当前位置: 仪器信息网 > 行业主题 > >

混凝土导热系数测试仪

仪器信息网混凝土导热系数测试仪专题为您提供2024年最新混凝土导热系数测试仪价格报价、厂家品牌的相关信息, 包括混凝土导热系数测试仪参数、型号等,不管是国产,还是进口品牌的混凝土导热系数测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混凝土导热系数测试仪相关的耗材配件、试剂标物,还有混凝土导热系数测试仪相关的最新资讯、资料,以及混凝土导热系数测试仪相关的解决方案。

混凝土导热系数测试仪相关的论坛

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】混凝土强度测试仪

    测试混凝土强度的新标准成熟度和导电率测试法全自动模式测试通过互联网和SMS,使得任何情况下测试数据都是可用的优点:更高效、简单和便宜系统非常简单:传感器测试温度和电导率,然后把测试的数据存储到数据箱中。在数据箱中,是一个GSM,通过GPRS可以很规律的将测试数据传输到中心服务器上。在该服务器上,运行软件,用户键入这些数据和一些项目数据,同时计算混凝土的强度值,当然所有的操作都进行存储。按下按钮,即可完成项目报告,并可以打印或是以电子文本的形式进行储存和传送。测试的数据也可以以Excel表格的形式或一个XML文件的形式进行下载,用于后续的处理。如果没有互联网怎么办?不需要:例如:当达到某一强度值,或发送一个SMS信息,同时包含有强度值是,该服务器还可以发送SMS给主管或其他相关人员。该系统计算强度的方式有两种:已知成熟度的情况下和已知电导率的情况。通过这种方式,可以确定最佳的混凝土强度值。系统是如何工作的?每个用户拥有自己的网页,可以安全的登录。在该网页上,他可以看到所有的他的项目以及测试点。网页和所有用户的数据都存储在荷兰最大的最安全的数据中心服务器上。数据服务器上有永久的数据备份。在项目开始时,用户登录到网站上,准备一个项目以及命名需要测试的点。键入使用的混凝土的很多的细节(包括C值),和使用的数据箱的数目。在建筑工地现场,对于每个测试点,一同安装数据箱和传感器。一旦打开数据箱,它将通过GPRS与服务器进行联通。配有的数据箱以及传感器,就可以测试混凝土的温度和电导率,在给定的时间,通过GPRS把数据传输到服务器上。数据箱中的温度值和电池的状态也一起传输。在服务器上,用户可以看到所有他的项目和测试点,并且可以追踪强度的发展情况。如果需要自动的发送强度数据SMS信息的话,在现场,也可以发送信息到相关人员。当测试已完成,数据箱已拆除,重新加载到下一个项目。传感器仍保留在混凝土中,以便可用来后期的进一步测试。快问快答:我的项目数据是否安全?  是安全的,用户名和密码仅仅可用于安全服务器。数据存储在多个计算机中心,对最佳的方式,并对数据进行永久的备份。在混凝土中,可在任何深度进行测试?  是的,测试可在任何深度进行。是否一个数据箱可连接几个传感器?  为了阻止长期在建筑施工现场弯曲存在的缺点和风险,一个传感器可连接到每个数据箱。但是如果有相对有利的价格,这个都不是问题。强度是如何确定的?  按照加权成熟度的方法来确定混凝土的强度。此外,也可以使用电导率。在未来可能使用这种方法较多。

  • 美国重大事故——美国混凝土热膨胀系数测试方法重大错误的验证和分析

    [color=#cc0000]摘要:针对路面混凝土热膨胀系数(CTE)测试,国内外普遍使用的测试方法AASHTO TP60因被发现由重大错误,后经过重大修改并由AASHTO T336所替代。本文将回顾发现AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[/color][color=#cc0000][/color][color=#cc0000]关键词:热膨胀系数,混凝土,路面混凝土设计,测试方法[/color][color=#cc0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  随着我国基础建设的飞速发展,越来越多的公路路面采用了水泥混凝土,这主要是因为水泥混凝土具有高强度和高稳定性等优点,但路面板边缘过早破坏、面板开裂、横缝错台等危害一直困扰着道路工程界。大量研究发现混凝土的热膨胀系数(CTE)是影响路面水平裂缝以及其它危害发生的主要原因,CTE越大,路面越容易出现开裂和疲劳破坏。在近些几年中对CTE测试的兴趣显著增加,因为它被认为是用于混凝土路面设计最重要的输入参数之一。  有多种测试方法可用于测定混凝土的CTE,文献做了详细的综述介绍。纵观各种混凝土CTE测试方法,最广泛使用的是AASHTO TP60,它是所有混凝土CTE测试的基础,AASHTO TP60测试方法广泛使用的另外一个原因是其测量装置也可以被其它测试方法使用。  TP60的测量原理非常简单,它测量垂直放置在金属框架内的饱和混凝土样品的长度变化,该金属框架受特定温度变化的影响。控温水浴用于改变测试方法规定的温度范围,通过测量已知CTE的校准样品长度变化来消除框架的变形影响。  对于任何材料性能测试方法和测量装置的测量准确性考核和评价,一般都采用以下几种方式:  (1)测试可计量溯源的标准参考材料,测试结果与标准值比较;  (2)测试经更高等级测试设备验证过的参考材料,测试结果与参考值比较;  (3)多个实验室不同测试设备之间的比对测试。  美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)为了评估AASHTO TP60测试方法的准确性,采用了上述第二种方式,选择了几种参考材料并经第三方实验室采用更高等级的测试设备对参考材料CTE进行测量。在此评价过程中发现了使用了近十多年之久的AASHTO TP60存在着重大错误,并及时做出了修改,从而推出了新的测试方法AASHTO T336,但以往错误所带来的影响和后果非常严重,造成大面积的数据库和设计软件的修改等。  本文将回顾发现混凝土CTE测试方法AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[b][color=#cc0000]2. 参考材料[/color][/b]  为了评估AASHTO TP60测试方法和相应测试设备测量精度和测量重复性,以及实验室间的比对测试,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)准备了三种参考材料,这三种参考材料的CTE值范围基本都在TFHRC先前测试过的混凝土样品范围内。三种参考材料如下:  (1)氧化铝陶瓷:根据文献其CTE为5.5×10-6/℃。这种氧化铝陶瓷一种多孔陶瓷,在测试之前需要饱和。  (2)钛合金(Ti-6Al-4V):根据文献其CTE为9.2×10-6/℃。  (3)410不锈钢:根据文献其CTE为10.5×10-6/℃。[b][color=#cc0000]3. 参考材料热膨胀系数测试[/color][/b]  美国TFHRC首先使用自己实验室的两台不同的混凝土热膨胀系数测试设备,按照TP60方法对上述三种参考材料进行了测试,测试结果如表3-1所示。[align=center][color=#cc0000]表3-1 参考材料文献值和不同测试方法(AASHTO TP60和ASTM E228)结果[/color][/align][align=center][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292225403071_943_3384_3.png!w900x487.jpg[/img][/align]  从表3-1可以看出,针对氧化铝陶瓷、钛合金和410不锈钢三种参考材料,采用AASHTO TP60测试方法测量得到的CTE值与文献报道值并不一致,它们普遍比文献值高约1×10-6/℃。  当发现测量值与文献值之间存在较大差异后,TFHRC首先认为造成这种差异的可能原因是氧化铝素瓷、钛合金和410不锈钢这些参考材料与文献报道的材料并不完全相同,或者在测试期间位移探测器(LVDT)受温度或湿气(或两者)变化的影响。[b][color=#cc0000]4. 第三方实验室测试[/color][/b]  上述三种参考材料测试结果与文献值的较大差异使得TFHRC决定选择独立的第三方实验室对CTE测试进行验证,参考样品被送到专门从事航天工业金属CTE测试的实验室进行了测试,测试按照ASTM E228测试方法(顶杆法)的修改版进行,以适应高度180mm、直径80mm或100mm样品和TP60中相同的温度范围10~50℃。除了发送新获得的参考材料外,用于校准FHWA手动测量装置和两台商业测量装置的几个304不锈钢校准样品也被送到此第三方实验室进行测试验证。  在ASTM E228测试方法中,顶杆法热膨胀仪用于测量线性热膨胀。测量样品和已知标准参考材料之间作为温度函数的膨胀差异,样品的膨胀是根据这种膨胀差异和标准膨胀来计算的。  表3-1显示了CTE文献值和TFHRC及第三方独立实验室获得的测量结果。可以看出,按照TP60在TFHRC获得的CTE结果远高于按照ASTM E228在第三方实验室的测量结果。按照TP60规定,三种304不锈钢校准样品(SS743、M1和M2)设定的热膨胀系数都为17.3×10-6/℃,所以采用TP60方法测试得到的CTE结果也都为17.3×10-6/℃。  从表3-1可以看出,根据TP60获得的结果远高于根据ASTM E228获得的结果。此外,除了304不锈钢校准样品外,第三方实验室报告的结果与文献值基本一致。而对于所有304不锈钢校准样品,第三方实验室报告的CTE测试结果都要明显低于17.3×10-6/℃。[b][color=#cc0000]5. 对比分析[/color][/b]  通过上述第三方实验室的对比测量,TFHRC终于认识到出现TP60测试结果较高的原因是:304不锈钢校准样品的CTE值可能在测试温度范围内设定(或选择)的并不正确。当发现这个灾难性的可能原因后,TFHRC感觉到了事态的严重性,这是因为无论是定制装置还是商用测量装置,所有执行AASHTO TP60和类似测试方法的实验室所使用的304不锈钢校准样品CTE值均为17.3×10-6/℃,如果发生错误则会带来大范围的影响。  根据TP60,如果用作校正系数所输入的304不锈钢校准样品CTE值不正确,则所测试材料的CTE值也不正确。作为验证,TFHRC使用了第三方CTE测试结果15.8×10-6/℃作为304不锈钢校准样品的CTE作为新的校正因子。使用新的校正因子,TFHRC重新计算了表3-1中报告的CTE,如表5-1所示。[align=center][color=#cc0000]表5-1 第三方实验室和TFHRC的CTE测量值比较,假设校准样品有两个CTE值[/color][/align][align=center][color=#cc0000][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292227254161_5379_3384_3.png!w900x289.jpg[/img][/color][/align]  从表5-1可以看出,当使用TP60建议的304不锈钢CTE默认值来计算校正系数时,氧化铝陶瓷、钛合金和410不锈钢的CTE高于预期,但是当使用由第三方实验室测量确定的304不锈钢CTE值计算校正系数时,获得的氧化铝陶瓷、钛合金和410不锈钢的CTE更接近预期值,与预期值的差异并不是由于温度或湿度变化对LVDT读数的影响。相反,这种较大差异主要是由于使用304不锈钢校准样品的不适当CTE值作为输入来计算校正因子,从而导致测量参考材料CTE的错误。[b][color=#cc0000]6. 第三方实验室再次测试[/color][/b]  为了进一步确认304不锈钢校准样品的CTE,TFHRC将校准样品送到另一家第三方独立实验室进行测试。由于发现此实验室虽然可以采用ASTM E228进行CTE 测量,但无法对高180mm、直径80mm或100mm的样品进行测量,因此送到此第二家第三方实验室的较小尺寸样品是将先前发送到第一家第三方实验室的样品进行了切短,切短后的样品尺寸约为51×51×6mm。该实验室在比以前实验室更宽的温度范围内(-40~300℃)测量了304不锈钢校准样品的CTE,结果如表6-1所示。[align=center][color=#cc0000]表6-1 两家第三方实验室的CTE测试结果比较(测试方法ASTM E228)[/color][/align][align=center][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229073780_4938_3384_3.png!w900x289.jpg[/img][/align]  表6-1清楚地显示,从第二个独立实验室收到的结果与从第一个独立实验室获得的结果一致,观察到的微小差异可归因于可接受的测试系统误差。表6-1中显示的CTE测试结果表示在与TP60相同温度范围内的CTE值,并不包括第2个独立实验室使用的全温度范围。  图6-1显示了第二家独立实验室在测试期间使用的整个温度范围内的平均CTE。从中可以看出,CTE值随温度而变化在-40~300℃温度范围内呈现最稳定CTE的材料是钛合金。同样清楚的是,在300℃左右,304不锈钢样品的CTE试验结果接近17.3×10-6/℃的文献报道。[align=center][img=,600,354]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229413984_686_3384_3.png!w848x501.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图6-1 在宽温度范围内的平均CTE(参考温度为20℃)[/color][/align]  通过这次第二家第三方实验室的测试,进一步验证了TP60方法中存在的问题,从而推进了新型测试方法的建立。[b][color=#cc0000]7. AASHTO新旧标准之间的区别[/color][/b]  AASHTO TP60标准方法在2000年颁布,2009年发现了TP60存在重大问题,2010年在AASHTO TP60基础上颁布了新标准AASHTO T336。TP60方法与T336新方法的主要区别如下:  (1)第三方测试:虽然TP60在非强制性附录中指出304不锈钢的CTE为17.3×10-6/℃,但T336要求任何校准样品的CTE应由拥有ISO 9001或同等认证的实验室来确定。  (2)校准样品的CTE测定:CTE必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与T336相同的温度范围内进行,即10~50℃。  (3)CTE证书:校准样品必须具有第三方实验室颁发的证书,包括所测样品品的批号。CTE必须在相同的样品上或同一批次的样品上测定,因为材料的CTE可能会随批次发现变化。  (4)力学经验路面设计指南(MEPDG)警示说明:在1.0版MEPDG软件中,模型的校准采用的是长效路面性能(LTPP)数据库中的CTE值,而这些CTE值则由TP60方法测试获得。由于根据TP60和T336获得的校准样品CTE值之间由很大差异,因此根据T336获得的CTE不应用作1.0版MEPDG软件的输入,以防止路面厚度的低估。[color=#cc0000][b]8. AASHTO新旧标准更替所带来的影响[/b]8.1. 对路面性能数据库的影响[/color]  目前的长效路面性能(LTPP)数据库中的CTE值是整个美国在10年期间对来自道路的数千个样芯采用TP60方法进行广泛测试的结果。在所测试的温度范围内如果假定校准样品的CTE不正确,那么LTPP数据库中的所有CTE值都高于预期温度范围内的实际CTE值,需要全部进行相应调整。  由于发现了校准样品的CTE差异,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)已经努力反算所有测试结果,用特定的CTE值代替17.3×10-6/℃用于每台热膨胀测试设备的校准样品。[color=#cc0000]8.2. 对力学经验路面设计指南的影响[/color]  美国一致将CTE确定为力学经验路面设计指南(MEPDG)中用于设计混凝土路面最重要输入或分类为极其敏感的输入参数,混凝土的CTE决定了影响整个路面设计的路面卷曲应力、贴合移动和荷载传递效率的大小。在连续钢筋混凝土路面中,CTE决定了裂缝间距和裂缝宽度,这些会影响裂缝荷载传递效率并影响最终冲孔。  由于MEPDG中的各种不同模型使用的都是来自LTPP数据库的CTE数据,因此需要根据校正数据调整这些模型(使用校准样品的正确CTE)。由于MEPDG软件中的当前模型是基于LTPP数据库中错误的较高CTE值,因此无论是通过模型的全局重新校准还是通过局部校准过程,只有在模型重新校准后,才能使用正确的较低CTE值。如果没有解决这个问题,它可能会对预测的设计厚度产生负面影响。[color=#cc0000]8.3. 其他影响[/color]  许多机构已经开始在MEPDG实施之前表征其典型混合物的材料特性,存储在这些数据库中的CTE值仍然有效。但是,这些CTE记录值需要根据校准样品的假定CTE值和根据ASTM E228获得的CTE值的差异进行调整。如上所述,这些经过调整的CTE值仅在模型重新校准后才能用于MEPDG软件的设计。  美国一些州已经开发了基于MEPDG和CTE的典型路面设计和设计表。在这种情况下,一旦重新校准MEPDG,应根据需要对表格进行验证和更改。[b][color=#cc0000]9. AASHTO T336的改进[/color][/b]  2010年颁布的AASHTO T336已经实施了将近十年,尽管AASHTO T336在这些年的实施中已经取得了很大成就,但基于广泛的测试应和研究经验,还是需要进一步的改进和完善。美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)对改进给出了如下建议:  (1)校正因子:T336已经提出了确定校正因子的程序,然而它是测试方法中的非强制性附录内容。由于必须确定校正因子,因此应将其移至标准文本中进行强制性执行。此外,在当前的T336中,没有提供关于校准样品的讨论。为了获得准确结果,建议校准样品的长度与待测混凝土样品长度相差在2mm范围内。校准样品的直径应该是合适的直径,以牢固地放在框架的支撑按钮上。  (2)解决水位问题:当受控温度水浴中的水位影响CTE时,尤其是在测试期间水位发生变化或者在混凝土测试期间水位与校准期间的水位不同时。这是因为当水位改变时,框架和浸没或暴露于环境空气的LVDT轴的长度将改变。因此,根据TFHRC研究,水位偏离上次校准水位以下不应超过13mm。  (3)设备验证。使用LVDT与水接触并在高温下,电子设备会受到影响。为了验证LVDT和整个设备操作的正常运行,建议每月通过测试已知CTE的参考样品(校准样品除外)来验证设置。参考样品的CTE值应至少为5×10-6/℃,与校准样品的CTE值不同。它将确保读数始终良好,因为能很容易的发现任何差异。  建议参考样品应由非腐蚀、非氧化、无孔和非磁性的材料组成,此外,在10~50℃温度范围内,其导热系数应接近混凝土的导热系数。与校准样品的CTE相同,参考材料的CTE应由独立的实验室测定。在研究中发现钛合金(Ti-6Al-4V)是比较合适的材料,如图61所示,其CTE值在整个温度范围内始终比较稳定,变化幅度小。  验证后,如果发现参考样品CTE与认证值相差超过0.3×10-6/℃,则应采用T336中描述的程序再次确定修正系数。  (1)LVDT的校准:目前的T336需要一个千分尺来校准LVDT。然而,它没有提供任何校准指导,也没有提供校准频率。每6个月进行一次校准就足够了。  (2)样品末端条件:混凝土样品的末端条件可能是某些试验误差的来源。T336应提供有关最低要求的指导。建议采用AASHTO T 22-07对抗压强度样品的相同要求。  (3)待测样品数量。不应根据单个测试结果确定混合物的CTE,应提供有关待测样品数量的指导。据推测,至少要测试两个样品并报告平均值,以表征混合物。[b][color=#cc0000]10. 分析和建议[/color][/b]  通过上述路面混凝土热膨胀系数(CTE)测试中测试方法AASHTO TP60重大问题发现和新测试方法AASHTO T336制订的全过程回顾,我们从以下几方面做出了分析,并给出相应的建议:  (1)采用参考样品(或标准参考材料)对测试方法和测试设备进行考核甚至定期自校、多个实验室之间的比对测试,以及多种测试方法之间的比对测试等,这些都是材料物理性能测试工作中标准测试方法制订和实施的必要手段和过程,是保障测试准确性和稳定性的重要措施,在以往热膨胀系数标准测试方法(如ASTM E228等)的制订和实施过程中,都是按照以上过程进行实施。令人费劲的是美国在AASHTO TP60测试方法的制订和实施过程中明显缺少这些重要环节,此测试方法的制订和推广应用非常不严谨甚至不严肃,否则也不会发生AASHTO TP60在颁布十多年后才发现存在严重缺陷的重大问题。  (2)尽管AASHTO T336针对校准样品规定要在有资质的第三方实验室采用ASTM E228或ASTM E289在10~50℃范围内进行CTE测试,并没有规定样品的尺寸大小、控温精度和温度变化形式等细节,而这些细节同样会在ASTM E228或ASTM E289的测试过程中带来较大误差。如一些采用ASTM E228方法的热膨胀仪,测温热电偶为热电偶,那么在10~50℃范围内仅热电偶带来的温度测量误差就会达到10%。另外在样品温度变化形式上,采用台阶式还是线性形式的升降温方式,也会给CTE测量带来很大不同,如果采用线性升降温形式,往往会使样品内外存在温度梯度,而台阶式升降温形式则会使得样品在恒温阶段达到整体温度均匀。  (3)尽管AASHTO T336在校准样品的CTE值准确性上得到了改进,纠正了AASHTO TP60中校准样品CTE值的错误,但CTE测试的装置并没有丝毫改变,测量装置还是基于校准样品来保证测量的准确性,整体设计思路并没有变。而从CTE测试的基本原理出发,几乎所有目前比较常用的CTE标准测试方法,除了采用校准样品(基线扣除法)来保证测量准确性之外,更有效的手段是降低测量装置自身热变形对样品CTE测量的影响,如ASTM E228顶杆法中采用热膨胀系数较低的石英(约0.53×10-6/℃),或热膨胀系数更低的钛石英(0.06×10-6/℃)来作为样品支架。但在AASHTO T336方法中,还在沿用AASHTO TP60方法使用金属杆做样品固定支架,有些混凝土热膨胀仪已经做了改进,采用CTE约为1×10-6/℃的殷钢做样品固定支架。采用较大CTE的金属杆做样品固定支架,因为测试温度范围比较小,基本上能满足目前路面混凝土CTE的测试需求。但对于高温和低温环境下使用的混凝土CTE测试,再采用金属杆做样品固定支架则明显会带来巨大误差。因此,今后AASHTO T336方法的改进,首先要考虑样品固定支架采用膨胀系数低的材料。  (4)无论是AASHTO TP60,还是AASHTO T336方法,混凝土样品CTE的测试温度范围都在10~50℃。在这样接近室温的条件下,样品和水浴的温度变化似乎对位移探测器的影响并不大,在上述两种方法中也没对位移探测器的热防护做出规定。但在高温和低温环境条件下,位移探测器的热防护问题则显着尤为凸出,样品温度的大范围变化势必会给固定位移探测器的机械结构带来热变形。同样,基于更严谨和更准确的目的,建议在AASHTO T336增加上对位移探测器的热防护,尽可能减少长时间50℃水浴温度对位移探测器固定装置的影响。[b][color=#cc0000]11. 参考文献[/color][/b]  (1)李清海, 姚燕, 孙蓓. 水泥基材料热膨胀性能测试方法发展现状. 新型建筑材料, 2007, 34(6):10-12.  (2)黄杰, 吴胜兴, 沈德建. 水泥基材料早期热膨胀系数试验系统现状研究. 结构工程师, 2010, 26(4):160-166.  (3)Tanesi J, Crawford G L, Nicolaescu M, et al. New AASHTO T336-09 Coefficient of Thermal Expansion Test Method: How Will It Affect You?. Transportation Research Record, 2010, 2164(1): 52-57.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 硬化混凝土含气量测试专用设备——WINNER208

    硬化混凝土含气量测试专用设备——WINNER208

    硬化混凝土含气量测试专用设备——WINNER208产品图片http://ng1.17img.cn/bbsfiles/images/2015/11/201511181357_574164_3049057_3.jpg 混凝土的含气量对于建筑在高寒高盐度等地区的强度与寿命具有重要意义。硬化后的混凝土的含气量检测一直是一个比较繁琐的过程,一般采用直线导线法进行测试,其不足之处有如下几点:1. 无法获得准确的面积值:由于无法直接测量气孔面积数值,只能用被气孔切割的线段长度利用微积分的原理获得近似面积值,取得的数值精确度太低。2. 测试时间长:一个样品经过处理划线等等步骤下来,往往要测试两到三个小时甚至更长时间。3. 测试结果不稳定:不同的操作者测试同一类样品,由于操作习惯的不同,测试结果差距很大,因此测试结果的不稳定导致了对比性不强。 因此济南微纳与国内知名大学合作,推出WINNER208混凝土含气量检测仪。采用计算机图像学配合自主设计的光学机械系统,实现了对硬化混凝土含气量、气孔间距系数等相关数据的自动测试。功能特点传统直线导线法WINNER208混凝土气孔检测仪无法获得准确面积值,只能以多条线段长度近似通过拍摄的图片直接获得面积值,准确度极高后续计算误差小测试时间长,人员工作量大测试时间短,测试人员基本不需要参与,直接获得结果测试结果不稳定,由于每个测试人员的测试习惯不同,所以测试结果重复性差,对比性也差。采用相同的取样方式和分析方式,无人为因素干扰,重复性好,而且尤其适合多个样品之间的对比,建立自己的评价体系。设备参数尺寸http://ng1.17img.cn/bbsfiles/images/2015/11/201511181352_574157_3049057_3.png重量 20KG光学组件1. 物镜组:可连续变倍光学系统2. 倍率范围:7倍——450倍(含数码放大倍率)3. 光学照明:高亮LED紫外照明器。波长范围365~380nm运动组件1. 移动平台:二维电动平移台,有效行程60MM×60MM。带霍尔磁性感应器。可选:有效行程100mm×100mm2. 对焦机构:电动对焦系统,有效行程50mm。3. 电机参数:高精密式步进电机,微动细分最高可达1微米。4. 驱动模块:内置式RS232驱动端口,可用USB控制。图像设备1. 成像元件:1/1.8英寸 progress scan CMOS 可选:1英寸或1/2英寸CCD芯片2. 像素数:310万 可选:最高可选800万像素3. 最高分辨率:2048×1536 可选:最高可获得3264*24484. 帧率:6fps@2048×1536 / 10fps@1600×1200 / 15fps@1280×1024 / 30fps@640×480内置系统1. CPU:AMD低功耗CPU2. 内存:4G3. 硬盘:500G4. 操作系统:WIN7软件功能1. 混凝土气孔预设模式:软件核心模块,开启此模式,即可预设步距、采集范围等参数,并可一键拼图,获得完整的混凝土砌块图像并进行计算和结果输出。2. 自动修正模块:可以将裂隙、骨料等非气孔的测试干扰自动去除。3. 任务管理机制:按照任务进行管理,保证资料管理井井有条。4. 视像采集:随时进行视频和图片的采集,保留需要的视像资料。5. 比例尺标定:通过比例尺标定操作,可与实际尺寸建立关联,从而直接在图像上获得实际尺寸数值。6. 测量:可以进行长度、圆周、多边形、角度等多种测量操作。7. 颗粒自动处理工具集:自动消除颗粒粘连、自动消除杂点、自动消除边界不完整颗粒、自动填补颗粒的空心区域、自动平滑颗粒边缘等12项自动处理工具8. 平台自由运动模式:选择此模式,可使用按钮自由控制平台移动9. 自动对焦:软件可根据焦平面的清晰程度自动选择合适的对焦点。输出参数1. 核心数据:气孔总数、气孔平均半径、泥浆含量百分比、含气量、间距系数等2. 气孔粒径分布:气孔的粒径的分布图表3. 分布类型:按数量分布、按体积分布、按面积分布、按长度分布等4. 自定义表头:自定义表头显示的LOGO以及测试人员等报告信息5. 原始图片/缩略图:可以将带有测量数据信息的图片保存,便于发表论文等。备选配件1. 混凝土砌块加工配套设备(详情请咨询销售人员)测试实例1. 样品处理:将混凝土砌块切割打磨抛光后,用专用材料进行填充处理(下图中有做好的样品实例,使用的填充材料和方式不同,具体情况请咨询销售人员)http://ng1.17img.cn/bbsfiles/images/2015/11/201511181353_574159_3049057_3.jpg1. 开始测试:将处理好的样品放在WINNER208上标示位置,选择混凝土气孔预设模式,即可自动开始测试。2. 合成图片:系统会自动将采集的图片拼接成一整幅大图http://ng1.17img.cn/bbsfiles/images/2015/11/201511181354_574160_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 二值化:通过二值化操作去掉颜色等其他信息,将整幅图数字化http://ng1.17img.cn/bbsfiles/images/2015/11/201511181355_574161_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 自动修正:开启自动修正功能。可以自动去除裂隙、骨料等非气泡干扰。获得最终需要分析的图片。http://ng1.17img.cn/bbsfiles/images/2015/11/201511181355_574162_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 输出最终结果核心数据包括:气泡总数、气泡平均半径、泥浆含量、含气量等除此之外还可以获得:球形度等形状参数、气泡大小的分布曲线等数据http://ng1.17img.cn/bbsfiles/images/2015/11/201511181356_574163_3049057_3.png

  • 求购测试混凝土的流变仪

    准备求购一台用于测定新拌混凝土流变性质的流变仪,混凝土内含有大量大颗粒的石子,如10-1毫米左右的比例约50%。

  • 【分享】混凝土配合比设计计算书

    C40 1. 计算混凝土配制强度:fcu,k=fcu,o+1.645*σ=40+1.645*6=49.872. 计算水灰比:w/c=αa*fce/( fcu,k+αa*αb* fce) =0.46*42.5/( 49.87+0.46*0.07*42.5) =0.38αa,αb为回归系数,中砂取αa为0.46,αb为0.073. 计算水泥用量:取用水量为Wo= 180 kg/m3Co /′=Wo/( w/c)= 180/0.38=474 Co = Co/ *(1-0.15)=403Fo= Co/-Co =474-403=714. 计算混凝土砂、石用量:Co+So+Go+Wo+Xo+Fo=Cp So/( So+ Go)*100%= Sp假定混凝土容重为2410 kg/m3 选取混凝土砂率为45%Co+So+Go+Wo+Fo=2410 ①So/( So+ Go)*100%=40% ②由①、②两式求得So=790,Go=964式中Co / ………每立方米混凝土中胶凝材料用量(kg);Co ………每立方米混凝土中水泥用量(kg);So ………每立方米混凝土中细骨料用量(kg);Go ………每立方米混凝土中粗骨料用量(kg);Wo ………每立方米混凝土中水用量(kg);Xo ………每立方米混凝土中外加剂用量(kg);Fo ………每立方米混凝土中粉煤灰用量(kg);Cp ………每立方米混凝土假定重量(kg)Sp ………砂率(%)5. 计算理论配合比:Co:So :Go :Wo :Xo :Fo=403:790:964:180:8.06:71 =1.00:1.96:2.39:0.45:0.02:0.186. 确定施工配合比:经试拌,实际用水量为170kg,混凝土实测容重为2408 kg/ m3Co1:So1 :Go1 :Wo1 :Xo1 :Fo1=403:790:964:170:8.06:71=1.00:1.96:2.39:0.42:0.02:0.18

  • 混凝土耐久性实验仪器设备供货

    北京耐尔公司专业研究与生产混凝土电通量测定仪、氯离子扩散系数快速测定仪、氯离子含量快速测定仪等。产品测量精度高、稳定性强,方便实用, 一键式“傻瓜”型全自动测控,安全保护测试数据。全部产品通过国家计量单位检测。电通量产品符合ASTMC1202标准,符合铁建设[2005]160号标准。于各种混凝土工程的耐久性设计、质量控制、验收与监护。北京耐尔公司张晶96096953、82755675adminhr@cnnel.comwww.cnnel.comwww.cnnel.net

  • 气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    [size=14px][color=#ff0000]摘要:针对气凝胶高效隔热材料低导热系数测试中存在的测试方法选择不合理、测试设备精度不高和测试条件偏离使用条件等问题,本文分析了目前气凝胶隔热材料热导率测试的常用方法及其适用范围,列举了各种测试方法的测试极限以及不合理使用的具体案例,重点介绍了实现低热导率准确测量的注意事项和具体措施,最后提出了今后进一步提高测量精度的改进方向。[/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]作为一种低密度和低导热系数的高效隔热材料,气凝胶隔热材料越来越得到重视和广泛应用,其导热系数测试的准确性往往决定了隔热系统的隔热效果和造价。从目前的市场反馈来看,气凝胶隔热材料导热系数测试中普遍存在测试不准确问题,这些问题主要归结为以下原因:(1)测试方法选择不合理。(2)测试设备达不到测试低导热系数的精度要求。(3)测试条件与实际使用条件严重偏离,导热系数测试结果无法代表实际隔热性能。针对上述问题,本文将介绍目前气凝胶隔热材料导热系数测试的常用方法,并对这些测试方法进行分析和特点介绍,并列举了各种测试方法的测试极限以及不合理使用的具体案例,最后重点介绍实现低导热系数测试准确性的具体措施和今后的改进方向。[/size][size=18px][color=#ff0000]二、低导热系数测试方法分析[/color][/size][size=16px]所谓低导热系数,一般是指0.001~0.1W/mK的导热系数。在高温下气凝胶隔热材料的导热系数一般不会超过0.1W/mK,在低温(液氮和液氦)和高真空环境下,有些气凝胶及其复合隔热材料会达到0.001W/mK甚至更低的超低导热系数。本文所做的分析主要是针对上述低导热系数范围内的测试方法。对于低导热系数的测试,目前常用的测试方法主要分为稳态法和瞬态法两类,如表1所示。[/size][align=center][size=16px]表1 低导热系数常用测试方法汇总[/size][/align][align=center][size=14px][img=表1 低导热系数常用测试方法汇总,690,288]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201133028253_3023_3384_3.png!w690x288.jpg[/img][/size][/align][size=14px][/size][size=16px]对于隔热材料而言,特别是气凝胶复合材料这类低密度隔热材料,其内部的传热形式主要有导热、辐射和对流三种传热形式。在不同温度、温差、气压和气氛条件下,这三种传热形式所起的作用不同。以温度变量为例并假设在真空环境下不考虑气体对流传热,低密度隔热材料中会存在固体和气体导热以及辐射传热形式,它们各自的导热系数以及多种传热形式复合作用后的总体等效导热系数随温度的变化,如图1所示。由此可见,在不同的实际应用条件下,低密度隔热材料中存在着不同的传热形式以及相应的导热系数,这决定了测试方法的选择。[/size][align=center][size=14px][img=气凝胶绝热材料超低热导率测试,640,395]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201138118496_2516_3384_3.jpg!w640x395.jpg[/img][/size][/align][align=center][size=14px]图1 固体、气体和辐射传热对应的导热系数分量以及复合作用后的等效导热系数随温度的变化[/size][/align][size=14px][/size][size=16px]测试方法和相应测试设备的选择主要依据以下原则:(1)测试方法要满足测量精度要求,导热系数越小所要求的测量精度越高。(2)测试方法具有较大温差的测试能力,大温差往往是隔热材料实际使用中的正常状态。(3)测试方法具有较快的测试速度,以满足工程应用中的高通量测试要求。(4)测试设备要具备实现各种试验条件(如温度、温差、气压和气氛等)的能力,同时具备保障测量精度的能力。按照上述原则,我们对表1中的常用测试方法进行分析,并得出如下结果:(1)气凝胶隔热材料普遍应用于大温差的隔热或隔冷,所选择的测试方法就需要具备大温差的测试能力。从表1中的各种测试方法温差可以看出,瞬态法都无法实现大温差条件,因此在气凝胶隔热材料的大温差导热系数测试中不建议使用瞬态法。(2)尽管无法进行大温差下的等效导热系数测试,但瞬态法在小温差下可以测试隔热材料中不含热辐射传热分量的固相导热系数和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]导热系数合成后的等效导热系数。瞬态法的另一个特点是还可以测试热扩散系数和比热容。从标准测试方法和相关文献可以看到[1,2],瞬态法对小于0.03W/mK的低导热系数测试存在较大误差,测试结果往往比稳态法测量值偏大约35%~40%,这主要是因为低导热系数测试过程中的探测器引线漏热和探测器热容影响所占比重变的不再可以忽略不计,需要尽可能减小探测器热容并进行复杂的修正计算[2]。(3)在表1所示的稳态法中,只有保护热板法无法进行大温差下的导热系数测量。但由于保护热板法是目前测量精度最高的小温差下导热系数测试方法,也是目前唯一能高精度校准稳态热流计法中热流传感器的方法,因此要真正高精度测量隔热材料的超低导热系数还是离不开保护热板法。为了实现超低导热系数(0.01W/mK)测试中,本文推荐采用准稳态法,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和更高的测试效率,另外准稳态法测试设备具有相对较低的造价。(5)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热法,一方面是因为这种方法的灵敏度和准确度都非常高,可以准确测量导热系数小于0.001W/mK的绝热材料,另一方面是可以测试大温差下的等效导热系数。但需要注意的是,蒸发量热法作为一种防护热板法的变形,同样需要精密的护热措施最大限度减小侧向漏热,否则测量精度也无法保证。[/size][size=18px][color=#ff0000]五、总结[/color][/size][size=16px]对于气凝胶这类绝热材料,实现超低导热系数的准确测试需采取以下措施和注意事项。(1)根据隔热材料设计和高低温应用场景选择合适的测试方法,测试方法和测试设备要具备模拟实际应用中的高低温温差能力。推荐的测试方法为热流计法、准稳态法和蒸发量热计法。(2)对于超低导热系数绝热材料测试,要确认测试仪器的低导热系数测试能力,要仔细考量和解决稳态测试设备中的漏热问题以保证超低导热系数测量精度。(3)稳态法测试中的漏热问题技术难度大,现有技术基本已经达到了极限,无法很好的解决微小漏热和超低导热系数准确问题,因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[/size][size=18px][color=#ff0000]六、参考文献[/color][/size][size=16px][1] Colinart T, Pajeot M, Vinceslas T, et al. How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?[C]//Construction Technologies and Architecture. Trans Tech Publications Ltd, 2022, 1: 287-292.[2] Zheng Q, Kaur S, Dames C, et al. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119331..[3] Fesmire J E, Ancipink J B, Swanger A M, et al. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 278(1): 012198.[4] Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1124-1131.[5] Adams J, Gangloff J, Stetson N, et al. Integrated Insulation System for Cryogenic Automotive Tanks (iCAT)[R]. Vencore Services and Solutions, Inc., Reston, VA (United States), 2018.[6] Coffman B E, Fesmire J E, White S, et al. Aerogel blanket insulation materials for cryogenic applications[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1218(1): 913-920.[7] Ilardi V, Busch L N, Dudarev A, et al. Compression and thermal conductivity tests of Cryogel Z for use in the ultra-transparent cryostats of FCC detector solenoids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 756(1): 012005.[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 【转帖】回弹-钻芯修正法检测混凝土抗压强度的探讨

    回弹-钻芯修正法检测混凝土抗压强度的探讨在正常情况下,普通混凝土强度的验收与评定应按现行的国家标准《混凝土结构工程施工质量验收规范》(GB50204-2002),《普通混凝土力学性能试验方法》(GB/T50081-2002)和《混凝土强度检验评定标准》(GBJ107-87)中的有关规定执行。当对结构或构件的混凝土强度有怀疑或争议时,可采用回弹法或钻芯法进行检测,检测结果可作为处理混凝土质量问题或结构性能鉴定的一个主要依据。回弹法与钻芯法各有其优缺点。回弹法具有操作简单灵活、适用范围广及费用低廉等优点,但因其是一混凝土抗压强度与某些物理量的相关性为基础的,这种相关性往往受众多因素的影响,其测强结果有时误差较大。钻芯法直观可靠,精确度高,但其成本较高,而且会造成结构或构件的局部破坏,因此不能在整个结构上普遍使用。回弹-钻芯修正法弥补了两种方法的各自缺点,有效提高了回弹法检测精度,扩大了其应用范围,不仅可用于在建工程而且可用于旧建筑物的检测鉴定。抽样(随机)、试验和系统效应构成了检测结果的不确定性。钻芯修正主要是解决回弹法可能存在的系统效应引起的检测结果的不确定性问题。所谓系统效应引起的检测结果的不确定性是指回弹法的换算强度曲线在特定条件下测试值与混凝土强度真实关系之间的偏差。要想解决回弹法的系统效应问题,必须控制钻芯法检测结果本身存在的不确定问题,也就是控制由随机效应引入的不确定性和试验效应引入的不确定性。试验效应引入的不确定性的控制,通过对芯样试件的质量要求和试验方法的标准化来实现。由随机效应引入的不确定性要靠对芯样试件强度样本控制来实现。一、 当存在下列情况之一时,宜进行钻芯修正:1、 龄期超过1100天;2、 流动性较大的泵送混凝土;3、 测区混凝土强度换算值有大于50MPA者;4、 对测区混凝土强度换算值有怀疑时。二、 采用钻芯法修正时,钻芯数量应遵守下列规定:1、 单个构件检测时,至少钻取1个芯样;2、 按批抽样检测时,钻芯数量应根据实际情况确定,可参考附录。三、采用钻芯法修正,可分为修正系数法和修正量法两种基本形式。在确定修正系数和修正量的具体方式上又有总体修正系数,局部修正系数,一一对应修正系数,总体修正量和局部修正量五种方式。检测时,宜优先选用总体修正量的方法。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=39573]回弹-钻芯修正法检测混凝土抗压强度的探讨[/url]

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】混凝土抗折仪的功能及技术参数

    混凝土抗渗仪是测试建筑物具有特殊的性能-抗渗性能。混凝土渗仪是用来测定混凝土的抗渗性能,适用于建筑企业、科研院校,设计施工等部门从事混凝土抗渗性能的测定研究,同时可用于其它建筑材料透气测定和质量检测。 混凝土抗渗仪的主模采用优质钢,台面采用不锈钢板。压力值通过传感器在压力显示仪上显示出来,并能按设定的程序实现自动升压,自动完成试验,减轻工作人员负担。混凝土抗渗仪主要使用于湖拧土抗渗性能和是试验和抗渗标号的测定。混凝土抗渗仪可做建筑材料透气性的测定和质量检查,因此得到了有关生产、施工、设计、教研等部门的广泛使用。混凝土抗渗仪的主要参数:允许最大压力:6Mpa;工作方式:自动调压;电动机功率:90W;外型尺寸:1100×900×600mm ;试模几何尺寸:175 x 1 85 x l50mm;电动机功率:90W;转速:1390r/min;

  • 【原创】【第三届原创参赛】混凝土的传说

    【原创】【第三届原创参赛】混凝土的传说

    本文为smallstrong 原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。说说历史:混凝土是目前土建施工,尤其是高层住宅建筑的主要施工材料。据说混凝土早在古代就被聪明的希腊人使用,当时的主要建筑材料是石材。但石材的可取材地区十分稀少,搬运困难,而且品质不一。后来人们发现将水泥(主要成分是硅酸盐)、砂石混合后能够形成具有一定强度的并且十分具有可塑性的形状类似石材的物体,而且最关键的是混凝土为水硬性材料,说通俗点,适合在湿度较大的环境中提升强度,或者干脆在水中,它的强度也能不断增长。当时广大建筑师对此十分长草。混凝土的中文简称为“砼”,分解开即为“人工石”,即为人造石材。但是问题又来了,混凝土和石材的特性很相似,抗压强度很好,但是抗剪切和抗拉的强度却只有其抗压强度的约十分之一。因此造成了梁以及楼板等有剪应力和拉应力参与受力的构件设计极为放不开,跨度十分之小。因此我们现在看到的古罗马神庙宫殿建筑,基本都是一个模式,虽然可能只需要极少数柱子即可承受屋面的重量,但是还是不得不缩短梁的跨度,加大梁的高度,搞的一个大型建筑立柱成林。屋顶也是尽量的盖成穹顶,加大水平角以减少对柱子的横向推力。十分浪费材料。后来这个问题被一个法国园艺师莫尼埃解决了。从花的根部包裹土壤的现象中获得灵感,将钢筋包裹进混凝土当中,从此成了钢筋混凝土的发明人。当然这也许是杜撰,就和凯库勒发现苯环结构式一样。无论怎样,钢筋混凝土的发明是有十分严谨的科学成分的。之所以这两种东西能够完美结合,是因为以下原因:1、 相近的线膨胀系数,保证两者能够“同进退”。2、 良好的粘结性,想要钢筋帮助混凝土承受拉力和剪力,需要做好钢筋的工作。在钢筋身上加上“肋条”,或者让钢筋轻度锈蚀,用钢筋调直机一拉,松脆的锈蚀立刻掉落,在钢筋表面流下无数的小坑洞。3、 混凝土中碱性的环境能够保护钢筋不锈蚀。钢筋混凝土的弱点:知道了钢筋混凝土结合的原因,也不免分析出混凝土的弱点。1、 钢筋不给力:钢筋若锈蚀严重,或者干脆能够承受的力度不够,自然整个构件会破坏;2、 混凝土不争气——氯化腐蚀、硫酸盐腐蚀和碱骨料反应:众所周知,铁块放在盐水中比放在清水中腐蚀的快。另外,水泥是碱性的,可以保护钢筋,但是碱含量过大时也能与砂石中一些二氧化硅等活性成分反映,这种反应的产物通常不具有太大强度,而且膨胀系数超大,能将混凝土涨开。同样,硫酸盐也会对混凝土造成同样的影响。3、 碳化:二氧化碳和碱是能够反应的,正如可乐能够除水碱一样。混凝土凝固后是有一定的毛细孔的,经过长期的碳化反应,一旦保护钢筋的混凝土碱性环境丧失,钢筋也面临被腐蚀的窘境。混凝土的亲戚:混凝土本身就是十分复杂的个体,它的亲戚自然也少不了。上文已述,混凝土主要是由水、水泥、砂石等组成,这里砂石被称为骨料。顾名思义,骨料即承受强度的主要物体。骨料讲究“粒径”选择,并不是越硬越大的石头就好,要讲究级配。我们想让混凝土达到的理想效果是:大石头的缝隙里主要是小石头,小石头缝隙里是小石子,小石子缝隙里是大沙粒,大沙粒缝隙里是小沙粒,其他地方填充细细的水泥以构成统一的整体。其次,水和水泥也是一对矛盾体,水灰比也是影响混凝土强度很重要的一项,水少了太稠,水多了强度低。故使用现场严禁往罐车中加水,否则可能引起严重的质量事故。例如北京市大兴区旧宫三角地明锐湾项目,就是由于私自加水而导致拆除部分结构重新浇筑,造成了极大的不良后果。上述两项加起来就是所谓的“配合比”了。商品混凝土厂家每批混凝土都要有符合规范规定的配合比要求,根据工程的要求来满足各种不同使用功能。混凝土的亲戚众多,被叫做各种外加剂和掺合料,根据不同的环境和使用功能,外加剂和掺合料的类型也五花八门,主要功能有几点:1、 加快混凝土早期增长:主要适用于冬季施工或拆模快的情况2、 延缓混凝土过快增长:夏天气温高,长距离运输防止混凝土过稠3、 减少水的用量增加流动性:防止混凝土过稠打灰不易堵塞4、 减少毛细孔增强防水性能:防水加强5、 加强混凝土防冻性能:防冻抗裂6、 防止各种不利反映:防止碱骨料反应等其他一系列不利反应。施工现场关于混凝土的实验主要有以下几个方面:1、 原材料:1.1 水泥:细度、标准稠度用水量、凝结时间、安定性、强度1.2 砂:细度模数、级配区域、含泥量、泥块含量、表观密度、堆积密度、碱活性指标1.3 碎(卵)石:级配情况、级配结果、最大粒径、含泥量、泥块含量、针、片状颗粒含量、压碎指标值、表观密度、堆积密度、碱活性指标1.4 掺合料:细度、需水量比、吸铵值、[/font

  • 湖南“问题混凝土”案牵出案中案:检测单位用铁块代混凝土出假报告

    [align=center][b][size=16px]湖南“问题混凝土”案牵出案中案:检测单位用铁块代混凝土出假报告[/size][/b][/align] 有问题的混凝土被用于长沙望城区一房地产项目建设,最终导致该项目一栋楼房的12-27层拆除,返工重建。供应这些混凝土的湖南拓宇混凝土有限公司付出惨重代价,公司法定代表人兼董事长、总经理代建华及实验室主任刘伟分别被判刑9年、7年。 这起“问题混凝土”案还牵出案中案:在代建华、刘伟被判之前,为涉事楼盘新城国际花都提供检测服务的湖南励信工程检测有限公司(以下简称“励信公司”)及相关负责人,用铁块替代混凝土试块进行强度检测,并出具虚假检测报告,致长沙另一楼盘5层楼混凝土构件强度未达设计要求,最终耗费巨资进行加固处理。 中国裁判文书网公布的长沙市望城区法院一审判决书显示,励信公司法定代表人李俊、总经理赵开颜、检测员曾超豪均犯提供虚假证明文件罪,分别被判有期徒刑1年2个月、11个月。[b]用铁块代替混凝土试块检测,出假检测报告[/b] 望城区法院判决认定,励信公司自2019年2月4日开始直至案发,为逃避监管部门的监管,即采取不合法、不合规、虚假检测的方式出具虚假的检测报告。 据法院查明,励信公司于2007年8月3日成立,经营范围为建筑工程检测、经济信息咨询,于2015年取得建设工程见证取样检测资质,具有向社会出具具有证明作用的检测数据和结果的资格。李俊系公司法定代表人、股东,分管行政、后勤、财务方面工作,负责对检测报告签字授权;赵开颜系公司总经理、实际管理人,主管公司的全面工作和检测业务工作,负责对检测报告进行审核并签名确认。曾超豪于2019年8月被聘为公司职员,受公司指派从事负责混凝土试块强度检测工作。 励信公司及直接主管人员李俊、赵开颜明知混凝土试块强度检测活动应当由取得检测资质的检测员实施,故意违背相关规定,先后安排没有取得检测资质的赵某、张某、曾超豪上岗从事检测工作。 法院查明,为了不得罪委托单位,确保委托单位送检的试块获得检测合格的数值,赵开颜示意赵某、张某等人利用铁块代替混凝土试块进行强度检测,出具虚假的检测报告。期间,为遮掩虚假检测行为,赵开颜又示意赵某等人故意用铁架遮挡监控摄像头,以躲避长沙市建筑工程质量安全监督站的监管。[b]将方法教给无检测资质的检测员,致企业重大损失[/b] 法院查明,2018年10月,湖南新华联建设工程有限公司望城分公司(以下简称新华联公司)委托励信公司对新华联梦想城1.1号地二期二标项目11栋、12栋、13栋进行常规建材检测,其中包含砼抗压检测。励信公司指派张某负责该项目混凝土试块强度检测工作,张某为让检测数据合格,不认真履行应尽职责,一直使用铁块代替混凝土试块获取虚假检测数据。 2019年8月下旬,曾超豪进入励信公司后,张某将用铁块或者高强度混凝土试块代替送检混凝土试块获取合格数据的方法教授给曾超豪,并和曾超豪一起对新华联梦想城1.1号地二期二标试块进行虚假检测。2019年9月5日,张某根据公司安排离开混凝土强度检测岗位,曾超豪则继续按照张某传授的方法向委托方新华联公司出具虚假检测报告。 期间,张某、曾超豪明知委托方送检的混凝土试块数量不足,甚至委托方有时不提供混凝土试块,仍然收下新华联公司资料员刘某提供的芯片和检测委托单,通过伪造送检委托单上的信息,并用铁块或者高强度混凝土试块代替测试的办法,出具虚假的混凝土试块合格检测报告。 2019年2月4日至2019年10月29日期间,励信公司采取上述方法陆续向新华联公司出具多份混凝土抗压强度合格的检验报告,导致施工单位、建设单位对该工程质量误判,致使企业遭受重大经济损失。[b]部分构件不满足要求,5层楼剪力墙加固耗资82万[/b] 2019年10月28日,望城新城国际花都开发商公开给业主发出一份《告知函》,决定对C10栋12-27层进行返工重建。也正是因为这纸《告知函》,令长沙“问题混凝土”事故和湖南拓宇混凝土有限公司曝光于公众视野,并引起广泛关注。 长沙市住房和城乡建设局对此高度重视,介入调查,对全市同一时期使用拓宇公司混凝土的59个项目进行排查。除查出望城区新城国际花都五期三标C10栋12层以上部分混凝土构件强度未达设计要求外,还查出该区新华联梦想城项目1.1号地二期二标13栋21-25层部分混凝土构件强度未达设计要求,致该项目停工,论证研究处理措施。 据判决书披露,经湖南大学设计研究院有限公司对新华联梦想城13#栋21层至25层剪力墙现龄期混凝土抗压强度检测,部分构件不满足设计要求,需要进行加固设计及处理。经湖南天鉴造价咨询有限公司鉴定,新华联梦想城1.1期13栋(21-25层)剪力墙加固工程预算总造价金额为82多万元。 在查明上述事实后,2019年11月26日,李俊、赵开颜、曾超豪三人被长沙市公安局望城分局刑事拘留。 望城区法院经审理认为,被告单位励信公司及李俊、赵开颜、曾超豪均构成提供虚假证明文件罪,并作出一审判决:对被告单位湖南励信工程检测有限公司,判处罚金人民币二十万元;对被告人赵开颜、李俊分别判处有期徒刑一年二个月,并处罚金人民币一万元;对被告人曾超豪判处有期徒刑十一个月,并处罚金人民币五千元。 来源:澎湃新闻[b][/b]

  • 混凝土防腐剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39707.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]混凝土防腐剂是混凝土中常见的外加剂,使用混凝土抗硫酸盐侵蚀防腐剂可以使混凝土具有抗盐类离子侵蚀、抗冻融循环破坏及高抗渗透等良好性能。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]混凝土防腐剂检测:样品名称 防腐剂 规格型号 GK-6B工程名称 巫溪至开州高速公路 WYKTJA1 合同段工程部位 隧道工程批号/编号 22022015 代表数量 3t样品数量 5L检测类别 委托检测 样品特征 液体、无悬浮、无沉淀检测依据 1.GB/T 1346-2011;2.GB/T 176-2017;3.GB/T 8077-2012;4.JC/T 1011-2021;5.JC/T313-2009。判定依据 JC/T 1011-2021《混凝土抗侵蚀防腐剂》检测项目:1.密度,2.含固量,3.碱含量,4.氯离子含量,5.氧化镁,6.pH 值,7.膨胀系数,8.抗压强度比:7d,9.抗压强度比:28d,10.抗蚀系数,11.凝结时间(初凝),12.凝结时间(终凝),13.膨胀率(1d),14.膨胀率(28d)。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font]

  • 【分享】混凝土材料的物理力学性能习题

    一、填空题1.钢筋和混凝土两种材料组合在一起,之所以能有效地共同工作,是由于 (钢筋和混凝土间有良好的粘结力、 二者温度线膨胀系数接近 )以及混凝土对钢筋的保护层作用。2.混凝土强度等级为C30,即 (立方体抗压强度标准值 )为30N/mm2 ,它具有 95% 的保证率。3.一般情况下,混凝土的强度提高时,延性 (降低)。4.混凝土在长期不变荷载作用下将产生 (徐变) 变形,混凝土 随水份的蒸发将产生 收缩 变形。5.钢筋的塑性变形性能通常用 (伸长率) 和 (冷弯性能) 两个指标来衡量。6.混凝土的线性徐变是指徐变变形与 (应力) 成正比。7.热轧钢筋的强度标准值系根据 (屈服强度 ) 确定,预应力钢绞线、钢丝和热处理钢筋的强度标准值系根据 (极限抗拉强度 ) 确定。8.钢筋与混凝土之间的粘结力由化学胶结力、 (摩阻力) 和 (机械咬合力) 组成。9.钢筋的连接可分为 (绑扎搭接) 、 (机械连接) 或焊接。10.混凝土一个方向受拉、另一个方向受压时,强度会( 降低) 。11.我国采用按标准方法制作养护的边长为( 150mm )的立方试块,在 (28天) 龄期,用标准试验方法测得的具有 (95% )保证率的抗压强度作为(立方体抗压强)度标准值.12.钢筋按化学成分的不同,分为 ( 碳素结构钢) 和 (普通低合金钢) 两类。13.软钢是指 (有屈服点的 )钢筋,其质量检验的四项主要指标是 ( 屈服强度 ) 、 (极限强度 ) 、 (伸长率 ) 、 (冷弯性能 ) 。14.硬钢是指 ( 无屈服点的钢筋) 、其质量检验以 ( 极限强度) 作为主要强度指标,设计上取相应于 (残余应变为0.2% )的应力作为条件流限。 15.HPB235、HRB335、HRB400钢筋的符号分别 ( )、( )、( )。16.粘结作用产生的三方面原因为 ( 摩擦力) 、 ( 胶结力) 、 (机械咬合力) 。17.钢筋的连结接头可采用 (机械连接接头) 、( 焊接接头) 、 ( 绑扎搭接接头) 。18.反映钢筋塑性性能的指标是 (伸长率) 和 (冷弯性能) 。

  • DYE-2000型混凝土压力试验机

    主要结构DYE-2000型混凝土压力试验机主要由主机、液压系统和测力单元等组成。1、 主机主要由上梁、立柱、调节丝杠及手轮、承压板、油缸和活塞等组成。丝杠末端与上压板间装有活动球座,操作时当上压板底面与试件顶面接触后,能自动适应试件高度方向的细微倾斜度,使两平面互相接触全面,从而使度件受力均匀。根据试件大小,可转动手轮和丝杠,以适当调节试验空间。下压板顶面上刻有定位线框,便于将试件放置在中心位置。2、 液压系统由液压泵、送油阀、回油阀、油箱、滤油器及油管等组成。液压泵为轴向五柱塞超高压泵,由电动机直联驱动,送油阀上设有安全阀,过载是可溢流,起安全作用。操纵送油阀手轮,可调节油缸进油量,以达所需加荷速率。打开回油阀,可使油缸内和油泵来的油全部流回油箱。3、 测力单元主要包括测控系统、打印机和压力传感器等。(详见所附《RFP-03智能测力仪使用说明书》4、 电气系统由电动机、启动按钮、停止按钮、交流接触器、熔断器等组成。使用方法 1 操作者必须熟悉DYE-2000型混凝土压力试验机机床操作顺序和性能,严禁超性能使用设备。2 操作者必须经过培训、考试或考核合格后,持证上岗。   3 开机前,按设备润滑图表注油,检查油路是否畅通。开启气阀调节系统压力、润滑压力、平衡缸压力,调节油雾装置。   4 检查变速箱油标油位,启动主电机空转5分钟后,寸动滑块至下死点,调节滑块高度,锁紧球头丝杆锁紧机构。   5 关闭机床电控总开关,关闭电控柜空气开关。   6 清洁机床,按设备润滑图表注油润滑混凝土压力机,水泥压力试验机,压力试验机:混凝土压力机主要用于测试混凝土、水泥、高强度砖、耐火材料等建筑材料试块的抗压强度,也可用于其他非金属材料的抗压强度的试验。混凝土压力试验机的横梁可以通过两个很长行程的提升装置进行调整,并且带有可靠的夹紧系统将横梁固定在高刚度的镀铬立柱上,这个设计可以使得可以进行快速、简便以及精确的横梁定位,在测试一些不同高度的试样的时候具有很好的优势。加载架具有很高的轴向和侧向刚度,经过精确调整,可以用于高级的建材测试。混凝土压力机,水泥压力试验机,压力试验机:混凝土试验机采用非常高刚度的四柱式结构加载架,单加载头设计,上下压力板都带有注油式球座装置。立柱经过镀铬处理,液压活塞经过硬化处理并且具有很高的表面加工精度以保证压力试验机的最高性能。弯折测试架上采用双向作动器,提供快速的控制方式并且可以用来测试高强混凝土。混凝土压力试验机采用非常高刚度的四柱式结构加载架,单加载头设计,上下压力板都带有注油式球座装置。加载立柱经过镀铬处理,液压活塞经过硬化处理并且具有很高的表面加工精度以保证试验机的最高性能。试验机经过精确调整,可以连接到带有低噪音液压源组的落地式控制器,或者式连接到其他的带有液压源的其他测量系统。

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • SPC-MATS预应力混凝土梁多功能检测仪

    四川升拓检测技术股份有限公司是无损检测技术专家.提供预应力混凝土桥梁多功能检测仪,预应力桥梁无损检测,混凝土检测仪器,混凝土材质检测,混凝土缺陷检测,混凝土材料无损检测,混凝土结构无损检测等.功能强大可测试混凝土材质、缺陷,灌浆密实度(定性、定位),预应力张拉性能等,并具有丰富的图形图像处理机能。技术先进兼容国内外多种技术和本公司独创技术,测试精度高,操作简便、效率高。测试范围从15cm的试样到150m的桥梁均可。性能可靠主要元器件均由日美等国家进口,可靠性高,耐久性强。技术支持多个大尺寸的模型试验和现场测试,具备雄厚的技术支持能力。产品功能能对预应力灌浆密实度的进行快速定性测试、准确定位测试和缺陷类型判别;能测后张法灌浆后的锚杆和锚索的锚下应力、拉杆张力、悬索张力;可检测竖向锚杆长度;可检测混凝土材质、结构尺寸、缺陷(内部的空洞、剥离、表面的裂化)。

  • 【分享】混凝土检测的变化

    钻芯法检测混凝土强度经历了1。89年的混凝土检测规范2。建筑结构检测技术标准GB/T 50344 -20043。钻芯法检测混凝土强度技术规程CECS03 2007从单纯的保证率到置信区间,不可谓进步不大。

  • 混凝土压力试验机操作规范

    混凝土压力试验机是用来测试水泥、混凝土、各种建筑用砖、橡胶垫、混凝土构件、金属构件等的抗压强度试验。我们在操作时有一些规范需要注意: 1、该仪器需由专人操作。  2、在使用前必须检查油箱的油标位置和油管接着是否松动。  3、放好试块,转动手轮,调整丝杆高度,可调至试件离上压板1-2mm。  4、接通电源,启动电动机。  5、关闭回油阀,控制送油阀,当强度等级小C30时,取0.3-0.5Mpa/s的加荷速度,强度等级大于或等于C30时,取0.5-0.8Mpa/s的加荷速度;当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直到试件破坏。  6、试件破碎后,打开回油阀,使活塞回落,此时,从指针所指读数即为该试件的破坏荷载,并予以记录。  7、清扫试件碎屑,进行下一次试验。  8、试验完毕后,按停止键,关闭电机,关闭电源。我们在使用试验机时遵守这些操作规范能够有效的延长试验机的寿命!

  • 【转帖】提高回弹法检测混凝土抗压强度精确度的探讨

    提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误差。如何保证检测精度,使其在监督检验结构工程和混凝土质量中发挥应有的作用,已成为众多工程建设者所关注的话题。要提高回弹法的检测精度,应综合考虑以下几个方面因素。 1  注意回弹法检测的适用条件 回弹法是通过回弹仪检测混凝土表面硬度从而推算出混凝土强度的方法,当出现标准养护试件数量不足或未按规定制作试件 对构件的混凝土强度有怀疑 或对试件的检验结果有怀疑时,可按《回弹法检测混凝土抗压强度技术规程》(JGJPT2322001) (以下简称《规程》) 进行检测。必须注意回弹法的使用前题是要求被测混凝土的内外质量基本一致,当混凝土表层与内部质量有明显差异,如遭受化学腐蚀、火灾、冻伤,或内部存在缺陷时,不能直接采用回弹法检测混凝土强度。 2  测试前必须进行回弹仪的率定试验回弹仪的质量及测试性能直接影响混凝土强度推定的准确性,只有性能良好的回弹仪才能保证测试结果的可靠性。回弹仪的标准状态应是在洛氏硬度HRC 为60 ±2 的标准钢砧上,垂直向下弹击三次,其平均率定值应为80 ±2 ,否则回弹仪必须进行调整或校验。在单个构件检测中,一般只需测试前进行率定即可,但在大批量检测时,由于受现场灰粉及回弹仪自身稳定性等因素的影响,随着工作时间的延长,回弹仪的工作状态逐渐低于标准状态。有时一个批量检测项目检测前后回弹仪率定值的差异较大,从而导致测试结果偏低。因此,在大批量检测时,应随身携带标准钢砧,以便随时进行率定检测,适时更换,从而保证检测结果的精确性。 3  测区选择要正确 检测构件布置测区时,相邻两测区的间距应控制在2 m以内,测区离构件端部或施工缝边缘的距离不宜大于0. 5 m且不宜小于0. 2 m 测区应选在使回弹仪处于水平方向检测混凝土浇筑面,并选在对称的两个可测面上,如果不能满足这一要求时,也可选在一个可测面上,但一定要分布均匀,在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。当遇到薄壁小构件时,则不宜布置测区,因为薄壁构件在弹击时产生的振动,会造成回弹能量的损失,使检测结果偏低。如果必须检测,则应加以可靠支撑使之有足够的约束力时方可检测。 4  测试动作要规范,切忌随意操作 回弹法本身是一种科学的操作方法,国家也专门制定了相应的规程,不容许操作人员随意操作。回弹的精度也取决于操作人员用力是否合适和均匀,是否垂直于结构或构件的表面,是否规范操作。但实际检测中却很少有人严格按照标准规定的技术要求进行检测操作,责任心不强,敷衍了事,这样的检测将带来较大的测试误差,无法保证回弹质量,为此,应加强检测人员的职业道德素养,提高检测责任心,也只有如此,才能真正提高回弹法的检测精度。 5  消除测试面因素的影响 《规程》规定:用于回弹检测的混凝土构件,表面应清洁、平整,不应有疏松层、浮浆、油垢、蜂窝、麻面。我们在检测时经常遇到麻面或有浮浆的构件,回弹前必须有砂轮磨平,否则结果偏低。在测试面达到清洁、平整的前提下,还需注意混凝土表层是否干燥,混凝土的含水率会影响其表面的硬度,混凝土在水泡之后会导致其表面硬度降低。因此,混凝土表面的湿度对回弹法检测影响较大,对于潮湿或浸水的混凝土,须待其表面干燥后再进行测试。建议采用自然干燥的方式。禁止采用热火、电源强制干燥,以防混凝土面层被灼伤,影响检测精度。 6  注意碳化深度的测试取值 碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。在碳化深度的测试中,注意其深度值应为垂直距离,而非孔洞中呈现的非垂直距离。孔洞内的粉末和碎屑一定要清除干净之后再测量,否则将难以区分已碳化和未碳化的界线,造成较大的测试误差。测量碳化深度值时最好用专用测量仪器,不能采用目测方法。还有一种情况应特别注意,在检测已用粉刷砂浆覆盖的构件碳化深度时,由于测试面受水泥砂浆的充填渗透影响,其表层含碱量较高,而用于碳化测试的酚酞酒精溶液遇碱即变红,极易使人产生视觉误差,认为其碳化深度值很小。如果认真观察测试孔,可发现外表层颜色较深,而孔内混凝土所变的颜色较浅,这颜色较浅部分的厚度即为混凝土实际的碳化深度。这一点细微的差别,检测人员一定要注意区分。 7  注意混凝土回弹值的修正 近年来,随着城市泵送混凝土使用的普及,采用回弹法按测区混凝土强度换算值表推定的测区混凝土温度值将明显低于其实际强度值。这是因为泵送混凝土流动性大,粗骨料粒径较小,砂率增加,混凝土的砂浆包裹层偏厚,表面硬度较低所致。因此在运用回弹法检测混凝土强度时,必须要事先了解到施工单位浇注混凝土的方式,并注意修正。另外,当检测时回弹仪为非水平方向且测试面为非混凝土侧面时,一定要先按非水平状态检测时的回弹值进行修正,然后再按角度修正后的回弹值进行不同浇筑面的回弹值进行修正,这种先后修正的顺序不能颠倒,更不能用分别修正后的值直接与原始值相加或相减,否则将造成计算错误,影响对混凝土强度的推定。 8  测试异常时,需与钻芯法配合使用现行的工程施工中,普遍采用胶合板面的大模板,此种模板密闭性能极好但不透气,振捣过程中产生的气泡聚集在混凝土表面和大模板之间,不易排出,致使拆模后在混凝土表面存在大量的微小气孔,使混凝土表面不是很密实,如果混凝土养护跟不上,混凝土表面将不能有效地进行水化反应,不仅有粉化现象,而且混凝土碳化深度较大,造成混凝土表面强度低。如我市某一框架结构商住楼,在使用回弹仪抽检三层剪力墙混凝土时发现,全部抽检构件混凝土表面强度都比较低,只达到原设计强度等级的67 %。经查施工技术资料,该工程的混凝土配合比以及使用的原材料均不存在问题,施工单位混凝土搅拌后的管理也比较到位,遂用钻芯法取样复检,芯样上观察,混凝土表层10 mm 较疏松。内层较为坚硬,芯样检测结果是实际混凝土抗压强度符合原设计强度等级,从而避免了一次误判。 9  建立本地区的专用测强曲线 国家标准虽给出了全国通用回弹法检测的测强曲线并由此得到测定混凝土强度值换算表,但全国统一曲线仅综合考虑到全国各地的原材料使用情况,没有把碎、卵石普通混凝土区分开来,而实际上回弹法检测碎、卵石普通混凝土强度是有很大差异的。而地区测强曲线正是充分考虑本地区的混凝土原材料、气候条件和成型养分护工艺,通过试验、校核、修正所建立的曲线,与通用测强曲线相比较,该曲线比通用测强曲线更接近实验数据,能更好的推算本地区混凝土的实际强度。因此,建立本地区的专用测强曲线,能有效地提高回弹法的检测精度。

  • 激光热扩散/导热系数测试仪-德国linseis

    全球最先进的激光导热系数分析仪模块化设计—随时升级,体积更小大功率能量源—测量更准确6样品自动分析—节约宝贵时间高真空设计—测量更精确应用多晶石墨石墨非常适合评估激光法热导仪的性能优劣。对多晶石墨进行的测试曲线显示材料在室温附近导热系数达到最大,热扩散系数随温度增加递减。材料比热可通过参比法测得,测试显示比热与热扩散系数增减趋势相反。铜、铝分别测量了纯铜和纯铝的热扩散系数,测试结果如下图,热扩散系数的测量值与文献值之间的偏差小于 2%。体现了Linseis仪器性能的卓越。石墨(Isotropic)用LFA1000测量了蛤同性石墨的热扩散系数,与日本AIST机构的数据比较,偏差小于2%。德国林赛斯 (LINSEIS Messgeräte GmbH) 林赛斯总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。

  • 加气混凝土用铝粉的应用与制备

    加气混凝土用铝粉的应用与制备

    加气混凝土用铝粉的应用与制备(1.哈尔滨东轻金属粉业有限责任公司,黑龙江哈尔滨 150060;2.济南大学颗粒测试研究所山东济南 250022)摘要:用干式球磨法生产加气混凝土用铝粉。根据加气混凝土的生产工艺,确定其对铝粉的性能要求。在加气混凝土用铝粉的生产工艺中,通过实践及数据分析,确定最佳工艺参数:原料铝粉粒度 http://ng1.17img.cn/bbsfiles/images/2013/05/201305271048_441747_388_3.jpg=630~280 μm;助磨剂加入量在 3.0%;铝粉磨内滞留时间为 16.6~19h。关键词:加气混凝土;铝粉;松装密度;粒度存;分散性差、粒度分布不均匀,生产出的加气混凝中图分类号: TF123.7 文献标识码: B文章编号: 1008-5548(2006)03-0045-03 Application and Preparation of Aluminum PowderApplied in Lightweight Concrete SONGXiao-hui1,RENZhong-jing2 (1.HarbinDongqingMetalPowderIndustryCo.Ltd,Harbin150060;2.InstitrteofParticleMeasurement,JinanUniversity,Jinan 250022, China) Abstract:The aluminum powder applied in light weight concrete was produced in mill by dry grinding.The aluminum powder’s performance was decided by the light weight concrete technology. The aluminum powder’s performance were controlled by the material’s particle size, grinding aid’s additions and grinding time.The practice and data were analyzed. The technical parameters were optimized,which was that material’s particle size was http://ng1.17img.cn/bbsfiles/images/2013/05/201305271048_441747_388_3.jpg=630~280 μm, adding 3.0% grinding aid, grinding time was from 16.6h to 19h. Key words: light weight concrete;aluminum powder;bulk density; particle size为了顺应世界对资源保护的要求,我国加强了土地使用的监督,限制红砖的生产,加大对环保建材推广和应用。加气混凝土材料作为新型环保建材,得到了较快的发展。随着加气混凝土材料应用范围的扩大,其对铝粉性能的要求也越来越严格。20世纪 90年代,我国从国外引进了亲水性铝粉的加工工艺。经过 10多年的改进,铝粉在加气混泥土材料中的使用已经很成熟。近年来,新的发气材料----亲水铝膏开始发展起来。由于铝膏生产用湿墨工艺,避免了粉尘飞扬,一部分厂家认为其安全性好,从而改用铝膏生产,但铝膏的稳定性差,无法长期保存;分散性差、粒度分布不均匀,生产出的假期混凝土砖气泡不均匀,易开裂,强度不高;固体份差别较大,配料不准确,导致发气高度不一,强度差异较大;由于铝膏的流动性差,无粉体工业用人工加料,无法达到工业化大生产的要求。干法生产的铝粉,由于加工工艺连续,可保证质量稳定;粒度分布可控,可根据不同配方进行相应调整;流动性好,易于分散,可用于工业化大生产;安全性上,经十几年来不断改进,得到了很好的控制。1铝粉在加气混凝土中的应用1.1铝粉在加气混凝土中的作用机理铝作为活泼的两性金属,能够与酸、碱反应放出氢气。铝粉能够作为加气混凝土的发气剂,就应用了铝在碱性溶液中反应的化学过程。其化学反应式如下:Al+OH-+H2O=Al(OH)3+H2 ↑混凝土的浇注料浆主要由水泥、砂子、石灰和水组成,属于碱性环境。在料浆中投入铝粉后与磨细生石灰或与水泥水化生成的氢氧化钙作用,结果在料浆中生成氢气泡,随着作用加剧,气泡压力上升,并传给具有一定塑粘性强度的料浆,当气体压力超过料浆的塑性极限时,料浆开始变形,也就是发气 。在混凝土固化后,其内部形成蜂窝状结构,就形成了轻质的加气

  • 【转帖】GB/T 16752-2006 混凝土和钢筋混凝土排水管试验方法

    GB/T 16752-2006 混凝土和钢筋混凝土排水管试验方法[color=red]【由于该附件或图片违规,已被版主删除】[/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=37543]GB/T 16752-2006 混凝土和钢筋混凝土排水管试验方法[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制