当前位置: 仪器信息网 > 行业主题 > >

离轴抛物面金属反射镜

仪器信息网离轴抛物面金属反射镜专题为您提供2024年最新离轴抛物面金属反射镜价格报价、厂家品牌的相关信息, 包括离轴抛物面金属反射镜参数、型号等,不管是国产,还是进口品牌的离轴抛物面金属反射镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离轴抛物面金属反射镜相关的耗材配件、试剂标物,还有离轴抛物面金属反射镜相关的最新资讯、资料,以及离轴抛物面金属反射镜相关的解决方案。

离轴抛物面金属反射镜相关的论坛

  • 【求助】求购椭球面反射镜

    哪里有卖尺寸小的椭球面反射镜,用于将红外光源调成平行光,材料金属,内表面镀金,直径1.5cm左右,有的话联系我,邮箱mjfcool@163.com

  • 首个中红外波长超级反射镜制成

    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。[b]研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。[/b][来源:科技日报]

  • 关于红外反射镜的镀膜。

    红外反射镜的镀膜材质有镀金、镀银、镀铝的,性能上相差多少呢?还有号称“金刚石加工切削整体合金反射镜,光路传输效率更高于一般金属镀层技术的反射镜”的,这种合金反射镜是什么材质的?

  • 求助中文文献

    【序号】:1【作者】:汪明强 李林 黄一帆【题名】:三反射镜空间遥感器的光学设计[J]【期刊】:光学技术 2007年02期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200702002.htm【序号】:2【作者】:巩马理 【题名】:离轴探测自动调焦特性[J] 【期刊】:光电工程 1991年03期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC199103002.htm【序号】:3【作者】:胡玉禧 ,周绍祥 【题名】:离轴抛物面反射镜的成象特性[J] 【期刊】:高速摄影与光子学 1983年01期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB198301006.htm【序号】:4【作者】:田国兵 胡建军 潘君骅 【题名】:长焦距大离轴量离轴抛物面反射镜的检测方法研究【期刊】:【全文链接】:http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCS201808001015.htm【序号】:5【作者】:郭永祥 李英才 吕保斌 白瑜【题名】:一种新型的两镜三反射光学系统设计[J]【期刊】:应用光学 2009年06期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200906008.htm

  • 【原创】反射镜参数的表示意义

    大家帮忙给看看这些反射镜参数的表示代表什么意思:AlMgF2, CL1.5×2.00, 260mmROC AlMgF2, FL1.25×1.50我知道AlMgF2是反射镜上面镀的膜,其余的表示什么意思,希望高手不吝赐教!!!

  • 反射光栅在紫外检测器中的原理与应用

    反射光栅在紫外检测器中的原理与应用

    下图为一检测器光栅衍射分光的实拍图:http://ng1.17img.cn/bbsfiles/images/2015/01/201501280955_533330_2960432_3.png上述反射光栅的光路原理应该和下面的原理相似,但也有不同之处:http://ng1.17img.cn/bbsfiles/images/2015/01/201501281105_533343_2960432_3.png图F5-1是离轴抛物镜光学系统图。光源或照明系统发出的光均匀地照亮位于离轴抛物镜焦面上的入射狭缝S1,光经过离轴抛物镜6fl平行照射到光栅G上,经光栅衍射回到M1,经反射镜M2会聚到出射狭缝S2,最后经过滤光片M3到接收元件上。由于光栅的分光作用,从出射狭缝出来的光束为单色光。当光栅转动时.使不同波长的光束经出射狭缝S2射出。http://ng1.17img.cn/bbsfiles/images/2015/04/201504201928_542753_2960432_3.jpg简单说,光栅是将光源射出的不同波长混合在一起的复色光分开为一个扇形分布的光谱带,狭缝的作用是只让这个扇形光谱带中的某一部分波长通过。这两个部件组合起来使用才能获得检测用的“单色光”。对于单色器的详细解读下面一贴更详细:主题:【讨论】说说大家所知道的光栅单色器 昵 称:xiejun110 网址:http://bbs.instrument.com.cn/shtml/20130716/4853417/index_1.shtml file:///c:/documents and settings/aaa/application data/360se6/User Data/temp/2015013102041867.png

  • 求助中文文献

    【序号】:【作者】:赵茗, 黄德修, 刘小英,等.【题名】:离轴抛物面反射式平行光管的结构设计[ J] 【期刊】:华中科技大学学报, 2005 , 33(4)【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200504021.htm

  • 反射吸收法

    用于样品表面、金属板上涂层薄膜的红外光谱测定。甚至用于单分子层的解析。入射光经反射镜照射到样品表面,其反射光再经另一反射镜进入仪器。反射吸收测定的原理是,只有与基板垂直的偶极矩变化可以被选择性地检测。

  • 医学和生物学常使用的各种显微镜

    -暗视野显微镜 在普通光学显微镜台下配一个暗视野聚光器),来自下面光源的光线被抛物面聚光器反射,形成了横过显微镜视野而不进入物镜的强烈光束,因此视野是暗的,视野中直径大于 0.3μm的微粒将光线散射,其大小和形态可清楚看到。甚至可看到普通明视野显微镜中看不见的几个毫微米的微粒。因此在某些细菌、细胞等活体检查中常常使用。 实体显微镜 由双筒目镜和物镜构成。放大率 7~80倍。利用侧上方或下方显微镜灯照明。在目镜内形成一个直立的放大实像,可以观察未经加工的物体的立体形状、颜色及表面微细结构,并能进行显微解剖操作,也可以观察生物机体的组织切片。

  • 【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法, 由于仪器检出限低、测试范围广、动态线性范围宽等优点,越来越广泛应用于含量范围宽、精度要求高的技术领域,如食品、卫生、医药、化妆品、土壤、钢铁等精密分析及基础研究中。 想具体了解ICP仪器在检测方式:单道(多道)扫描与全谱直读的区别,首先先来看看各自的检测器在工作原理上的不同之处吧---- 单道扫描型光谱仪:从光源发出的光穿过入射狭缝后,反射到一个可以转动的光栅上,该光栅将光色散后,经反射使某一条特定波长的光通过出射狭缝投射到光电倍增管上进行检测。光栅转动至某一固定角度时只允许一条特定波长的光线通过该出射狭缝,随光栅角度的变化,谱线从该狭缝中依次通过并进入检测器检测,完成一次全谱扫描,和多道光谱仪相比,单道扫描光谱仪波长选择更为灵活方便,分析样品的范围更广,适用于较宽的波长范围。但由于完成一次扫描需要一定时间,因此分析速度受到一定限制。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561708_3025342_3.png 全谱直读型光谱仪:光源发出的光通过两个曲面反光镜聚焦于入射狭缝,入射光经抛物面准直镜反射成平行光,照射到中阶梯光栅上使光在X向上色散,再经另一个光栅在Y向上进行二次色散,使光谱分析线全部色散在一个平面上,并经反射镜反射进入面阵型CCD检测器检测。由于该CCD是一个紫外型检测器,对可见区的光谱不敏感,因此,在光栅的中央开一个孔洞,部分光线穿过孔洞后经棱镜进行Y向二次色散,然后经反射镜反射进入另一个CCD检测器对可见区的光谱(400~780nm)进行检测。这种全谱直读光谱仪不仅克服了多道直读光谱仪谱线少和单道扫描光谱仪速度慢的缺点,而且所有的元件都牢固地安置在机座上成为一个整体,没有任何活动的光学器件,因此具有较好的波长稳定性。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561709_3025342_3.png 近年来,由于全谱直读型仪器能更大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布的同时测量,有利于多谱图校正技术的采用,有效消除光谱干扰,提高选择性和灵敏度,越来越多的科研和工业企业选择全谱直读的仪器,来获取最快,最精确的测量分析结果。 德国派克最新款的ARCOS光谱仪,以独一无二的全新MultiView等离子体接口,第一次在同一台仪器上实现了真正的轴向和径向直接观测,拥有真正全谱记录同时测量的性能,将电感耦合等离子体发射光谱仪(ICP-OES)的效率和性能推向了新的高度。

  • 急问阴离子表面活性剂标线做得想抛物线怎么回事?

    阴离子表面活性剂标线做得想抛物线怎么回事?专家里手帮我分析分析。做过很多次都很不顺利,我觉得可能的原因是1,分液漏斗没洗干净,之前做地表水和污水,做完后用自来水和去离子水各洗3遍,没有用酒精浸泡;2、亚甲蓝加的不是特别准确,我觉得关键的试剂是氯仿,亚甲蓝是用25ml比色管加的;3、亚甲蓝配得有问题,我用的是无水的磷酸二氢钠,不过之前别人也是用同样的试剂配的,另外亚甲蓝配了有二十多天,对实验会有影响吗?4、分液漏斗上挂了好多氯仿珠,浓度越高挂的越多,有的萃取完后我用少量去离子水冲洗了一下;5、摇得不够均匀。不过每次我做平行样还是可以的,另外发现,比色时,下面的萃取液吸光度比上面的低很多,就是说比过1次,再接1点来比色,吸光度差了很多,请高手分析一下失败的原因,万分感谢!

  • 求助中文文献

    【序号】:1【作者】:张忠玉. 余景池.【题名】:用补偿器测量非球面的研究[J] . 【期刊】:光学精密工程, 1999 (1)【全文链接】:https://www.cnki.com.cn/Article/CJFDTotal-GXJM901.021.htm【序号】:2【作者】:郭培基. 余景池 孙侠菲 【题名】:一种大数值孔径小非球面检测用补偿器设计[ J] . 【期刊】:光学精密工程 , 2002 (5)【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200205019.htm【序号】:3【作者】:曹根瑞. 【题名】:补偿透镜法检验抛物面镜的调整误差分析[ J] . 【期刊】:光学技术 , 1992 (3)【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS199203000.htm【序号】:4【作者】:陈钦芳 李英才 马臻 李旭阳 梁士通【题名】:离轴二次非球面反射镜无像差点法检测的误差分离技术[J] 【期刊】:光学学报 2011年02期【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102039.htm【序号】:5【作者】:郭隐彪,魏丽珍 【题名】:非球面检测中偏心光束对焦系统设计[J]【期刊】:制造技术与机床 2005年10期【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC200510018.htm

  • 【分享】科学前沿--宽禁带氮化物面发射半导体激光器研究获重大突破

    863计划新材料领域“蓝绿色垂直腔面发射半导体激光器”课题近日取得重大突破,在我国(除台湾地区外)首次实现了室温光泵条件下氮化物面发射激光器(VCSEL)的受激发射,所得器件重要性能指标超过了国际报道的最好水平。这标志着我国氮化物面发射激光器研究已进入世界先进行列。该成果由厦门大学、中国科学院半导体研究所和厦门三安电子有限公司组成的合作研究团队,经过将近一年的艰苦研发,攻克高质量增益区材料的生长、高反射介质膜分布布拉格反射镜的制作和蓝宝石衬底剥离等关键技术难题后得以实现。所使用的增益区是研究团队自主设计的由纳米级尺寸氮化物量子阱材料构成的新型特殊结构,利用该结构容易获得光场波峰与增益区峰值高的匹配因子,使激射阈值降低了一个量级。激光剥离后氮化物材料的表面平整度小于几个纳米,可以直接沉积反射镜,免除了减薄抛光工艺,简化了制作过程。该研究得到激射峰值波长449.5纳米,激射阈值6.5毫焦/平方厘米,半高宽小于0.1纳米。以上结果在国际上处于前沿先进水平。氮化物面发射激光器在激光显示、激光照明、激光高密度存储、激光打印,水下通信等方面有着广阔的应用前景。该成果为进一步研制实用化氮化物面发射激光器奠定了重要的基础。来源:科技部

  • 准确测定MXene二维材料的晶胞参数--反射透射XRD数据同时精修

    [align=center][size=18px]准确测定MXene二维材料的晶胞参数--反射透射XRD数据同时精修 [/size][/align][align=center][size=16px]Precise measurement of the lattice parameters for MXene 2D materials – Simultaneous refinement to reflection and transmission XRD data[/size][/align][align=center][size=16px]Tony Wang [/size][/align][align=center][size=16px]Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia [/size][/align] [size=16px]0.摘要 本文介绍了二维材料MXene的基本结构以及透射模式XRD对二维材料层内原子排列周期性的重要性,并运用TOPAS精修软件中的同模型多数据精修功能,通过对反射模式XRD数据和透射模式XRD数据的同时精修,批量准确测定了MXene样品的晶胞参数,解决了当前文献中MXene样品的层内晶胞参数普遍测量困难的问题。 1. 介绍 MXene材料是继石墨烯Graphene之后的二维材料研究热点。其在存能量储(即电池和超级电容器)、EMI屏蔽、析氢反应的催化剂、改善聚合物复合材料机械性能、及在气体和湿度中的应用传感器等许多应用中有广阔的前景。 MXene材料是化学式M[sub]n+1[/sub]X[sub]n[/sub]T或M[sub]1.33[/sub]CT的一系列材料的统称。它们已经是拥有最大成员规模的二维材料。它们主要是通过从具有化学式M[sub]n+1[/sub]AX[sub]n[/sub]的母体MAX相中溶解掉A原子层而获得,其中M代表低原子系数过渡金属,A主要是第13或14号元素,X代表C和(或)N。T表示溶解时附着到MXene表面的各种终端基团。添加-ene后缀是为了突出其二维(2D)性质。 第一个MXene材料是由Naguib和同事于2011年通过溶解纳米层状三元碳化物Ti[sub]3[/sub]AlC[sub]2[/sub]中的Al层而获得的Ti[sub]3[/sub]C[sub]2[/sub]T[sub]z[/sub][sup]1[/sup]。继这一发现之后,人们用类似的方法,使用了除HF之外的不同类型的酸腐蚀不同的三元碳化物、氮化物或碳氮化物(MAX相)的中间原子层,制得了多种MXene材料[sup]2[/sup]。 MXene材料在化学组成上具有显着的可调性。M和X位的不同原子以及空位,都会调节层内原子排列的尺寸,如六方晶胞的a轴长度。类似于其他二维材料, 如可膨胀粘土矿物等, MXene材料也具有层间离子、分子可交换特性。不同尺寸的层间离子或有机分子,乃至不同的T终端基团都会改变MXene材料的层间距,如六方晶胞的c轴长度。 X射线粉末衍射方法是准确测定晶胞参数的常用方法。然而实验室湿法制备的MXene材料经干燥后常为微米级厚度的自支撑薄膜,很难粉碎为常规意义上的粉末。文献中常见的MXene材料的XRD数据均只采用了常规的反射模式XRD数据,所得数据质量低并且全部存在严重的择优取向,从而无法准确测定面内晶胞参数[i]a[/i]。如图1所示,对完全择优取向的二维材料来说反射模式XRD对二维材料堆叠方向的层间距([i]c[/i]轴长度)敏感,而透射模式XRD对层内的晶面间距([i]a[/i]或[i]b[/i]轴长度)敏感。[/size] [align=center][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161521085462_2132_1986542_3.png!w690x376.jpg[/img][/align][align=center]图1. 使用XRD的(a)反射模式和(b)透射模式分别测定MXene二维材料的(a)层间距和(b)层内晶面间距[/align][align=center]Fig.1. Using XRD in (a) reflection and (b) transmission mode to measure (a) interlayer distance and (b) intralayer lattice parameters[/align] [size=16px]本文展示了XRD的批量透射工作模式,在实验室批量测定了大量MXene样品的面内XRD数据,通过TOPAS软件的同模型多数据同时精修功能准确测量了大量的MXene样品的六方晶胞参数[i]a[/i]和[i]c[/i]。[/size] [size=16px] 2. 实验: 反射模式XRD测量方法与常规XRD方法相同,下面只介绍透射模式XRD仪器及光路配置: ? 布鲁克D8 Advance ? 钴靶X光管线聚焦(也可采用铜靶,但角度分辨率会有牺牲) ? 平行光抛物面聚焦镜(也可采用聚焦光双曲面聚焦镜) ? 索拉狭缝2.5度分别位于初级光路和次级光路 ? 自动进样旋转样品台及侧边防散射刀片 ? LynxEye XE-T能量分辨位敏探测器一维扫描模式 透射模式XRD扫描参数: ? Offset Coupled 2Theta/Theta扫描, Omega 90度 ? 2Theta扫描范围5 – 100度,步长0.05度 ? 驻留时间1秒/步, 全谱扫描时间30分钟 ? 样品自转15 转/分 样品制样: ? 若MXene自支撑薄膜强度足够可直接安装于透射样品架上 ? 若MXene自支撑薄膜太薄,可夹在双层Kapton膜中间,再安装再透射样品架上 ? 若使用了Kapton膜,其在透射模式和反射模式下的散射贡献需单独测定 [/size] [size=16px]3. XRD数据分析 3.1. Kapton膜背景的扣除 扣除XRD数据的非样品背景,并不是直接的数据相减,而是对背景数据进行模型拟合,并将拟合所得的背景模型带入到所有样品数据的拟合中。图2为TOPAS软件中使用Peak Phase多峰模型,对Kapton薄膜在反射模式和投射模式下的背景贡献的拟合。[/size] [align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161558515996_1884_1986542_3.png!w690x388.jpg[/img][/align][align=center]图2. TOPAS中分别对Kapton膜背景在反射模式和投射模式下的背景贡献的拟合[/align][align=center]Fig. 2. Using peaks phase in TOPAS to model Kapton backgrounds in reflection and transmission mode[/align] [size=16px]3.2. MXene样品晶胞参数的精修 在TOPAS中,将两种模式所测数据下的[i]hkl_Is[/i]模型中的晶胞参数用参数名连接成为相同的精修参数。对反射模式下的[i]hkl_Is[/i]模型使用强0 0 1择优取向矫正,同理对透射模式下的[i]hkl_Is[/i]模型使用强1 1 0择优取向矫正。精修结果如图3和表1:[/size] [align=center][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161601302894_6250_1986542_3.png!w690x387.jpg[/img][/align][align=center]图3. TOPAS中精修相同的hkl_Is模型同时拟合反射模式和透射模式的XRD数据[/align][align=center]Fig. 3. Lattice parameter refinement of a single hkl_Is model from both reflection and transmission XRD data.[/align] [align=center]表1 本方法所测定的某MXene材料的晶胞参数。 Table 1. Lattice parameters of a MXene material measured using the proposed method [table][tr][td]双数据全谱精修所得的晶胞参数 Refined lattice parameters[/td][td][align=center][i]a[/i] (?)[/align][/td][td][align=center][i]c[/i] (?)[/align][/td][/tr][tr][td][align=center]MXene 样品sample #13[/align][/td][td][align=center]3.0394(4)*[/align][/td][td][align=center]26.990(15)*[/align][/td][/tr][/table]*括号内数字为数据最后一位的精修误差 * The numbers in brackets stand for refinement error for the last digit place[/align] [size=16px] 4. 结论 当前文献中关于MXene的XRD数据少见全谱精修分析。其原因是常规的反射模式XRD数据无法准确获得二维材料层内原子排列的周期性。本文使用的反射模式XRD数据与透射模式XRD数据的同时精修方法解决了这一难题。本方法除对MXene二维材料有效外,几乎可用于所有二维材料的晶胞参数测定。 5.参考文献 1. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. & Barsoum, M. W. (2011). Adv. Mater. 23, 4248-4253. 2. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. (2014). Nature 516, 78-81. [/size] [size=16px]本贴视频: D8 Advance最大90样品位批量透射XRD扫描模式 Video: D8 Advance running in high throughput transmission mode for max. 90 sample positions[/size]

  • 求助中文文献

    【序号】:【作者】:赵茗,黄德修,刘小英,黄维玲.【题名】:离轴抛物面反射式平行光管的结构设计[J].【期刊】:华中科技大学学报(自然科学版),2005,33(4):67-69. 【全文链接】:http://www.alljournals.cn/view_abstract.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=96E6E851B5104576C2DD9FC1FBCB69EF&jid=BB4E866AFD3782060C9844AE745A2C8D&aid=AC2B4063781DA4FF&yid=2DD7160C83D0ACED&from_type=1

  • 【第三届原创参赛】魔镜,魔镜,我问你——镜面反射在红外光谱分析中的应用

    【第三届原创参赛】魔镜,魔镜,我问你——镜面反射在红外光谱分析中的应用

    [size=3][font=宋体][color=#000000][url=http://www.instrument.com.cn/activity/2010yc/voteCode.asp?ID=927][img]http://www.instrument.com.cn/ilog/pic/20100901/201091151543.jpg[/img][/url][/color][color=#f10b00]维权声明:本文为[/color][size=4][url=http://www.instrument.com.cn/ilog/zwyu]zwyu[/url][/size][color=#f10b00]原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任。[/color]==============================zwyu的分割线======================================zwyu红外课堂开讲啦!来签到先。[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008121218_236182_1645275_3.jpg[/img]==============================zwyu的分割线======================================[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061321_234685_1645275_3.jpg[/img]魔镜魔镜我问你。。。[flash=400,55]http://cd04.static.jango.com/music/00/29/18/0029182925.mp3[/flash]==============================zwyu的分割线======================================镜面反射对红外光谱来说,一直好像很神秘的样子。那么,红外镜面反射到底都有哪些应用呢?我从无所不知的“魔镜”那里得到了答案,且听我一一道来。==============================zwyu的分割线======================================[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061415_234721_1645275_3.gif[/img][size=2]Tips:反射有多种形式,有镜面反射,有漫反射,有内反射。今天咱们只谈发生在平滑表面的镜面反射。[/size][size=3]==============================zwyu的分割线======================================[/size]前言[/font][font=Arial][/font][/size][size=3][font=宋体]光从任何平滑材料表面反射,反射角等于入射角,这种反射称为镜面反射。在红外光谱分析中,镜面反射又有三种常见的典型应用,即全镜面反射([/font][font=Arial]Fresnel reflection[/font][font=宋体])、透射反射([/font][font=Arial]transflection[/font][font=宋体])和掠角反射([/font][font=Arial]grazing incidence reflection[/font][/size][font=宋体][size=3])。本文将分别对这三种情况做简单的介绍。[/size][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061233_234657_1645275_3.jpg[/img][/font][font=宋体][/font][size=3][font=宋体]==============================zwyu的分割线======================================[/font][/size][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061245_234661_1645275_3.jpg[/img]30度角镜反射附件[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061326_234686_1645275_3.jpg[/img]30度角镜反射典型光路[size=3][font=宋体]==============================zwyu的分割线======================================[/font][/size][size=3][font=Arial]1. [/font][font=宋体]全镜面反射[/font][font=Arial][/font][/size][size=3][font=宋体]对有一定厚度的块、片状材料,如半导体材料、塑料片、单晶等,可能由于或太厚,或太硬等原因而不适合用透射、[/font][font=Arial]ATR[/font][font=宋体]等常规方法测量时,可以考虑采用镜反射方法。对聚合物等大多数有机分子,此时测到的原始光谱在吸收谱带处会表现出“微分特性”,要经过[/font][font=Arial]Kramers–Kronig[/font][font=宋体]变换处理之后才和通常透射测量得到的光谱相似。[/font][/size][font=Arial][/font][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061235_234660_1645275_3.jpg[/img][size=3][font=宋体]上图中[/font][font=Arial]PMMA[/font][font=宋体](有机玻璃)材料的原始光谱在吸收峰(如[/font][font=Arial]1720cm[/font][font=Arial]-1[/font][font=宋体])附近有剧烈的变化,类似“微分光谱”的形状;用红外光谱仪[/font][font=宋体]软件的“[/font][font=Arial]K-K[/font][font=宋体]变换”功能处理后,光谱形状变的与平常的透射光谱很接近,更便于理解和后续数据处理。[/font][font=Arial][/font][/size][font=宋体][size=3]在实际使用中,较为理想的全镜面反射样品应有较为光滑平整的前表面(必要时可抛光处理);相对粗糙、没有高反射背衬的后表面(必要时可打毛处理);有一定的厚度(不要太薄);内部均匀(如内部的某些填料非常容易引入漫反射的干扰)。实测时尽量采用近法线(小角度)入射以减小光偏振可能引入的不确定性。[/size][/font][font=Arial][size=3][font=宋体]==============================zwyu的分割线======================================[/font][/size][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061415_234721_1645275_3.gif[/img]Tips:对自立薄膜,会由于在后表面也发生反射而与前表面反射形成干涉,这也提供了一种测膜厚的方法。若不想有干涉,可将后表面打毛,或成斜面,或干脆加高反射镜面成为透射反射。[size=3][font=宋体]==============================zwyu的分割线======================================[/font][/size][/font][size=3][font=Arial]2. [/font][font=宋体]透射反射[/font][font=Arial][/font][/size][size=3][font=宋体]对于高反射基质(如金属)上的薄膜、镀层等,如果该薄膜层的厚度大于等于入射光的波长时(通常膜厚在[/font][font=Arial]0.5~20μm[/font][font=宋体]),则所得到的镜反射光谱与该薄膜层材料的透射光谱很相似,并且吸收峰的强度几乎大了一倍,对材质的定性分析很有用。而且,相比[/font][font=Arial]ATR[/font][font=宋体]技术(单反射[/font][font=Arial]ATR[/font][font=宋体]的典型透射深度在[/font][font=Arial]0.5~5μm[/font][font=宋体]),镜反射光谱能提供更多的材料内层信息。[/font][/size][font=Arial][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061255_234676_1645275_3.jpg[/img][/font][size=3][font=宋体]上图是某种果汁饮料包装盒的镜反射光谱与[/font][font=Arial]ATR[/font][font=宋体]光谱的比较。显然,用镜反射得到的光谱中材料的吸收更强(图中情况下,[/font][font=Arial]2916cm[/font][font=Arial]-1[/font][font=宋体]和[/font][font=Arial]2916cm[/font][font=Arial]-1[/font][font=宋体]的两个强吸收峰已经因为吸收过强而发生谱带展宽变形);并且,在镜反射光谱中看到了[/font][font=Arial]ATR[/font][font=宋体]光谱中没能反映出来的内层材料的信息(如[/font][font=Arial]1703cm[/font][font=Arial]-1[/font][font=宋体]出的吸收峰)。[/font][font=Arial][/font][/size][size=3][font=宋体]定量分析时,对透射反射光谱最关心的其实是从后表面高反射层反射回来的部分(这部分光相当于在薄膜层中做了往返两次穿透的透射光谱),而不是直接从前表面反射的部分(这部分光类似全镜面反射光谱),后者光谱会在吸收带处发生变形,从而使透射反射光谱偏离[/font][font=Arial]Lambert-Beer[/font][font=宋体]定律,引起定量误差。应该选择在该薄膜层材料的[/font][font=Arial]Brewster[/font][font=宋体]角下,用[/font][font=Arial]p[/font][font=宋体]偏振光(电矢量与入射面平行)入射(此时前表面反射接近为零),以最小化前表面的干扰(见下图,经过优化后,镜反射光谱与透射光谱几乎一致)。[/font][/size][font=Arial][/font][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061256_234678_1645275_3.jpg[/img][size=3][font=宋体]==============================zwyu的分割线======================================[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008061415_234721_1645275_3.gif[/img][size=2]Tips:很多时候,全镜面反射和透射反射成分往往同时存在。我们只能根据需要达到的实验目的,选择性的“强化”某一成分的比例,同时减小另一组分对测量结果的干扰。[/size][/font][/size][size=3][font=宋体]==============================zwyu的分割线====================================== [url=http://www.instrument.com.cn/activity/2010yc/voteCode.asp?ID=927][img]http://www.instrument.com.cn/ilog/pic/20100901/201091151543.jpg[/img][/url][/font][/size]

  • 【分享】物理学年谱

    物理学年谱 公元前~公元元年     公元前650~前550年,古希腊人发现摩擦琥珀可使之吸引轻物体;发现磁石吸铁。     公元前480~前380年间战国时期,《墨经》中记有通过对平面镜、凹面镜和凸面镜的实验研究,发现物像位置和大小与镜面曲率之间的经验关系(中国 墨子和墨子学派)。     公元前480~前380年间战国时期,《墨经》中记载了杠杆平衡的现象(中国 墨子学派)。     公元前480~前380年间战国时期,研究筑城防御之术,发明云梯(中国 墨子学派)。     公元前四世纪,柏拉图学派已认识到光的直线传播和光反射时入射角等于反射角。     公元前350年左右,认识到声音由空气运动产生,并发现管长一倍,振动周期长一倍的规律(古希腊 亚里士多德)。     公元前三世纪,实验发现斜面、杠杆、滑轮的规律以及浮力原理,奠定了静力学的基础(古希腊 阿基米德)。     公元前三世纪,发明举水的螺旋,至今仍见用于埃及(古希腊 阿基米德)。     公元前250年左右,战国末年的《韩非子有度篇》中,有“先王立司南以端朝夕”的记载,“司南”大约是古人用来识别南北的器械(或为指南车,或为磁石指南勺)。《论衡》叙述司南形同水勺,磁勺柄自动指南,它是后来指南针发明的先驱。     公元前221年,秦始皇统一中国度、量、衡,其进位体制沿用到二十世纪。     公元前二世纪,中国西汉记载用漏壶(刻漏)计时,水钟使用更早。     公元前二世纪,发明水钟、水风琴、压缩空气抛弹机(用于战争)(埃及 悌西比阿斯)。     公元前一世纪,最先记载过磁铁石的排斥作用和铁屑实验(罗马 卢克莱修)。     公元前31年,中国西汉时创用平向水轮,通过滑轮和皮带推动风箱,用于炼铁炉的鼓风。  公元元年~公元1000年     一世纪左右,发明蒸汽转动器和热空气推动的转动机,这是蒸汽涡轮机和热气涡轮机的萌芽(古希腊 希隆)。     一世纪,发现盛水的球状玻璃器具有放大作用(罗马 塞涅卡)。     300年至400年,中国史载晋代已有指南船,可能是航海罗盘的最早发明。     在公元七、八世纪,中国唐朝已采用刻板印书,是世界上最早的印刷术。     十世纪,中国发明了使用火药的火箭。     十世纪左右著《光学》,明确光的反射定律并研究了球面镜和抛物面镜(阿拉伯 阿尔哈赛姆)       公元1000年~公元1500年     据《梦溪笔谈》,约公元1041~1048年间,中国宋朝毕升发明活字印刷术,早于西方四百年。     约1200年至1300年,欧洲人开始使用眼镜。     1231年,中国宋朝人发明“震天雷”,是一种充有火药,备有导火线的铁器,可用投射器射出,是火炮的雏型。     1241年,蒙古人使用火箭作武器,西方认为这是战争中首次使用火箭。     1259年,中国宋朝抗击金兵时,使用一种用竹筒射出子弹的火器,是火枪的雏型。     十三世纪中叶,根据实验观察,描述凹镜和透镜的焦点位置及其散度(英国 罗杰培根)。     十三世纪,用空气运动解释星光的闪烁(意大利 维塔罗)。     十三世纪,指出虹霓是由曰光的反射和折射作用所造成的(意大利 维塔罗)。       公元1501~公元1600年     1583年,用自身的脉搏作时间单位,发现单摆周期和振幅无关,创用单摆周期作为时间量度的单位(意大利 伽利略)。     1590年,做自由落体的科学实验,发现落体加速度与重量无关,否定了亚里土多德关于降落加速度决定于重量的臆断,引起了一些人的强烈反对(意大利 伽利略)。     1590年,发现投射物的运行路线是抛物线(意大利 伽利略)。     1590年,认识到物体自由降落所达到的速度能够使它回到原高度(意大利 伽利略)。     1590年,用凸物镜和凹目镜创造第一个复显微镜(荷兰 詹森)。     1593年,发明空气温度计,由于受大气压影响尚不够准确(意大利 伽利略)。     1600年,《磁铁》出版,用铁磁体来说明地球的磁现象,认识到磁极不能孤立存在,必须成对出现(英国 吉尔伯特)。

  • 激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img=,578,450]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201754505855_5264_3712_3.jpg!w578x450.jpg[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img=,678,333]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755021895_7221_3712_3.jpg!w678x333.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755111914_6482_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755345695_9383_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制