当前位置: 仪器信息网 > 行业主题 > >

可编程红外皮秒激光器

仪器信息网可编程红外皮秒激光器专题为您提供2024年最新可编程红外皮秒激光器价格报价、厂家品牌的相关信息, 包括可编程红外皮秒激光器参数、型号等,不管是国产,还是进口品牌的可编程红外皮秒激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可编程红外皮秒激光器相关的耗材配件、试剂标物,还有可编程红外皮秒激光器相关的最新资讯、资料,以及可编程红外皮秒激光器相关的解决方案。

可编程红外皮秒激光器相关的资讯

  • 虹科新品 | 全新升级更高性能可编程射频测试设备上线!——数字衰减器
    新品发布全新升级的射频测试设备你拥有了吗,在延续其小巧的身型、可编程、USB供电控制等经典特色的同时,虹科最新发布的便携式射频测试设备具有更高的带宽、更优秀的性能、更棒的测试体验,包括数字衰减器、信号发生器、射频开关、混频器、射频功率计和功率放大器等,满足您的个性化需求与不同应用场景。虹科便携式可编程数字衰减器具有高达40GHz频率范围和120dB的衰减控制范围,可直接从附带的图形用户界面(GUI)为固定衰减、扫描衰减斜率进行轻松编程,对于希望开发自己界面的用户,虹科提供LabVIEW驱动程序、Windows API DLL文件、Linux驱动程序、Python示例等,满足不同的应用需求。数字衰减器虹科HK- LDA-802-32200-8000MHz高分辨率数字衰减器,32通道,衰减范围为120dB,步长0.1dB虹科HK-LDA-802-32数字衰减器是一个机架式、32通道、高动态范围、双向、50欧姆的步进衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-802-16200-8000MHz高分辨率数字衰减器,16通道,衰减范围为120dB,步长为0.1dB虹科HK-LDA-802-16数字衰减器是以机架方式进行安装,具有16通道高动态范围、双向、50Ω的步进式衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为 0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-608V-4200-8000MHz高分辨率数字衰减器,4通道,衰减范围为60 dB,步长为0.1dB虹科HK-LDA-608V-4数字衰减器是一款高精度、双向的50欧姆步进式衰减器,具有4个独立控制的衰减通道,提供200-8000MHz的校准衰减,典型精度0.25dB,步长为0.1dB,控制范围为60dB。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● USB和以太网控制接口● 可配置的静态IP或DHCP● 可编程的衰减斜率和衰减曲线● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-4030.1-40GHz高分辨率数字衰减器,单通道,衰减范围为31.5 dB,步长为0.5 dB,USB/以太网控制虹科HK-LDA-403数字衰减器是一个双向的、50欧姆的步进衰减器,提供从0.1到40GHz的衰减控制,步长为0.5dB,同时提供USB和以太网接口。通过连接衰减器的扩展总线,可以从一台PC控制多个HK-LDA-403设备。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 可编程的衰减斜率和衰减曲线● 可直接从电脑或自带电源的集线器上操作多个设备● 易于携带的USB供电设备应用● WiFi,WiFi6E,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-203B1-20GHz USB可编程数字衰减器,单通道,衰减范围为63 dB,步长为0.5dB,USB/以太网控制虹科HK-LDA-203B数字衰减器是双向、50Ω步进衰减器,在1-20 GHz频率范围内提供63 dB的衰减控制,步长为0.5 dB,提供USB和以太网接口,易于携带。特点● 可靠和可重复的固态数字衰减● 免费的GUI, Windows和Linux SDK, LabVIEW驱动程序● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-VMA-Q8X8SE衰减矩阵8x8衰减矩阵,频率范围为500–6000MHz,衰减范围为90dB,步长0.1dB,集成式服务器虹科HK-VMA-Q8X8SE衰减矩阵是一个机架式8输入8输出的无阻塞测试仪器,集成了Windows服务器,可独立操作,提供90dB的衰减控制范围,频率范围为500-6000MHz,在所有64种路径组合上步长为0.1dB,可以很容易地对固定衰减、扫频衰减斜率和衰减曲线进行编程。虹科HK-VMA-Q8X8SE采用交流供电,通过机箱后面的一个以太网端口进行控制,射频输入信号通过后面板进入,在前面板获得输出信号。特点● 可靠和可重复的固态数字衰减● 包括Windows和Linux SDK● 可编程的衰减曲线● 以太网控制● 集成服务器应用● WiFi,WiFi 6● LTE,5G,6G● MIMO、多点无线电衰减模拟器● 半导体测试和鉴定● 自动测试设备(ATE)★虹科HK-DAT306K30GHz宽频数字微波步进衰减器虹科HK-DAT306K是一款独立的宽带数字微波衰减器,额定频率为1-30GHz,衰减量从0到60dB不等,最小步长为0.50dB,插入损耗通常低于10dB。虹科HK-DAT306K是一个三重控制设备,衰减设置可以通过用户界面、USB端口串行命令或以太网接口来改变。特点● 最大输入功率:+28.0dBm● 40GHz精密2.92mm K型连接器● USB供电和控制(虚拟COM串口-115.2Kbps)● 音频反馈、LED和OLED显示● 用于PC的简单控制软件● 标准以太网连接● 提供6GHz、12GHz、22GHz等不同型号应用● 电子战● 自动测试环境● 一般射频实验室使用● 控制系统● 卫星通信● 生产验证● 教育/大学实验室● 航空航天/国防研究● 无线基础设施● 雷达系统● 无线基础设施
  • 美国Era精密可编程注射泵进入中国市场
    美国Era公司精密可编程注射泵已进入中国市场,主要型号有NE-1000、NE-4000、NE-1600、NE-1800。其中主打的型号是NE-1000,其它的型号倒是NE-1000的升级改装型号。  NE-1000的注射器的容量达到60ml ,注射速率可以从0.73uL/hr-2100mL/hr调节 ,采用节省空间的设计,小巧结实的外观,为你实验室节省空间。该产品有注入和回抽功能 ,可编程控制,最大41阶命令(注射的速率、注射的容量、插入暂停),一台电脑可以控制100台注射泵,注射的精度小于正负1%。  此次Era可编程注射泵进入中国市场给中国客户解决了编程控制液体的注射问题,而且在价格的方面也是中国客户完全能够接受的。     上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503-1504室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com  --------------------------------------------------------------------------------  浙江办事处  地址:浙江杭州莫干山路425号瑞祺大厦814室[204888]  电话:0571-81954578  传真:0571-81954579  E-Mail:sales@nano-instru.com  纳锘仪器--提供给您纳米级的专业细致服务!
  • 62比特可编程超导量子计算原型机“祖冲之号”研制成功
    记者5月8日从中国科学技术大学获悉,该校中科院量子信息与量子科技创新研究院潘建伟、朱晓波、彭承志等组成的研究团队,成功研制了62比特可编程超导量子计算原型机“祖冲之号”,并在此基础上实现了可编程的二维量子行走。相关研究成果于5月7日在线发表在国际学术期刊《科学》杂志上。量子计算机在原理上具有超快的并行计算能力,相比经典计算机,其可望通过特定算法在一些具有重大社会和经济价值的问题上实现指数级别的加速。超导量子计算作为最有希望实现可拓展量子计算的候选者之一,其核心目标是如何同步地增加所集成的量子比特数目以及提升超导量子比特性能,从而能够高精度相干操控更多的量子比特,实现对特定问题处理速度上的指数加速,并最终应用于实际问题中。二维超导量子比特芯片示意图, 每个橘色十字代表一个量子比特。图片来源:中国科学技术大学潘建伟、朱晓波、彭承志等在前期工作的基础上,自主研制二维结构超导量子比特芯片,成功构建了国际上超导量子比特数目最多、包含62个比特的可编程超导量子计算原型机“祖冲之号”,并在该系统上成功进行了二维可编程量子行走的演示。研究团队在二维结构的超导量子比特芯片上,观察了单粒子及双粒子激发情形下的量子行走现象,实验研究了二维平面上量子信息传播速度,同时通过调制量子比特连接的拓扑结构的方式构建马赫—曾德尔干涉仪,实现了可编程的双粒子量子行走。该成果为在超导量子系统上实现量子优越性展示及可解决具有重大实用价值问题的量子计算研究奠定了技术基础。此外,基于“祖冲之号”量子计算原型机的二维可编程量子行走在量子搜索算法、通用量子计算等领域具有潜在应用,将是后续发展的重要方向。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器  新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。  1.美国“国家点火装置”  这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。  美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。  2.庞大的靶室  庞大的靶室  在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。  3.包含放射性氢同位素、氘和氚的铍球  包含放射性氢同位素、氘和氚的铍球  这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。  例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。  4.靶室顶部的起重机和气闸盖  靶室顶部的起重机和气闸盖  在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。  5.精密诊断系统  精密诊断系统  激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。  6.激光间  激光间  在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。  最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。  7.磷酸盐放大玻璃  磷酸盐放大玻璃  国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。  8.技术人员在激光间里安装光束管  技术人员在激光间里安装光束管  技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。  9.紧急停运盘  紧急停运盘  在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。  10.光导纤维  光导纤维  光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。  11.能量放大器  能量放大器  能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。  12.可变形的镜子  可变形的镜子  可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。  13.激光放大器  激光放大器  激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。  14.便携式洁净室  便携式洁净室  科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。  15.能量放大器  能量放大器  每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。  16.技术人员校对能量放大器  技术人员校对能量放大器  从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。  17.模仿NASA的主控室  模仿NASA的主控室  照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。  18.光束源控制中心  光束源控制中心  光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。  19.国家点火设施的激光源  国家点火设施的激光源  国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。  20.高能灯管  高能灯管  高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。  这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。  国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)  导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:  “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。  以下是“国家点火装置”产生最强激光的几大步骤:  1、安装球形外壳     安装球形外壳  为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。  2、用调节器调整靶位     用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。  3、将燃料放入燃料舱(圆柱体)     将燃料放入燃料舱(圆柱体)  进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。  4、压缩并加热燃料     压缩并加热燃料  所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。  5、用磷酸二氢钾晶体转换激光束     用磷酸二氢钾晶体转换激光束  激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 罗氏旗下基因泰克7000 万美元投入可编程细胞疗法
    2022 年 9 月 27 日,可编程 CAR-T 细胞疗法公司 “Arsenal Biosciences” 宣布:其已与罗氏旗下的 “基因泰克” 达成一项多年的合作协议,双方将联合部署 ArsenalBio 的专有技术用于 T 细胞的工程化及高通量筛选,以确定 T 细胞疗法中的有效基因电路。 作为交易的一部分,Arsenal 将在接下来的合作中获得潜在的 7000 万美元收益,包括预付款以及在研究、开发和商业进程中的里程碑付款。Arsenal Biosciences Arsenal Biosciences,成立于 2019 年,是一家致力于利用合成生物技术编程 T 细胞以开发下一代疗法的生物技术公司。就在不久之前的 9 月 6 日,ArsenalBio 刚刚完成了 2.2 亿美元的 B 轮融资,投资者中便包括了百时美施贵宝。成立至今,ArsenalBio 已经获得超过 3 亿美元的资金。 根据 ArsenalBio 方面的介绍,其正在构建业界最大的治疗增强型基因电路的 DNA 文库,这其中包含了 “用于改进肿瘤靶向性的逻辑门控” 和 “支持多种药物功能的合成线路”。之后通过 CRISPR 系统,将设计的基因电路导入细胞当中,以生成多功能 T 细胞药物。 “通过基因电路赋予细胞对所处细胞环境进行感知、计算、决策以及响应的能力”,可编程的细胞疗法,是合成生物学之于医药领域的关键应用之一。在该方向上的代表性公司还有着 Timothy Lu 的 Senti Bio,其在 6 月刚刚于纳斯达克成功上市。 可编程细胞疗法(来源:Senti Bio) 基于自身的可编程细胞疗法平台,ArsenalBio 正在推进用于卵巢癌的临床管线 AB-1015,以及针对于肾、前列腺和其他癌症适应症的早期开发候选者。而据报道,此次与罗氏和基因泰克在基因电路上的合作研发,将重点围绕 “肿瘤微环境” 所展开。 “虽然 T 细胞疗法在血液恶性肿瘤的运用已经取得了重大进展,但是实体瘤上有着额外的挑战,如对抗性的肿瘤微环境,这限制了过继性 T 细胞疗法的有效性。” 在报道当中,ArsenalBio 方面这样介绍道。 “ArsenalBio 的工程平台整合了多项技术,包括基于 CRISPR 的高通量基因编辑、合成生物学和计算生物学,用以创建新的合成生物学编程项目,旨在增强 T 细胞功能,使它们能够克服存在于实体瘤及其周围的复杂免疫防御系统。” 罗氏(来源:ANP) 对于罗氏方面,这则是其在持续的细胞疗法布局当中的一部分。相较于诺华、吉利德、百时美施贵宝等,罗氏在 CAR-T 方面的入局则非常之晚,其一直到去年才加入行动,与 Adaptimmune Therapeutics 达成潜在的 30 亿美元 T 细胞疗法交易。 根据合作条款,ArsenalBio 和基因泰克将部署基因电路来研究对于 T 细胞的有效修饰,并通过临床前分析来获取对其影响的新认知。两家公司都将利用这些经验来开发未来的候选治疗药物。 “通过与 ArsenalBio 合作,我们正在获取强大的技术,以促进对 T 细胞生物学编程的理解,对于为难以治疗的癌症提供重要疗法来说,这可能至关重要。” 罗氏制药外部合作全球负责人 James Sabry 这样说道。参考链接:[1] https://www.businesswire.com/news/home/20220927005014/en/Arsenal-Biosciences-Announces-Joint-Discovery-Collaboration-with-Genentech-to-Identify-Features-of-Successful-T-Cell-Therapies-for-Oncology[2] https://www.fiercebiotech.com/biotech/genentech-pays-70m-access-arsenals-armoury-t-cell-tools-quest-solid-tumor-car-t[3] https://www.businesswire.com/news/home/20220906005150/en/Arsenal-Biosciences-Closes-220-Million-Series-B-Financing-to-Advance-Programmable-Cell-Therapy-Programs-into-Clinical-Development[4] https://mp.weixin.qq.com/s/v1ebx_t55XNTI0VapeGegA
  • Drummond NanojectⅢ可编程显微注射器成功安装
    近日,上海书俊仪器设备有限公司核心代理的Drummond新款NanojectⅢ可编程显微注射器顺利通过福建某高校的安装验收。此次验收的显微注射器是Drummond厂家推出的全新型号, NanojectⅢ可编程显微注射器,注射体积范围和NanojectⅡ相比有所增大。 上海书俊仪器设备有限公司一贯致力于引进与推广国外质优价美的仪器设备与技术,Drummond显微注射器也凭借卓越的品质和先进的技术不断满足用户的实验需求,深受中国用户的喜爱,在众多显微注射器中占有一席之地。 想了解更多关于Drummond显微注射器的详情,请致电021-64825207,浏览上海书俊仪器有限公司官网www.primesci.com,或扫码、添加上海书俊仪器设备有限公司公众号primesci!
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • 国内独家可编程式生化培养箱厂家直销
    上海一恒科学仪器有限公司新一代生化培养箱集公司数十位工程师精心设计与实验下,生产出顺应世界潮流的生化培养箱。新一代生化培养箱可预设15段30步可编程序,这一技术领先国际水平。购买生化培养箱,请联系上海一恒科技有限公司。 上海一恒科学仪器有限公司厂家联系方式:
  • 微生物墨水能3D打印可编程“活材料”
    据英国《自然通讯》杂志23日发表的一项概念验证研究,美国研究团队报告了一种用基因改造大肠杆菌制成的高级微生物墨水,可以用来打印具有功能性和可编程属性的3D材料。该研究同时演示了这项技术的潜在应用,比如隔离在环境中出现的有毒化学物质双酚A。  直接利用微生物制备无须添加其他聚合物或添加剂的打印墨水,为传统物质不可用情况下的材料制造开辟出全新的可能性。与此同时,这种技术还能用于开发可感知周围环境并做出反应的材料。工程师们认为,只要拥有3D打印这种材料的能力,就有望实现材料的定制化并可针对特定用途进行改造。  由活细胞构成的微生物墨水,其实一直是实现这一目标的候选介质,但它们需要将目标材料特性与细胞活性相结合,这是一个技术难点。  此次,包括美国东北大学、弗吉尼亚理工学院暨州立大学、哈佛大学Wyss生物启发工程研究所在内的联合团队,报告了用大肠杆菌制成的一种高级微生物墨水,这种大肠杆菌经过基因工程改造,能产生纳米纤维。这些纳米纤维可以进行浓缩并打印出3D结构。  研究人员随后将这种墨水与其他经过基因工程改造、用来执行特定任务的微生物相结合,发现这种水凝胶可以由此获得功能性。研究团队利用这种水凝胶制备了一种能在遇到化学刺激物时分泌抗癌药天青蛋白的材料,还设计出了一种能隔离在环境中出现的有毒化学物质双酚A的材料。双酚A一度在塑料瓶、塑料杯中广泛应用,但后期研究认为其能导致内分泌失调,威胁人体健康,从2011年3月2日起,欧盟已禁止生产含双酚A的婴儿奶瓶。因此,隔离环境中已存在的双酚A将是一项实用的安全性技术。  研究人员认为,他们的新研究或对空间结构构建具有启示意义,但仍需开展进一步研究探索其未来的定制化用途。
  • 东南大学崔铁军院士团队Nature子刊,基于二维可编程超表面的定向信息调制技术
    【科学背景】随着无线通信技术的不断发展,对更高数据速率、更低延迟和更少错误率的需求不断增长,推动了下一代无线通信系统朝着更高的载波频率和超大规模天线阵列的方向发展。然而,这一进程也带来了对通信网络安全性和抗干扰能力的重大挑战。传统的加密方法通常在网络层实施,增加了消息代码的长度和传输开销,并需要密钥交换,这使得满足高带宽和超低延迟通信系统的要求变得困难。为应对这些挑战,近年来多种物理层安全方法得到了开发,其中包括相控阵波束成形技术和人工噪声干扰技术。这些方法的目标是通过增加信号到合法接收者和窃听者之间的信道容量差异来提升通信的安全性。然而,传统的波束成形技术存在体积庞大、能耗高等问题,同时发射机无差别地向所有方向辐射未失真的信号,理论上允许配备灵敏接收器的窃听者截获信息。这些安全隐患促使了对定向通信技术的探索。定向信息调制(DIM)作为一种有前景的物理层安全技术,利用多天线的波束成形能力,在期望方向传输正确的星座符号,同时在其他非法方向将其失真为噪声,从而确保了信息的安全。然而,现有的DIM方案存在一些问题,例如体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制等。当前的主流DIM实现大多依赖于相控阵和时间调制阵列(TMA),这些方案虽然能够生成任意幅度和相位的响应,但由于硬件昂贵、能耗高,且只能支持一维传输,限制了其应用范围。为了解决这些问题,近年来可编程超表面(PM)被引入DIM研究。PM具有灵活的电磁波实时调控能力,可以作为一个高度集成的通信系统,具有更简单的架构、更低的成本和更少的能耗。已有研究尝试使用PM实现定向通信,包括近场幅度移位键控(ASK)调制、远场正交相位移键控(QPSK)调制等。然而,这些方案通常只利用电磁波的相位或幅度特征,缺乏高阶调制和正交幅度调制(QAM)方案,并且需要外部射频源,限制了其应用于空间受限的环境。有鉴于此,东南大学崔铁军院士团队在“Nature Communications”期刊上发表了题为“Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface”的最新论文。本研究提出并实验演示了一种基于二维(2D)PM的DIM方案,旨在克服现有DIM方案中的缺陷。该方案集成了可控组件,能够在期望方向生成正确的星座符号,并形成一个可重构的低剖面调制器,提供发射机与多个接收机之间的独立通信链路。通过使用交替方向乘子法(ADMM)框架中的快速高效算法优化编码序列,该方案实现了在谐波下的定向安全性,并在多通道模式下验证了8PSK、16QAM和64QAM的星座图。【科学亮点】(1)本文首次提出了一种基于2位可编程超表面(PM)的二维及高阶DIM方案,并成功实现了这一方案。该方案利用PM的可调控组件和快速高效的离散优化算法,克服了传统DIM方案存在的体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制的缺陷。实验中,PM方案能够生成正确的星座符号,并在多方向波束中传输,显示了其在定向信息调制(DIM)方面的潜力。(2)通过在多通道模式下进行的验证实验,本文展示了该DIM方案的有效性。具体而言,三组星座图(8相位移键控(PSK)、16正交幅度调制(QAM)、64QAM)在多通道模式下得到了验证,测量结果表明,接收到的信号在期望方向上保持了与预设星座图一致的结构,而在其他方向上则出现了失真。这表明该系统不仅能够进行数字信息的直接传输,还能实现信息的定向安全,即只有期望方向的用户能够接收到正确的符号,而其他方向的用户将接收到失真的符号,从而确保了信息的安全性。【科学图文】图1:基于PM的DIM方案的示意图。图2:PM-based DIM方案中使用的元件的详细信息。图3:单通道模式的选定测量结果。图4:单通道模式下测得的EVM值。图5:双通道16QAM方案中的选定测量结果。图6:评估双通道16QAM中的串扰的结果。7:双通道16QAM实验中测得的EVM值。图8:验证所提出DIM方案的安全区域特性和宽带性能的测量信号结构,其中红色圆形标记表示参考星座符号。【科学启迪】本文提出的基于二维可编程超表面(PM)的定向信息调制(DIM)方案在物理层安全领域开创了新的方向。传统的无线通信系统面临着信息安全的重大挑战,尤其是当发射信号无差别地传播到所有方向时,窃听者有可能截获到未加密的信息。传统的加密方法虽然能够在网络层提供安全性,但它们往往增加了通信延迟和复杂性,并无法有效解决对高带宽和低延迟通信系统的需求。本研究首次利用二维PM结合快速高效的离散优化算法,提出了一种在多方向上生成和传输正确星座符号的DIM方案。这种方案不仅克服了现有DIM技术中的体积庞大和高能耗等问题,还支持了二维及高阶调制,为未来的无线通信系统提供了更为灵活的解决方案。特别是通过在期望方向传输清晰的信号,并在其他方向进行信号失真,这种定向传输模式大大提高了信息的安全性,防止了非目标方向用户的潜在窃听。此外,实验验证了该方案在8PSK、16QAM和64QAM等多种星座图下的有效性,展示了其在多通道模式下的优异性能。这不仅表明该技术在实际应用中具有高度的可靠性,也为未来高吞吐量、低延迟的无线通信系统的发展奠定了坚实的基础。文献详情:Xu, H., Wu, J.W., Wang, Z.X. et al. Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface. Nat Commun 15, 6140 (2024). https://doi.org/10.1038/s41467-024-50482-y
  • 国内首台中试型超声波微波协同强化反应系统与可编程微波催化合成萃取系统通过攀钢验收
    南京先欧公司仪器制造有限公司自主研发生产的国内首台中试型超声波微波协同强化反应系统与可编程微波催化合成萃取系统,近日通过了攀钢研究院各位领导和专家的验收!攀枝花钢铁研究院兼有攀钢钢铁研究院(企业科研院所)和攀枝花钢铁研究院(冶金工业部直属科研院所)双重身份,是以钢铁钒钛技术开发为主的冶金研究机构。
  • 滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
    此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:https://www.nedo.go.jp/activities/ZZJP_100151.html *2 中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。
  • 突破!睿创团队中红外带间级联激光器研究取得重要进展
    近日,睿创研究院及睿创光子团队在中红外带间级联激光器(Interband cascade laser,ICL)的研究取得重要进展,相关团队实现了高性能、室温连续工作、多个激射波长的带间级联激光器系列,结合分子束外延技术,在InAs衬底上生长带间级联激光器材料,制备的窄脊器件室温激射波长接近4.6μm和5.2μm。目前大部分带间级联激光器生长在GaSb衬底上,而睿创团队报道的带间级联激光器生长在InAs衬底上,波导包层由InAs/AlSb超晶格和高掺杂的InAs层构成。相比于常见的GaSb基带间级联激光器,InAs基带间激光器在较长波长处(例如长于4.5μm)具有更低的阈值电流密度。(a)4.6μm波长、2mm腔长、10μm脊宽的器件在20℃-64℃之间连续激射光谱;(b)同一器件在20℃-64℃之间的连续电流-电压-功率曲线对于4.6μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为292A/cm²;2mm腔长和10μm脊宽的窄脊器件的连续工作温度可达64℃,室温输出功率为20mW;在相近波长处为目前报道的最高连续工作温度。对于5.2μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为306A/cm²;2mm腔长和10μm脊宽的窄脊器件最高连续工作温度为41℃,室温输出功率为10mW;其中阈值电流密度在类似波长为报道的最低水平。相关论文“High-temperature continuous-wave operation of InAs-based interband cascade laser”和“InAs-based interband cascade laser operating at 5.17 μm in continuous wave above room temperature”分别发表于Applied Physics Letters 和IEEE Photonics Technology Letters。(a)5.2μm波长、2mm腔长、10μm脊宽的器件在15℃-41℃之间连续激射光谱;(b)同一器件在15℃-41℃之间的连续电流-电压-功率曲线带间级联激光器是基于能带工程和量子力学产生激射,技术含量很高并且研制难点众多,是国家纳米和量子器件核心技术的重要体现,目前和量子级联激光器(Quantum cascade laser,QCL)并列为重要的中红外激光光源,在环境监测、工业控制、医疗诊断和自由空间通信等领域具有重要的应用价值和科学意义。带间级联激光器的原始概念由美国俄克拉荷马大学的杨瑞青教授(Rui Q. Yang)于1994年首次提出,目前基本上都采用近晶格匹配的InAs/GaSb/AlSb三五族材料体系来构造,有源区大多为InAs/GaInSb二类量子阱,其能力可覆盖从中红外到远红外的波长范围。带间级联激光器结合了传统半导体二级管激光器和量子级联激光器的优势,与同样能覆盖中红外波段的量子级联激光器相比,具有更低的阈值功耗密度和阈值电流密度,这种极低功耗的优势在一些需要便携和电池供电设备的应用中显得非常重要。目前全球带间级联激光器市场仍由国外企业占据主导地位,国内仍处于产业发展的初始阶段。本文报道的这两项工作标志着睿创光子在带间级联激光器的外延设计和器件制备等多个方面同时达到了较高的技术水平,成为掌握高性能带间级联激光器技术的企业。该工作也为后续单模可调谐的DFB带间级联激光器的研发和量产打下了坚实的基础。睿创光子(无锡)技术有限公司是烟台睿创微纳技术股份有限公司的控股子公司,聚焦III-V族光电子器件、硅基光电子器件等光子芯片技术研发与产业化。
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。  该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。  此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。  为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。  科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。  开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p  日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。/pp  根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong /stronga title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target="_blank"strong1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明/strong/a/span/pp  本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。/pp  基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。/span/pp  a title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target="_blank"strong2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明/strong/a/pp  本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。/pp  本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。/pp  a title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target="_blank"strong3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明/strong/a/pp  本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。/pp  本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。/pp  联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373/pp  邮编:100089/pp  联系电话:010-6896 2373/pp  传 真:010-6896 3156/pp  邮件地址:a href="mailto:bzsbjw@126.com"bzsbjw@126.com/a/p
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。  一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。  强强联合  项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。  但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。  为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。  但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。  而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。  上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。  1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。  “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。  从“敢想”到“敢做”  据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。  位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。  针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。  据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。  在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。  据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 科学家利用玻璃造出飞秒激光器
    科学家在玻璃基板上制造了千兆飞秒激光器。图片来源:瑞士洛桑联邦理工学院商业飞秒激光器是通过将光学元件及其安装座放置在基板上制造的,这需要对光学器件进行严格对准。那么,是否有可能完全用玻璃制造飞秒激光器?据最新一期《光学》杂志报道,瑞士洛桑联邦理工学院的科学家成功做到了这一点,其激光器大小不超过信用卡,且更容易对准。研究人员表示,由于玻璃的热膨胀比传统基板低,是一种稳定的材料,因此他们选择了玻璃作为衬底,并使用商用飞秒激光器在玻璃上蚀刻出特殊的凹槽,以便精确放置激光器的基本组件。即使在微米级的精密制造中,凹槽和部件本身也不够精确,无法达到激光质量的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。于是,研究人员进一步设计蚀刻,使一个镜子位于一个带有微机械弯曲的凹槽中,凹槽在飞秒激光照射时局部可扭动镜子。通过这种方式对准镜子后,他们最终创造出稳定的、小规模的飞秒激光器。尽管尺寸很小,但该激光器的峰值功率约为1千瓦,发射脉冲的时间不到200飞秒,这个时间短到光都无法穿过人类的头发。这种通过激光与物质相互作用来永久对准自由空间光学元件的方法可扩展到各种光学电路,具有低至亚纳米级的极端对准分辨率。
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。  飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。  在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。  该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p  近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong中标项目/strong/span/pp style="text-align: center "strong干式激光成像仪/strong/pp  项目编号:HYEZ2J2018007/pp  项目名称:干式激光成像仪采购/pp  总成交金额:6.97 万元(人民币)/pp  采购单位名称:北海市华侨医院/pp  中标单位名称:江西伟晨医疗设备有限公司/pp style="text-align: center "strong密封式同轴送粉激光增材制造系统/strong/pp  项目编号:HBT-15170140-173892/pp  项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目/pp  总成交金额:208.85 万元/pp  采购单位名称:武汉理工大学/pp  中标单位名称:南京中科煜宸激光技术有限公司/pp style="text-align: center "strong原子吸收分光光度计及涡度相关系统/strong/pp  项目编号:CEIECZB03-17ZL144/pp  项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目/pp  中标金额:54.43万元/pp  中标供应商名称、地址及成交金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title="1.jpg"//pp style="text-align: center "strong大连工业大学信息学院光电实验室建设/strong/pp  项目编号:LNZC20171001868/pp  项目名称:大连工业大学信息学院光电实验室建设采购项目/pp  中标金额:54.18万元/pp  中标单位:大连万慧科技有限公司/pp  主要成交标的:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title="2.jpg"/  br//pcenter/centerp style="text-align: center "strong激光治疗系统/strong/pp  项目编号:Q5300000000617001570/pp  项目名称:昆明医科大学附属医院购置激光治疗系统采购项目/pp  中标金额:129万元/pp  中标供应商名称:贵州邦建医疗科技设备有限公司/pp  主要成交标的:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title="3.jpg"//pp style="text-align: center "strong193nm 激光剥蚀进样系统等/strong/pp  项目名称:中国海洋大学/pp  项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目/pp  采购单位名称:中国海洋大学/pp  中标金额:1367.93612 万元/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title="4.jpg"/  br//pcenter/centerp style="text-align: center "strong激光雷达项目/strong/pp  项目编号:JXBJ2017-J28802/pp  项目名称:南昌大学空间科学与技术研究院激光雷达采购项目/pp  采购单位:南昌大学/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title="5.jpg"//pp style="text-align: center "strong308准分子光治疗系统和激光光子工作站/strong/pp  项目编号:[350823]SHHY[GK]2017015-1/pp  项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目/pp  中标金额:169.9万元/pp  中标供应商:厦门海辰天泽仪器有限公司/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title="6.jpg"//pp style="text-align: center "strong复杂曲面三维激光扫描系统/strong/pp  项目编号:LNZC20171201441/pp  项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目/pp  中标金额:58.9万元/pp  中标单位:北京金鹰腾飞科技有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title="7.jpg"//pp style="text-align: center "strong双光子激光共聚焦显微镜采购项目/strong/pp  项目编号:中大招(货)[2017]993号/pp  采购单位名称:中山大学/pp  中标金额:489.803430万元/pp  中标供应商名称:广州市诚屹进出口有限公司/pp  中标标的名称、规格型号、数量、单价、服务要求:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title="8.jpg"/  br//pcenter/centerp style="text-align: center "strong超短强激光微纳制造实验室项目/strong/pp  飞秒激光放大器/pp  项目号:17A51870611-BZ1700401866AH/pp  项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购/pp  中标总金额:145.9万元/pp  中标供应商:相干(北京)商业有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title="9.jpg"//pp style="text-align: center "strong便携式高分辨测风激光雷达/strong/pp  项目编号:OITC-G170321151/pp  项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目/pp  中标总金额:280.0 万元(人民币)/pp  中标供应商名称:西南技术物理研究所/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title="10.jpg"//pp style="text-align: center "strong激光共聚焦拉曼光谱仪、数字综合试验箱/strong/pp  项目编号:ZX2017-12-13/pp  项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目/pp  中标金额:115.30万元/pp  中标单位:西安共进光电技术有限责任公司/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title="11.jpg"//pcenter/centerp style="text-align: center "strong激光共聚焦拉曼光谱仪/strong/pp  项目编号:OITC-G17031833/pp  项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目/pp  采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所/pp  总中标金额:155.7781万元/pp  中标供应商:雷尼绍(上海)贸易有限公司/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title="12.jpg"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong还有一个招标大单,注意关注哦!/strong/span/pp  招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器/pp  项目编号:0811-184DSITC0089/pp  项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次)/pp  采购单位:华东师范大学/pp  预算金额:230.0 万元(人民币)/pp  采购内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title="2018-02-07_091003.jpg"//pp  购买标书时间:2018年01月26日-02月02日/pp  投标截止时间:2018年02月28日/pp  联系方式:冯东海 ,021-62231151/p
  • Thorlabs收购中红外半导体激光器公司Maxion
    垂直集成光电子产品制造商Thorlabs公司从Physical Sciences(PSI)公司收购了Maxion Technologies公司。Maxion公司致力为客户提供交钥匙型的中红外激光器,其由美国军队研究实验室的几位科学家和工程师于2000年创建,并于2009年被PSI公司收购。Maxion公司的带间级联(IC)激光器和量子级联(QC)激光器产品能够为化学传感、红外对抗以及自由空间光通信中等应用提供3-12μm的产品解决方案。  Maxion将加入Thorlabs的量子电子(TQE)团队。Thorlabs公司总裁兼创始人Alex Cable表示,“非常欢迎Maxion团队加入Thorlabs的大家庭。Maxion的IC/QC激光器的加入,将为TQE现有半导体激光技术提供有力补充。”  收购Maxion将进一步增强Thorlabs的TQE部门的设计和制造能力,包括高功率GaAs激光二极管和最先进的基于MEMS的可调垂直腔面发射激光器(VCSEL)。有了强大的QC/IC设计和专业知识和SB-MBE生长技术,Thorlabs公司将可以生产全系列的半导体激光器,波长覆盖0.7-12μm,这也将使其成为工业传感、医疗、生命科学、电信/仪器仪表领域的可靠商业合作伙伴。
  • 遇见“Prima”——德国PicoQuant全新推出多色激光器
    近日,在德国柏林最近的一次网络研讨会上,PicoQuant向大家展示了其最新的激光创新良心之作:独立的、全电脑控制的激光模块Prima。PicoQuant公司的产品经理Guillaume Delpont阐述了这款激光器的设计初衷:“许多科研人员在工作中都面临着同样的困难,那就是他们需要多个激发波长来研究他们的待测样品,而购买多个激光器又会变得非常昂贵。PicoQuant公司为了给科研人员面临的共同挑战提供解决方案,最终依托自身在激光开发方面长达25年的专业背景和研发实力,创造了Prima—— 一种经济实惠、紧凑的激光模块,可以发出红色、绿色和蓝色的脉冲激光。”Prima——三色皮秒脉冲激光器Prima是一款独立、紧凑、价格合理的激光模块,提供3个独立的发射波长,可以在皮秒脉冲和连续波(CW)模式下工作。皮秒脉冲可以由Prima模块的内部时钟触发,也支持高达200MHz的外部触发。该模块采用全电脑控制,操作非常简单:通过USB端口将Prima连接到PC端,所有操作参数的更改都可以通过一个方便的软件接口完成。 红、绿、蓝:三种最有用的波长Prima可以提供三种波长的激光:640nm、515nm和450 nm。每种颜色都可以单独输出,每次输出一个波长。 这三种颜色是材料科学、化学和生命科学中最常用的3种波长,广泛应用于光谱学或显微镜应用的常规激发,进行种类多样待测样品的研究,其中包括新型纳米材料、量子点、分子和荧光团。 Prima是一款几近完美的工具:当涉及到日常实验室任务时,能够满足您的大多数需求,如寿命或量子产率测量,光致发光和荧光测量等。 灵活多样的工作模式:脉冲、连续和快速开关模式在进行时间分辨或稳态测量的时候,无论您需要哪种类型的操作模式,Prima的灵活性都可以轻松实现。Prima同时也支持快速连续开关功能。脉冲模式支持内触发和外触发,内触发的重频率范围从100 Hz至200 MHz可调,外触发支持的重复频率范围从单次脉冲至200 MHz。 每个波长的平均输出功率高达5mW。在CW工作模式下,每个波长可以达到更高的平均输出功率(高达50 mW)。在CW工作模式下,进行ON和OFF状态切换的上升/下降时间小于3 ns。 恒定的重复频率可以通过内部触发来进行设置,Burst工作模式也可以由合适的外部触发源实现触发(例如,PicoQuant的Sepia PDL 828的振荡器模块)。您甚至可以将Prima与其他激光模块组合使用,从而实现更为复杂的激发模式,不仅包括Burst模式,还包括脉冲交替激发(PIE)或交替激光激发(ALEX)。 这使得Prima成为一个通用的工具,可以在许多环境中使用。 易于使用作为一个独立的激光模块,Prima不需要任何其他外部激光驱动对齐进行控制。其参数设置和操作通过一个基于成熟的Sepia的图形用户界面软件进行全电脑控制。
  • 可伐-玻璃组装式(无吹制)氦氖激光器研制成功并批产
    据悉,镭测科技公司经过7年的研发,在国内首次研究成功可伐-玻璃组装式的氦氖激光器,并实现批量生产。这一成果终结了我国50年靠玻璃吹制氦氖激光器的历史,有力推动我国高端激光仪器的发展。  清华大学教授、镭测科技公司顾问张书练表示,氦氖激光器是气体激光器的一种,是气体激光器中最先研发问世的产品类型。氦氖激光器是以中性原子气体氦和氖为工作物质、由放电管和光学谐振腔构成的激光器,可输出连续激光。氦氖激光器工作在可见光与红外光频段,可输出绿光543.5nm、红光632.8nm、红外光1.15μm和3.39μm等多种波长。其中,红色波长632.8nm在氦氖激光器家族中有独一无二的品质,应用最广泛。波长632.8nm氦氖激光束质量高、光束横截面上光强度非常接近完美的高斯分布,非常小的发散角,传播百米后光斑直径还保有几毫米大小;输出功率稳定,噪声非常低;有天然的频率(波长)稳定点,波长稳定性可以非常高,可以做到1小时时间内632.8nm仅漂移百万甚至亿分之一;造价低,可靠性高,一致性好互换性强等。  张书练指出,氦氖激光器在仪器仪表、精密测量方面应用广泛,无可替代。国内外的单频干涉仪,双频干涉仪,面型干涉仪,测振仪,椭偏仪,激光陀螺仪等都采用氦氖激光器做光源,这些仪器是精密机床、光刻机、航空、航天、机械和光学加工,薄膜技术等领域精度的保证。我国这些产业向高端发展的速度加快,市场对相关仪器的需求将持续增长,将会拉动我国对可伐-玻璃组装式的氦氖激光器需求规模不断扩大。  根据某研究中心发布的《2022-2026年氦氖激光器行业深度市场调研及投资策略建议报告》显示,2021年,全球氦氖激光器市场规模约为0.74亿元;预计2021-2026年,全球氦氖激光器市场将以4.2%左右的年均复合增速增长,到2026年市场规模将达到0.91亿元左右。在全球市场中,氦氖激光器生产商主要有美国Lumentum Operations、美国Melles Griot(被Pacific Lasertec收购)、美国Thorlabs、美国Excelitas Technologies、德国Lasos、德国Phywe、日本Neoark。  张书练表示,多年来,我国依赖玻璃吹制技术生产氦氖激光器(管),激光器之间一致性较差,稳定性不佳,不能达到各类激光仪器的应用要求。过去几十年,虽然国内也有对可伐-玻璃组装式(无吹制)氦氖激光器进行了研究,但没有坚持下来,也曾引进了一条国外(装配)生产线,运行几年,终因没有自己元器件供应链,没有自己的工艺被迫停产。激光仪器仪表仪器装配的氦氖激光器都从国外购买,因为容易频率突跳或不出双频振荡,淘汰率很高。  镭测科技自主研发的可伐-玻璃组装式的氦氖激光器用已成批用于双频激光干涉仪上和光刻机的失效激光器替换。用作双频激光器时,激光功率可以达到1.3mW以上,激光频率差可选定3MHz、7MHz、10 MHz、20 MHz,或更大,这是国内外以前没有实现的。此外,之前,不论是单频还是双频激光干涉仪,国产还是国外购买,各型号都有几纳米甚至十几纳米的非线性误差,可伐-玻璃组装式的氦氖激光器作光源的双频激光干涉仪非线性误差不大于1纳米。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 傅立叶变换红外光谱技术(FTIR)助力人脸识别技术硬件:垂直腔面发射激光器(VCSELs)的研究与开发
    “扫码时代”或成过去式,“刷脸时代”已悄然而至人脸识别科技大大改变了人们的生活方式,从现金支付到刷卡支付,再到今天无处不在的扫码时代,一部智能手机既可以出行无忧。但您是否为忘带手机、手机没有网络、或者电量用完而感到焦急、困扰?别担心,“扫码时代”或将成为过去式,“刷脸时代”已悄然而至!从身份审核到线下支付,从乘坐地铁到取快递、领养老金,“刷脸”正在变得一路畅通。这一变革的核心就是人脸识别(脸部识别)技术。采用人脸识别技术的智能手机、电脑、银行柜员机、检票闸机、智能门锁、门禁、考勤、安检系统、远程认证、支付系统等已悄悄走进了人们的生活。人脸识别--这种非接触式、基于人的脸部特征信息进行身份识别的生物识别方法,是一种即体贴又便利的方法,某些情况下甚至优于现有的指纹识别系统,例如当冬天您戴着厚厚的棉手套,或者您手里刚好拿着其他东西时,指纹识别就显得不那么方便了。 人脸识别和垂直腔面发射激光器(VCSELs)人脸识别技术,这一重大进展硬件上可以通过所谓的垂直腔面发射激光器(vertical-cavity surface-emitting lasers,简称VCSELs)来实现。 VCSELs是一种特殊类型的半导体激光二极管,与传统的边缘发射激光二极管不同,它的发射垂直于芯片表面,因此可以很容易地封装成单个芯片上包含数百个发射器的发射阵列。用于智能手机的 VCSELs芯片通常发射的红外线,体积非常小,成本低廉,为脸部扫描提供了良好、安全的辐照性能。此外, VCSELs不仅可以用于人脸和手势识别,还可以用于通信、近距离传感器、增强现实显示、机器人(扫地机器人)和自动驾驶汽车的激光雷达等。 因此,表征VCSELs的发射光谱、功率、光束轮廓、噪声等是这些器件发展和改进的关键。傅立叶变换红外光谱技术(FTIR)用于垂直腔面发射激光器(VCSELs)的表征虽然辐照度传感器和快速光电二极管可以测量VCSELs激光器的功率和光束轮廓,但它们不能确定其发射光谱。 在这里,结合了步进扫描技术(StepScan)的傅立叶变换红外光谱(FTIR)以其高灵敏度、宽光谱范围、杰出的时间和光谱分辨率,被证明是理想的VCSELs激光器表征方法。来自德国达姆施塔特工业大学的Wolfgang Elsaesser教授和他的研究小组,使用布鲁克高性能VERTEX80v真空型傅立叶变换红外光谱仪,对VCSELs激光器进行了详细的微秒尺度时间分辨偏振(斯托克斯偏振参数)分析,很好地支持了VCSELs基础开发的理论模型。VERTEX80v真空型傅立叶变换红外光谱仪
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。  量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。  而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。  俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。  该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。  美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。  目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制