当前位置: 仪器信息网 > 行业主题 > >

绝对量子效率分析系统

仪器信息网绝对量子效率分析系统专题为您提供2024年最新绝对量子效率分析系统价格报价、厂家品牌的相关信息, 包括绝对量子效率分析系统参数、型号等,不管是国产,还是进口品牌的绝对量子效率分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绝对量子效率分析系统相关的耗材配件、试剂标物,还有绝对量子效率分析系统相关的最新资讯、资料,以及绝对量子效率分析系统相关的解决方案。

绝对量子效率分析系统相关的仪器

  • 太阳能电池量子效率测试系统功能 适用电池:全系列太阳能电池 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、内量子效率、反射率、透射率、积分短路电流密度、光束诱导电流、量子效率制图、反射率制图、光束诱导电流制图 可测样品尺寸:156mmX156mm 可测样品模式:交、直流测试法、交、直流偏置光测试法 太阳能电池量子效率测试系统特点 1. 全光谱太阳光模拟,双光源切换可选,高光强稳定性 系统采用符合最新IEC60904 标准的双光源配置,采用氙灯和溴钨灯来覆盖太阳光谱的整个范围。无论是氙灯还是溴钨灯,都可以提供超高的光强稳定性,从而保证系统测试结果的高重复性。当不同的波段光谱测量时,选择合适的光源波长与相匹配的标准探测器,可以最大限度的优化太阳能电池量子效率的测试结果。 1000s 的持续光强测试与局部放大图测试光源:氙灯或溴钨灯 测试时间:1000s 光源时间不稳定度:0.8% 2. 高重复性测试结果系统从光源的稳定性、单色仪的波长准确性与重复性、特有的光路设计、样品的加持、数据的采集方式上确保测试结果的高重复性。 5 次每次间隔1 小时的测试结果与全波段重复性测试 3. 窗口化软件设计 在系统软件设计中,将实用的仪器控制部分汇总到一个界面,将实用的仪器参数设置部分汇总到另一个界面,从而最大限度的将控制操作简化,实现一键运行。 仪器参数设置可以按照不同样品的测试需求保存为独立的配置文件并导出,从而实现快速还原与测试的功能,随时调出原有保留的参数设置。同样配置的不同系统之间也可以统一相互调用。系统软件可以准确得到理论积分电流密度值,并按照需求保存原始数据,支持ASCII、Excel、XML 等多种格式数据导出。以便使用主流数据处理软件调用,方便后续数据处理与分析。 4. 快速Mapping功能快速Mapping 功能包括:1)量子效率Mapping 功能2)反射率Mapping 功能3)光束诱导电流(LBIC)功能该功能针对100mmX100mm 以上的较大面积的成品太阳能电池片,用户可以从Mapping 功能获得的数据中得到关于电池片的少子扩散情况、电池片缺陷分布等信息。缺陷分布等信息 上图显示6 寸单晶硅电池IQE mapping,样品右上角IQE 数值明显低于其他区域,因为那里有肉眼无法直接观察到的缺陷上图显示单晶硅电池的反射率mapping,均匀度明显不好,这显示出酸洗过程中酸液有残留,影响了整个电池的反射率均匀性 上述Mapping 数据是在同一个电池片上用400nm、650nm 和950nm 三个波长做QE(LBIC) 扫描得到的。650nm 和950nm 的扫描数据显示电池具有良好的均匀性,但400nm 扫描数据上,我们发现电池边缘有不均匀区域。 不同的测试波长对样品的穿透深度不同。蓝光波长短,穿透深度浅,因此很容易将样品制备过程中产生的表面裂痕等问题反映出来; 近红外光波长相对较长,穿透深度更深,更加适用于扩散长度的计算,从而能反映样品材料内部的缺陷等问题。
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • CS10组合式太阳能电池量子效率测试系统功能 适用电池:小尺寸无机材料太阳能电池、染料敏化电池、量子点电池、有机太阳能电池、聚合物太阳能电池、钙钛矿太阳能电池等 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、积分短路电流密度、光束诱导电流 可测样品尺寸:1mmX1mm至100mmX100mm 可测样品模式:直流测试法、直流偏置光测试法 注:该染料敏化太阳能电池的测试条件为:绿色曲线为交流(3.8Hz)+ 0.1sun 偏置光;蓝色曲线为直流不加偏置光;红色曲线为直流+0.1sun偏置光。 CS10组合式太阳能电池量子效率测试系统特点 1. 多样化测试手段SCS10 系统测试方案可以是交、直流测试方法,也可以是交、直流偏置光测试方法,方便用户用不同的方式在不同的条件下进行测试。偏置光测试方法中的偏置光可以采用75W 溴钨灯或者150W 氙灯作为偏置光光源,配合特色的双滤光片轮,以及配套的滤光片支架,可以实现丰富的偏置光配置。这样的配置方案,可以使用户满足在不同强度不同波段的偏置光条件下测试样品的量子效率。滤光片轮所用滤光片型号型号透过率光密度OD NDFI2501 79% 0.1 NDFI2503 50% 0.3 NDFI2504 39.8% 0.4 NDFI2508 15.8% 0.8 NDFI2510 10% 1 2. 专用软件,专用测试流程SCS10 组合式小尺寸太阳能电池量子效率测试系统所用软件是为测量小尺寸太阳能电池,特别是染料敏化太阳能电池、有机材料太阳能电池、钙钛矿太阳能电池专业参数设置的软件,并且可以调整系统偏置光参数,以适应各种太阳能电池不同偏置光测试条件的调整。
    留言咨询
  • 绝对量子效率测量系统滨松 荧光/发光材料和器件参数的评估系统目录:绝对量子效率测量系统 用于发光材料的采用光致发光法的绝对量子效率测量系统。薄型材料、液体溶液和粉末等都能被分析。绝对量子效率测量系统Quantaurus-QY 外量子效率测量系统 采用积分球的高精度外量子效率测量系统。它实现了不受待测物发光角特性影响的高精度测量。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!绝对量子效率测量系统产品:采用了光致发光法(photoluminescence)来快速而准确地测定绝对量子效率。该系统装置包括一个激发电源、一个单色仪、一个氮气流积分球和一个同步探测整个谱域的CCD光谱仪。专用软件易于操作。两种样品夹持器能用于薄膜、粉末,比色皿能用于液体样品。系统能用于多种领域,包括工业、生物和学术研究等。产品图像产品型号产品名称 C9920-02绝对量子效率测量系统 C9920-02G绝对量子效率测量系统 C9930-03绝对量子效率测量系统 C9930-03G绝对量子效率测量系统
    留言咨询
  • 详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物荧光探针染料敏化型PV材料OLED材料量子点LED荧光粉测量程序图分析功能激发波长自动扫描左图展示了光致发光量子效率和激发波长的关系。通过机动型单色仪易于测定样本的光致发光量子效率对激发波长的函数关系。 光致发光的激发谱 样品产生的激发谱可以在激发光照射下由机动型单色仪测定。通过选择两条光标线的范围可以轻松获取某个激发波长范围内的光致发光激发谱。 光致发光谱 光致发光谱是在减去激光光后显示的。量子效率测量过程中样品的发光谱线常包含未被样品吸收的激发光成分。减去这种激发光就可以显示仅由样品本身发射的光谱。 光致发光量子效率测量 左图是量子效率测量的基本界面。荧光量子效率在测量后自动计算。激发带和发射带由光标调整来界定。量子效率的数值显示在图表下方,紧邻发光强度、峰值波长、峰值计数和峰值带宽(FWHM)。 X-Y坐标轴 除了显示光致发光谱和计算量子效率,该软件也包括彩色坐标功能。除了被测样品的色度(x,y),三刺激值(X, Y, Z)也被显示。外形尺寸发表文献应用发表文献作者标题期刊名卷号页数年份OLEDsA. Endo, K. Suzuki, T. Yoshihara, S. Tobita, M. Yahiro. and C. Adachi Measurement of phosphorescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state filmsChem. Phy. Lett.460 155 2008T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard III, and M. E. Thompson Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) ComplexesJ. Am. Chem. Soc. 1319813 2009H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang, and K.-T. Wong1,3,5-Triazine Derivatives as New Electron Transport-type Host Materials for Highly Efficient Green Phosphorescent OLEDs J. Mater. Chem. 19 8112 2009H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa, N. Lardies, Md. K. Nazeeruddin, and E. OrtiOrigin of the Large Spectral Shift in Electroluminescence in a Blue Light Emitting Cationic Iridium(III) ComplexJ. Mater. Chem. 17 5032 2007R. D. Costa, F. J. Cespedes-Guirao, H. J. Bolink, F. Fernandez-Lazaro, A. Sastre-Santos, E. Orti, and J. Gierschner A Deep-Red-Emitting Perylenediimide-Iridium-Complex Dyad: Following the Photophysical Deactivation PathwaysJ. Phys. Chem. C 113 192922009 R. D. Costa, F. Fernandez, L. Sanchez, N. Martin, E. Orti, and H. J. Bolink Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical CellsChem. Eur. J 16 9855 2010R. D. Costa, E. Orti, H. J. Bolink, S. Graber, C. E. Housecroft, and E. C. Constable Efficient and Long-Living Light-Emitting Electrochemical CellsAdv. Funct. Mater. 20 1511 2010R. D. Costa, E. Orti, D. Tordera, H. J. Bolink, S. Graber, C. E. Housecroft, L. Sachno, M. Neuburger, and E. C. Constable Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium ComplexesAdv. Funct. Mater. 1 282 2011 荧光粉T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devicesNature Materials 7 735 2008T. Ogi, Y. Kaihatsu, F. Iskandar, W.-N. Wang, and K. Okuyama Facile Sunthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater 203235 2008荧光探针H. Ito, M. Matsuoka, Y. Ueda, M. Takuma, Y. Kudo, and K. Iguchi Quinolinecarboxylic acid based fluorescent molecules: ratiometric response to Zn2+ Tetrahedron 65 4235 2009S. Kamino, H. Ichihara, S. Wada, Y. Horio, Y. Usami, T. Yamaguchi, T. Koda, A. Harada, K. Shimanuki, M. Arimoto, M. Doi, and Y. Fujita Degign and Synthesis of Regioisomerically Pure unsymmetrical Xanthene Derivatives for Staining live Cells and Their Photochemical Properties,Bioorg. Med. Chem. Lett. 18 4380 2008Y. Mikata, A. Yamashita, A. Kawamura, H. Konno, Y. Miyamoto, and S. Tamotsu Bisquinoline-based fluorescent zinc sensorsDalton Trans. 3800 2009Takahisa Suzuki, Seisuke Arai, Mayumi Takeuchi, Chiye Sakurai, Hideaki Ebana, Tsunehito Higashi, Hitoshi Hashimoto, Kiyotaka Hatsuzawa, Ikuo Wada Development of Cysteine-Free Fluorescent Proteins for the Oxidative EnvironmentPLoS ONE 7 e37551 2012 有机复合物K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD DetectorPhys. Chem. Chem. Phys. 119850 2009 R. Kato, K. Suzuki, A. Furube, M. Kotani, and K. Tokumaru Fluorescence quantum yield of aromatic hydrocarbon crystalsJ. Phys. Chem. C 113(7) 2961 2009N. Hayashi, Y. Saito, H. Higuchi, and K. Suzuki Comparative Studies on Electronic Spectra and Redox Behaviors of Isometric Benzo[1,2-b:4,5-b’] difurans and Benzo[1,2-b:5,4-b’]difransJ. Phys. Chem. A 113(18) 5342 2009K. Tani, C. Ito, Y. Hanaka, M. Uchida, K. Otaguro, H. Horiuchi, and H. Hiratsuka Photophysical Property and Photostability of J-Aggregate Thin Films of Thiacyanine Dyes Prepared by the Spin-Coating Method,J. Phys. Chem. B 112(3) 836 2008M. Shimizu, K. Mochida, and T. Hiyama Modular Approach to Silicon-Bridged Biaryls: Palladium-Catalyzed Intramolecular Coupling of 2-(Arylsilyl)aryl TriflatesAngew. Chem. Int. Ed 47 9760 2008M. Shimizu, Y. Takeda, M. Higashi, and T. Hiyama 1,4-Bis(alkenyl)-2,5- dipiperidinobenzenes: Minomal Fluorophores Exhibiting Highly Efficient Emission in the Solid StateAngew. Chem. Int. Ed 48 3635 2009A. Fukazawa, M. Hara, T. Okamoto, E.-C. Son, C. Xu, K. Tamao, and S. Yamaguchi Bis-Phosphoryl-Brigged Stilbenes Synthesized by an Intramolecular Cascade Cyclization, Org. Lett 10(5) 913 2008C.-H. Zhao, A. Wakamiya, Y. Inukai, and S. Yamaguchi Highly Emissive Organic Solids Containing 2,5-Diboryl-1,4-phenylene UnitJ. Am. Chem. Soc. 128 15934 2008金属-有机化合物 A. Ishii, K. Habu, S. Kishi, H. Otsu, T. Komatsu, K. Osaka, K. Kato, S. Kimura, M. Tanaka, M. Hasegawa, and Y. Shigesato Novel Emission Properties of Melem Caused by the Heavy Metal Effect of Lanthanides(III) in a LB FilmPhotochem. Photobiol. Sci. 6 804 2007K. Matsumoto, N. Matsumoto, A. Ishii, T. Tsukuda, M. Hasegawa, and T. Tsubomura Structual and Spectroscopic Properties of a Copper(I)-bis(N-heterocyclic)carbene ComplexDalton Trans. 6795 2009Y. Matano, T. Miyajima, N. Ochi, Y. Nakao, S. Sakai, and H. Imahori Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene TypeJ. Org. Chem. 73(13) 5139 2008D. Kuzuhara, J. Mack, H. Yamada, T. Okujima, N. Ono, and N. Kobayashi Synthesis, Structures, and Optical and Electrochemical Properties of BenzoporphycenesChem. Eur. J 15 10060 2009D. Maeda, H. Shimakoshi, M. Abe, M. Fujitsuka, T. Majima, and Y. Hisaeda Synthesis of a Novel Sn)IV) Porphycene-Ferrocene Triad Linked by Axal Coordination and Solvent Polarity Effect in Photoinduced Charge Separation ProcessInorg. Chem. 49 2872 2010D. Maeda, H. Shimakoshi, M. Abe, and Y. Hisaeda Synthesis and photophysical behavior of porphyrin isomer Sn(IV) complexesInorg. Chem. 48 9853 2009H. Shimakoshi, T. Baba, Y. iseki, I. Aritome, A. Endo, C. Adachi, and Y. Hisaeda Photophysical and photosensitizing properties of brominated porphycenes Chem. Commun. 2882 2008
    留言咨询
  • C11347-11绝对量子效率测量系统,Quantaurus-QY Quantaurus-QY是一款紧凑而易用的仪器,用于测量光致发光材料的量子效率。它能胜任绝对量子效率的测量,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析。液氮能将液体样品冷却到-196摄氏度(77 K)。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性 ●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。?有机金属复合物?荧光探针?染料敏化型PV材料?OLED材料?量子点?LED荧光粉
    留言咨询
  • QY绝对量子效率和EQE外量子效率测量系统 产品优点◆体积小巧,可直接放入手套箱内使用 ◆一体化集成稳定性更好 ◆电动进样重复性和准确性高◆操作界面简单,功能实用性好 ◆更高反积分球材料,抗老化经久耐用 ◆更灵活的电致发光夹具,更贴合您的芯片◆多通道软件自动切换,一键测完所有点数据产品应用领域◆半导体发光二极管 LED ◆微型LED发光器件 MircoLED量子点◆发光器件QLED◆有机发光材料和器件OLED◆钙钛矿发光材料和器件PeLED 绝对荧光量子效率测量系统特点◆电动升降台,稳定进出样,让测量重复性、重现性更优且不容易污染积分球。◆整机一体化设计,光路稳定,减少震动对光路带来的扰动。◆采用Spectralon?材料积分球,具有高朗伯效特性,积分球光稳定性更好,抗老化经久不衰。◆0-100%功率可调单色多通道LED,激发光更加稳定◆更简单的操作,简化手套箱内的操作步骤,更快得出测量结果。 电致发光量子效率测量系统特点 ◆操作非常简单,只需培训30-60分钟即可上手操作。软件控制多通道切换器,一键测试完一片芯片上的所有发光点。 ◆夹具设计灵活,根据客户样品尺寸和电极定位量身定制夹具。样品的取放简单,无需打开积分球,减少积分球污染的概率。 ◆仪器可以通过手套箱大仓直接进入手套箱内,体积适中,安装方便。 ◆一体化整机设计,让测试稳定性、重复性、准确性更优异。 ◆器件寿命测量终点可在0-100%L范围内任意设置,可实时查看器件衰减比率。产品设备参数:
    留言咨询
  • CEL-QYQE绝对量子效率测量系统测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率的精确技术。QYQE系统包含了氙灯激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。QYQE能处理溶液、薄膜、半导体和粉末样品。系统能用于多种领域,包括工业、生物和学术研究等。光致发光过程发射光子数与发光材料吸收光子数的比值。产品特点:1) 瞬时测量:多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。2) 全自动控制设置:软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。3) 分析不同形式的样品:QYQE能处理溶液、薄膜、半导体和粉末样品。4) 波长范围:200 nm – 1100 nm;5) 测定发光材料的绝对光致发光量子效率(光致发光测量);6) 采用积分球测量整个谱域;7) 制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量;8) 激发波长的自动控制;9) 空间集约的紧凑型设计;10) 可选择多种分析功能:光致发光的量子效率测量;激发波长关系;光致发光谱;光致发光激发谱;11) 量子效率测量原理。详细参数型号, CEL-QYQE绝对量子效率测量系统光致发光测量波长范围, 200-110nm单色光源, 光源, CEL-S150/S500氙灯光源激发波长, 250-1100 nm 带宽, 2 - 10 nm(随狭缝变化) (FWHW) 激发波长控制, 软件自动控制 多通道光谱仪, CEL-IS151 双光束测量波长范围, 200-1100 nm波长分辨率, 2 nm感光器件通道数, 2048 chA/D分辨率, 16 bit光谱仪类型, AULTT-P4000型光纤类型, 光纤束(1.2m)光纤接收面积, 直径0.8 mm积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制软件 测量项目, 光致发光量子效率荧光材料发光发光测量量子效率和激发波长的关系光致发光谱(峰值波长,FWHM)光致发光激发谱色彩测定(色度、色温、显色指数等EEM(激发-发射矩阵)
    留言咨询
  • 应用:(系统配合HORIBA FluoroMax+P)液氮低温环境及常温环境下的 光致发光量子效率 磷光量子产率 吸收光谱 荧光光谱 光致发光绝对量子效率测量是发光材料表征的重要手段;温度的变化对于表征材料的特殊应用有着重要的影响。2020年首发,东方科捷推出液氮低温量子效率(LN-QE)测试功能附件。 液氮环境下,发光分子被冷冻,发光会增强,特别对于磷光材料;某些磷光材料在室温下发光较弱,不利于光致发光量子效率的准确测量及数据对比,如果在液氮温度下就能很好解决这个问题。 其他特殊材料,比如AIE材料,如果进一步了解聚集导致的空间位阻形成的发光增强,可以对比分子冷冻位阻发光差异。延迟荧光材料,比如热延迟荧光材料,可以对照不同温度调节下的发光差异,结合荧光寿命数据,即可明确给出某些结论。 同理,如果材料发光既有荧光又有磷光,研究者关注磷光部分,希望通过材料设计及修饰提高磷光发光比重,那么,采用这套附件配合磷光光谱仪,即可获得液氮低温的磷光量子效率数据。 由于设计中包括液氮温度和积分球,当然,获得液氮低温下发光材料的吸收光谱,这也是值得兴奋的事情。通常发光材料吸收光谱,不能采用常用的紫外可见近红外分光光度计获得真实数据,我们通常是采用双单色仪(比如荧光光谱仪)同步扫描的方式获得。加上液氮温度和积分球,显然,固体材料的液氮温度下的漫反射吸收数据就唾手可得。技术描述:* 采用高纯铝粉作为空白样品采集空白激发散射峰及空白荧光峰;* 同样的测试条件放入待测样品,获得;样品放入时的散射峰和荧光峰;* 带入公式,导入积分球校正文件计算量子效率;* 采用散射校正扣除散射能量差异,对空白荧光峰中的噪声和样品荧光峰中的噪声做归一化。主要技术指标:1、积分球内衬:聚四氟乙烯材质;2、波长:300nm-850nm;(依赖于光谱仪)3、液氮杜瓦容积150ml;4、装机时完成校正文件的采集;5、采用双曲线法或四曲线法进行数据采集。
    留言咨询
  • C9920-12 外量子效率测量系统滨松 荧光/发光材料和器件参数的评估系统目录:绝对量子效率测量系统 用于发光材料的采用光致发光法的绝对量子效率测量系统。薄型材料、液体溶液和粉末等都能被分析。绝对量子效率测量系统Quantaurus-QY 外量子效率测量系统 采用积分球的高精度外量子效率测量系统。它实现了不受待测物发光角特性影响的高精度测量。外量子效率测量系统: 发光材料可以由他们的荧光量子效率进行表征。对于有机/无机LED等发光器件,对应的物理参数是通过电致发光法测得的外量子效率(EL,electroluminescence)。针对这种应用,外量子效率测量系统C9920-12应运而生。OLED器件的发光效率受多种因素的影响,包括各层和玻璃基底的吸收、表面发射、辐射角和基底波导通量等。这些因素通过作为样品室的积分球进行测量。样品放置在球内,并被固定的电流或电压激发。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!详细参数 型号 C9920-12 积分球 3.3 inch 内径, 发射材料: Spectralon 探测器 BT-CCD 制冷温度 -15 ℃ 感光器件通道数 1024 ch 波长范围 380 nm 到 780 nm (探测器:200 nm 到 950 nm) 光纤长度 1.5 m 光通量测量范围 0.00013 lm 到 0.12 lm (白光,发射面积 2x2 mm2)特性?积分球的采用能使外量子效率(EQE)的测量不受样本发光角特性的影响?软件控制能量源(KEITHLEY 2400)?对应于每一步加载电压/电流的光谱能被瞬时测量(I-V-L测量)?背照式制冷型CCD实现高灵敏度测量?直观的软件易于操作,用于测量、计算和系统控制。?可以在不同图表中绘制多种变量(电流、电流密度、电压、发光效率、色度等)。?系统易于被扩展到绝对光致发光量子效率测量系统和光分布测量测量系统。
    留言咨询
  • Quantaurus-QY Plus 用于评价发光材料性能,测试光致发光绝对量子产率的测试仪器。 其内部模块化的探测器组件可根据用户需要任意配 置,覆盖紫外-近红外的范围,具有高灵敏度的背照 式CCD探测器,从而有效解决上转换荧光量子产率 的难以测试的问题。详细参数测量实例具有增强功能的系统实例外形尺寸(单位:mm)
    留言咨询
  • Quantaurus-QY Plus 用于评价发光材料性能,测试光致发光绝对量子产率的测试仪器。 其内部模块化的探测器组件可根据用户需要任意配 置,覆盖紫外-近红外的范围,具有高灵敏度的背照 式CCD探测器,从而有效解决上转换荧光量子产率 的难以测试的问题。详细参数测量实例具有增强功能的系统实例外形尺寸(单位:mm)
    留言咨询
  • 1 产品简介在开发新的发光材料过程中,提高它们的光致发光效率是至关重要的。提高该效率就需要测量量子效率的精确技术。QES-PL光致发光量子效率测量系统针对器件的光致发光特性进行有效测量,其深制冷型背照式CCD具有高的灵敏度和信噪比,可以更加稳定快速得到结果。涂有PTFE涂料的积分球,光谱范围覆盖200-1100nm。可以支持粉末、薄膜和液体样品的测量,Spectralon涂料在全谱波段拥有的高反射率,可以完全匀化入射光,去掉积分球反射不均匀对结果的影响,此系统能用于多种领域,包括工业、生物和学术研究等。2 系统配置1)高功率氙灯2)单色仪3)积分球4)液体采样支架5)XS7031光纤光谱仪6)3根光纤7)绝对辐射标准光源(附带计量证书,绝对辐照度测量所需,另购) 3 规格参数产品型号QES-PL测量波长范围200-1100nm单色光源氙灯加单色仪,半峰全宽(FWHM)=14nm@405激发波长365-880nm带宽2nm激发波长控制软件控制波长分辨率视光谱范围与狭缝而定探测器像素点数1024*58探测器制冷温度-25℃光纤种类抗紫外石英光纤光纤波段UV-VIS积分球材料Spectralon积分球尺寸3.3″#光谱范围可根据用户需求进行定制4 测试项目? 量子效率测量? 颜色指标、辐射指标与量子指标? 标准灯校准绝对辐射 5 产品特点? 测量精度高:采用深度制冷型面阵CCD的光纤光谱仪作为探测器,极大降低长积分时间下噪声水平,提高测量精度。? 操作简单: Uspectral Plus专业光谱采集分析软件,一键式操作。? 功能齐全:可用于粉末、溶液、固体、薄膜样品的测量。6 应用领域? 无机光致发光? 有机光致发光? EL器件封装前体7 操作软件
    留言咨询
  • 产品应用量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。详细介绍量子效率测量系统CEL-EQE外量子效率测量系统CEL-QYQE绝对量子效率测量系统应用方向:量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。CEL-EQE外量子效率测量系统发光材料可以由荧光量子效率进行表征。对于有机/无机LED等发光器件,对应的物理参数是通过电致发光法测得的外量子效率(EL,electroluminescence)。针对这种应用,外量子效率测量系统应运而生。OLED器件的发光效率受多种因素的影响,包括各层和玻璃基底的吸收、表面发射、辐射角和基底波导通量等。这些因素通过作为样品室的积分球进行测量。样品放置在球内,并被固定的电流或电压激发。产品特点1) 积分球的采用能使外量子效率(EQE)的测量不受样本发光角特性的影响2) 软件控制能量源(KEITHLEY 2400系列)3) 对应于每一步加载电压/电流的光谱能被瞬时测量(I-V-L测量)4) 背照式制冷型CCD实现高灵敏度测量5) 直观的软件易于操作,用于测量、计算和系统控制。6) 可以在不同图表中绘制多种变量(电流、电流密度、电压、发光效率、色度等)。7) 系统易于被扩展到绝对光致发光量子效率测量系统和光分布测量测量系统。详细参数 型号, CEL-EQE外量子效率测量系统 积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 探测器, AULTT-P4000 软件控制能量源, KEITHLEY 2400系列 感光器件通道数, 2048 ch 波长范围, 200 nm ~ 1100 nm 光纤长度, 1.2 m光纤直径, 0.8mm 光通量测量范围, 0.00013 lm 到 0.12 lm (白光,发射面积 2x2 mm2)光功率测试, CEL-NP2000-2标准接口, 1inchCEL-QYQE绝对量子效率测量系统测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率的精确技术。QYQE系统包含了氙灯激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。QYQE能处理溶液、薄膜、半导体和粉末样品。系统能用于多种领域,包括工业、生物和学术研究等。光致发光过程发射光子数与发光材料吸收光子数的比值。产品特点:1) 瞬时测量:多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。2) 全自动控制设置:软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。3) 分析不同形式的样品:QYQE能处理溶液、薄膜、半导体和粉末样品。4) 波长范围:200 nm – 1100 nm;5) 测定发光材料的绝对光致发光量子效率(光致发光测量);6) 采用积分球测量整个谱域;7) 制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量;8) 激发波长的自动控制;9) 空间集约的紧凑型设计;10) 可选择多种分析功能:光致发光的量子效率测量;激发波长关系;光致发光谱;光致发光激发谱;11) 量子效率测量原理。详细参数 型号, CEL-QYQE绝对量子效率测量系统光致发光测量波长范围, 200-110nm单色光源, 光源, CEL-S150/S500氙灯光源激发波长, 250-1100 nm 带宽, 2 - 10 nm(随狭缝变化) (FWHW) 激发波长控制, 软件自动控制 多通道光谱仪, CEL-IS151 双光束测量波长范围, 200-1100 nm波长分辨率, 2 nm感光器件通道数, 2048 chA/D分辨率, 16 bit光谱仪类型, AULTT-P4000型光纤类型, 光纤束(1.2m)光纤接收面积, 直径0.8 mm积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 软件 测量项目, 光致发光量子效率荧光材料发光发光测量量子效率和激发波长的关系光致发光谱(峰值波长,FWHM)光致发光激发谱色彩测定(色度、色温、显色指数等EEM(激发-发射矩阵)
    留言咨询
  • 测量荧光量子效率,蓝光吸收比、激发光、荧光等的光谱和色坐标,可拓展成电致发光测量系统定制光致发光荧光量子效率测试系统是对发光材料的发光特性,发光效率等光学性能进行测试的系统,可以测薄膜,液体和粉末。产品优势体积小巧:便于灵活使用及运输。流程化操作:设备无需频繁校准。便携式、波长可定制的准直激发光源,与积分球的球口匹配,无需手动对准。测试参数荧光量子效率,蓝光吸收比 ,激发光、荧光等的光谱和色坐标 该系统可拓展成电致发光测试系统,可测试光度量(Lux, lum, Candela),EQE,电参数等系统特点6英寸Spectraflect积分球, 球大小可定制配置样品夹具/比色皿,可测试薄膜,液体和粉末NIST可溯源的标准灯2Pi-1-INT-050, 已知350nm~1050nm下每1nm的绝对光谱辐射通量光谱仪CDS2600 ,更多光谱仪可选便携式、波长可定制的准直激发光源定制软件主要规格参数积分球直径:6inch激发光光斑大小:在7mm距离处,光斑面积直径不大于6mm积分球内部涂层:Spectraflect激发光波长:308nm, 365nm, 405nm, 455nm,535nm, 590nm, 740nm夹具比色皿夹具,薄片夹具软件定制软件,测试方法:直接法,AM法备注:积分球尺寸,开口,激发光波长等均接受定制
    留言咨询
  • 产品关键词:量子效率、绝对量子效率、光致发光量子效率、发光量子效率(PLQY)、内量子效率(IQE)、量子效率稳定性测试、激发波长依赖量子效率、蓝光吸收比、衰减比率、光谱功率分布 λ、辐射通量▌ 产品简介HiYield-PL光致发光特性测量系统是东谱科技HiOE综合发光特性测量平台中的重要成员,与东谱科技的绝对法电致发光特性测量系统 HiYield-EL(请垂询销售专员)共同为行业提供了完善的发光样品测量方案。HiYield-PL 系统由一系列相应的测量组件组成,包括激发光源、单色仪、光谱测量模块等。利用该系统组件的分布特性,可以灵活搭建适用于不同类型样品的测量系统,也可以适应丰富的测量场景,如手套箱测量等。HiYield-PL测量系统具备以下主要功能:1)采用PL法,结合积分球,准确测量发光样品的效率参数、辐射度参数、色度参数等;2)高灵敏度、高动态范围、高信噪比的测量;3)多种测量模式可供选择:单激发波长量子效率、激发波长依赖量子效率、量子效率稳定性测试;4)全自动一键测试。▌ 产品特点□ 灵活的模块化设计,可以适合各种测量场景; □ 专业的研究级算法加持,精准得到PLQY数据;□ 整机紧凑,可置于手套箱进行氮气氛围测试; □ 可选配自动进样系统,减少人为操作失误,提高测量重复性; □ 软件全自动流程化操作,一键测量所有参数。▌ 功能模块光致发光量子效率测量系统系统型号HiYield-PL规格配置参数激发光模块(氙灯)光源:150W 氙灯激发波长范围:250-700nm光学带宽:2nm-5 nm稳定性:3%激发波长电动控制狭缝电动控制快门电动控制激发光模块(LED)激发波长:365 nm、405 nm、450 nm、520 nm、635 nm等功率调节范围:0-100%激发功率:3.5 mW@365 nm, 5 mW@405 nm, 2.5 mW@450 nm稳定性:≤0.5%光谱测试模块波长范围:350-1100 nm;900-1700nm可选信噪比:1000:1积分时间:3.8 ms–10 s动态范围:3.4 x 106(system) 1300:1 for a single acquisition杂散光:0.05% @ 600 nm 0.10% @ 435 nm光学分辨率:~2.5 nm(FWHM)测试功能及参数测量模式单激发波长量子效率激发波长依赖量子效率量子效率稳定性测试功能参数类别效率参数:发光量子效率(PLQY)、内量子效率(IQE)、激发波长依赖量子效率、蓝光吸收比、衰减比率。辐射度学:光谱功率分布(λ)、辐射通量(Radiance)、光子数(Photons)、光通量(Lumen)、光视效能(K-value)、峰值波长(PeakWavelength)、中心波长(Central Wavelength)等。色度学:CIE色度坐标、相关色温(CCT)、MK-1(mred)、显色指数(CRI)、RGB颜色值等。衰减参数:PLQY-t、λ-t、Radiance-t、Lumen-t、K-t、CIE-t、CCT-t、CRI-t等。其它参数积分球尺寸1.5,3.3,5,6inch等积分球内涂层BaSO4、PTFE、Spectraflect、Spectralon等光纤芯径200μm, 600μm, 1000 μm夹具根据客户样品尺寸定制:比色皿夹具、薄片夹具、粉末载体等专用夹具。▌ 产品应用□ 有机金属复合物、荧光探针、染料敏化型PV材料、OLED材料、LED荧光粉、薄膜、粉末、液体等类型的光致发光样品。
    留言咨询
  • 光催化的实质是光电子催化,光生载流子作为反应物参与反应,就光催化反应动力学和机理研究而言,光电化学测试技术是一种非常重要和有效的手段。 半导体光催化技术治理环境污染物是从上世纪80 年代逐渐发展起来的一种高级氧化技术,在常温和常压下,只利用催化剂、光和空气就能将污染物破坏并最终矿化为无毒的二氧化碳、水和无机离子等,有望缓解日益严峻的环境污染问题。 当用能量等于或高于半导体吸收阈值的光照射块状半导体时,半导体的价带电子可被激发跃迁到导,同时在价带产生相应的空穴,从而在半导体内部产生电子-空穴对。 光生电子-空穴对在空间电荷层电场的作用下,空穴迁移到半导体粒子表面与溶液中的电子供体发生氧化反应,而电子与电子受体发生还原反应, 或者向电极基底运动并通过外电路到达对电极参与还原反应。 光激发产生的电子和空穴至少经历以下途径:载流子的扩散、俘获、复合和界面电荷转移. 其中复合和界面电荷转移是两个相互竞争的过程,界面电荷转移最终实现光能的利用。主要应用: 光电化学、光电催化研究的光谱响应IPCE、量子效率QE、样品池的光谱透过率、光谱响应下的量子效率和光电流,实现了直流、交流分析,原电池分析,光电化学实验分析等。测试项目: 光电化学样品的光谱响应IPCE,量子效率QE,光谱透过率,短路电流密度、表面均匀度等,测试样品室内放入样品和不放入样品时标准探测器的光谱电流/电压值,测量光电反应池的光谱透过率,也可以测量玻璃的光谱透过率。 光电实验原理: 光源在不同波长的辐射能量不同,探测器在不同波长的响应度也不同,因此,所测得的响应电流也会有较大的不同。系统采用了相关检测法,利用信号在时间上的相关性,把深埋于噪声中的周期信号提取出来。具体做法是:将光源经过斩波器调制成具有固定频率(参考频率)的周期信号,则探测器也输出具有相同频率的电信号,经过锁相放大器将含有参考频率的电信号检出,而其它频率的信号(噪声)则被抑制掉,从而提高了系统的信噪比,保证了测量准确度。规格参数:1.控制模式:软件控制、全自动扫描、自动消除误差、自动扣除背景;2.光谱范围:300-1100nm(可选200-2500nm);扫描间隔 ≥1nm连续可调;光谱扫描 全自动、连续;3.测试结果重复性RSI 0.3%(光电流)4.工作模式:交流模式AC、电化学直流模式DC,斩波频率 5-1000Hz5.样品台:电动双位样品台(标准参比、样品),自动对比分析,置于屏蔽安室内。6.选配偏置光源 配置一路、两路、可应对复杂的光电分析测试7.单色仪:1)焦距300mm采用非对称水平Czerny-Turner光路,消慧差设计,可确保谱线对称和良好的光学分辨率;2)消二次色散设计,有效抑制杂散光;3)入口可与我公司各种光源配套使用,可配光纤接口连接光纤;4)可连接我公司任意一款单点探测器和其它附件;5)小模数精密研磨蜗轮蜗杆,长寿命设计,运行平稳舒适,噪声低;6)※配有充氮气专用口,便于在紫外和近红外有大气吸收谱的波段范围内使用;7)配有步进电机细分驱动器,光谱准确度和重复性高;8)狭缝设计独特设计,刃口自动保护,宽度调节对称性好,寿命长;9)软件可实现波长的任意调整及延时设置,USB2.0计算机接口;10)内部光学室和机械传动室严格分开,避免后者产生杂散光及润滑油微量挥发对光学件的污染,单色仪机体为铸件一体结构,保证光学系统稳定性。8.光源:500W氙灯光源,采用欧司朗进口灯泡,波动0.01%。9.标准探测器:紫外增强型硅探测器(300-1100nm),选配铟镓砷探测器(800-1600nm)。10.电化学工作站:选配Ivium电化学工作站,及其他品牌;
    留言咨询
  • SpectrumTEQ-PL系列光致发光测试以模块化思路设计,适合手套箱内使用,也可以和电致发光方案共用部分器件,配合组成一套完整的测试方案,应对无论是OLED,QLED,PeLED发光器件,在器件制备的全流程中进行器件测试,测试系统经过可溯源的光源进行定标,能够进行准确的绝对量子产率,色度,和光谱测量。PL系统针对手套箱做了易用化的设计,采用升降台承载样品防止手持造成洒落,在保证操作方便的同时,保证了每次安装的位置都相同,降低了人为操作的误差,提高了整体测试过程中的结果可靠度。含激发光滤光片插槽,根据激发光波长搭配滤光片,防止激发光和样品发光重合对结果的影响。 测量参数亮度色坐标主波长量子效率量子效率随激发功率的曲线辐射通量,光通量 应用领域无机光致发光有机光致发光EL器件封装前体 产品优势体积小巧:便于灵活使用及运输原位测量:可放至手套箱内,实现原位测量结构稳定:设备无需频繁校准 产品参数
    留言咨询
  • QEX12M 光伏组件量子效率测量系统 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统(QEX12M Solar Module/Solar Panel Quantum Efficiency/Spectral Response/IPCE Measurement System)可以帮助科研人员、质量工程师、生产经理对已经封装完成的光伏组件、检测评估以前不可测量的特性。 针对太阳能电池光伏组件测量分析的Turn-key解决方案。 非破坏式测量 用于光谱失配因子校正的真实太阳能电池光伏组件测量 待测太阳能电池光伏组件150mA电流保护 全反射光路 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统主光路中没有折射光学器件,可以避免色差对大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试产生影响,使得照射光斑尺寸在任何波长都相同。这样就确保了任何大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试结果都代表了器件的真实特性,而不受栅线、边缘、不均匀性等的影响。 监测光电二极管 任何光源的强度对会随着时间而变化。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统测量器件信号和检测光强,将光源强度波动引入到测量结果中的噪音降到最小。 校准 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统中包含一个标准探测器,校准数据溯源到美国国家标准与技术研究院NIST。用户只要用标准探测器做一次简单的扫描,就可以对QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的光路和测量电路进行校准。 波长范围及不确定度 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的基本光谱范围是300nm-1100nm,对晶体硅太阳能电池的典型测试重复性好于±1 %(400-1000nm)好于±2 %(300-400 nm以及1000-1100 nm)。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统默认的光谱带宽约为10nm,更窄或者更宽的带宽可以通过调节单色仪的狭缝宽度来实现。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统默认的波长测量间隔为10nm。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的光谱扩展到1400nm和1800nm系统选项可以实现对太阳能电池光伏组件的全响应范围测量。 单色光调制 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统采用一个可调的机械斩波器对信号光在4Hz到200Hz范围内进行调制。如果太阳能电池的响应时间长则需要将频率降低以获得准确的测量,如果响应速度快则频率可以加快。 偏置光源 由于不同的偏置光源强度可能得到不同的测量结果,所以偏置光源对于大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试非常重要。 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以在样品上偏置一个直径约1.5cm的稳定宽带光斑,强度调节范围0到1SUN,用以模拟实际环境。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统自带的一个直径25mm的滤光片座可以安装光学滤光片,用以实现不同的偏置光谱。我们同时提供各种不同的偏置光源,以满足不同的大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试需求。 测量夹具 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统除了可以测量太阳能电池光伏组件外,还可以测量各种太阳能电池。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统带有一个固定太阳能电池板的平台,但并不适用于所有类型的太阳能电池,系统中不含太阳能电池测试夹具。如果需要在QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统测量太阳能电池,请单独订购测量夹具。我们可以提供各种太阳能电池量子效率测试/光谱响应测量/IPCE测试真空测量夹具,用于固定和连接待测器件,部分测量夹具具有高达125度的温度控制功能。 计算机和软件 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以通过预装Microsoft Windows操作系统及测量分析软件的计算机进行自动操作。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统软件可以控制设备、采集数据、保存校准数据等,具有友好的用户界面,可以简单、快捷地进行指定的测试、监测测试进度、并且生成清晰、全面的测试报告。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统软件将数据保存在文本文件中,方便其它数据分析软件导入。 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统基本特性 太阳能电池光伏组件测量面积可达1 m x 2 m 非破坏测量 偏置电压-5 V to +40 V 待测太阳能电池光伏组件150mA电流保护 用户可调单色光光谱带宽 单色光波长范围为300-1100nm 测量波长间隔可选(默认10nm) 计算机控制双光栅单色仪 滤光片转轮以及级消除降低杂散光滤光片 经过校准的标准光电二极管,美国国家标准与技术研究院NIST溯源(传递一次) 线性滤光片用于波长校准验证 计算机系统,简单易用用户界面 数据保存为文本格式,可以方便导入到电子表格中 同时测量器件响应以及光强 白光偏置光源,强度可达1个太阳常数,可以选配滤光片 白光偏置用于其它电池 斩波器频率4Hz-200Hz 参照AM1.5G,AM1.5D,AM0光谱或者其他光谱数据计算短路电流密度 扫描12个波长小于1分钟(ASTM E1021-06标准最小要求) 300nm到1100nm范围内10nm波长间隔扫描小于6分钟 用户现场安装及培训 操作手册 备用灯泡 缺陷分析 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以用来分析太阳能电池组件/光伏组件/太阳能电池板中的缺陷。电致荧光检测确定太阳能电池光伏组件的缺陷位置,量子效率测试/光谱响应测量/IPCE测试数据用来进一步分析缺陷特性。电致荧光检测是一个辅助工具,QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统是主要检测分析设备。分拣在线器件中测量绝对量子效率/光谱响应/IPCE不太现实,但是大部分情况下可以测量相对量子效率/光谱响应/IPCE。 太阳能电池组件/光伏组件/太阳能电池板性能测量 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统用待测太阳能电池光伏组件代替类似小面积组件样品以确保准确的光谱失配因子校正测量。 数字定位控制 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统通过数字定位控制来提高测量位置的精度,使得对太阳能电池光伏组件的重复测量比较更容易、方便。 视频监控 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统集成的数字显微镜可以精确对准信号光,并记录测量点周边的情况。 用户定制 请联系我们或者当地的经销商以获取更多的关于QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的信息 设备安装要求 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统需要4个115 VAC, 10 A或者2个230 VAC, 10 A电源,请在订购的时候注明所需电源频率是50Hz还是60Hz。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统需要4.7 m x 3.7 m的空间。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统操作环境灰尘少,温度在20到27度之间,没有有机气体或腐蚀性气体,相对湿度小于60%。 个别QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统在外观、部件和功能上可能会有所不同。
    留言咨询
  • QEX12M 光伏组件量子效率测量系统 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统(QEX12M Solar Module/Solar Panel Quantum Efficiency/Spectral Response/IPCE Measurement System)可以帮助科研人员、质量工程师、生产经理对已经封装完成的光伏组件、检测评估以前不可测量的特性。 针对太阳能电池光伏组件测量分析的Turn-key解决方案。 非破坏式测量 用于光谱失配因子校正的真实太阳能电池光伏组件测量 待测太阳能电池光伏组件150mA电流保护 全反射光路 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统主光路中没有折射光学器件,可以避免色差对大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试产生影响,使得照射光斑尺寸在任何波长都相同。这样就确保了任何大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试结果都代表了器件的真实特性,而不受栅线、边缘、不均匀性等的影响。 监测光电二极管 任何光源的强度对会随着时间而变化。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统测量器件信号和检测光强,将光源强度波动引入到测量结果中的噪音降到最小。 校准 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统中包含一个标准探测器,校准数据溯源到美国国家标准与技术研究院NIST。用户只要用标准探测器做一次简单的扫描,就可以对QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的光路和测量电路进行校准。 波长范围及不确定度 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的基本光谱范围是300nm-1100nm,对晶体硅太阳能电池的典型测试重复性好于±1 %(400-1000nm)好于±2 %(300-400 nm以及1000-1100 nm)。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统默认的光谱带宽约为10nm,更窄或者更宽的带宽可以通过调节单色仪的狭缝宽度来实现。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统默认的波长测量间隔为10nm。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的光谱扩展到1400nm和1800nm系统选项可以实现对太阳能电池光伏组件的全响应范围测量。 单色光调制 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统采用一个可调的机械斩波器对信号光在4Hz到200Hz范围内进行调制。如果太阳能电池的响应时间长则需要将频率降低以获得准确的测量,如果响应速度快则频率可以加快。 偏置光源 由于不同的偏置光源强度可能得到不同的测量结果,所以偏置光源对于大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试非常重要。 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以在样品上偏置一个直径约1.5cm的稳定宽带光斑,强度调节范围0到1SUN,用以模拟实际环境。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统自带的一个直径25mm的滤光片座可以安装光学滤光片,用以实现不同的偏置光谱。我们同时提供各种不同的偏置光源,以满足不同的大面积太阳能电池组件量子效率测试/光谱响应测量/IPCE测试需求。 测量夹具 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统除了可以测量太阳能电池光伏组件外,还可以测量各种太阳能电池。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统带有一个固定太阳能电池板的平台,但并不适用于所有类型的太阳能电池,系统中不含太阳能电池测试夹具。如果需要在QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统测量太阳能电池,请单独订购测量夹具。我们可以提供各种太阳能电池量子效率测试/光谱响应测量/IPCE测试真空测量夹具,用于固定和连接待测器件,部分测量夹具具有高达125度的温度控制功能。 计算机和软件 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以通过预装Microsoft Windows操作系统及测量分析软件的计算机进行自动操作。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统软件可以控制设备、采集数据、保存校准数据等,具有友好的用户界面,可以简单、快捷地进行指定的测试、监测测试进度、并且生成清晰、全面的测试报告。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统软件将数据保存在文本文件中,方便其它数据分析软件导入。 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统基本特性 太阳能电池光伏组件测量面积可达1 m x 2 m 非破坏测量 偏置电压-5 V to +40 V 待测太阳能电池光伏组件150mA电流保护 用户可调单色光光谱带宽 单色光波长范围为300-1100nm 测量波长间隔可选(默认10nm) 计算机控制双光栅单色仪 滤光片转轮以及级消除降低杂散光滤光片 经过校准的标准光电二极管,美国国家标准与技术研究院NIST溯源(传递一次) 线性滤光片用于波长校准验证 计算机系统,简单易用用户界面 数据保存为文本格式,可以方便导入到电子表格中 同时测量器件响应以及光强 白光偏置光源,强度可达1个太阳常数,可以选配滤光片 白光偏置用于其它电池 斩波器频率4Hz-200Hz 参照AM1.5G,AM1.5D,AM0光谱或者其他光谱数据计算短路电流密度 扫描12个波长小于1分钟(ASTM E1021-06标准最小要求) 300nm到1100nm范围内10nm波长间隔扫描小于6分钟 用户现场安装及培训 操作手册 备用灯泡 缺陷分析 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统可以用来分析太阳能电池组件/光伏组件/太阳能电池板中的缺陷。电致荧光检测确定太阳能电池光伏组件的缺陷位置,量子效率测试/光谱响应测量/IPCE测试数据用来进一步分析缺陷特性。电致荧光检测是一个辅助工具,QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统是主要检测分析设备。分拣在线器件中测量绝对量子效率/光谱响应/IPCE不太现实,但是大部分情况下可以测量相对量子效率/光谱响应/IPCE。 太阳能电池组件/光伏组件/太阳能电池板性能测量 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统用待测太阳能电池光伏组件代替类似小面积组件样品以确保准确的光谱失配因子校正测量。 数字定位控制 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统通过数字定位控制来提高测量位置的精度,使得对太阳能电池光伏组件的重复测量比较更容易、方便。 视频监控 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统集成的数字显微镜可以精确对准信号光,并记录测量点周边的情况。 用户定制 请联系我们或者当地的经销商以获取更多的关于QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统的信息 设备安装要求 QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统需要4个115 VAC, 10 A或者2个230 VAC, 10 A电源,请在订购的时候注明所需电源频率是50Hz还是60Hz。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统需要4.7 m x 3.7 m的空间。QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统操作环境灰尘少,温度在20到27度之间,没有有机气体或腐蚀性气体,相对湿度小于60%。 个别QEX12M太阳能电池组件/光伏组件/太阳能电池板量子效率测试/QE测量/光谱响应测试/SR测量/IPCE测试系统在外观、部件和功能上可能会有所不同。
    留言咨询
  • Enlitech QE-R 量子效率分析仪的优势 可靠性和可信度*光焱科技(Enlitech)在量子效率校准和测试方面获得 ISO 17025 认证的量子效率系统制造商。*已经安装了500 多套 QE-R 量子效率系统。*QE-R 量子效率系统的名字被 1000 多篇SCI 期刊论文提及。*QE-R 量子效率系统的测量量子效率结果被高影响因子期刊(如 Nature、Science 和 Joule)广泛采用和引用。专业协助*自 2008 年以来,在过氧化物和有机太阳能电池量子效率测量方面有超过十年的经验。*提供数据验证和分析软件,帮助研究人员从量子效率光谱中快速获得物理参数。*分析软件的物理模型被许多高影响因子的期刊所证明和采用。*同学们不用担心实验部分的期刊审稿问题。特色 高效光学引擎:QE-R量子效率系统采用了高效的椭圆反射器,比传统的球形透镜和反射器具有更高的集光效率。其光照强度是传统 350W 灯系统的 6 倍,发热问题和维护费用更少。小巧且灵活:QE-R量子效率系统在 60cm x 60cm x 60cm 的主体内集成了所有光学和机械部件,其中包括电信号采集锁定放大器。它节省了大量实验室空间,但保持了各种类型的太阳能电池测试夹具的灵活性,如矽、薄膜、串联、CPV、CIGS、OPV、DSSC、钙钛矿太阳能电池。 完整的 Glovebox 整合:QE-R量子效率系统提供简单而完整的手套箱集成方案。我们已经在各地區为许多不同的手套箱制造商提供了超过 50 套集成的 QE-R 量子效率系统和太阳模拟器。我们不仅提供硬件,还分享手套箱内精确表征的经验,这有助于我们的客户突破世界效率记录。 *用于单结太阳能电池测试。Perovskite 太阳能电池、有机太阳能电池、Si HJT 电池、TOP-Con 电池、CIGS、CzTs、CdS、GaAs、薄膜电池。*用于串联太阳能电池测试:钙钛矿 / Si 串联电池、钙钛矿 / CIGS 串联电池、聚光太阳能电池、III-V 串联太阳能电池。*波长范围:300~1100 nm; 300~1800 纳米; 300~2500 nm 或自订*提供 QE(量子效率)、PV-EQE(外部量子效率)、IPCE(入射光子-电子转换效率)、SR(光谱响应)、IQE(内部量子效率)、反射率的数据。*结构紧凑且重复性高超过 99.5%。*两个独立的锁相放大器(每个都是双相的),可同时监测光功率和测量设备信号。*拥有集成电脑控制信号开关可以降低维护和耗材成本。*拥有手套箱集成能力。*符合 ATSM E 1021-15, ASTM E948, IEC 60904-8, IEC 60904-7, IEC 60904-1。*NIST-traceable SI 可追溯链。*经 ISO / IEC 17025 认可的期刊论文提交 EQE 不确定性评估报告和质量控制。*各种定制的样品测试夹具。系统设计应用范围*钙钛矿太阳能电池 (PSC) 测试*有机太阳能电池(OSC、OPV)测试*太阳能电池描述*体异质结相分离研究*体积-异质结相分离研究失配因子 (MMF) 计算*AM 频谱下的短路电流密度 Jsc(QE)*加工控制
    留言咨询
  • QE量子效率测量系统 400-860-5168转0751
    QE量子效率测量系统产品简介:QE量子效率测量系统用于测量太阳能电池的量子效率和光谱响应,从而评估太阳能电池性能,量子效率关注的是入射光子被成功收集到电池中的比例。系统可选择不同模块用于测量EQE(IPCE),IQE,IV,DBP,CPM,PDS,SSP,DCM等多个参数,测量精度更高,符合工业标准,适合高校、研究所以及企业的研发与生产品质控制使用。测量应用:●光伏太阳能电池测试和特性 ●电流电压()测试,(开路电流),(短路电流),(分流电阻),(最大功率),效率百分比和填充系数●光谱响应(SR):250-2500nm●外部量子效率-EQE/IPCE●内部量子效率(IQE)●反射和透射测量升级选项:●恒定光电流法(CPM●双光束光电流(DBM)●光热偏转光谱(PDS)●稳态光电导性(SSPC)●温度控制●直流测量系统组成:●单色可调光源,光谱范围:250-2500nm;三重光栅转塔系统;Czerny-Turner设计,可调带通0.2-24nm●偏置光源,太阳模拟器AAA(ASTM E927),AM1.5G 滤光片●Keithley 2400源表●SR800斯坦福锁相放大器●光学斩波系统:频率在4-200Hz之间●用于IQE测量的积分球●可编程逻辑控制器(PLC)控制电源●手动控制开关●控制电脑,内置测量太阳能电池特性的软件●测量暗室QE测量系统包括五种不同的量子测量系统(PTS),用于实现不同的实验方法:外部和内部量子效率(EQE和IQE),恒定光电流法(CPM),双光束光电流法(DBP)和稳态光电导率(SSPC),如下表:光伏电池测试型号IV CurvesSREQEIQECPMDBPPDSSSPC××PTS 2 IQE/IPCE×××××××PTS 3 DBM×××Upgrade××××PTS 4 SSP×××Upgrade×
    留言咨询
  • 尖端光传感器的尖端工具 量子效率与参数分析先进光电探测器APD-QE随着 5G 与移动装置的兴起与普及,越来越多新型光传感器被应用于我们的日常生活中,为了能更好的应用在行动装置上,这些先进光传感器的组件感光面积越做越小。但这些应用却对先进光传感器的光感测性能要求却越来越高,在感光面积微缩的过程中,也带来量子效率精准测量的挑战;例如,传统聚光型小光斑在不同波长下,色散差造成焦点位移可到 mm 等级。难以将所有的光子都聚焦到微米等级的感光面积中。因此,难以准确测得全光谱量子效率曲线。 APD-QE 采用独家光束空间均匀化技术,利用 ASTM 标准的 ”Irradiance Mode” 测试方式,与各种先进探针台形成完整的微米级光传感器全光谱量子效率测试解决方案。APD-QE 已被应用于多种先进光传感器的测试中,例如在 iPhone 光达与其多种光传感器、Apple Watch 血氧光传感器、TFT 影像传感器、有源主动像素传感器(APS)、高灵敏度间接转换 X 射线传感器等。客制化光斑尺寸与光强度光焱科技 APD-QE 光传感器量子效率测试系统在光斑直径 25mm、工作距离 200mm 条件下量测,可以达到光强度与光均匀度如下。在波长 530nm 时,光强度可以达到 82.97uW/(cm2)。在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光强度。WL (nm)半宽高 (nm)光均 U%=(M-m)/(M+m)5mm×5mm3mm×3mm47017.651.6%1.0%53020.131.6%1.2%63019.851.6%0.9%100038.891.2%0.5%140046.051.0%0.5%160037.401.4%0.7%在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光均匀度。光焱科技具备自主光学设计能力。光斑大小与光强度在一定范围内,可以接受客制化,如有需要请与我们联系。Contact Us定光子数控制功能APD-QE光传感器量子效率测试系统具有 “定光子数” 功能 (选配),使用者可以透过控制各个单色光的光子数,让各波长的光子数都一样,并进行测试。这也是光焱科技APD-QE光传感器量子效率测试系统的独家技术,其他厂家都做不到。客户在不同的constant photon flux条件下,进行的光谱测试结果。使用定光子数控制模式 (CP 控制模式),光子数变异可以 1%以上图为例,灰色的Normal 线是氙灯光源在各波长下的光强度分布,呈现氙灯的光谱曲线特征。如采用CP控制模式,可控制不同光子数在不同波长下,保持一致的输出特性。以橘色线CP=15000为例,在不同波长下输出的光子数都是15,000 photons/s/um2。样品测试分析范例a-Si photo-FET 样品不同光强条件下,测试出来的不同光谱响应确实会不一样,可参考下面的测试结果。OPV或是钙钛矿PV样品对于OPV或是钙钛矿PV样品,一般模式或是CP控制模式的测试结果没有差异,可参考下面的测试结果。系统架构系统规格主要系统:● 量子效率测试系统– 300nm ~ 1100nm – 可扩展到 2500nm● 测量软件– PDSW 软件– 可选配 FETOS 软件( 3T 或 4T 组件)● (选配)探针台系统– 4” 标准探针台 (MPS-4-S)● 可客制化探针台系统整合与屏蔽暗箱均光系统与探针台整合高均匀度光斑  采用独家专利傅立叶光学组件均光系统,可将单色光光强度空间分布均匀化。在 10mm x 10mm 面积以 5 x 5 测量光强度分布,不均匀度在 470nm、530nm、630nm、850nm 均可小于 1%。而在 20mm x 20mm 面积以 10 x 10 矩阵测量光强度分布,不均匀度可以小于 4%。PDSW 软件  PDSW 软件采用全新 SW-XQE 软件平台,可进行多种自动化测量,包含 EQE、SR、I-V、NEP、D*、频率噪声电流图(A/Hz1/2)、噪声分析等。▌EQE 测试  EQE 测试功能,可以进行不同单色光波长测试,并且可自动测试全光谱 EQE。▌I-V 测试  软件可支持多种 SMU 控制,自动进行照光 I-V 测试以及暗态 I-V 测试,并支持多图显示。▌D* 与 NEP  相较于其它 QE 系统,APD-QE 可以直接测量并得到 D* 与 NEP。▌频率-噪声电流曲线▌可升级软件  升级 FETOS 软件操作画面(选配),可测试 3 端与 4 端的 Photo-FET 组件。内部整合探针台  APD-QE 系统由于其出色的光学系统设计,可以组合多种探针台。全波长光谱仪的所有光学组件都集成在精巧的系统中。单色光从光谱仪引导到探针台屏蔽盒。图片显示了 MPS-4-S 基本探针台组件,带有 4 英寸真空吸盘和 4 个带有低噪声三轴电缆的探针微定位器。  集成探针台显微镜,手动滑块切换到被测设备的位置。使用滑动条后,单色光均质器被 “固定” 在设计位置。 显微图像可以显示在屏幕上,方便用户进行良好的接触。可客制化整合多种探针台与屏蔽暗箱A. 客制化隔离屏蔽箱。B. 因为先进的 PD 讲究响应速度快,所以有效面积就要小(降低电容效应),因此,多会有需要整合探针台的需求。C. 可整合不同的半导体分析仪如 4200 或 E1500。应用范围LiDAR 中的光传感器– InGaAs 光电二极管 / SPAD苹果手表的光传感器用于高增益传感和成像的光电二极管门控晶体管高光电导增益和填充因子光传感器高灵敏度间接转换 X 射线探测器表征硅光子学– InGaAs APD应用 1:iPhone 12 的 LiDAR 和其他传感器中光电二极管的外部量子效率应用 2 : APPLE Watch 6 血氧传感器中光电二极管的外量子效率  全新 Apple Watch Series 6 配备血氧传感器和配套应用程序,为您提供更多监测心脏和呼吸系统健康的方式,内置于 Apple Watch 的背面。 它使用四组红、绿、红外 LED 灯和四个光电二极管,这些器件可以将光转换为电流。 光照射到手腕上的血管,光电二极管测量反射回来的光量。 基本上,含氧和脱氧的血液以不同的方式吸收红光和红外光,因此 Apple Watch 可以通过反射光来确定血液的颜色。   采用 APD-QE 系统对血氧传感器中的光电二极管进行研究和分析,包括可见光和红外波长范围。  APD-QE 可以提供这些光电二极管的信息:外部量子效率 EQE(300nm~1700nm)光谱响应 SR (A/W)NEP 和 D*频率-噪声曲线(A/Hz1/2)噪音类型  如果您想了解更多关于移动设备中血氧传感器的光学传感器/光电二极管测试的详细信息,请立即联系 Enlitech。应用 3: 用于高增益传感和成像的光电二极管门控晶体管  在光学传感和成像应用中,为了提高灵敏度和 SNR,APS (active pixel sensor) 包括一个光电探测器或一个光电二极管和几个晶体管,形成一个多组件电路。其中一个重要的单元:像素内放大器,也称为源追随者是必须使用。 APS 自诞生之日起,就从三管电路演变为五管电路,以解决晕染、复位噪声等问题。除了 APS,雪崩光电二极管 ( APD )及其相关产品:硅光电倍增器(SiPM)也可以获得高灵敏度。然而,由于必须采用高电场来启动光电倍增和碰撞电离,因此在这些设备中高场引起的散粒噪声很严重。   最近,提出了亚阈值操作光电二极管(PD)门控晶体管的器件概念。它无需高场或多晶体管电路即可实现高增益。增益源自光诱导的栅极调制效应,为了实现这一点,必须进行亚阈值操作。它还以紧凑的单晶体管( 1-T ) APS 格式将 PD 与晶体管垂直集成,从而实现高空间分辨率。这种器件概念已在各种材料系统中实施,使其成为高增益光学传感器的可行替代技术。  APD-QE 系统致力于研究和分析光电二极管门控非晶硅薄膜晶体管:不同光强下的光转移曲线特性。光强度函数的阈值电压变化(ΔVth)。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) a-Si:H 光电二极管门控 LTPS TFT 结构示意图;(b) 等效电路图,显示具有高 SNR 的 APS(a) 像素的显微照片; (b) 部分阵列的显微照片; (c) 图像传感器芯片的照片如果您想测试 TFT 型图像传感器或了解更多测试细节,请立即联系 Enlitech。Contact Us3-D 双栅光敏 a-Si:H TFT 的光传输特性在各种光子通量下,作为波长函数的光敏 TFT 增益。曝光和没有曝光的 TFT 输出特性。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW应用 4: 高光电导增益和填充因子光学有源像素传感器  可应用于”间接转换 X 射线成像”、 “光学指纹成像”和”生物医学荧光成像”的光学有源像素传感器。应用 5: 高灵敏度间接转换 X 射线探测器表征高灵敏度间接转换 X 射线探测器。高分辨率背照式 (BSI) 型 X 射线探测器面板。  高灵敏度大面积 X 射线探测器是低剂量医学诊断 X 射线成像的关键,例如数字射线照相、透视和乳房 X 线照相术。 X射线的探测方式一般有直接转换和间接转换两种。在直接转换模式中,光电导体(例如,非晶硒)用于将 X 射线光子直接转换为电荷。在间接转换模式中,这些电荷由非晶硅薄膜晶体管 (TFT) 进一步读出。X 射线光子首先通过闪烁体如碘化铯 (CsI:Tl)、锗酸铋晶体 (Bi4Ge3O12) 或 Gd2O2S:Tb 荧光粉,然后,通常由非晶硅光电二极管和开关 TFT 形成的光学成像传感器检测。在任一模式下,为了实现高灵敏度,必须从材料 / 设备级别或像素电路级别进行信号放大。例如,最近研究了高度敏感的直接 X 射线光电导体,例如钙钛矿,因为与市售的直接转换 a-Se 光电导体相比,它利用光子的效率高,从而导致高量子产率。然而,钙钛矿具有高漏电流并且也遇到稳定性 / 可靠性问题。在 X 射线成像应用中,可靠性和稳定性至关重要,因为每年必须进行数千次扫描。在高灵敏度的间接转换 X 射线探测器的情况下,由于许多闪烁体的量子产率已达到其极限,然而,由于 TFT 电路和光电二极管之间的占用面积竞争,空间分辨率和填充因子通常会受到影响,因此其灵敏度和高空间分辨率需要权衡。因此,拥有同时获得高灵敏度和高空间分辨率的检测器或像素架构是具有挑战性的。 APD-QE 系统用于高灵敏间接侦测型的X射线探测器的开发:不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。不同 VTG(-12 V、-18 V、-24 V)阈值电压变化的光强依赖性。橙色线是实测的 CsI:Tl 的 X 射线激发光致发光发射光谱,蓝色线是光敏双栅 TFT 的光增益 (Gph),紫色线是经典pin光电二极管的外部量子效率 (EQE) 曲线 。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW如果您想测试间接转换 X 射线探测器或了解有关测试的更多详细信息,请立即联系 Enlitech。Contact Us应用 6: 高光电导增益和填充因子有源像素传感器(APS)有源像素传感器(APS)  垂直堆栈了一个 a-Si:H p-i-n 光电二极管和一个低温多晶硅(LTPS)读出 TFT 通过使用 p-i-n 光电二极管门控 TFT 架构并在亚阈值范围内操作 TFT,所提出的 APS 器件提供高填充因子和高内部光电导增益。垂直积分导致像素中的高填充因子( 70% )和扩大的感光区域。 在传感器的光电二极管门控 TFT 结构中,通过在亚阈值状态下操作 TFT 来放大输出电流。 在可见光波长处获得了弱波长相关的光导增益 10,从而实现大面积低强度光检测。   大面积光学成像和传感设备可以在间接转换 X 射线成像 光学指纹成像和生物医学荧光成像的许多应用中找到。而高增益与高填充因子的 APS 深具商业应用的潜力。APD-QE 系统有源像素传感器( APS ):不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) SNR = AS/(N+n) 的混合有源像素传感器和 (b) SNR = S/(N + n) 的传统无源像素传感器的等效像素电路; A是放大系数,N是像素噪声,n是数据线噪声。高光电导增益和填充因子光学传感器混合传感器的光子传输特性。在 VBG = &minus 6.3V 下测得的光电导增益和外部量子效率作为各种光子通量的波长函数。采用 APD-QE 系统测量有源像素传感器的外量子效率。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW
    留言咨询
  • 产品关键词:电致发光、IVL、电致发光量子效率、量子效率、亮度、前向亮度、角度分辨、器件寿命、外量子效率、发光量子产率测量系统、绝对量子效率、EQE、JV、IV、绝对发光量子产率测量系统 、CIE、色温、光谱功率分布 λ、辐射通量、光通量、相关色温(CCT)、显色指数(CRI)、电功率密度、积分球▌ 产品简介电致发光量子效率测量仪HiYield-EL是东谱科技 HiOE 综合发光特性测量平台中的重要成员,用于对电致发光样品的发光特性进行精确测量。HiYield 系统能够以一流的检测精度对电致发光器件进行纵深测量,得到全面的绝对法测量的电致发光效率参数(量子效率EQE等)以及相关的电学、辐射度学、光度学、色度学等参数;同时该系统集成了稳定性测试模块,可以对器件的老化过程进行测试,且同时得到器件老化过程的全面信息,即涵盖了上述发光效率、电学、辐射度学、光度学、色度学等全面参数(通常的老化测试仪,仅对电流、电压和相对亮度进行测试),典型的包括电致发光效率/量子效率EQE、寿命测试、CIE、CRI、CCT、光谱响应、光谱功率分布、IV、JV、总光谱辐射通量、辐射通量、光通量、光效、光谱强度、峰值波长、FHWM等,广泛应用于各种类型的电致发光器件测量。▌ 产品特点□ 能够以一流的检测精度对电致发光器件进行纵深测量,得到全面的绝对法测量的电致发光效率参数(外量子效率等)以及相关的电学、辐射度学、光度学、色度学等参数;□ 集成了稳定性测试模块,可以对器件的老化过程进行测试,且同时得到器件老化过程的全面信息,即涵盖了上述发光效率、电学、辐射度学、光度学、色度学等全面参数(通常的老化测试仪,仅对电流、电压和相对亮度进行测试);□ 由软件控制测试过程,操作便捷,图表和数据实时显示;□ 可快速、可靠对样品的测试过程进行追踪;□ 具有实时测量、预测量、定制测量、扫描测量、时间依赖测量等丰富的测量模式。▌ 产品功能□ 效率参数:发光效率/外量子效率EQE、电流效率、功率效率等;□ 电学参数:电压(V)、电流(I)、电流密度(J)、电功率(W)、电功率密度等;□ 辐射度学:光谱功率分布、辐射通量、光通量、光视效能、峰值波长、主波长等;□ 色度学:CIE 色度坐标、相关色温(CCT)、MK-1(mred)、显色指数(CRI)、RGB 颜色值等;□ 稳定性测试。■ 包含测量模式√ 电压扫描(含分段扫描、循环扫描等);√ 电流扫描(含分段扫描、循环扫描等);√ 恒压单点测量;√ 恒流单点测量;√ 稳定性测量:不同老化时间下测量。▌ 产品应用□ 量子点发光二极管(QLED)□ 有机发光二极管(OLED)□ 发光二极管(LED)□ 钙钛矿发光二极管(PeLED)□ 其它各种类型的电致发光器件等▌ 规格型号绝对法电致发光特性测量系统系列HiYield-EL光谱仪*光谱范围210-980nm225-1000nm350-1050nm900-1700nm探测器制冷CCD系统信噪比1000:1A/D分辨率16/18 bit光学分辨率0.14-7.7 nm FWHM动态范围85000(典型)杂散光0.08% at 600 nm 0.4% at 435 nm源表电压范围-210V~210V电流范围-1.05A~1.05A*分辨率1pA / 100nV10fA-10nV积分球*材料Spectralon、PTFE、Spectraflect、BaSO4等*内径3.3 / 6 / 10 / 15 inch可选*反射率400至1500 nm,大于99%>97%@600 nm 97-98%>95%软件测量模式 电压扫描(含分段扫描、循环扫描等); 电流扫描(含分段扫描、循环扫描等); 恒压单点测量; 恒流单点测量; 稳定性测量:不同老化时间下测量。功能参数类别 效率参数(外量子效率、电流效率、功率效率等); 电学参数:电压(V)、电流(I)、电流密度(J)、电功率(W)、电功率密度等; 辐射度学:光谱功率分布、辐射通量、光通量、光视效能、峰值波长、主波长等; 色度学:CIE色度坐标、相关色温(CCT)、MK-1(mred)、显色指数(CRI)、RGB颜色值等; 稳定性测试。测量夹具*定制夹具根据客户样品封装设计夹具*该产品或参数可根据客户需求灵活配置▌ 产品特点
    留言咨询
  • 这是一款适用各种类型太阳能电池测试的原位量子效率测量系统,采用多通道LED同步激发、同步数据采集和快速傅里叶转换(FFT)技术,将太阳能电池量子效率测量一次的时间从现有的几分钟降到8秒钟。与传统QE测量技术相比:- 节约时间- 节约空间- 节省劳动力- 节省成本- 无需单色仪- 无需斩波器- 无需锁相放大器- 无需氙灯图形化软件测试界面技术特点- 全波长同步激发同步测量- 8秒测量一条QE曲线- 光谱范围:300nm~1200nm- 光斑尺寸2mm~12mm,1mm可选- 长寿命高稳定LED光源- 每个波长LED可独立开关控制- 光功率实时检测- 偏置光:红光、蓝光、白光,软件控制- 偏置电压源- 一键测量,图形化软件界面- Jsc @ AM1.5G光谱检测- 系统校准便捷- 支持垂直方向和水平方向测量- 原位实时测量- QE长期稳定性测量- 可扩展IQE测量- 支持整合到生产线中- 支持和手套箱联用- 支持离线测量测试实例1. a tandem perovskyte / c-Si solar cell2. Silicon Photodiode3. HIT4. CIGS测试HeadVerticalHorizontal
    留言咨询
  • SpectrumTEQ-PL光致发光量子效率测量系统SpectrumTEQ-PL系列光致发光量子效率测量系统,针对器件的光致发光特性进行有效测量,可在手套箱内完成搭建,无需将样品取出,即可完成光致发光量子效率的测试。系统搭配QE Pro光谱仪为业内公认旗舰系列,信噪比高、杂散光低, 动态范围大,适合不同波段和强度的激发光发射光测量。同时,系统配有强大的测试软件,向导式的软件操作逻辑让测试过程变的简单,迅速。 应用:无机光致发光有机光致发光EL器件封装前体 优势:体积小巧:便于灵活使用及运输原位测量:可放至手套箱内,实现原位测量结构稳定:设备无需频繁校准 光谱仪型号QEPro/QE65Pro(可选) 光谱范围(nm)350-1100 信噪比1000:1 分辨率2.5nm(FWHM) 动态范围85000:1(QEPro单次采集) 25000:1(QE65Pro单次采集) AD位数18-bit(QEPro) 16-bit(QE65Pro) 积分球尺寸3.3" 涂层材料Sperctralon激发光源365-880nm光纤耦合高功率LED 强度可调典型半峰全宽 (FWHM)=14nm@405nm
    留言咨询
  • SpectrumTEQ-EL 电致发光量子效率测量系统SpectrumTEQ-EL系列电致发光量子效率测量系统,可以针对发光器件的光电特性进行有效测量,系统搭配QE Pro光谱仪为业内公认旗舰系列,具有高信噪比、低杂散光等特性;同时,系统配有强大的测试软件,对话框式的软件操作界面让测量过程变得更为简单。 应用:无机电致发光有机电致发光分子薄膜EL器件 优势:体积小巧:便于灵活使用及运输原位测量:可放至手套箱内,实现原位测量结构稳定:设备无需频繁校准光谱仪型号QEPro/QE65Pro(可选) 光谱范围(nm)350-1100 信噪比1000:1 分辨率2.5nm(FWHM) 动态范围85000:1(QEPro单次采集) 25000:1(QE65Pro单次采集) AD位数18-bit(QEPro) 16-bit(QE65Pro) 积分球尺寸3.3" 1.5"涂层材料Sperctralon源表Keithley 2400
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • - 光谱响应- 入射光子对电流效率- 外部量子效率- 内部量子效率- DC/AC/NIR测量- 自动扫描/定位
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制