个原因。业内专家介绍,电解液厂商基本上都使用六氟磷酸锂作为电解质。一辆纯电动车需要使用40公斤电解液,如果2015年前实现100万辆混合动力汽车的市场规模,按其中20%采用锂电池作为动力电池测算,新增电解液需求将超过8000吨,相当于目前中国锂电池电解液约85%的市场规模。除了新能源汽车,六氟磷酸锂还应用于手机、笔记本电脑、电动自行车、电动工具等领用,即使不考虑新能源汽车带来的需求激增,目前六氟磷酸锂的市场依然可观。但市场前景不等于真是盈利,国内企业想在六氟磷酸锂上赚钱并不容易。六氟磷酸锂生产装置建成之后还要进行调试、试生产、改进工艺、试生产验收等环节才能实现产业化,技术门槛比较高,突破起来不会那么快,实现真正产业化过程可能比较长。更坏的消息是,国内企业十几年来尚未突破核心技术关,而六氟磷酸锂的市场价格已开始呈现下降趋势。2000年前后,六氟磷酸锂每千克价格是8000多元,2006年是500元,现在的价格是380-400元。国内企业从研发、中试到产品走向市场的各个环节都面临国外产品降价的局面,未来产品的价格可能还会继续下降。另一层让人担心的事是现在大家都去做,行业未来可能会产能过剩。新兴产业的成长不仅要实现技术突破,还要在政策体质上有所突破,比如完善产业布局和投资管理、加大扶持资金的监管力度。完善发展机制迫在眉睫。事实上,不仅仅是碳纤维、六氟磷酸锂等面临技术、市场难题和产能过剩隐忧,在战略性新兴产业投资热潮席卷全国的同时,部分行业已暴露出一定程度的潜在过剩问题。另外,由于一些新上马的项目技术水平不过关,所以未来不具备竞争力。技术落后其实是大部分新兴产业面临的问题,有的新算技术达到国际先进水平,产业化方面也存在差距。市场换不来技术、资源换不来技术,中国必须加大自主创新力度,赶超国外技术水平。形式很紧迫,这段时间不能拖太久。正因为技术要求比较高,国家应重点支持技术水平较高的企业,研究成果让行业共享。而在投资上应设立一定的门槛,“一路绿灯”反而不利于资金的使用和行业的发展。政府扶持资金的投向不能仅要看企业的大小、是否有国资背景,而且还要看企业的技术水平和资金的真是投向。更多的专家指出,新兴产业的成长不仅要实现技术突破,更要在政策体质上有所突破。如果不冲破体质瓶颈,新兴产业未来可能难以修成正果。“十二五”国家肯定会加大对新兴产业的扶持力度,但除了在资金扶持上加大力度,一个庞大的体质改革系统工程待完成。建议进一步完善产业布局和投资管理。新兴产业门槛较高、技术突破难度大,各地应选择自身具有优势或者最有可能突破的产业重点发展,分层次、分布实施。与此同时,国家应当制定有关产业政策,达不到一定技术标准、配套条件的项目部应当上马。此外,钱要用在“刀刃”上。在资金的使用上,应加大监管力度,必须是用于研发,政府可以设立或者委托基金负责,这样可以起到更好的监管效果。

  • 锂电池过度充电测试

    锂电池以其能量密度高等特点,广泛应用于工业自动化、新能源汽车、消费电子产品等领域。然而,在日常使用中,电池过度充电等问题时有发生,这可能对电池造成不可逆的损害,轻则缩短电池寿命或导致彻底失效,重则可能引发电池燃烧爆炸,危及电气设备和人员安全。为确保锂电池在使用和运输过程中的安全性,必须进行严格的测试和检测,以评估其对过度充电的承受能力。其中,UN38.3过度充电测试是锂电池在运输前必须通过的安全检测,由联合国发布,具备高度的公信力。在锂电池行业中,注重安全标准和测试的重要性,是为了推动科技发展的同时,最大程度地降低潜在的风险和安全隐患。通过这一测试,可以有效避免用户在使用锂电池时发生意外,保障设备和人员的安全。[align=center][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181624110174_6281_6387980_3.png!w690x411.jpg[/img][/align][b]什么是UN38.3(可充电型锂电池操作规范)[/b]UN38.3(可充电型锂电池操作规范)是联合国危险物品运输专门制定的《联合国危险物品运输试验和标准手册》的第3部分38.3款,为确保锂电池在运输前的安全性,规定了一系列严格的测试要求。这些测试包括高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过度充电试验、强制放电试验等。如果锂电池与设备没有安装在一起,并且每个包装件内装有超过24个电池芯或12个电池,则还须通过1.2米自由跌落试验。[b]解决方案[/b]在这些测试中,过度充电试验是其中难度较大的一项。该测试要求在2倍最大连续充电电流和2倍最大连续充电电压的条件下,将待测锂电池连续充电24小时。测试的主要目的是评估锂电池对过度充电的承受能力,要求电池在过度充电过程中及之后七天内没有发生电池解体或燃烧爆炸的情况。这一系列的测试确保了锂电池在运输过程中的高度安全性,尤其是过度充电试验,关系到用电设备与用户的安危,具有极其重要的意义。为应对UN38.3标准中的过度充电测试。利用直流电源为电池进行持续供电,同时结合SBT300电池测试仪,全面监测电池充电过程中的电压、交流内阻等关键参数。通过这些先进的测试设备,工程师能够深入分析锂电池的衰化效应和稳定性,为研发制造更加安全可靠的锂电池提供有力支持。[align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181625312538_6416_6387980_3.png!w690x460.jpg[/img][/align][b]主要优势[/b]交流四端子法测量:SBT300电池测试仪采用交流四端子法测量交流内阻和电压,能够分离提供电流的导线和测量器件上电压降的导线,进而消除电缆和探针接触电阻的阻抗。校正功能:SBT300电池测试仪能够补偿仪器内部电路的偏置电压或者增益漂移等,对测量数据进行校正以提高测量精度,并且可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。模拟输出:SBT300电池测试仪可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录电阻值的变化,便于使用数据采集仪进行需要长期记录的测量和锂电池的评估等。

  • 【资料】锂电池知多少

    【资料】锂电池知多少

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908301013_168389_1610969_3.jpg[/img]锂电池[color=#DC143C]目录[/color]锂电池的概述 锂电池的特点 锂电池的结构 锂电池的应用 锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 锂电池的概述锂电池的特点锂电池的结构锂电池的应用锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景• 电池的基本性能• 锂离子电池的特征• 锂电池的保护电路• 简易充电电路• 单节锂电池的应用举例• 锂电池的保存• 注意事项• “超级”锂电池

  • 认清自身优缺点,向安全高效进军——锂电池

    目前锂离子蓄电池已被广泛应用于手机、笔记本电脑等电子产品中,在很多人看来,它也是电动汽车的理想动力来源,但锂离子蓄电池目前并不完美,其缺点和优点一样明显。 锂离子电池具有能量比高、重量轻、寿命长等一系列优点,但作为自然界中最轻的金属,锂遇到水或者潮湿空气极易自燃乃至爆炸。特别是“怕水”的特性让科学家感到遗憾,因为锂与水接触会释放出很大能量。美国锂电池生厂商正试图利用这一特性,以安全的方式生产出更高效的锂离子电池。 据报道,在3月初美国国防部下属的高级计划研究署(ARPA)年会上,美国电池生产商PolyPlus宣布,已通过在外部包裹一层特殊的电解质薄膜,成功使得金属锂电极与水中的溶氧安全发生反应,每公斤锂足以产生1.3千瓦时的电力,而当前等量的锂离子电池只能生产出0.4千瓦时的电力,这也是目前的纯电动汽车无法像传统汽车一样实现长距离行驶的原因。 美国能源部部长在年会上表示,对他们而言,改造电池是当前唯一一种既可以降低美国庞大的石油消费,又创造出就业机会的途径。美国每天需要为购买石油支付10亿美元,这些钱中大部分流向了中东、加拿大和委内瑞拉这样的国家和地区,研发更好更安全的电池——就像PolyPlus所作的那样,最终将让美国摆脱对国外石油的依赖。 事实上,美国已拥有锂电池50年的发展史,是世界上锂电池工业最发达的国家之一,如今普遍使用的锂电池、移动电源锂电池正是由美国德克萨斯大学的研究人员发明的,但当前日本和韩国厂商却占有全球大部分产能。为此高级计划研究署专门制定了一个储能电池的研发计划,为10个电池项目提供资金支持,PolyPlus只是其中的一个项目,其他项目还包括完全由固体材料制造的可充电电池到高能密度电容等。

  • 为什么涂层测厚仪测什么都是0?

    涂层测厚仪是一款专业测量金属材料表面涂层覆盖层物体厚度的专业无损检测仪器。它是根据金属基体不同使用以下不同的测量方法,有磁性测厚方法和涡流测厚方法。广泛地应用于涂装行业、制造业、金属加工业、化工业、造船、机械、商检等检测领域。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=NzM3YTFjOWRkM2MxYzE3NmQyMGQyYmU0ODdlYWU1NmIsMTY1MDQ0NTczNDQ4OA==[/img]英徕铂涂层测厚仪,采用合金一体化探头,世界领先技术,操作简单,测试速度快,灵敏度高。在平时的使用中如果操作不当,或者长期未使用,可能会出现无法开机、测什么都是0的情况,这些情况是什么原因?又该如何解决呢?[b]一、无法正常开机[/b]可能原因:1、电源线连接不紧密2、保险丝损坏3.电池安装不正确解决方法:1、检查电源线是否连接紧密或连接其他电源插座2、更换保险丝3.检查电池是否装反[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=YWFlZjJhMjZkZWZjMzY2MmQ1NGVmNGM4ODVjZTNhZjAsMTY1MDQ0NTczNDQ4OA==[/img][b]二、测什么都是0[/b]可能原因:1、错按空零键2、仪器探针磨损解决方法:1、恢复出厂设置再校零位2、联系售后[b]三、仪器测量标准片有偏差[/b]可能原因:1、操作方法不正确2、仪器用久了探针磨损解决方法:1.探头要垂直稳压在膜片中间位置2、恢复出厂设置再两点校准,或恢复出厂设置,多点校准。3.以上都无法恢复正常,联系售后[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=YWRlNjNlNGMwMzdlODdlZjA2ZTIwMmNhNWM1NzhjMzUsMTY1MDQ0NTczNDQ4OA==[/img][b]涂层测厚仪平时的维护一定要做好,这样可以降低仪器损坏的可能性。具体的维护保养措施如下:[/b]1、 仪器保存温度:0℃-40℃,相对湿度≤85%2、 定期清洁测头和膜片。3、远离强磁场、油污、重尘、潮湿的地方,防止碰撞4、长时间不用时,务必将电池取出,避免电池漏液损坏仪器英徕铂(简称ENLAB),物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务。

  • 分享一个锂电池电镜图给大家

    分享一个锂电池电镜图给大家[img]https://simg.instrument.com.cn/bbs/images/default/em09502.gif[/img][img=,567,565]https://ng1.17img.cn/bbsfiles/images/2024/03/202403261148290626_7644_3957149_3.png!w567x565.jpg[/img]

  • 锂电池模拟前端芯片是什么?

    [align=left][font='Segoe UI'][color=#000000][back=#ffffff]随着科技的发展,锂电池已经成为了现代生活中不可或缺的能量来源。为了提高锂电池的性能和安全性,研究人员们一直在努力探索新的技术和方法。其中,锂电池模拟前端芯片作为一种新型的技术手段,已经在市场上取得了一定的关注。那么,锂电池模拟前端芯片究竟是什么呢?本文将为您详细解答。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]一、锂电池模拟前端芯片的概念[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]锂电池模拟前端芯片,顾名思义,是一种模拟锂电池充放电过程的前端芯片。它主要通过对锂电池的电压、电流等参数进行实时监测和控制,来实现对锂电池的高效管理。与传统的锂电池管理芯片相比,锂电池模拟前端芯片具有更高的集成度和更低的功耗,可以有效地提高锂电池的使用效率和延长其使用寿命。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]二、锂电池模拟前端芯片的功能[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]1. 充电管理:锂电池模拟前端芯片可以实时监测电池的充电状态,根据电池的需求自动调整充电电流和电压,以保证电池的安全和快速充电。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]2. 放电管理:锂电池模拟前端芯片可以监测电池的放电状态,避免过度放电导致的损伤。在电池即将放空时,它会自动降低放电电流,保护电池不受损害。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]3. 温度监控:锂电池模拟前端芯片可以实时监测电池的工作温度,当温度过高或过低时,它会自动调整电池的工作状态,以保证电池的安全和稳定运行。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]4. 故障检测与保护:锂电池模拟前端芯片可以对电池的各项参数进行实时监测,一旦发现异常情况,如过充、过放、短路等,它会立即采取措施,保护电池免受损害。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]三、锂电池模拟前端芯片的应用场景[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]锂电池模拟前端芯片主要应用于以下几个领域:[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]1. 移动设备:如智能手机、平板电脑等,这些设备需要长时间使用电池供电,采用锂电池模拟前端芯片可以有效地提高电池的使用效率和延长其使用寿命。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]2. 可穿戴设备:如智能手表、健康手环等,这些设备通常需要在低功耗状态下运行,采用锂电池模拟前端芯片可以满足这些需求。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]3. 电动工具和无人机:这些设备的电源需求较大,采用锂电池模拟前端芯片可以确保电池的安全和稳定运行。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]4. 汽车电子系统:如电动汽车的电池管理系统等,采用锂电池模拟前端芯片可以提高汽车电池的性能和安全性。[/back][/color][/font][/align][align=left][font='Segoe UI'][color=#000000][back=#ffffff] [/back][/color][/font][/align][align=left][font=宋体][font=宋体]销售各种电子元器件,有需要可来询价。[/font][/font][/align]

  • 使用ACE600镀膜,观察锂电池隔膜样品的更多细节

    使用ACE600镀膜,观察锂电池隔膜样品的更多细节

    扫描电镜爱好者经常以拍摄电池隔膜来验证仪器性能和操作技巧,而且为了避免喷金带来的样品形貌变化,需要费精力挑战不镀膜直接拍摄。如果有一台高性能镀膜仪,将会带来哪些改变呢?通过近期做过的实验,锂离子电池隔膜使用徕卡ACE600镀膜仪之后:1、镀膜颗粒度小,高倍率图像观察不到镀膜金属颗粒。2、厚度2nm连续成膜,导电性好,避免放电现象。3、使得高分子材料表面导热性增强,避免热损伤现象。4、降低二次电子信号出射深度,增加表面细节形貌。5、信号激发效率提高,图像明亮,立体感和景深增强。6、图像拍摄变得简单快捷,极大提高操作效率!干法隔膜:http://ng1.17img.cn/bbsfiles/images/2014/11/201411241711_524277_1804341_3.jpg湿法隔膜http://ng1.17img.cn/bbsfiles/images/2014/11/201411241712_524279_1804341_3.jpg下面是我根据实验结果做的PPT总结,欢迎大家讨论!http://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524280_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524281_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524282_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241714_524283_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241714_524284_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241715_524285_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241715_524286_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241716_524287_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241716_524288_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524289_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524290_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524291_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524292_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524293_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524294_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524295_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241719_524296_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241719_524298_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241720_524299_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241720_524301_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241721_524302_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241721_524303_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241722_524304_1804341_3.jpg

  • 涂层测厚仪有哪些作用

    涂层测厚仪有哪些作用

    涂层测厚仪主要功能是测量和控制各种涂层或薄膜的厚度,以确保产品的质量、性能和合规性。以下是涂层测厚仪的作用:  质量控制和质量保证:涂层厚测定仪可以用来监测产品表面的涂层厚度,确保涂层质量符合规定的标准和规范。这有助于提高产品的质量,并减少因涂层质量不良而导致的废品率。  涂层均匀性检测:通过涂层厚测定仪,可以检测涂层在不同部位的厚度差异,确保涂层均匀分布,避免涂层不均匀导致的产品性能问题。  工艺优化:制造商可以使用涂层厚测定仪来优化涂装工艺,以确保最佳的涂层厚度,从而提高产品性能、耐久性和外观。 合规性检测:在一些行业,涂层厚度必须符合法规和标准的要求,以确保产品的安全性和可靠性。涂层厚测定仪可以用于检测涂层的合规性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309271039462615_8683_6098850_3.jpg!w690x690.jpg[/img]

  • 涂层测厚仪是什么仪器

    涂层测厚仪是什么仪器

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]涂层测厚仪是什么仪器[/color][/font]涂层测厚仪是一种用于测量涂层或涂料膜厚度的仪器,也被称为涂层测量仪或涂层厚度计。它主要用于检测金属、非金属、有机和无机涂层的厚度,以确定涂层的质量和均匀性。涂层测厚仪可以广泛地应用在制造业、金属加工液、化工业、商检等检测领域,是材料保护专业必备的仪器。涂层测厚仪的工作原理是,通过感应线圈向被测涂层表面发射电磁波,涂层表面反弹的电磁波信号再被感应线圈接收到,从而测量涂层厚度。因为涂层的厚度会改变电磁感应信号的强度,所以通过测量电磁感应信号的强度,就可以确定涂层厚度。涂层测厚仪可以分为三种:Fe质探针、NFe质探针和Fe、NFe质探针。Fe质探针可以检测所有非磁性涂层厚度,例如涂在钢、铁上的漆、粉末涂层、塑料、瓷、铬、铜、锌等;NFe质探针可以检测所有绝缘涂层厚度,例如漆、塑料、瓷等,这些涂层须涂在诸如铝、铜、黄铜或不锈钢等非磁性金属基体上;Fe、NFe质探针可以同时检测到Fe质探针和NFe质探针所能检测到的涂层厚度。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311150916246277_9898_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【资料】(锂离子)锂电池的认识

    锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。现在锂电池已经成为了主流。目录锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 电池的基本性能 锂离子电池的特征 锂电池的保护电路 简易充电电路 单节锂电池的应用举例 锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池 锂电池型号 锂锰电池常规型号 圆柱锂离子电池常见型号 方型锂离子电池关于乘飞机携带锂电池的规定 相关规定的条文 禁止托运的原因锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景电池的基本性能锂离子电池的特征锂电池的保护电路简易充电电路单节锂电池的应用举例锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池锂电池原理简介[/size

  • 【原创大赛】【原创】场发射扫描电镜观测电池隔膜材料的参数设定

    【原创大赛】【原创】场发射扫描电镜观测电池隔膜材料的参数设定

    场发射扫描电镜观测电池隔膜材料的参数设定中国的锂离子电池行业近几年在迅猛发展,国内出现一大批掌握核心制造技术的电池原材料生产厂家。电池隔膜﹝separation film﹞在锂电池结构中是关键的内层组件之一,作为隔离正负电极的装置放置于两极之间,能够让电解质离子通过,又能避免两极上的活性物质直接接触而造成短路。电池隔膜一般是用高分子材料PE(聚乙烯)或PP(聚丙烯)来制备,孔径大小通常在10nm至300nm左右。扫描电镜是用来检测电池隔膜孔径大小和孔洞分别是否均匀的常用仪器,为达到观测要求,图像放大倍率通常需要达到2万倍至10万倍甚至更高。不同材质和生产工艺(单向或双向拉伸,干法或湿法等)的电池隔膜在导电性方面有所差异,但作为绝缘高分子材料,直接放入扫描电镜下观察都有一定难度。采用离子溅射仪喷镀的方法,能够解决电池隔膜在扫描电镜观测过程中放电的问题,但溅射Au、Pt等重金属离子的过程中也有可能损伤和改变隔膜样品的原始形貌。采用场发射扫描电镜在不对电池隔膜喷镀的情况下直接观察原始真实形貌,需要解决图像放电和电子束对样品的热损伤问题,其中设定扫描电镜参数非常重要,主要涉及到加速电压、探针电流和扫描模式。这三个参数需要找到平衡点,加速电压的设定原则是电子束打在样品上的加速电压(着陆电压)越低,图像放电和样品损伤越小,但分辨率也会相应降低;探针电流的设定原则是电子束打在样品上的探针电流越小,图像放电和样品损伤越小,但图像信噪比也会相应降低;扫描模式的设定原则是电子束停留在样品上每扫描点时越少,图像放电和样品损伤越小,但图像信噪比也会相应降低。参数设定在不同型号的场发射扫描电镜操作不同,但大致方法和原则是类似的,本文采用的是日立S-4800冷场发射扫描电镜,电池隔膜样品是没有经过喷镀直接采用低加速电压和低束流观察,放大倍率为2万倍至30万倍。首先看几张电池隔膜在扫描电镜图像放电和受到电子束损伤的照片。http://ng1.17img.cn/bbsfiles/images/2012/12/201212272354_416497_1804341_3.jpg图1 图像严重放电,电镜参数加速电压1kV,扫描模式Slow 40s1kV的加速电压对于扫描电镜来说已经属于低加速电压了,另外图1中电镜参数设定为发射束流设定为10μA,Probe current设定为normal,聚光镜C1值为5,扫描模式为40秒Slow模式,放大倍率3万5千倍,但图像严重放电,连样品的基本特征形貌都无法获得。其他参数不变,将扫描模式由40秒Slow模式改为40秒CSS模式获得图2照片,图像依然放电,但明显减轻而且孔洞边缘清晰度不错。http://ng1.17img.cn/bbsfiles/images/2012/12/201212272355_416498_1804341_3.jpg图[siz

  • 直线电机双轴联动平台在锂电池激光焊接的解决方案

    直线电机双轴联动平台在锂电池激光焊接的解决方案

    为了解决日益突显的能源、环保问题,新能源行业越来越受到世界各国的关注。锂电池行业作为国家重点扶持新能源项目发展较为迅速。近两年,中央和地方各项扶持政策协同效果逐渐显现,我国的新能源汽车市场出现了超预期发展和增长,并带动了产业链上下游企业的高速增长尤其是锂电池行业, 随着新能源汽车销量的进一步提高,业内预计,2018年锂电池或将进入供应紧张的阶段,强烈的需求对锂电池的产品技术、工艺、性能提出了更高的要求,更进一步凸显了产能的不足。目前国际上大多采用先进的激光焊接技术对锂电池的电池芯及保护板进行焊接。随着制造业的不断发展,大力发展高端制造技术,如何提高激光技术在锂电池制造领域的技术水平、如何升级优化激光焊接设备的整体性能,成为目前各个厂家研究的重点。在运动平台部分,直线电机相较于滚珠丝杆有更优的动态性能,更精密的定位精度及重复定位精度,更高的稳定性,更低的维护成本。用直线电机传动平台替换滚珠丝杆运动平台已成为必然趋势。激光焊接技术特点及难点: 激光焊接是一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个锂电池生产流程中的关键工艺。激光焊接是利用激光束优良的方向性和高功率密度等特点来进行工作的。激光焊接有以下特点:激光功率密度高,可以对高熔点、难熔金属或两种材料进行焊接 聚焦光斑小,加热速度快,作用时间短,热影响区域小,热变形可忽略;激光焊接属于非金属焊接,无机械应力和机械变形;激光焊接装置易于计算机联机,能精确定位,实现自动焊接。锂电池模组通过高效精密的激光焊接可以大大降低接触电阻,降低能耗,提高电池的安全性、可靠性和使用寿命。但激光焊接要求焊件装配精度高,且要求激光束在工件上的位置不能有显著偏移。若焊件装配精度以及激光束定位精度达不到要求,很容易造成焊接缺憾,影响焊接质量。激光焊接技术的特点以及锂电池的结构性能对激光焊接设备的运动平台提出了更高更精密的要求。双轴联动直线电机平台技术特点及难点: 直线电机的本质是把旋转电机平放展开并直接连接到驱动负载上。它能替代例如滚珠丝杠、齿条与齿轮、皮带与皮带轮和减速箱的所有机械传动部分,从而消除了齿隙以及与机械传动相关的问题。具有结构简单、调速范围宽、动态性能优良、定位精度高、安全可靠、运行噪声低、无磨损、免维护以及无限行程等优点。灵猴双轴联动直线电机平台加速度可达5g、重复定位精度可达1μm并且在深度优化结构设计的基础上采用独特自主编写控制算法,跟踪检测速度波动,并作出后续补偿,使双轴直线电机在高速度走曲线小圆弧运动条件下,速度波动在3%以下,轨迹偏差更是在微米级别。完全满足锂电池激光焊接对平台精度、加速度、速度等性能的要求。日前有某激光焊接设备厂商客户的设备运动平台采用的是丝杆模组,但在其加速度为1g、速度提到100mm/s时其设备的焊接质量将无法保证,现需求双轴联动直线电机平台以替代丝杆平台模组并明确要求提供包括圆弧转角在内的跟随误差测试报告,但该客户对直线电机运动平台并不了解,故向我公司寻求解决方案。经过与客户的数次技术交流,在完全理解掌握客户设备的特性信息后设计了初版双轴联动直线电机运动平台模组,但是其要求的运动平台的运动轨迹的圆弧转角要求较小,且其速度及精度要求较高,经过我司对双轴联动直线电机平台的结构优化,定制化编写算法控制上下两轴的耦合,经过详细的系统测试,最终满足客户的需求,升级优化了客户的激光焊接设备,使其设备的焊接速度、精度以及稳定性在同行业处于领先地位。客户要求如下:[b]直线电机需求表 [/b]客户名称:[u] 某激光焊接设备集成 [/u]运用行业:[u] 锂电池激光焊接 [/u]联系人电话:[u] [/u]电子邮箱:[u] [/u]运动轴运动方式 :□水平 √ □垂直速度规划曲线:□1/3-1/3-1/3梯形波 √ □1/2-1/2三角形波总的运动行程:[u] 上轴270mm、下轴300mm [/u]mm总的运行时间:[u] 1.8s [/u]s最大运行速度:[u] 0.5 [/u]m/s最大运行加速度:[u] 3g [/u]m/s2负载重量:[u] 30 [/u]kg精度定位精度:[u] ±5 [/u]μm重复定位精度:[u] ±1 [/u]μm分辨率:[u] 0.1 [/u]μm放大器和电源最大电流:[u] 6.3 [/u]A电压:[u] 220 [/u]VAC □50 Hz √ □60Hz使用环境环境温度:[u] 室温 [/u]℃最大允许温升:[u] 130 [/u]℃是否在无尘环境中: □是 √ □否是否允许水冷或空气冷却:□是 □否 √是否是真空环境: □是 √ □否硬件总体设计及验证系统配置: 双轴联动直线电机运动平台主要由:直线电机、检测反馈、驱动控制,防护装置四部分组成。该运动平台选用无铁芯直线电机,运动平滑无齿槽力;检测反馈由光栅或磁栅、霍尔、温控组成;此平台模组选用的是高创驱动器,防护装置由风琴防护罩、高性能拖链、光电传感器、优力胶硬限位组成,充分保护运动平台的安全可靠性。模型效果如图2所示: [img=十字滑台,554,415]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311009_01_3294819_3.jpg[/img][align=center]图1:双轴联动模组模型[/align]双轴联动直线电机主要性能参数如图3所示: [img=,327,290]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311010_01_3294819_3.jpg[/img][align=center]图2:双轴联动模组性能参数[/align]验证测试根据客户设备的运动特点及轨迹,为保证客户设备在运行过程中的稳定性及可靠性,我们多次做了过需求验证并出具了相关的验证报告,运动平台的各项参数均符合客户需求,并做了相当于设备连续运行1.5年的耐疲劳测试,各项参数均无异常。经过多次技术交流、结构优化、测试验证,灵猴双轴联动直线电机运动平台仅在两周的时间就达到了客户的要求,满足了交付条件并实时在客户现场调试安装,直到客户设备完全出货,我们还积极跟踪我司产品在客户设备终端的运行状况以及各项数据,实时为客户设备提供可靠性报告。该客户“非标私人订制”的双轴联动直线电机运动平台模组上下两轴均采用自主研发的BUM系列无铁芯直线电机,该系列直线电机具有高推力、低运动质量、无齿槽效应、无磁吸力等特点,特别是在走曲线圆弧轨迹时,可实现高速度小圆弧转角下的低速度波动。在使用了双轴联动直线电机运动平台后,使其焊接速度提高50%,提高了其圆弧转角处的焊接质量,升级优化了客户整体设备的性能,提高客户设备销量的同时也增加了直线电机模组的销量,真正实现了双赢价值。直线电机平台模组除上述应用外,还有在医疗行业应用的超薄十字蛇形运动平台模组,其整体尺寸大小仅有圆珠笔大小;在3C行业中的视觉检测以及点胶平台上的快速移动的四轴联动直线电机模组;在机床以及快速搬运行业的LPS系列单轴平台模组;可以完全直接替换丝杆的SP标准系列单轴平台模组等等。随着制造行业越来越苛刻的要求,现代先进制造装备向着高速度、高精度、快响应、大行程的趋势发展。这必然要求一个反应灵敏、高速、轻便的驱动系统,由于传统的进给方式—“旋转电机+ 滚珠丝杠”需要联轴器、丝杠等中间传递环节,造成整体系统刚性不够、弹性变形严重,又因为该“间接传动”中丝杠精度很难提高、存在反向间隙等缺点,使得传统的进给系统无法达到上述要求。相对而言,直线电机具有结构简单、安装方便、无接触、无磨损等优点,并在精度、重复定位精度、刚度、工作寿命等其他性能指标上都优于旋转电机。其主要推广与高速、高精等旋转电机无法满足要求的场合。现代直线电机技术日益成熟,其势必取代传统的“旋转电机+ 丝杠”的传动模式。

  • 涂层测厚仪和超声波测厚仪的不同之处

    涂层测厚仪和超声波测厚仪的不同之处涂层测厚仪:磁性和电涡流两种测量方法,可无损地检测磁性金属基体上非磁性覆盖层的厚度(如钢铁合金和硬磁性钢上的铝、铬、铜、锌、锡、橡胶、油漆等)以及非磁性金属基体上非导电的绝缘覆盖层的厚度(如铝、铜、锌、锡上的橡胶、塑料、油漆、氧化膜等。 超声波测厚仪是利用超声波的原理对金属、塑料、陶瓷、玻璃及其他任何超声波的良导体进行测量。一般是用在工业生产领域中对材料或零件做精确测量,其另一重要方面是可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。  超声波测厚仪http://www.dscr.com.cn/show.asp?id=374是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。  超声波测厚仪分为普通型与涂层型,普通型一般需要将测量点打磨出金属光泽后测量,涂层型分为只测量涂层厚度和透过涂层测母材两种;因为波的反射原理,只测量涂层厚度的超声波测厚仪品牌较多,而透过涂层测母材的超声波测厚仪较少。  测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。

  • 高精度涂层测厚仪的测量原理

    [url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]是一种常用的检测仪器,具有测量误差小、可靠性高、稳定性好、操作简便等特点,被广泛用于制造业、金属加工业、化工业等领域中。特曾测厚仪的原理是什么呢?下面小编就来具体介绍一下,希望可以帮助到大家。  磁感应测量原理  采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达10mm。  磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。  电涡流测量原理  高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。  采用电涡流原理的测厚仪,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适。  迪斯凯瑞GT-100高精度涂层测厚仪可无损地直接测量磁性材料(如钢、铁、合金和硬磁性钢)等物体表面上的非磁性覆盖层厚度(如:油漆、塑料,陶瓷,橡胶,铜,锌、铝、铬、铜等)。非磁性金属基体上非导电覆盖层的厚度(如铜、铝、锌、锡等基底上的珐琅、橡胶、油漆镀层)。

  • 粉末涂层测厚仪在喷涂施工中的应用

    粉末涂层测厚仪在喷涂施工中的应用

    [color=#333333]对于粉末喷涂施工,测量涂层固化前的粉末层厚度也有着重要的意义。[color=#333333]有研究表明,涂层固化过程中会出现应力是不争的事实。大部分涂层在固化过程中会收缩,由此在涂层内部就出现了拉应力 要是在涂层固化过程中涂料分子的结构发生变化,涂层就会膨胀,涂层内部就会存在压应力。另外,[color=#333333]涂装施工正式结束之前,要按有关要求或标准对涂层的厚度进行全面的检查。检查涂层厚度的方法有很多,但在涂装施工现场,无损检测法是测量涂层厚度最为常用的方法,这种方法操作简便,工作效率高,经济性好,对涂层不会造成破坏性影响。[/color][/color][/color][color=#333333][color=#333333]TQC新推出一款[color=#333333]可用于湿膜和干膜分析的粉末涂层测厚仪,采用光热法,能够非接触,无破坏性对粉末涂料固化前后的厚度进行分析测量。[/color][/color][/color][align=center][color=#333333][color=#333333][color=#333333][url=http://www.tqc-china.com/][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/07/201707111649_01_2818848_3.png[/img][/url][/color][/color][/color][/align][color=#333333][color=#333333][/color][/color]

  • 【原创】锂电池消解问题?

    前天我在做一个锂电池消解时,没想到用3052会出现这样,微波生气了,罢工了。好响当当啊!以前做得好好的,现,唉!电池里有一种绿色的胶我只取了0.0756啊,她就突飞猛进地放气体,这不?把自己送葬了。请问那是一种什么材质啊?

  • 锂电池使用注意事项

    [color=#000000]电池充满后继续充电对锂电池伤害很大。[/color][color=#000000]满后继续充电,电池内部将产生副反应,活性物质减少,垃圾物质增多,容量下降,内阻增大,严重过充直接破坏电池结构,导致电池报废。[/color][color=#000000]现在一些充电器也提供了充电保护模式,会根据电池的电量是否充满调节充电模式,可以有效的保护电池。锂离子电池可随时充电,对寿命的影响有限,对PPC等带电量计电池,建议用到自动关机后充电,以免影响。[/color][color=#000000]随时可充电、随时可停止,如果充满了继续充电,会对电池的寿命产生影响。[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制