当前位置: 仪器信息网 > 行业主题 > >

材料显微镜

仪器信息网材料显微镜专题为您提供2024年最新材料显微镜价格报价、厂家品牌的相关信息, 包括材料显微镜参数、型号等,不管是国产,还是进口品牌的材料显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合材料显微镜相关的耗材配件、试剂标物,还有材料显微镜相关的最新资讯、资料,以及材料显微镜相关的解决方案。

材料显微镜相关的论坛

  • 【讨论】原子力显微镜在材料科学研究中的应用

    此为文献下载网址http://www.instrument.com.cn/download/shtml/104981.shtml本人对原子力显微镜在材料科学研究中的应用进行了总结,对于一些初次接触原子力显微镜或者是可能偶尔会用的上原子力显微镜的材料人而言,此文可能使你对原子力显微镜的应用有初步的了解。当然文章会出现很多错误,还望大家批评以便改正。我会以积分做为回报。欢迎大家来阅。[em09505]

  • 【原创】数码显微镜在江苏华威材料公司安装使用

    2009年5月,江苏华威材料公司向我司订购了一台金相数码显微镜,并于6月初我司技术人员上门安装,整套系统的调试进行得很顺利。通过我司的数码金相显微镜所实拍出来的产品显微图片,用户对实拍效果很满意。我司提供的显微成像设备为正置金相显微镜和900万物理像素MD90数码成像系统,用于检测反光材料内的玻璃珠质量。质量较好的玻璃珠无任何缺陷,而较差的玻璃珠则在显微镜下可观察到坏损。下面为两者之前的显微图片对比图:[center][IMG]http://www.mshot.cn/uploadfile/localhost/200906/20090630121321142.jpg[/IMG] 图一:数码金相显微镜所实拍下损坏的玻璃珠 [IMG]http://www.mshot.cn/uploadfile/localhost/200906/20090630121418539.jpg[/IMG] 图二:数码金相显微镜下所实拍的质量较好的玻璃珠[/center]

  • 金相显微镜分析材料显微组织应注意的若干特性

    金相显微镜分析材料显微组织应注意的若干特性: 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等;2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等;3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征;4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要;5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点;6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

  • 金相显微镜分析材料显微组织应注意的若干特性

    分析材料显微组织应注意的若干特性 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。 1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等; 2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等; 3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征; 4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要; 5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点; 6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

  • 透射电子显微镜表征材料结构

    本次微课主要开展透射电子显微镜表征材料结构关于材料准备方面的经验分享,包含粉末样品、块体样品、磁性样品和敏感样品等类型样品的准备方法。

  • 【转帖】郭可信---电子显微镜在材料科学中的应用

    即将离开深爱的电镜,发此文以示纪念。注:本文转自武汉理工大学材料研究与测试中心技术交流论坛。金相学史话(6):电子显微镜在材料科学中的应用 郭可信 (中国科学院物理研究所北京电子显微镜实验室, 北京2724 信箱, 100080)   【摘 要】 Ruska 在三十年代研制出第一台电子显微镜,战后(1954 年) 又在极端困难条件下发展出带有电子衍射功能的高分辨电镜Elmiskop I。但是,从专利优先权角度看,他不是电镜的发明人。直到半个世纪后,有关的争议人都已过世,他才在1986 年获得这个迟到的但却是当之无愧的诺贝尔物理奖。材料科学的几次突破性进展充分说明电子显微镜的重要性。首先是电子衍射与成像的结合使位错的直接观察得以实现。在双束(透射束与一个强衍射束) 条件下,位错产生的畸变区的衍射强度与基体不同从而显示衬度差异(衍衬像) 。位错等晶体缺陷因此得以成为六、七十年代的研究热点。选区衍射使晶体结构分析进入到微米甚至到纳米层次。迄今为止,八十年代发现的各种类型的准晶(五重、八重、十重、十二重旋转对称准晶) 都是使用这种手段实现的,从而扩大了晶体的范围,把无周期性的准晶也包括进去。高分辨电镜已发展到分辨单个原子的水平,这就为九十年代发现和研究纳米碳管创造了条件,开辟了纳米技术的新纪元。 【关键词】 电子显微镜 金相学 材料科学 1  电子显微镜的诞生 电子显微镜首先由Knoll 及Ruska 在实验室研制成功,后来在1939 年由西门子公司开始批量生产,正赶上第二次世界大战爆发。因此电子显微镜在金属研究方面的应用在二次世界大战后才逐渐开展起来,直到五十年代中期才兴旺发达。那时金属学已经是一门比较成熟的学科,许多基本的显微结构问题已用X射线得到初步解决,并逐步发展成为物理冶金和材料科学。同时,电子显微镜技术本身也有长足发展。这两个学科的发展基本上是同步的,每一种电子显微镜新技术的出现都为材料科学带来新的飞跃。下面在介绍电子显微镜的诞生后,将就电镜的几个重要发展讨论材料科学中的几次突破性进展。 瑞典诺贝尔奖委员会把1986 年物理奖的一半颁发给E. Ruska 时的赞词是:“为了他在电子光学基础研究方面的贡献和设计出第一台电子显微镜”。上半句是指Ruska 在Knoll 指导下,从1928 年起他在柏林高压电机系高工实验室做的副博士论文工作中,从事阴极射线的聚焦研究。他先用一个磁透镜聚焦得出金属网的13 倍放大像,后来用双透镜得出1714 倍的放大像[1 ,2 ] ,在实验室中实现了电子显微成像。下半句是指他在1930 - 1933 年间在西门子公司与Von Borries 一起研制电子显微镜,引入极靴及投影镜,最后得出放大12 ,000 倍的像,分辨率超过光学显微镜,宣告第一台电镜的诞生(关于电镜的研制经过,见文献[ 3 - 8 ]) 。注意,这个赞词中回避了“发明”电子显微镜这个字眼,这不是一时马虎,而是深思熟虑的结果。因为西门子公司的M.Rüdenberg 已在1931 年5 月28 日向德、法、美等国的专利局提出用磁透镜或静电透镜制造电子显微镜的专利申请(这是第一次出现电子显微镜这个名词) ,并分别于1932 年12月和1936 年10 月获得法、美专利局的批准(德国专利局在当年5 月30 日收到申请) 。德国通用电气公司AEG于1930年在Brüche 领导下开始研究静电透镜成像,并在1931 年11月获得涂上氧化物的灯丝的发射电子像。在AEG公司的反对下,Rüdenberg 的两个电镜专利申请直到战后才在1953年和1954 年获得西德专利局批准。从专利优先角度来看,Rüdenberg 应是电镜的发明人。 Rüdenberg 是一位著名的电子物理学家,除了在西门子公司任科技部总工程师,还兼任柏林高工电机系教授。无论在学识、经验和远见方面都很强。但是他从来没做过磁透镜成像工作, 他的专利申请全凭理论推测得出。据Rüdenberg 及他儿子事后说,1930 年他的另一个儿子得了小儿麻痹症,这是由一种过滤性病毒引起的,受到分辨率的限制,光学显微镜对此无能为力。Rüdenberg 为此曾想到用X射线或电子束制造分辨率更高的显微镜[8] 。但是,他从来没有发表过这方面的论文,在电镜界也不知名。 对于Rüdenberg 的电镜专利申请,Ruska 及Knoll 是有看法的。因为在1931 年5 月里,Rüdenberg 的助手M. Steenbeck曾去Knoll 的实验室参观,了解到Ruska 的实验结果,并且看到了Knoll 将在6 月4 日做的有关Ruska 工作的学术报告手稿,题目是“阴极射线示波器的设计及新结构的原理”,在他们的第一篇论文中也没提到电子显微镜。就在Knoll 的6 月4 日学术报告的前几天,Rüdenberg 代表西门子公司在5月28 日向德、法、美等国的专利局提出了电子显微镜的专利申请。因此Knoll 和Ruska 产生一些怀疑也是可以理解的。不过,关于电镜发明权的争执没有继续下去。首先,Rüdenberg 在希特勒开始迫害犹太人后于1936 年移居英国, 两年后去美,接着二次世界大战就爆发了。其次,Ruska 与Von Borries 在1937 年2 月开始加入西门子公司从事电镜开发工作,在1939 年制造出第一台分辨率为7 纳米、放大倍率为3 万倍的商品电镜。他俩与Rüenberg 先后属于一个公司(专利权主要属于西门子公司) 不便争论发明权问题。再就是二次世界大战随后爆发,战事的紧迫性掩盖了这种争议。此外,除了Knoll-Ruska 与Rüdenberg 争发明电镜的优先权外,西门子与AEG两大公司也在争论不休,为了平息这些争论当时德国的最高学术团体普鲁士科学院在1941年7 月3 日将莱布尼兹银质奖颁发给了AEG 公司的Brüche ,Mahl 及Boersch 和西门子公司Knoll ,Ruska ,Von Borries 及Von Ardenne ,结果是皆大欢喜。

  • 【原创】金属材料组织分析方法-金相组织分析法-金相显微镜分析方法

    金属材料组织分析方法-金相组织分析法-金相显微镜分析方法金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。 众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段 。

  • 【原创大赛】扫描电子显微镜之材料准备篇

    【原创大赛】扫描电子显微镜之材料准备篇

    之前写过一篇《扫描电子显微镜原理及应用》,不过鉴于这方面的知识已经很普及了,所以这次打算结合自身的实验经历来谈谈有关扫描电子显微镜的使用事项。先说说扫描电镜的材料准备。1 材料是否适合通过扫描电镜观察通过扫描电镜观察的是样品的表面形态,经常有人问说可不可以看到细胞内部结构变化之内的,我只能回答不能。观察细胞或者其内部结构可以去照高倍数的显微镜,类似共聚焦显微镜。另外,扫描电镜放大倍数可以上千倍,所以观察的样品体积不能过大,反而是组织越小越值得去照扫描电镜,那样意义大一些,组织大的用普通显微镜就好。像我做的花序原基,最好是1cm以内,一般是1mm-2mm之间。2 材料取样 因为一般要照的组织十分微小,肉眼下几乎不能辨别,因此确定好要照的材料部位后,在解剖镜下选取材料,直接将结构完整的材料用固定液固定。尽量多固定一些样品,样品很小,在制样的过程中不可避免出现样品丢失,样品被破损等情况。3 样品制备样品制备过程中要经过脱水,干燥处理。脱水需要将样品依次转移到30%、50%、70%、90%、100%的酒精中,然后再转移到醋酸异戊脂中干燥。这一步的关键是如何尽量减少转移过程中样品的损失率。本人采取的是将样品放于离心管中,用枪头加入试剂,用打针的针筒将试剂吸出,因为真空很细,这样样品一般不会被吸走丢失。4 粘样将样品粘贴在金属样品台上的顺序也是有讲究的,尽量按顺序排列样品,大小一致的放在一排,这样的目的使方便电镜观察时的电镜操作,节约拍摄时间,提高拍摄效率。http://ng1.17img.cn/bbsfiles/images/2015/08/201508042104_559129_3023439_3.jpg样品粘贴好后,喷上金就可以拍摄了。扫描电子显微镜比较昂贵,需要专人管理,一般学校会雇人负责相关事宜,学生只需取好样品,制样由工作人员完成,可以省去实验操作。可是殊不知制样过程对实验结果影响也很大,个人建议不要偷懒,尽量自己完成所有步骤。附一张玉米原基图片。http://ng1.17img.cn/bbsfiles/images/2015/08/201508042107_559130_3023439_3.png

  • 半导体器件/材料焊接层\填充层空洞分析手段-超声波扫描显微镜

    半导体器件芯片内部失效分析 超声波扫描显微镜(扫描频率最高可以达到2G). 其主要是针对半导体器件 ,芯片,材料内部的失效分析.其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙http://simg.instrument.com.cn/bbs/images/brow/emyc1002.gif请点激链接:半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。XRAY 与C-SAM区别XRAY:X射线可以穿过塑封料并对包封内部的金属部件成像,因此,它特别适用于评价由流动诱导应力引起的引线变形 在电路测试中,引线断裂的结果是开路,而引线交叉或引线压在芯片焊盘的边缘上或芯片的金属布线上,则表现为短路。X射线分析也评估气泡的产生和位置,塑封料中那些直径大于1毫米的大空洞,很容易探测到. 而小于1毫米的小气泡空洞,分层.就非常难检测到.用X射线检测芯片焊盘的位移较为困难,因为焊盘位移相对于原来的位置来说更多的是倾斜而不是平移,所以,在用X射线分析时必须从侧面穿过较厚的塑封料来检测。检测芯片焊盘位移更好的方法是用剖面法,这已是破坏性分析了。C-SAM:由于超声波具有不用拆除组件外部封装之非破坏性检测能力,根据其对空气的灵敏度非常强的特性.故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝…等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即最利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝…等缺陷时,即可由C-SAM影像得知缺陷之相对位置C-SAM服务超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等)· 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等; 材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 【求助】请问软磁材料可以用磁力显微镜看磁畴吗?

    由于软磁材料具有较低的矫顽力,那软磁材料有没有磁畴啊?请问可以用磁力显微镜看磁畴吗?我看有的书上说好像很难的? 我有个软磁材料,矫顽力很小,也就100 Oe左右,但饱和磁化强度很高。请问可以用MFM探测吗?各位大侠指点迷津! 谢谢~!

  • 透射电子显微镜的工作原理和在高分子材料研究中的应用

    如题,求助~~~~~~~~~哪位好心人知道透射电子显微镜的工作原理和在高分子材料研究中的应用方面的内容啊,,,现在我是一头雾水,没一点头绪,这是我们的作业!!!如果知道的话,热切地盼望大家告诉我,偶先谢过各位了!!!!!!!!

  • 【原创大赛】种植在某材料上的兔子耳朵软骨细胞之显微镜照片

    【原创大赛】种植在某材料上的兔子耳朵软骨细胞之显微镜照片

    拍摄时间:最近样品名称:幼兔的耳朵--软骨细胞所使用的显微镜的生产厂家和型号: 显微镜在无菌间,型号暂无Nikon Eclipse E400物镜:10目镜:10经过染色的——普通显微镜幼兔的耳朵--软骨细胞种植在某材料上第4天荧光染色:其中空洞为材料小隔间; 发亮处为细胞http://ng1.17img.cn/bbsfiles/images/2011/12/201112021039_334851_2019107_3.jpg

  • 清华大学材料学院北京电子显微镜中心招聘技术员

    招聘单位:清华大学材料学院北京电子显微镜中心招聘职位:技术人员(合同制)招聘人数:1名职位职责:透射电镜(TEM)的运行、维护、应用及相关的日常事务薪酬待遇:每月税前3500~4200元,具体面议;此外,由中心提供五险一金和带薪寒暑假应聘条件如下:1 、本科以上学历(含本科),材料科学与工程、凝聚态物理、固体物理等相关专业优先考虑。2 、年龄:30岁以下。3 、责任心强,爱岗敬业,身体健康。4 、有电子显微学工作经历者优先考虑。有意应聘者请发送个人简历(简历中请注明联系方式) 至程老师(czy@mail.tsinghua.edu.cn)和申老师(shen-yt@mail.tsinghua.edu.cn)。恕不接待来访,通过简历初选者将择日安排面试,未通知面试者请恕不再发通知。注:截止时间2014年8月28日17:00。

  • 显微镜的历史

    随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制