当前位置: 仪器信息网 > 行业主题 > >

环境在线监控管理系统

仪器信息网环境在线监控管理系统专题为您提供2024年最新环境在线监控管理系统价格报价、厂家品牌的相关信息, 包括环境在线监控管理系统参数、型号等,不管是国产,还是进口品牌的环境在线监控管理系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境在线监控管理系统相关的耗材配件、试剂标物,还有环境在线监控管理系统相关的最新资讯、资料,以及环境在线监控管理系统相关的解决方案。

环境在线监控管理系统相关的资讯

  • 山西省生态环境厅关于印发《污染源自动监控管理办法(试行)》的通知
    各市生态环境局:为建立健全以污染源自动监控为主的非现场执法监管体系,进一步规范全省污染源自动监控系统建设与运行管理,2023年第9次厅务会审议通过了《污染源自动监控管理办法(试行)》,现印发给你们,请认真遵照执行。山西省生态环境厅2024 年 1 月 31 日(此件主动公开) 晋环规〔2024〕2号--.pdf
  • 《福建省固定污染源自动监控管理办法》即将施行
    《福建省固定污染源自动监控管理办法》已经2023年3月15日省人民政府第3次常务会议通过,现予公布,自2023年7月1日起施行。福建省固定污染源自动监控管理办法第一章 总 则第一条 为了加强固定污染源的监管,规范固定污染源自动监控系统建设、安装、联网和运行管理,提高自动监测数据质量,推动固定污染源稳定达标排放,促进生态环境质量改善,根据有关法律、法规,结合本省实际,制定本办法。第二条 本省行政区域内固定污染源自动监控系统的建设安装、运行维护和监督管理,适用本办法。生活垃圾焚烧发电厂等特殊行业有相关规定的,从其规定。第三条 本办法所称的固定污染源自动监控系统,由污染物排放自动监测设备和监控平台组成。污染物排放自动监测设备是指按照国家有关规定,安装在排污单位固定污染源现场,用于监控监测污染物排放状况的仪器设备。监控平台是指生态环境主管部门或者其派出机构通过通信传输网络获取排污单位现场端污染物排放自动监测数据,对排污单位实施自动监控的信息管理平台。第四条 本办法所称的污染物排放自动监测数据,是指污染物排放自动监测设备产生、采集、上传的现场数据、累计数据和统计数据,以及数据标记内容。第五条 省人民政府生态环境主管部门负责全省固定污染源自动监控工作的组织、指导、监督管理。设区的市人民政府生态环境主管部门及其派出机构负责本行政区域固定污染源自动监控工作的组织实施和监督管理。第六条 省、设区的市人民政府生态环境主管部门按照“统一平台、属地管理”原则,开展自动监控系统的建设和管理工作。省人民政府生态环境主管部门负责组织全省固定污染源自动监控系统建设、管理等工作。设区的市人民政府生态环境主管部门及其派出机构负责对本行政区域内排污单位开展污染物排放自动监测设备建设、安装、联网、运行维护等日常监管。第七条 排污单位应当对自动监测设备正常运行以及自动监测数据的真实性、准确性、有效性、完整性负责。排污单位应当按照有关规定建设规范化排污口和监测站房,负责污染物排放自动监测设备的安装、联网、验收备案、运行维护和安全管理,规范处置自动监测设备运行维护中产生的污染物;负责自动监测数据标识、异常报备、监控因子限值变更申请和信息公开等;负责对受其委托的运行维护单位保障设备正常运行进行监督管理。运行维护单位应当按照国家有关规定,做好污染物排放自动监测设备的日常维护工作;发现排污单位篡改、伪造自动监测数据等逃避监管行为的,应当及时向生态环境主管部门报告。第八条 污染物排放自动监测设备的建设、安装、联网、运行维护等经费由排污单位自筹。自动监控信息管理平台的建设、运行、维护以及有关执法监管工作经费应当纳入同级财政预算。第二章 安装联网第九条 本省实行固定污染源自动监控名单制度。设区的市人民政府生态环境主管部门应当建立本行政区域固定污染源自动监控名单,并向社会公开,名单每年更新。排污单位有下列情形之一的,应当纳入固定污染源自动监控名单:(一)属于重点排污单位的;(二)实行排污许可重点管理的;(三)法律、法规规定应当纳入自动监控管理的。第十条 纳入固定污染源自动监控名单的排污单位(以下称排污单位),应当建设、安装污染源自动监测设施。鼓励未纳入固定污染源自动监控名单的排污单位建设、安装污染源自动监测设施。具体鼓励办法,由设区的市人民政府生态环境主管部门制定。第十一条 排污单位应当在下列点位建设、安装污染物排放自动监测设备:(一)已发布的相关行业排污许可证申请与核发技术规范、自行监测技术指南和污染物排放标准等规定需要实施自动监测的进出口、排放口;(二)排污许可证、环评报告书(表)及其批复意见、建设项目环境影响后评价等明确要求应当实施自动监测的排放口;(三)其他按照有关规定需要安装污染物排放自动监测设备的排放口。第十二条 排污单位应当按照下列规定建设、安装污染物排放自动监测设备:(一)选用符合国家相关环境监测标准、计量器具管理要求的监测设备;(二)设备的安装和调试应当符合设备现场端建设技术规范、自行监测技术指南等要求;(三)自动监测数据的采集和传输应当符合相关污染源自动监控系统数据传输标准;(四)设备具备运行状态和工作参数上传功能;(五)国家和本省技术规范的其他要求。第十三条 国家和本省污染物排放标准、排污许可证申请与核发技术规范、自行监测技术指南等规定需要纳入自动监控的污染物,相关污染物指标应当纳入排污单位自动监控管理。排污单位可以根据生产过程的原辅用料、生产工艺、中间及最终产品等情况,将其他有毒有害污染物指标纳入自动监控管理,并报所在地生态环境主管部门备案。第十四条 排污单位符合下列情形之一的,经所在地设区的市人民政府生态环境主管部门核实后,可以暂缓将相关污染物纳入自动监控管理:(一)污染物项目无可执行污染物排放标准的;(二)污染物项目无可执行总量控制指标的;(三)国家规定可以暂缓纳入自动监控管理的其他情形。第十五条 排污单位应当按照国家有关规定采取视频监控措施或者用电、用能、用水等过程监控措施。视频监控范围应当按照有关标准、规范覆盖主要生产工序、治理工序、排放口、采样点、监控站房内等,涉及国家机密、商业秘密和个人隐私的除外。用电、用能、用水等过程监控范围应当按照有关标准、规范覆盖生产过程中产生和治理污染物的环节。第十六条 排污单位应当在完成安装污染物排放自动监测设备之日起60日内联网至自动监控信息管理平台,实现传输数据连续、真实、完整、准确,并确保设备产生的污染物排放自动监测数据每季度有效传输率不低于国家或者本省有关规定。第十七条 排污单位安装完成污染物排放自动监测设备后应当进行调试检测,在联网之日起90日内按照国家技术规范完成连续监控监测污染物排放的仪器、流量(速)计、采样装置和数据采集传输仪等设备的自主验收,并在验收合格后5个工作日内向所在地设区的市人民政府生态环境主管部门备案。污染物排放自动监测设备的主要装置或者核心部件更换、采样位置或者安装位置等发生重大变化的,排污单位应当在其变化之日起90日内重新验收,并在验收合格后5个工作日内将变更信息向所在地设区的市人民政府生态环境主管部门重新备案。第三章 运行维护第十八条 排污单位应当自行或者委托第三方开展自动监测设备的运行和维护。排污单位或者第三方运行维护单位应当按照有关规定配备足够的人员,以及备品备件、备用仪器等设备。委托第三方开展运行维护的,双方合同正式签署或者变更时,第三方运行维护单位应当将合同正式文本于10个工作日内向所在地设区的市人民政府生态环境主管部门备案。第十九条 污染物排放自动监测设备的运行和维护,应当遵守下列规定:(一)设备工作量程的设定以及调整应当符合有关法律、法规、技术规范等要求;(二)设备运行维护所需的试剂、标准物质和质控样,应当注明制备单位、日期、物质名称和浓度、有效期限等信息;(三)受委托开展比对监测的第三方检测机构应当通过相应检验检测资质能力的认定;(四)其他相关法律、法规、技术规范等要求。第二十条 排污单位不得擅自停运、拆除、更换、闲置污染物排放自动监测设备,不得擅自改变设备的安装位置。污染物排放自动监测设备发生故障不能正常使用的,排污单位或者运行维护单位应当在发生故障后12小时内向所在地设区的市人民政府生态环境主管部门派出机构报告,并在5个工作日内恢复正常运行。在污染物排放自动监测设备发生故障期间,排污单位应当采取手工监测方式,按照有关规定对污染物排放状况进行监测,并向所在地设区的市人民政府生态环境主管部门派出机构报送监测数据,原始监测报告留存备查。第二十一条 污染物排放自动监测设备故障维修、维护保养、校准、校验等异常状态下产生的自动监测数据,排污单位应当自行或者委托运行维护单位按照国家和本省有关规定,在自动监控信息管理平台上如实标记设备、数据等异常情况。排污单位对自动监控信息管理平台分类推送的异常情况警告信息,应当按照国家和本省有关规定核实、处理,并在核实处理后24小时内向自动监控信息管理平台反馈。第二十二条 排污单位或者其委托的第三方运行维护单位应当按照国家和本省有关规定,将验收备案、比对监测、校准维护、设施故障以及处理记录等自动监控管理台账资料上传至自动监控信息管理平台,并确保记录信息的完整、真实。自动监控管理台账资料保存期限不得少于5年。第四章 监督管理第二十三条 设区的市人民政府生态环境主管部门及其派出机构应当制定本行政区域固定污染源自动监控管理工作计划,组织开展污染物排放自动监测设备运行维护等情况的监督检查,督促排污单位达标排放,并按照有关规定将监管行为数据汇聚至省“互联网+监管”平台。排污单位及其委托的第三方运行维护单位应当配合生态环境主管部门的现场监督检查,并如实提供相关资料。第二十四条 污染物排放自动监测设备属于强制检定范围的,应当按照国家和本省有关规定进行计量检定。污染物排放自动监测设备不属于强制检定范围的,排污单位应当定期检定、校准自动监测设备,确保监测设备正常运行,监测数据真实准确。第二十五条 经计量检定合格或者经计量校准确认符合相应技术规范要求的污染物排放自动监测设备,其收集上传至自动监控信息管理平台的自动监测数据以及数据标记情况,经审核认定真实有效的,可以作为环境行政执法监管的证据。第二十六条 一个自然日内,排污单位任一污染物排放口废气自动监控有效时均值或者废水自动监控有效日均值数据,有一项或者一项以上超过相关污染物(pH除外)排放标准规定的相应污染物排放限值,可以认定其污染物排放超标;相关法律法规、排污许可证、行业排污许可证申请与核发技术规范、国家和本省污染物排放标准对超标排放认定有特殊规定的,从其规定。污染物排放自动监测数据有效时均值、日均值的计算,按照污染源自动监控相关规定执行。第二十七条 排污单位、运行维护单位在开展污染物排放自动监测设备的建设、安装、联网、运行维护等过程中,有下列情形之一的,应当认定为篡改、伪造自动监测数据:(一)稀释排放或者旁路排放,或者将部分或全部污染物未经规范的排污口排放,逃避污染源自动监控的;(二)采取人工遮挡、堵塞和喷淋等方式,干扰采样的;(三)通过仪器数据模拟功能或者植入模拟软件等方式删除、修改、增加自动监测数据的;(四)故意更换、隐匿、遗弃监测样品或者通过稀释、吸附、吸收、过滤、改变样品保存条件等方式改变监测样品性质的;(五)未向生态环境主管部门备案,擅自修改仪器参数的;(六)法律、法规规定的篡改、伪造自动监测数据的其他情形。排污单位存在前款规定情形的,所在地设区的市人民政府生态环境主管部门或者其派出机构应当通知有关部门,有关部门应当依法取消其享受的环保电价、税收减免等有关优惠待遇。第五章 法律责任第二十八条 违反本办法规定的行为,法律、法规已有法律责任规定的,从其规定。第二十九条 违反本办法第十五条规定,排污单位有下列情形之一的,由生态环境主管部门责令改正,处2万元以上20万元以下罚款,并予以通报批评:(一)采取视频监控措施未按照有关标准、规范覆盖主要生产工序、治理工序、排放口、采样点、监控站房内的;(二)采取用电、用能、用水等过程监控措施未按照有关标准、规范覆盖生产过程中产生和治理污染物环节的。第三十条 违反本办法第十六条、第十七条和第二十条规定,有下列情形之一的,由生态环境主管部门责令改正,处2万元以上20万元以下罚款,并予以通报批评:(一)设备产生的污染物排放自动监测数据每季度有效传输率低于国家或者本省有关规定的;(二)设备超期未验收、验收后未备案或者未重新验收、未重新备案的;(三)设备发生故障后未在规定期限内报告的;(四)设备发生故障后未按照规定采取手工监测的。第三十一条 违反本办法第二十一条规定,有下列情形之一的,由生态环境主管部门责令改正,处2万元以上20万元以下罚款,并予以通报批评:(一)排污单位或者运行维护单位不如实标记设备、数据等异常情况的;(二)排污单位未按照规定对自动监控信息管理平台分类推送的异常情况警告信息予以核实、处理或者反馈的。第三十二条 违反本办法第二十二条规定,排污单位未将验收备案、比对监测、校准维护、设施故障以及处理记录等自动监控管理台账资料上传至自动监控信息管理平台的,由生态环境主管部门责令改正,处每次5000元以上2万元以下罚款,并予以通报批评。第三十三条 生态环境主管部门及其工作人员在固定污染源自动监控监督管理工作中滥用职权、玩忽职守、徇私舞弊的,对直接负责的主管人员和其他直接责任人员依法给予处分;构成犯罪的,依法追究刑事责任。第六章 附则第三十四条 本办法自2023年7月1日起施行。
  • 北京印发新版《北京市固定污染源自动监控管理办法》
    p  北京市生态环境局近日印发了新修订的《北京市固定污染源自动监控管理办法》,此办法从总则、自动监测设备的安装、运行管理、数据使用以及违法行为认定等方面详细规定了北京市行政区域内固定污染源水污染物和大气污染物排放自动监控系统的监督管理。新修订的办法自2019年1月1日起实施。/pp  对于监测数据提出了严格要求,传输的自动监测数据与现场监测数据偏差大于1%,即视为未保证大气或水污染物排放自动监测设备正常运行。/pp  全文如下:/pp style="text-align: center "  北京市固定污染源自动监控管理办法/pp  strong第一章 总则/strong/pp  第一条 为加强污染源监管,根据《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国大气污染防治法》《北京市水污染防治条例》《北京市大气污染防治条例》《污染源自动监控管理办法》和《污染源自动监控设施现场监督检查办法》等法律法规和有关规定,结合本市实际,制定本办法。/pp  第二条 本办法适用于北京市行政区域内固定污染源水污染物和大气污染物排放自动监控系统的安装、运行和监督管理。/pp  第三条 本办法所称自动监控系统,由排污单位的自动监测设备和生态环境行政主管部门的监控设备组成。/pp  自动监测设备安装在固定污染源现场,包括用于监控、监测污染物排放的仪器,流量(速)计、采样装置、生产或治理设施运行记录仪、数据采集传输仪等仪器、仪表、传感器、视频监控、污染源排放过程(工况)监控等,自动监测设备及其配套辅助设施是污染防治设施的组成部分。/pp  生态环境行政主管部门的监控设备通过通信传输线路与现场端自动监测设备联网,包括用于对固定污染源实施自动监控的信息管理平台、计算机机房硬件等监控设备。/pp  第四条 本办法所称自动监测数据,是指排污单位安装使用的自动监测设备产生的实时数据及其累计数据、统计数据等。/pp  排污单位应当按照国家和本市有关规定安装使用自动监测设备,与生态环境行政主管部门监控设备联网,并保证自动监测设备正常运行,对自动监测数据的真实性和准确性负责。/pp  第五条 排污单位自动监测设备的安装和运行维护经费由排污单位自筹 生态环境行政主管部门监控设备的建设安装、运行维护经费由生态环境行政主管部门编报预算申请。/pp  第六条 污染源自动监测设备的生产者和销售者,应当保证其生产和销售的污染源自动监测设备符合国家规定的标准。/pp  第七条 任何单位和个人都负有保护自动监控系统的义务,并有权对闲置、拆除、破坏自动监测设备以及擅自改动自动监测设备参数和数据等不正常使用自动监控系统的行为进行举报。/pp  strong第二章 自动监测设备的安装/strong/pp  第八条 列入《北京市大气污染物排放自动监控计划》和《北京市应当安装水污染物排放自动监测设备的重点排污单位名录》的排污单位,应当按照国家和本市的相关标准、规范和文件的要求,安装、配备污染物排放自动监测设备,并与生态环境行政主管部门的监控设备联网。/pp  第九条 排污单位应当在下列排放口安装自动监测设备:/pp  (一)按照已发布的相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关排放标准等文件要求筛选出的主要废气有组织排放口 /pp  (二)按照已发布的相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关污染物排放标准等文件要求筛选出的废水排放口 /pp  (三)已核发排污许可的单位,排污许可证中载明的应实施自动监测的排放口 /pp  (四)排污单位通过相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关排放标准等文件筛选后,仍难以确定纳入的排放口范围的,可以在专家论证基础上,通过“一厂一策”方式,制定排放口自动监测技术方案。技术方案应满足相关法律法规和标准的要求,具备合理性和可行性。被监测排放口的污染物年排放量,应不低于该项污染物全部有组织年排放量的65%。/pp  第十条 安装、配备污染物自动监测设备的监控项目应当符合下列规定:/pp  (一)锅炉废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /pp  (二)固定式燃气轮机的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /pp  (三)固定式内燃机机组的废气排放口,监测项目至少包含氮氧化物、一氧化碳以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等) /pp  (四)垃圾焚烧炉和危险废物焚烧设施的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物、一氧化碳、氯化氢以及相关工艺参数(包括烟气温度、压力、流速或流量、湿度、含氧量和炉膛内温度等) /pp  (五)冶金、建材行业及其他工业炉窑等的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /pp  (六)产生挥发性有机物的生产设施,其废气排放口监测项目至少包含非甲烷总烃和相关废气参数(包括温度、压力、流速或流量、湿度等)。排放标准中规定需要按含氧量折算污染物排放浓度的,还应监测含氧量 /pp  (七)小时处理能力大于8万立方米(含8万立方米)的废气污染物治理设施,还应在废气进入治理设施前,对相应监测项目进行监测。同时,安装污染源排放过程(工况)监控系统,监控生产、排放及治理设施的关键参数。监控项目至少包含表征生产负荷的参数、污染物处理用原料输送泵电流、污染物处理用原料供应量、脱硫岛pH值、除尘器运行信号等 /pp  (八)集中污水处理设施的废水排放口,监测项目至少包含化学需氧量、氨氮、pH值和流量。纳入国家或者本市规定的氮、磷重点排放行业的排污单位还应当监测总氮和(或)总磷两项污染物 /pp  (九)设计日处理能力大于1万吨(含1万吨)的集中污水处理设施,还应监测进水的化学需氧量、氨氮、pH值和流量。同时,安装污染源排放过程(工况)监控系统,监控相关生产、排放及治理设施的关键参数。监控项目至少包含鼓风机电流、鼓风量、曝气设备运行状况、曝气池溶解氧浓度、污泥浓度和剩余污泥流量等 /pp  (十)排污许可证或者其他法律、法规和标准规定的情形。/pp  第十一条 污染源自动监测设备的安装应当满足下列要求:/pp  (一)自动监测设备应当选用符合国家有关环境监测和计量规定的设备 /pp  (二)自动监测设备的安装和调试应当符合污染源自动监测设备现场端建设技术规范等标准和要求 /pp  (三)自动监测数据的采集和传输应当符合有关污染源自动监控(监测)系统数据传输标准 /pp  (四)排污单位应在完成自动监测设备安装和调试工作后10个工作日内申请与生态环境行政主管部门联网,并如实提供单位名称、地址、排污口名称、监测和监控项目、排放标准等信息 /pp  (五)排污单位应在自动监测设备满足技术规范要求的验收条件并与生态环境行政主管部门联网后3个月内,按照建设项目竣工环境保护验收管理相关法律法规的规定,组织完成验收工作,验收合格后5个工作日内向所在区生态环境行政主管部门登记备案。验收具体项目和要求,按照自动监测相关技术规范执行 /pp  (六)其他相关技术规范、标准的要求。/pp  第十二条 排污单位更换自动监测设备,或者出现采样位置变更、设备核心部件更换等重大变化的,应当重新进行验收,并报所在区生态环境行政主管部门登记备案。/pp  strong第三章 自动监测设备的运行管理/strong/pp  第十三条 排污单位对自动监测设备的运行和维护,应当遵守以下规定:/pp  (一)自动监测设备的操作人员应当按照国家相关规定,经培训考核合格、持证上岗 /pp  (二)自动监测设备应当按照有关标准、规范与生态环境行政主管部门监控设备联网,及时准确地传输监控信息和数据 /pp  (三)自动监测设备的操作和运营维护应当符合有关标准和技术规范,符合仪器设备厂商提供的运维手册或者使用说明书 /pp  (四)自动监测设备应当按照有关标准、规范定期校准,定期开展手工比对校验 设备所需的试剂、标准物质和质控样,应注明制备单位、制备人员、制备日期、物质浓度和有效期限等重要信息 /pp  (五)自动监测设备应每半年至少开展一次比对监测,比对监测结果应符合相关技术规范要求。若采取委托监测的形式,应委托具备检验检测机构资质认定证书的环境监测机构开展 /pp  (六)自动监测设备因故障不能正常监测、采集、传输数据的,应当于发生故障后12小时内向生态环境行政主管部门报告,并在5日内恢复正常运行。停运期间,排污单位应当采用手工监测的方式对污染物排放状况进行监测,并向生态环境行政主管部门报送手工监测数据,每天不少于4次,间隔不得超过6小时。排污单位自行开展手工监测的,其实验室建设运行应当符合国家和本市相关标准 若采取委托监测的形式,应当委托具备检验检测机构资质认定证书的环境监测机构开展 /pp  (七)自动监测设备需要进行更换的,应当至少提前5日向生态环境行政主管部门报告,设备更换时间不得超过5日,期间应当采用手工监测的方式对污染物排放状况进行监测,并向生态环境行政主管部门报送手工监测数据,每天不少于4次,间隔不得超过6小时。排污单位自行开展手工监测的,其实验室建设运行应当符合国家和本市相关标准 若采取委托监测的形式,应当委托具备检验检测机构资质认定证书的环境监测机构开展。确因特殊原因无法在5日内完成设备更换的,最长不超过30日 /pp  (八)排污单位任意连续90日内自动监测数据有效传输率应当达到90%以上 /pp  (九)排污单位应建立污染源自动监测设备运行、维护、管理制度和记录台账 自动监测历史数据应保存5年以上、污染源排放过程(工况)监测历史数据应保存1年以上 /pp  (十)其他标准、技术规范等规定的要求。/pp  strong第四章 自动监测数据的使用/strong/pp  第十四条 排污单位排放污染物过程中,自动监测设备正常运行情况下产生的自动监测数据,可以作为生态环境行政主管部门实施监督管理的依据。自动监测数据与其他有关证据共同构成证据链后,可以用于环境行政处罚。/pp  第十五条 自动监测数据用于判定污染物排放浓度超标时,排污许可证、相关行业排污许可证申请与核发技术规范、国家及本市污染物排放标准明确规定使用小时均值、日均值(24小时均值)或者其他数据类型的,从其规定 没有明确规定的,水污染物排放浓度是否超标以日均值判定,大气污染物排放浓度是否超标以小时均值判定。排污单位或者其委托的自动监测运营单位,依据有关标准、规范对异常、缺失数据进行修约补遗的,人工修约补遗数据不作为判定超标或达标的依据。/pp  第十六条 自动监测数据用于计算排放量时,人工修约补遗数据可作为计算污染物排放量的依据。/pp  第十七条 同一时段的生态环境行政主管部门委托开展的现场监测数据与排污单位自动监测数据不一致,现场监测数据符合法定的监测标准和监测方法的,以现场监测数据作为优先证据使用,作为判断污染物排放是否达标、自动监测设备是否正常运行的依据。/pp  strong第五章 违法行为的认定/strong/pp  第十八条 有下列行为之一的,视为未按照规定安装大气或水污染物排放自动监测设备:/pp  (一)排污单位未按照《北京市大气污染物排放自动监控计划》或《北京市应当安装水污染物排放自动监测设备的重点排污单位名录》以及相关技术标准和规范的要求,安装污染物排放自动监测设备并与生态环境行政主管部门联网的 /pp  (二)排污单位使用未通过验收的大气或水污染物排放自动监测设备的。/pp  第十九条 有下列行为之一的,视为未保证大气或水污染物排放自动监测设备正常运行:/pp  (一)自动监测设备因故障不能正常监测、采集、传输数据时,未于12小时内向生态环境行政主管部门报告或者未在5日内恢复正常运行的 /pp  (二)传输的自动监测数据与现场监测数据不一致,数据偏差大于1%的 /pp  (三)生产工况、污染治理设施运行与自动监测数据相关性异常的 /pp  (四)违反技术规范要求对仪器、试剂进行变动操作的 /pp  (五)自动监测设备所需的试剂、标准物质和质控样,未注明制备单位、制备人员、制备日期、物质浓度和有效期限等重要信息 未按要求开展比对监测,或者使用的标准物质、质控样的实验结果不符合技术指标的 /pp  (六)任意连续90日内自动监测数据有效传输率低于90%的 /pp  (七)其他不正常运行自动监测设备的情况。/pp  第二十条 排污单位自动监测历史数据保存低于5年或污染源排放过程(工况)监测历史数据保存低于1年的,视为未保存自动监测原始监测记录。/pp  第二十一条 排放污染物超过国家或者地方规定的污染物排放标准,或者超过重点污染物排放总量控制指标的,可以依照《中华人民共和国水污染防治法》第八十三条第(二)项或者《中华人民共和国大气污染防治法》第九十九条第(二)项的规定处理。/pp  第二十二条 不按照规定公开大气污染物自动监测数据的,可以依照《中华人民共和国大气污染防治法》第一百条第(四)项的规定处理。/pp  第二十三条 排污单位通过自动监测数据弄虚作假,骗取环保电价、税收减免等各种优惠的,生态环境行政主管部门可以通报有关部门,取消相关优惠。/pp  第二十四条 违反技术规范要求,对污染源自动监控系统功能进行删除、修改、增加、干扰,造成污染源自动监控系统不能正常运行,或者对污染源自动监控系统中存储、处理或者传输的数据和应用程序进行删除、修改、增加的操作,构成违反治安管理行为的,生态环境行政主管部门可以依据《中华人民共和国治安管理处罚法》第二十九条的规定移送公安部门处理 涉嫌构成犯罪的,移送司法机关依照《中华人民共和国刑法》第二百八十六条或第三百三十八条追究刑事责任。/pp  strong第六章 附则/strong/pp  第二十五条 储油库、加油站、油烟产生单位等固定污染源大气污染物自动监测设备的安装、验收、运行维护等具体要求另行发布。/pp  第二十六条 本办法由北京市生态环境局负责解释。/pp  第二十七条 本办法自2019年1月1日起施行。原《北京市固定污染源自动监控管理办法》同时废止。/p
  • 宁夏回族自治区生态环境厅发布《宁夏回族自治区固定污染源自动监控管理办法(试行)(征求意见稿)》
    为加强固定污染源监管,规范污染源自动监控系统建设和运行管理,发挥污染源自动监控监管效能,自治区生态环境厅起草了《宁夏回族自治区固定污染源自动监控管理办法(试行)(征求意见稿)》,现公开征求意见。各机关团体、企事业单位和个人均可提出意见和建议,修改意见通过电子邮件(邮箱:yoyomo915@163.com)反馈至我厅,邮件名称请注明为“宁夏回族自治区固定污染源自动监控管理办法(试行)(征求意见稿)反馈意见表+反馈单位(人员)名称”。征求意见截止时间为2023年8月12日前。宁夏回族自治区生态环境厅2023年8月2日宁夏回族自治区固定污染源自动监控管理办法(试行)(征求意见稿)第一章 总 则第一条 为加强固定污染源监管,推进排污许可“一证式”管理,规范污染源自动监控系统建设和运行管理,保证污染物排放自动监测数据真实、准确、完整、有效,发挥污染源自动监控监管效能,根据《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国大气污染防治法》《排污许可管理条例》等法律法规及有关规定,结合我区实际,制定本办法。第二条 本办法适用于宁夏回族自治区重点排污单位自动监控系统的建设、运行维护、数据管理及监督管理。非重点排污单位自动监控系统的监督管理参照本办法执行。第三条 本办法所称重点排污单位,是指应当依法安装、使用、维护污染物排放自动监测设备,并与生态环境主管部门联网的排污单位。包括但不限于以下排污单位:列入本年度最新重点排污单位名录的水、大气污染防治重点排污单位;实行排污许可重点管理且在排污许可证中明确应实施自动监测的排污单位。第四条 本办法所称污染源自动监控系统,是指由排污单位的自动监测设备和生态环境主管部门的监控设备组成,用于监控监测污染物排放状况的信息系统。自动监测设备,是指安装在排污单位现场,用于直接或间接监控监测污染物排放的仪器设备,包括用于连续监控监测污染物排放浓度的仪器、流量(速)计、采样装置、数据采集传输仪、水质参数、烟气参数的监测设备,以及在主要生产工序、治理工艺或排放口等关键位置安装的工况参数、用水用电用能、视频探头监控等间接反映水或大气污染物排放状况的仪表和传感器设备。生态环境主管部门的监控设备,是指通过通信传输网络获取排污单位现场端污染物排放自动监测数据,对排污单位实施自动监控的信息管理平台,包括供生态环境主管部门使用的“自动监控系统管理端”和供排污单位使用的“自动监控系统企业服务端”等软件,以及支撑软件运行的计算机机房硬件设备等。第五条 本办法所称自动监测数据,是指排污单位安装使用的自动监测设备运行时产生的数据及相关数据标记内容。第六条 自治区生态环境厅指导全区排污单位自动监控工作。五市及宁东生态环境部门负责辖区监控平台的建设、管理和运行维护;负责对辖区内排污单位自动监测设备及附属设施的日常监管;对排污单位报备的验收资料及时予以记录,作为现场监督检查的依据。污染物排放自动监测设备的建设、安装、联网、运行维护等经费由排污单位自筹。自动监控信息管理平台的建设、运行、维护以及有关执法监管工作经费应纳入同级财政预算。第七条 排污单位应当落实以下责任:(一)按照相关规定建设规范化的排污口和监测站房。(二)负责自动监测设备安装、调试、试运行、联网、验收报备及信息公开工作,做好自动监测设备安全管理,禁止使用弱密码口令。(三)负责自动监测设备正常稳定运行,实时上传自动监测数据,保证自动监测数据真实、准确、完整、有效,不得实施篡改、伪造监测数据。(四)负责规范申报、处置自动监测设备运行维护中产生的废液。(五)负责对有委托关系的社会化运维单位服务保障质量进行监督管理。第八条 自动监测设备社会化运维单位受排污单位委托,按照国家相关技术规范要求对排污单位自动监测设备正常运行提供服务保障,不得实施或参与实施篡改、伪造监测数据。第九条 任何单位和个人都有保护自动监控系统的义务,并有权对闲置、拆除、破坏以及擅自改动自动监控系统参数和数据等不正常使用自动监控系统的行为进行举报。第二章 安装联网第十条 排污单位应依据排污许可证和自行监测方案要求安装自动监测设备,并与生态环境主管部门监控平台联网。各级生态环境主管部门负责指导排污单位做好设备联网和数据传输工作。第十一条 有下列情形之一的排污单位应当安装自动监测设备:(一)已发布相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关污染物排放标准等文件要求的;(二)排污许可证中载明应实施自动监测的;(三)建设项目环境影响评价文件及其批复、验收中明确要求应实施自动监测的;(四)列入重点排污单位名录的;(五)按照国家和各级生态环境主管部门相关规定需要重点监管的;(六)其他需要安装自动监测设备的情形。非重点排污单位主动、自愿安装自动监测设备的,五市及宁东生态环境部门应予以指导排污单位做好设备联网及数据传输工作。第十二条 有下列情形之一的,经五市及宁东生态环境部门核实后排污单位可暂不安装自动监测设备:(一)烟囱/烟道直径小于1米,或者不满足技术规范规定的测量点位离烟道壁距离不小于1米要求的。排气筒结构、强度、安全等难以满足技术规范对监测平台安装以及参比方法采样孔的相关要求的;(二)企业生产废水循环利用不排入外环境的;水排放口为企业溢流口且不排放污染物的;(三)污染物排放浓度低于现有在线监控(测)设备检测限的;(四)一年内累计生产时间不足一个季度的企业或者仅用作调峰的燃气电厂;(五)企业停产一年及以上或者正在拆除搬迁的,已经注销或关闭的企业;(六)其他具有客观原因暂时无法安装自动监测设备的(提供证明材料)。第十三条 排污单位安装、联网、运行管理自动监测设备及其附属设施应当符合下列规定:(一)应当选用符合国家相关环境监测标准、计量器具管理要求的监测设备;(二)自动监测设备的安装和调试应当符合自动监测设备现场建设技术规范等标准要求;(三)自动监测设备应与各级生态环境主管部门监控平台稳定联网;其中一个季度内自动监测数据即时有效传输率应达95%及以上,补全有效传输率应达95%及以上;(四)排污单位应当按照生态环境部门要求,上传生产设施及污染治理设施运行情况、用水用电用能情况、炉膛温度及自动监控系统运行情况,准确标记生产设施及污染治理设施运行工况、自动监测数据异常等情况;(五)自动监测数据的采集和传输应当符合国家有关污染源自动监控系统数据传输和接口标准的技术规范。(六)排污单位自动监测设备联网应通过自治区级平台企业服务端完成,对企业基本信息、排口信息、数据采集传输仪等自动监测设备信息、排放标准、调试检测合格报告等信息进行上传,并保证上传信息的真实、准确和完整;(七)建立自动监测设备运行、使用、维护管理制度。第十四条 自动监测设备安装联网及验收时限要求:排污单位取得排污许可证3个月内完成自动监测设备调试(含自行验收、备案)和联网;新列入《重点排污单位名录》的排污单位,应于名录公开之日起6个月内完成自动监测设备调试(含自行验收、备案)和联网。自动监测设备验收工作由排污单位自行组织完成,验收具体项目和要求,按照自动监测相关技术规范以及建设项目竣工环境保护验收管理要求执行,验收后,应5个工作日内将验收资料交属地生态环境部门备案。第十五条 排污单位应当按照国家有关规定采取视频监控措施或者用电用能用水等过程监控措施。监控范围应当按照有关标准、规范覆盖生产过程中产生和治理污染物的环节。排污单位应在自动监控站房内外、采样平台等关键位置安装视频监控探头,能够清晰监控工作人员进出站房情况及操作运行设备或进行污染物采样监测情况,确保监控区域内无死角。自动监控站房应安装电子门禁系统,能够记录工作人员进入站房情况。视频监控探头及门禁系统应与生态环境部门监控平台进行联网,各级生态环境主管部门能够进行实时访问。视频、门禁系统产生的资料应在现场保存至少3个月。第十六条 排污单位实施污染物排放浓度自动监测的点位和因子,应依据排污许可证和自行监测技术指南要求执行。按要求安装污染物排放自动监测设备的重点排污单位应当配套安装流量(速)计、数据采集传输仪。废水类应安装水质自动采样设备,水污染物排放标准与水温有关的,还应安装温度计。废气类应安装温度、压力、湿度、氧量等烟气参数设备。第三章 运行维护第十七条 排污单位可根据实际情况,选择自行运维或委托社会化运维单位运维自动监测设备。第十八条 自动监测设备运维单位(包括自行运维单位和社会化运维单位)应满足以下要求:(一)接受委托的第三方具备的基本能力应当符合《环境保护设施运营单位运营服务能力要求》。(二)应具备与监测任务相适应的技术人员、仪器设备和实验室环境,明确运行操作人员和管理维护人员的职责、权限和相互关系,通过质量控制措施保证监测结果准确可靠。应常备日常运行、维护所需的各种耗材、备用整机或关键部件,同时应配备相应仪器参比方法实际样品比对试验装置及标准物质,相关装置应在校准检定有效期内,标准物质可溯源且在有效期内。(三)运维人员应具备相关专业知识,熟练掌握所运维自动监测设备的原理、使用和维护方法,经培训考核合格、持证上岗,并定期参加培训考核。(四)应按照相关法律法规和标准要求,建立健全管理制度。主要包括:人员培训、人员定期考核、操作规程、岗位责任、定期比对监测、定期校准维护、运行信息、设施故障预防和应急措施等制度。第十九条 自动监测设备的运行和维护,应遵守以下规定:(一)所有污染物浓度数据和水质、烟气参数均应由真实测量得出,自动监测设备不得具有数据模拟软件、模拟信号发生器、隐藏操作界面、远程登录软件,用于过滤数据、限制数据上下限和修改监测数据及设备参数等任何数据造假的功能和漏洞;(二)自动监测设备应按标准规范定期维护、校准,定期开展手工比对校验,相关数据应如实上报,不得设置数据保持,校准校验结果应符合标准规范要求;(三)停产期间不得擅自关闭自动监测设备或中断联网。生产停运周期在3个月以内的,不得停运自动监测设备,日常巡检和维护仍按需求执行,需对自动监测设备进行检修的,废水至少上传流量参数,废气至少上传含氧量、烟气温度、生产工况中的一项。生产停运周期3个月以上的,经五市及宁东生态环境部门同意,方可关闭自动监测设备。恢复生产前,应提前运行自动监测设备,并进行校验,满足技术指标要求视为启用期间自动监测数据有效。同时视频和用电监控设备不得停用;(四)自动监测设备因故障、事故等突发原因不能正常采集、传输数据时,应按标记规则要求在自治区级平台对相应时段进行如实标记,5日内恢复正常运行,并按要求完成校准校验,其中数据采集传输仪应在12小时内恢复正常运行;(五)排污单位出现生产或治污设施停运、非正常排放,自动监测设备调试、日常维护、校准、核查比对等情形时,应按标记规则要求在企业服务端对相应时段进行如实标记,并在事后上传相关凭证;(六)自动监测设备运行期间核查与校准频次、结果应满足国家相关技术规范要求;(七)自动监测设备因故障、停运、有计划维护保养等非正常采样监测期间,按照国家相关技术规范要求开展手工监测;(八)自动监测设备运行档案和记录应符合标准规范,主要包括:验收相关材料、运维合同、运维人员资质证书、运维管理制度、设备运维手册或使用说明书、参数设置表、各类运维台账、站房进出记录、比对监测报告及其原始监测数据等;(九)排污单位对污染源自动监测数据真实性、准确性、完整性、有效性负责,自动监测设备原始监测数据及记录、操作日志、运维台账、站房进出记录、比对和手工监测报告等记录台账保存期限不得少于5年,视频监控历史数据保存期限不得少于3个月,用电监控历史数据保存期限不得少于1年。第四章 数据应用第二十条 排污单位依法安装的自动监测设备与监控平台完成调试(含验收、备案)、联网之日起,生态环境主管部门可以利用污染源自动监控系统收集生态环境违法行为证据。第二十一条 通过适用性检测、强制计量检定、环保验收的自动监测设备在正常运行情况下产生的自动监测数据可以作为环境行政处罚等监管执法的依据。第二十二条 一个自然日内,排污单位污染物的自动监测数据有一项或者一项以上超过污染物排放标准规定的相应污染物小时均值限值(大气污染物)或者日均值限值(水污染物),可以认定其污染物排放超标。第二十三条 属地生态环境主管部门接到自动监测数据超标报警信息或与污染源自动监控相关的涉嫌环境违法问题线索后,应及时组织生态环境执法、监测及其他相关人员开展调查。第五章 监督管理第二十四条 污染源自动监测设备的现场监督检查,参考《污染源自动监控设施现场监督检查办法》实施,制作现场检查记录、保存证据材料可参照《污染源自动监控设施现场监督检查技术指南》执行。对特定行业有具体监管规定的,从其规定执行。现场检查排污单位自动监测设备建设、安装、运行不符合相关要求、规定的,排污单位应限期进行整改;排污单位存在环境违法行为的,生态环境部门依法依规进行查处。第二十五条 生态环境部门现场检查内容包括以下方面:(一)自行监测方案、手工比对监测报告及原始记录和其他相关凭证;(二)污染源自动监测设备及相关设施安装及验收情况;(三)自动监测设备现场端建设规范化情况;(四)自动监测设备基本参数的设置、变更情况;(五)自动监测设备运行维护、校准校验、故障处理情况;(六)涉及自动监测设备运行的其他有关情况。第二十六条 排污单位、第三方运维单位及自动监测设备的生产、销售单位应主动配合生态环境部门开展现场检查,并按要求提供相关资料。第二十七条 排污单位有下列情形之一的,应当认定为“未按照规定安装水或大气污染物排放自动监测设备”:(一)应安装自动监测设备未安装的;(二)按照规定应实施自动监测的污染物指标,未实施自动监测的;(三)未按照相关技术规范和标准要求安装自动监测设备的;(四)安装的自动监测设备不符合国家相关环境监测标准、计量器具管理要求规定的。第二十八条 排污单位有下列情形之一的,应当认定为“水或大气污染物排放自动监测设备未按照规定联网”:(一)应联网的自动监测设备未联网的,或应传输的监测指标未传输的;(二)未按照相关技术规范和标准要求联网自动监测设备的;(三)未按生态环境部门时限要求实现有效数据稳定联网的。第二十九条 排污单位有下列情形之一的,应当认定为“未保证监测设备正常运行”:(一)自动监测设备超过规定期限未验收或验收不通过的;(二)自动监测设备未按规范要求开展定期核查、定期校准、定期校验;(三)自动监测设备所需的试剂和标准物质,未标注制备单位、制备日期、物质浓度和有效期限等重要信息,标注信息不属实或者超过有效期限使用的;(四)自动监测设备未按要求定期开展比对监测或比对监测结果不合格的;(五)污染物排放期间,自动监测设备及其附属设施因故障不能正常监测、采集、传输数据,超过12小时未向属地生态环境主管部门报告的。自动监测设备故障或者停运超过24小时无法恢复正常运行,未采取手工监测的方式对污染物排放状况进行监测,或者监测频次不满足规定的;(六)擅自停用、改变自动监测设备及其附属设施的全部或部分功能,或擅自拆除转移、侵占损坏自动监测设备及其附属设施或者对其断网断电的,尚不构成篡改、伪造监测数据的;(七)生态环境部门在执法检查过程中,自动监测设备涌入标准物质或质控样,监测结果不符合相关技术规范和标准要求的;(八)未按照技术规范要求设置采样时间、频次和方式的;(九)其他原因造成自动监测设备不正常运行的情形。第三十条 排污单位篡改、伪造或者指使篡改、伪造自动监测数据等行为,依据《环境监测数据弄虚作假行为判定及处理办法》进行界定。经核实存在相应情形的,生态环境部门应依法移送公安机关追究相应责任;涉嫌犯罪的,生态环境部门应移送司法机关,追究刑事责任。第六章 附则第三十一条 违反本办法规定,法律、行政法规已有规定的,从其规定。第三十二条 本办法所称“日”,均为自然日。第三十三条 本办法由宁夏回族自治区生态环境厅负责解释。自2023年X月X日施行,有效期至2025年X月X日。 宁夏回族自治区固定污染源自动监控管理办法(试行)征求意见稿.docx 宁夏回族自治区固定污染源自动监控管理办法(试行)征求意见稿意见反馈表.docx
  • 浙江省计量院自主研发助力实现检测过程数字化监控管理
    近日,浙江省计量科学研究院研发液压装置数据拟合算法系统,并获国家版权局软件著作权登记。据了解,该软件充分结合企业及省计量院检测信息化要求,通过设计人性化的人机界面程序,实现“傻瓜式操作”。系统功能明确、简洁,可直接录入实验相关信息记录,进行自动运算处理以及试验记录的模板化生成,从而实现对实验的记录高效管控。此外,该系统可对接省计量院LIMS系统,直接导入原始记录生成报告,极大提高测试数据采集、记录、处理及分析工作效率。该系统的研发解决了液压检测力值及硬度数据自动运算处理、试验记录单/多模板化生成、实现数据的模块化管理等难题,最终实现液压装置检测过程数字化监控管理。
  • 食品安全检测技术与监控管理论坛成功召开
    仪器信息网讯 2012年5月30日,广州国际分析测试及实验室设备展览会暨技术研讨会(China Lab 2012)在广州锦汉展览中心隆重开幕。China Lab 2012分会场之一,由广东省质量检验协会、广东省食品学会主办的食品安全检测技术与监控管理论坛于2012年5月31日成功召开。   广东省质量技术监督局邱庄胜副局长、中国疾病预防控制中心刘秀梅教授、广东省质量检验协会黄锡檀会长、广东省质量技术监督局张欣处长、广东省对外科技交流中心吴汉荣主任、广东省食品学会曾庆孝理事长及广东省质量检验协会李荣超秘书长等政府相关部门、协会学会的领导和专家出席了本次论坛开幕式。会议现场  本次论坛由广东省食品学会曾庆孝理事长、广东省质量检验协会李荣超秘书长共同主持,广东省质量技术监督局邱庄胜副局长致开幕词。广东省质量技术监督局 邱庄胜副局长  会上,来自中国疾病预防控制中心、广东省产品质量监督检验研究院、国家加工食品质量监督检验中心、中山大学公共卫生学院、广东省微生物研究所等单位的技术专家,就“食品中微生物安全标准与风险性评估、食品中塑化剂检测、基因技术和同位素制品在食品成分中鉴别、食品加工汇总产生的有害物的测定、食源性治病菌显色培养基”等主题做了报告。报告人:中国疾病预防控制中心 刘秀梅教授报告题目:食品中微生物安全标准语风险性评估报告人:广东省产品质量监督检验研究院 王力清高级工程师报告题目:食品汇总塑化剂检测解决方案报告人国家加工食品质量监督检验中心(广州) 罗东辉博士报告题目:基因技术和同位素质谱在食品成分中鉴别中的应用报告人:中山大学公共卫生院 李华斌教授报告题目:食品加工中产生的有害物质的测定方法进展报告人:广东省疾病预防控制中心 许瑛华主任技师报告题目:吹扫捕集技术在水质监测中的应用报告人:广东省微生物研究所 卢勉飞高级工程师报告题目:食源性致病菌显色培养基的研制及应用报告人:广东省疾病预防控制中心 梁春穗主任技师报告题目:陶瓷食具容器污染物溶出迁移的研究 欲了解详细情况请关注仪器信息网后续报道。
  • “地空一体化”扬尘在线监控系统
    扬尘是由于地面上的尘土在风力、人为带动及其他带动条件下而进入大气的开放性污染源,是环境空气中总悬浮颗粒物的重要组成部分,也是雾霾形成的主要原因之一。城市扬尘源具有开放性、空间多源性、广泛性、排放随机性等特征。当前城市区域扬尘来源分为一次扬尘和二次扬尘。一次扬尘是在处理散状物料时,由于诱导空气的流动,将粉尘从处理物料中带出而污染局部地带。二次扬尘是由于流动空气及设备部件转动生成的气流,把沉落的粉尘再次扬起而导致的。城市扬尘种类  工地扬尘主要成分粒径分布排放特点影响程度矽尘、水泥厂、木屑粉尘、石膏粉尘、岩棉泡沫尘等粒径10um的颗粒物约占65%;粒径1um的颗粒物约占95%面源排放25%~40%市区施工工地对城市环境空气质量影响较大     交通扬尘主要成分粒径分布排放特点影响程度块、沙土、垃圾、废物、生物碎屑、路面老化破损、尾气排放、机动车刹车片、轮胎磨损等粒径10um的颗粒物约占47%;粒径1um的颗粒物约占95%线源排放25%~35%;主干交通车流、人流量大,对城市环境空气质量影响较大。   工业粉尘、烟尘主要成分粒径分布排放特点影响程度金属粉尘、木材粉尘,水泥粉尘、生物粉尘、金属融粒,木油煤不完全燃烧产生的烟尘等粒径分布范围广,机械加工和粉碎产生的粉尘粒径较大,不完全燃烧产生的烟尘和冶金产生的金属融粒粒径较小。室内排放为主,封闭性较好,烟尘主要通过点源对外排放15%~30%一般离市区比较远,封闭性较好,对城市环境空气质量影响较小。 城市扬尘监控现状  当前城市扬尘在线监测手段可进行颗粒物浓度、噪声、视频、温湿压、风等多重参数综合监测,但由于城市扬尘排放具有无组织排放、排放源类型复杂、易扩散及存在偷排、漏排现象等特点,导致城市扬尘监控仍面临以下问题:  监控难:工地多、无组织,扬尘布点监控难,监测人力少;  分析难:局地以及外源传输的一次、二次粗、细颗粒物混杂,扬尘监控网络未建立,数据积累不足,监测数据简单堆积,需要逐一甄别,效率低;近地面点式监测,难以说清楚区域内扬尘的来源、分布和变化趋势;  追责难:收集证据难,且未建立明确的评价指标、体系以及依法追责制度,难以实现追责和有效管理。 “地空一体化”扬尘在线监控系统   中科光电“地空一体化”扬尘在线监控系统由扬尘噪声在线监控系统和颗粒物扫描激光雷达两大部分组成。  扬尘噪声在线监控系统  扬尘噪声在线监控系统智能化地集成了颗粒物、噪声、云台摄像机、风速风向传感器,温湿度传感器等监测设备,可全面布设在区域内各主要建筑工地、道路、码头、混凝土搅拌站、重点工业工矿企业等颗粒物污染排放源附近,实时获得tsp、pm10、pm2.5、噪声、视频、温度、湿度、风速风向等近地面数据;  颗粒物扫描激光雷达  颗粒物扫描激光雷达不断扫描,通过监测区域内的消光系数,退偏振度、边界层高度、能见度等信息,获得区域立体空间内扬尘分布,沉降情况,还可以识别粗细粒子,判断是二次源还是一次源,了解区域间扬尘的输送,从而实现对整个城市区域内扬尘来源、现状、发展变化趋势的掌握。  应用“地空一体化”扬尘在线监测系统,微观上可进行浓度数据和视频实时查看、报警抓拍;宏观上可实现对城市区域空间内的扬尘污染作全天候监控,为巡查人员监控取证、行政干预、应急响应、纠纷处置,为管理部门确定扬尘来源、了解扬尘减排治理措施的效果,为政府制定政策规划、空气质量改善行动计划,为各部门信息联网共享、协同管理提供了技术支撑和依据。 “地空一体化”扬尘在线监控系统 “地空一体化”扬尘在线监控系统平台  “地空一体化”扬尘在线监控系统平台包括实时监测、工地管理、设备管理、历史查询、统计分析、视频观看、报警处理、评价方法等多项功能,同时,系统平台将颗粒物扫描激光雷达的垂直监测、垂直扫描、水平扫描、一定仰角(如45°)探测、走航观测等探测模式进行高度集成,实现了区域内扬尘分布、来源、变化趋势的全方位立体化监测。高效、精细的实时监控,为政府监察部门的多维取证、依法追责提供有效数据支撑。登录页面实时监测——近地面数据实时监测——水平遥感污染源监测实时监测——走航道路交通监测历史查询设备管理“地空一体化”扬尘在线监控系统系统优势  基于物联网思维的智能联动技术,云台摄像机除了预置位抓拍之外,还可以根据颗粒物和噪声报警信息,风速风向信息、智能判断方向进行抓拍,更加准确获取污染源头的位置信息,满足实时性与精细化监管的需求。  近地面监测和立体监测的集成创新。多要素多手段综合监测,不仅有量化数据,视频图像取证,还有区域立体空间的颗粒物分布现状、发展变化趋势分析,微观和宏观结合,证据丰富有力,结论一目了然,突破无组织排放监控的技术难题。  基于大数据挖掘、分析的环保云应用平台。可以实现海量扬尘监测数据、环境空气监测站数据的多角度统计分析和比较,满足大数据的价值挖掘和应用,实现监测系统的云端运营、大数据的云端分析,为政府、企业提供环境治理的技术咨询,同时手机app的应用能让公众随时掌握所在地的颗粒物、噪声等环境指标。  核心设备采用行业标杆公司顶级产品,成熟稳定可靠,使用寿命长。该产品内置了加热器控制湿度水平,不仅保护电子和光学系统,还可以排除湿度对测量结果的影响,测量更加准确;  海量数据的高速存储,本地数据存储容量大于等于1t,通讯接口具备可扩展。  停电后可长期保存系统设置参数,电源恢复后可自动启动,进入工作状态。  “地空一体化”扬尘在线监控系统实现了建筑工地扬尘污染在线监测、管理一体化,提升了科学管理的效率和能力。该系统对掌握建筑工地扬尘污染现状的真实状况,以及采取控尘措施的效果具有权威性。该系统可用定量化、可视化的数据反映扬尘污染治理的水平,是建设智慧环保的有效手段。
  • 哈希在线水质分析仪器为山东省环境自动检测监控联网系统助力
    日前,山东省内所有的重点污染源都已经安装了全省联网的环境自动检测监控系统。 该类系统在山东省共设立了1300多个,覆盖全省100多家城镇污水处理厂、1047家重点监管企业,城市主要水源地、60条河流的116个河流断面、17个城市的空气质量也全部被纳入到监测系统中,这意味着山东省90%以上的污染源排污情况和水气环境质量都得到了实时监控。与此同时,依托省、市、县三级数据传输网络,监测数据可以直接传输到省环境监控中心,接受各级环境监管部门的监督检查。 哈希公司的水质分析仪器在中国已经有超过20年的成功应用,此次作为在线水质分析仪器的供应厂家, 共向山东省各个环境监测点提供了数百套符合国家标准方法的CODmax铬法COD分析仪、AmtaxTM Compact 氨氮分析仪等在线水质分析仪器产品。系统运行以来,凭借运行可靠、运营成本低、测量精确、操作简单的优良性能得到了众多环境监测站好评。 在很多大型项目中,各个环节都是紧密相连,如有一个环节出现问题,将可能会导致整个项目停滞。这就要求在线水质检测仪器的安装、调试乃至培训都必须要做到快速响应,按照客户要求在最短的时间内解决问题。哈希公司本地化服务模式在此次山东省环境自动检测监控联网系统项目中&ldquo 再显身手&rdquo 。以&ldquo 快速响应,高质高效&rdquo 的服务标准,在规定时间内完成了项目要求,赢得了客户的满意。 哈希公司将凭借着最先进的水质监测解决方案以及完善的服务和技术支持网络,在各个行业中扮演着不同的角色,为各行业用户的应用提供最佳的解决方案,守护着水质与人类的健康! 关于哈希 哈希公司是美国财富500强企业之一&mdash &mdash 丹纳赫集团下属的一级子公司,总部位于美国科罗拉多州的拉夫兰市。哈希公司是致力于设计和制造水质分析、监测仪器及其试剂的科研生产企业,产品涵盖实验室定性/定量分析、现场分析、流动分析测试、在线分析测试,能够广泛应用于自来水、市政污水、工业循环水、污染源排放口、地表水、地下水、半导体超纯水、制药、电力及饮料等多个领域。生产线分别分布于美国、瑞士、德国、法国和英国。
  • 投资6.5亿 历时三年半 浙江自动监测监控系统正式投运
    历经3年半的努力,浙江省于去年底率先在全国建成总投资6.5亿元的省级环境质量和重点污染源自动监测监控系统,经过半年时间的调试、验收,这套系统最近正式投入使用。  投资6.5亿元建成两大系统  2004年10月,浙江省政府在“811”环境污染整治3年行动计划中,提出要按照“监测点数国内第一,建设质量国内一流”的目标,建设一套利用综合现代监测技术、信息网络技术和自动控制技术,对区域环境质量和排污企业进行实时监测、监控管理的全省性大型环境在线测控系统。  这套系统包括两大部分:环境质量自动监测监控系统(简称“环境质量测控系统”),投资3.2亿元;重点污染源在线监控系统(简称“污染源监控系统”),投资3.3亿元。环境质量测控系统投资由各级财政承担,其中省级财政资金1.8亿元;污染源监控系统建设资金由排污企业各自承担,财政适当补助。  整项工程浩大、建设时间紧,任务重、压力大,在建设过程中遇到了项目审批、建设用地等一系列问题,以及来自一些排污企业的阻力。为确保按时完成环境质量测控系统建设,浙江省将相关工作纳入生态省建设目标考核,签订了目标责任书,实行“一票否决”。省委、省政府领导高度关注,亲自协调解决项目建设资金、建设用地、项目审批等一系列问题。全省环保系统攻坚克难、全力以赴,终于按时建成。国务院和环境保护部领导先后考察了这套系统,对浙江省开展环境质量监测监控在全国先走一步给予了鼓励。  据浙江省环保局有关人员介绍,这套测控系统具有四大特点:  布点合理,覆盖密度全国领先  系统中的环境质量自动监测站位代表性强、功能齐全,是全国省域范围内布点最完整、覆盖面最广的一套系统。整个系统有水质自动监测站82个,包括覆盖全省八大水系等主要水体的所有县界以上交界断面,与江苏、上海、安徽交界的7个省界断面等;有空气质量自动监测站160个,11个设区市各平均拥有气站3个以上,县级城市平均拥有气站两个,此外,还包括省级空气背景气站、风景旅游区气站,重点乡镇点气站等。污染源监控系统建设按照国家污染物减排三大体系建设要求,在341家国控重点污染源的基础上,结合全省实际,建设和改造了1452家重点污染源在线监控系统。除两大系统外,浙江省还建设了79个省、市、县(市、区)环境监控中心,建成了覆盖全省省、市、县三级双回路的通信传输主干网络。  规范先行,仪器设备全国一流  浙江省的环境自动监控系统建设起步较早,但在2006年以前,基本以各地自行建设为主,缺乏整体建设规划和标准,难以形成全省统一的监测网络,无法做到数据共享。  省环保局为此制定了环境质量测控系统建设、验收、运行管理等12个技术规范,对系统的建、运、管作出了明确规定。在水质自动站建设中,统一站标和仪器间规格,所有水站配套化验室、泵房、配电房、防雷设施等。在监测指标上尽量多增功能,尤其在省、市交界断面还增加总磷、总氮自动监测仪和流量计,可计算污染物通量;所有城镇污水处理厂增加了总磷和总氮指标。监测仪器设备均达到国际一流水平。省级监控中心的系统平台管理软件技术先进、功能齐全、使用方便,其中重点污染源视频监控和实时数据叠加技术已经申请了国家专利。  运行稳定,数据质量稳定可靠  每个水站专配化验室,用于数据比对;技术人员经培训全部持证上岗;所有站点均严格按照规范进行验收,并每年对自动站运行情况进行考核评比。在重点污染源排污口和治理设施处分别安装了电信“全球眼”视频监控装置,防止企业故意不正常使用自动监测设备或者弄虚作假,确保系统稳定运行。  制度完善,运维工作规范有序  浙江省要求重点污染源在线监控系统由第三方进行维护,制定了《污染源在线监控系统运行管理实施细则》,进一步明确了企业(排污单位)、运行维护机构和环保部门三者的责任。环境质量测控系统的运维资金由各级财政共同承担,其中省级财政每年下拨1500万元运行维护资金;重点污染源在线监控系统的运行维护资金一般是由地方财政和企业共同承担。  目前,这套系统已经正式投入使用,运行稳定正常。环境质量自动监测数据已用于空气质量日报预报、河流交界断面水质状况评价等工作,为省内各地环境质量指标的考核提供依据。污染源监控系统已实现对重点排污企业全天候的实时监控,作为执法监管、排污收费、污染减排核算、环境统计、环境突发事件预测预警的重要依据。
  • 甘肃省生态环境厅关于进一步加强污染源自动监控工作的通知
    甘肃省生态环境厅关于进一步加强污染源自动监控工作的通知 各市(州)生态环境局、兰州市新区生态环境局、甘肃矿区环保局: 为深入贯彻落实习近平生态文明思想,扎实做好全省污染源自动监控设施建设工作,规范自动监控设备安装、联网、运维管理,依据《甘肃省污染源自动监控管理办法(试行)》规定,现将我省2021年污染源自动监控工作重点安排如下:一、2021年企业安装自动监测设备并联网 各市(州)梳理符合自动监控设备安装条件的单位名单,制定自动监控设备安装和联网工作计划,明确时间节点和责任人,各市(州)应于9月30日前完成新增重点排污单位、环评批复要求、排污许可要求及污水处理厂自动监控设施安装联网工作,对拒不按照要求建设安装联网自动监控设施或者逾期的,要依法予以处罚。二、废水污染源自动监控设施现场端升级改造 为响应《水污染源在线监测系统(CODCr、NH3-N等)安装技术规范》(HJ353-2019)等新发布四个技术规范,请各市(州)2021年底前完成辖区内废水重点排污单位自动监控设施升级改造,废水非重点排污单位自动监控设施现场端升级改造工作由各市(州)自行制定计划并组织实施。三、推进挥发性有机物(VOCS)综合治理 为贯彻落实《重点行业挥发性有机物综合治理方案》(环大气〔2019〕53号)要求,深入推进石化、有机化工、表面涂装、包装印刷、工业涂装等重点行业VOCS污染源排查和整治,对属于石化(石油炼制、石油化工、合成树脂、合成纤维、合成橡胶、聚氯乙烯、炼焦化工、化肥等)、有机化工(农药、涂料油墨胶粘剂、橡胶制品、塑料制品等)、表面涂装(电子产品、家具制造、工程机械、半导体等)、包装印刷(塑料软包装印刷、印铁制罐、玻璃制造、工业涂布等)、工业涂装(工程机械、汽车制造、家用电器、金属制品等)行业,尚未建设挥发性有机物自动监控设施,或有新增挥发性有机物集中式排放口尚未建设挥发性有机物自动监控设施的,部署建设挥发性有机物自动监控设施。四、建立环境执法与生态监测联动计划 依据《甘肃省污染源自动监控管理办法(试行)》规定,各级生态环境部门应建立环境执法与生态环境监测联动计划,市(州)生态环境部门组织对企业自动监测开展抽测,抽测废气、废水企业数量各不得低于辖区自动监测企业数量的10%。各市(州)针对污染物超标排放、自动监控设备比对监测(质控样比对)不合格的问题,存在违法行为的依法进行行政处罚,涉及设备老化、长期监测不准确的污染源自动监控设备及时要求企业排查问题更换设备,涉嫌犯罪的及时移交公安部门处理。五、开展重点污染源督办管理工作 依据《甘肃省污染源自动监测数据超标(异常)督办考核管理细则(试行)》,各市(州)应充分发挥“甘肃省重点污染源督办工作服务平台”功能,建立事前预警、事中调度、事后处理的污染源自动监控督办管理机制,强化企业主体责任,督促排污企业达标排放,各市(州)年度督办工作办结率应达到90%以上。六、不断提高自动监测数据质量 为适应“精准治污、科学治污、依法治污”和打赢打好污染防治攻坚战的新形势要求,不断提高排污单位自动监测数据质量,各市州自动监测数据年度传输有效率应保持在95%以上。 各市(州)生态环境部门应确保辖区内排污单位污染源自动监控设施能装尽装,能联尽联。各市州应于9月30日前完成新增重点排污单位及挥发性有机物排污单位自动监控安装联网工作。各市级生态环境主管部门须将重点排污单位及挥发性有机物排污单位的申请资料、核实批复资料、自动监控设备安装和联网工作计划于8月20日前报我厅,年底前报送重点排污单位自动监控安装联网、现场检查及重点排污单位环境信息公开年度工作总结。
  • 生态环境执法典型案例 干扰污染源自动监控数据
    1.习水桑德水务有限公司伪造监测数据 2021年4月,执法人员通过视频监控发现,习水桑德水务有限公司运营的习水县城污水处理厂自动监测设施频繁有工作人员进入,随后遵义市生态环境局执法人员对习水桑德水务有限公司运营的习水县城污水处理厂进行了现场调查,发现在2021年4月13日、18日等多个时段排水口氨氮在线数据异常,调查发现该污水处理厂工作人员在废水在线监控系统采样过程中,在氨氮在线分析仪采样系统内通过添加矿泉水稀释水样的方式干扰自动监测设施,造成氨氮在线数据异常。 针对习水桑德水务有限公司运营的习水县城污水处理厂存在的上述环境违法问题,遵义市生态环境局依法对该公司进行了查处:一是依法对该公司干扰自动监测设施、伪造监测数据的违法行为处以47万元的罚款。二是依法将案件移送给公安部门,现公安部门已批准逮捕嫌疑人赵兴平。2.贵州威宁排水工程有限公司在线监测数据造假案 2021年3月4日,贵州省环境监控中心对贵州排水工程有限公司(威宁县污水处理厂一二期)进行暗查,发现该厂通过更换COD、氨氮、总磷、总氮在线分析仪进水分析管采样位置,用装有提前配好的低浓度达标溶液替代污水处理厂排水口采集水样的方式弄虚作假,掩盖该污水处理厂外排污水超标排放的事实。 针对贵州排水工程有限公司(威宁县污水处理厂一二期)存在的上述环境违法问题,毕节市生态环境局依法对该公司进行了查处:一是依法对该公司线监测数据造假的违法行为处以11.8万元的罚款。二是依法将案件移送公安机关,对三位涉案人员分别处以10日、5日、5日的行政拘留。 3.龙里同壹水务有限公司干扰自动监测设施 2020年11月26日,贵州省生态环境厅联合黔南州生态环境局龙里分局龙里同壹水务有限公司进行执法检查,发现该污水处理厂通过将总磷自动监测设备的采样管从中间断开,将自动监控仪器的采样管插入一个装有提前配好的低浓度溶液的塑料瓶中的方式干扰自动监测设施。 针对龙里同壹水务有限公司存在的上述环境违法问题,黔南州生态环境局依法对该公司进行了查处:依法将案件移送公安机关,2021年3月30日,经人民法院一审判决,判决白某某、杨某某、陈某某3人均犯环境污染罪。其中,白某某被判处拘役六个月,缓刑一年,并处罚金五千元 杨某某、陈某某2人均被判处拘役三个月,缓刑六个月,并处罚金二千元。以上3人已认罪不上诉,该判决已生效。4.松桃三和锰业集团荣华有限责任公司伪造监测数据 2021年4月25日-4月28日,铜仁市生态环境局执法人员对松桃三和锰业集团荣华有限责任公司荣鑫渣库环境整治工程项目配套的渗滤液污水处理站开展执法检查,发现在2021年4月24日22时至凌晨期间,该公司荣鑫渣库污水处理站现场负责人员通过将山泉水水管接入荣鑫渣库污水处理站清水池内,人为稀释清水池中污水的氨氮浓度后直接通过排污口排放。 针对松桃三和锰业集团荣华有限责任公司存在的上述环境违法问题,铜仁市生态环境局依法对该公司进行了查处:一是依法对该公司以篡改、伪造监测数据的方式逃避监管排放污水的违法行为处以76万元的罚款。二是将案件移送公安机关,对该公司2名职工处以10日的行政拘留。5.凤冈县城北污水处理厂自动监测数据弄虚作假 2020年8月18日,省监控中心与遵义市生态环境局执法人员对凤冈县城北污水处理厂进行执法检查,通过现场调阅了排口氨氮自动监测设备6月至8月的历史数据和视频监控画面,发现该厂工作人员先后6次在氨氮自动监测数据超标以后就违法将自动监测设备采样系统接入提前配好的低浓度达标溶液的容器,造成该污水处理厂自动监测数据达标排放的假象。 针对凤冈县城北污水处理厂存在的上述环境违法问题,遵义市生态环境局依法对该公司进行了查处:一是依法对该污水处理厂自动监测数据弄虚作假的违法行为处以10万元的罚款。二是依法将案件移送公安机关,对该污水处理厂3名责任人处以10日的行政拘留。 6.毕节明钧玻璃股份有限公司自动监测数据弄虚作假 省环境监控中心通过平台巡查发现毕节明均玻璃(二线)的自动监测数据发现,在2020年7月14日10:30至12:30,该公司自动监测数据涉嫌弄虚作假。2020年7月15日下午,省环境监控中心对该公司进行突击执法检查,发现该公司故意用高浓度的一氧化氮标气按低浓度进行标定,导致烟气自动监测设备标准曲线参数成比例降低,自动监测设备测量的烟气一氧化氮浓度仅为实际的浓度的五分之一左右,掩盖排放口的氮氧化物高浓度或超标排放。 针对毕节明钧玻璃股份有限公司存在的上述环境违法问题,毕节市生态环境局依法对该公司进行了查处:一是依法对该公司自动监测数据弄虚作假的违法行为处以12万元的罚款。二是将案件移送公安机关,对两名涉案人员分别处以5日的行政拘留。7.松林污水处理厂自动监测数据弄虚作假 省环境监控中心通过贵州省污染源自动监控管理系统巡查发现,2020年7月13日02:00至09:00松林污水处理厂出口总氮数据持续超标,10:00后降低至10 mg/L以下并持续较低值的异常情况,调阅对应时段监控视频发现该厂人员存在把矿泉水杯放置到仪器里面情况,且放置前后监测数据有大的变动,自动监测数据涉嫌弄虚作假。监控中心于2020年7月14日对该企业进行突击执法检查,现场检查发现该污水处理厂通过将COD、氨氮、总磷、总氮4台自动监测设备的水样管断开,将连接到采样系统的水样管用夹子夹住,将自动监控仪器的采样管插入提前配好的低浓度溶液中的方式来弄虚作假。 针对松林污水处理厂存在的上述环境违法问题,毕节市生态环境局依法对该污水处理厂进行了查处:一是依法对该污水处理厂自动监测数据弄虚作假的违法行为处以10万元的罚款。二是将案件移送公安机关,对4名涉案人员分别处以5日的行政拘留。8.紫云县污水处理厂自动监测数据弄虚作假 省环境监控中心通过贵州省污染源自动监控管理系统巡查发现,2020年9月11日06:00至08:00紫云县污水处理厂出口总磷数据持续超标,09:00后降低至0.5 mg/L的排放限值以下,且相对于上一组小时均值变小近10倍 调阅对应时段视频发现该时段有工作人员把塑料水瓶放入总磷自动监测设备下方的机柜内,自动监测数据涉嫌弄虚作假。 监控中心于2020年9月16日对该厂进行突击执法检查,现场检查发现该厂更换总磷自动监测设备进水分析管采样位置、用一个装有提前配好的低浓度溶液的塑料瓶来代替排水口污水的方式弄虚作假。 针对紫云县污水处理厂存在的上述环境违法问题,安顺市生态环境局依法对该污水处理厂进行了查处:一是依法对该污水处理厂自动监测数据弄虚作假的违法行为处以33万元的罚款。二是将案件移送公安机关,对1名涉案人员处以5日的行政拘留。9.贵阳经开区两人排放、倾倒或者处置危险废物被判刑 2020年6月,贵阳市生态环境保护综合行政执法支队(经开区大队)接获线索,贵阳经济技术开发区辖区内周家村指甲组有人非法从事废机油经营活动,遂与贵阳市公安局经济技术开发区分局于2020年6月19日开展联合调查,发现陈某海、陈某父子二人违反国家规定,非法回收、处置危险废物。经查,其二人于贵阳市经开区周家村指甲组院子里贮存有废油桶、废乳化液约6吨 并且有部分废乳化液溢出到院子里泥土中,经称重共计8.46吨(其中:废矿物油5.94吨,其他沾染废物2.52吨)。 针对陈某海、陈某存在的上述环境违法问题,贵阳市生态环境局依法对其二人进行了查处。依法将案件移送公安机关,2020年11月9日,清镇市人民法院生态保护法庭判决陈某海10个月有期徒刑 陈某8个月有期徒刑。10.贵州长龙金属加工有限公司违法收集、储存、转移危险废物 2021年4月26日,有媒体报道了“贵州违规回收铅酸蓄电池乱象:一家回收工厂自行砍电池倒电解液”的网络舆情,根据省厅的统一安排,4月27日,黔南州生态环境局惠水分局会同黔南州生态环境保护综合行政执法支队、惠水县公安局对媒体反映的有关情况进行了全面排查,发现该公司长期违反危险废物转移联单制度的有关要求违法收集废旧铅酸蓄电池, 针对贵州长龙金属加工有限公司存在的上述违法问题,按照省厅的统一部署,黔南州生态环境局依法对该公司相关违法行为进行了查处:一是依法查封该公司的废铅酸蓄电池贮存仓库以及堆放的废铅酸蓄电池。二是依法对该公司未按照国家规定填写、运行危险废物电子或纸质转移联单的违法行为做出了82万元的罚款。11.贵州明辉再生资源综合利用有限公司私设暗管违法排污 2021年3月8日,黔东南州生态环境局台江分局执法人员对贵州明辉再生资源综合利用有限公司进行现场执法检查,发现该公司将裂解工段产生的含油废水经收集沉淀池通过私设的溢流口及暗管排至厂内生活污水检查井,直接排入厂区外园区生活污水管网,最终流入台江县第二污水处理工程革一厂区调节池,导致台江县第二污水处理工程革一厂区无法正常运行。 针对贵州明辉再生资源综合利用有限公司存在的上述环境违法问题,黔东南州生态环境局依法对该公司进行了查处:一是依法对该私设暗管违法排污的违法行为处以15万元的罚款。二是依法将该案移送公安机关,2021年5月27日,台江县公安局下达了该公司责任人杨某、金某分别实施5日的行政拘留处罚决定。12.贵州大龙铁合金集团南方硅业有限公司违法排污 贵州大龙铁合金集团南方硅业有限公司高碳铬铁生产项目在未取得排污许可证的情况下擅自于2021年2月17日恢复生产,且大气污染防治设施除尘器因损坏一直未运行。2021年4月6日,铜仁市生态环境局执法人员对贵州大龙铁合金集团南方硅业有限公司进行现场检查,发现该公司经营的高碳铬铁生产项目1号矿热炉处于生产状态,大气污染防治设施除尘器未运行,生产废气未经处理直接排放,未按照环评批复要求安装废气污染源在线监控设施 冷却水违反环评要求直接外排至舞阳河。 针对贵州大龙铁合金集团南方硅业有限公司存在的上述环境违法问题,铜仁市生态环境局依法对该公司进行了查处:一是依法对该公司未取得排污许可证擅自排污的违法行为作出20万元的罚款 对不正常运行污染防治设施的违法行为作出37万元的罚款 对违法直接排放冷却水的违法行为作出5.2万元的罚款 对未按照规定安装大气污染物排放自动监测设备的违法行为作出2万元的罚款(合计罚款64.2万元)。二是依法对该公司1号矿热炉予以查封(扣押),查封(扣押)期限为30日 三是责令该公司停产整治1个月。四是将该案移送公安机关实施治安处罚,公安机关已对2名直接责任人分别实施了5日的行政拘留。13.贵州黔越矿业有限公司违法排放污染物 2020年7月9日,黔西南州生态环境局贞丰分局执法人员对贵州黔越矿业有限公司贞丰县龙场镇勇兴煤矿整合矿井贞丰县三河煤矿进行现场检查,发现该矿建设有矿井废水处理设施一套,现场检查时处于运行状态,矿井废水处理设施初沉池池壁上开有一孔,部分矿井废水未经处理,直接经过该孔排入该矿工业广场下方的排洪沟内。 针对贵州黔越矿业有限公司存在的上述环境违法问题,黔西南州生态环境局依法对该公司进行了查处:一是依法对该公司处以20万元的罚款。二是将案件移送公安机关,公安机关对涉案人员处以5日的行政拘留处罚决定。
  • 罗湖推广油烟监测系统 650家企业在线监控
    一边是监测数据显示达标排放,一边是居高不下的信访投诉,深圳市环境执法人员面临着这样的管理难题。如何摆脱这一尴尬局面?深圳市罗湖区环境保护和水务局似乎找到了出路。  困境:油烟信访量占总量的35%,监管难度大  中国环境科学研究院研究表明,餐饮业油烟是深圳大气污染的主要污染源之一,餐饮业油烟占大气污染的比例接近8%。罗湖是深圳的餐饮娱乐旺区,第三产业比重高达92%。根据统计数据,2008年、2009年、2010年、2011年油烟污染投诉占辖区信访案件总量均接近35%。  一个不得不正视的问题是,餐饮业油烟监管存在一定难度。比如油烟处理设施维护不当,处理效果难以长久持续 油烟污染规模小、污染源分散,监管需投入的人力、物力大 油烟污染随时间变化大、动态范围广,对监管时效性要求高。  突围:大面积实时监测系统,突破监测困局  面对这些现实问题,罗湖区环境保护和水务局积极探索解决之道。首先,他们根据企业规模及污染物排放强度等因素,将辖区650家企业纳入在线监控范畴(其中餐饮企业550家,珠宝企业50家,汽修企业30家,医疗机构20家)。项目投入240多万元,于2012年4月建成。  系统主要设备由检测终端、无线传输和中心数据平台组成。其中检测终端分布在各排污企业污染处理设施的最终排污口,无线传输设备将检测终端采集的各排污企业的排污实时浓度值、污染处理设施运行状态参数24小时不间断传输到中心数据平台。中心数据平台记录、储存、分析各排污企业处理设施运行情况、油烟排放浓度,同时提供查询和预警。  “一旦数据显示超标,系统可自动发送短信到企业经营者手机,进行提醒和警告,以便及时处理,有效控制污染。”罗湖区环境保护和水务局相关负责人在介绍系统时强调。  据介绍,这个项目实现了两个率先:一是在国内率先实现餐饮业油烟排放浓度的在线监控 二是在国内率先实现大面积餐饮业油烟浓度在线监控。  简单地说,这个项目以较少的投入(项目总投入240多万),用较少的人力,实现对餐饮企业的较为有效的监管。油烟净化设施安装率、正常运行率、处理达标率均有提升。  待解:法律法规亟待完善,监测标准尚需修订  据了解,油烟监管问题不是深圳一地问题。因为,执法缺少法律法规支撑,监测数据不能作为处理依据。原来,目前存在与油烟有最直接关系的法规条框就是2000年修订《中华人民共和国大气污染防治法》第四十四条和2001年颁布的环境空气质量标准GB18483-2001《饮食业油烟排放标准》。  在实际工作中,GB18483-2001成为餐饮油烟相关的唯一可具体操作执行的国家层面的法律依据。因此,修订和新增相关法律法规的社会需求极其强烈。  油烟净化技术与其他技术不同,由于中式烹饪与西式烹饪油烟废气状况完全不同,西方国家对油烟净化技术的需求程度远远小于中国。因此国内的油烟净化开发生产没有国外先进技术可以借鉴,各种油烟净化技术几乎都是由本土发展起来的。  一个可喜的消息是,深圳市环境监测中心站的专家和油烟监测行业正在积极致力于标准的修订。
  • 重庆市成功研制农村饮用水安全在线监控系统
    近日,由重庆工业自动化仪表研究所承担的市级重大科技攻关项目&ldquo 农村饮用水安全在线监控系统关键技术研究及示范&rdquo 通过验收。  针对我国村镇集中供水的实际需要,重庆工业自动化仪表研究所联合重庆市应用技术有限公司合作开展技术攻关,从可靠、耐用、廉价、易控入手,成功研制自动投加絮凝剂、消毒剂的CIAIS-SK200自动控制器样机、CIAIS-SK201远程水泵控制器样机和CIAIS-WR200远程水位监测仪样机 成功开发饮用水水质安全在线监控及管理软件并在长寿区投入应用 建立饮用水水质安全在线监控信息管理示范平台和生活饮用水在线监督监测示范平台。该项目已获专利授权3项,软件著作权登记2项。通过项目的实施,为重庆博通水利信息网络有限公司等50多家企业和单位提供技术咨询和服务100多次,服务长寿区50个村镇约20000人次,产生直接经济效益300万元。项目成果的转化,直接向全市广大农村服务,对改善农村用水环境,提高农村人居生活质量和健康水平,促进新农村建设和民生工程建设具有重要意义。
  • ProLIMS发布实验室智能安防监控系统新品
    智能安防监控管理系统智能安防监控管理系统是基于物联网技术,引入模块化设计的思路,整合实验室各种环境安全监测技术于一体的智能管理平台。系统通过视频、门禁、环境监测参数等方式可以对实验室安全进行多维管控。系统可以设立权限管控区域,实时监控区域内人的行为和仪器设备状态,通过环境检测探头实时监控实验室环境状态并可以进行异常预警。系统基于Web架构,保证了管理的便捷性、数据的实时性。另外可为用户根据实验室具体情况提供个性化的特定服务。1 门禁控制★支持系统门禁系统权限分配;支持门禁出入信息的自动记录;支持门禁系统控制预约用户进入预约仪器所在的实验室;★支持系统远程控制门禁;★预约超时门禁未关报警功能。2 视频监控★支持进入实验室门禁启动时视频拍摄抓取功能;支持预设行为轨迹,异常行为报警;★支持系统内查看视频监控实时状态;支持系统查看视频监控录像回放资料。3房间监控参数:(1)气体监控:系统可以对实验室的常规气体(如:氧气 二氧化碳 氮气等)、有毒有害气体(如:一氧化碳,二氧化硫等)、挥发性有机物(甲苯,苯,总量)等做出监控。当其浓度超出预警标准值时,系统会根据用户设置的策略自动报警和预警。(2)消防监控:当检测到有烟雾时,进行本地报警和手机短信报警,及时通知相关人员对机房做出相应处理,保障中心机房服务器等设备的安全运转。(3)实验室防漏水监测:漏水监测是对实验室空调周围进行实时的水浸监测,一旦空调的加湿水跑水、冰凝水跑水、管道水漏水等水浸状况发生,系统可立即报警,严禁水浸状况危及实验室安全。(4)环境监控:温湿度:实验室温湿度关系到实验室的设备正常运行和人员的工作条件,对实验室的温湿度进行实时智能监控成为实验室综合监控的一部分,当实验室内温湿度超出预警温度值或告警温度值的持续时间超出设定值,即按用户设定策略进行本地报警和手机短信报警或者其他设置。空气洁净度:系统通过接入相应传感器来监控空气洁净度(如:PM2.5,PM10,灰尘,粉尘等)并实时显示。如超出规定限制会及时预警和报警。创新点:实验室智能安防监控系统属于广州为乐信息科技有限公司自主研发,拥有完全自主知识产权的软件产品。该系统可以实现视频监控,门禁监控,环境监控(温湿度/空气洁净度),烟雾报警,气体监控(有毒有害气体)等,并可以配合实验室其他管理系统实现限制性区域以及限制性区域内行为监控。目前该系统可以大幅提升实验室安防监控能力,降低安全风险。实验室智能安防监控系统
  • 油烟在线监控系统实现全面覆盖监控已成为必然趋势
    由于历史遗留问题,绝大多数城市餐饮服务业缺乏科学规划,布局不合理。一方面,城市建设大量开发了沿街商住楼,使得商住楼底层开设饭店现象随之产生 另一方面,许多餐馆建在居民密集区,与居民楼混为一体,房店功能不分,形成楼下开店、楼上住人的格局因此,油烟污染严重影响了居民的生活。特别是近年来随着经济的快速发展和城市化步伐的不断加快,第三产业在国民生产总值中的比重越来越大,增长速度越来越快,有关资料显示,除机动车尾气、工业废气外,餐饮行业对当地空气质量污染已上升到第三位。因此加强餐饮业油烟治理和日常运行管理,消除对周围居民的影响,已成为环保工作的一项迫在眉睫的大事。但是,由于餐饮企业数量多而且分散单靠人力是难以达到监控效果的,所以,利用科技手段建立油烟在线监控系统,实现全面覆盖监控已成为必然趋势。 北京博创诺信科技基于多年的数据采集经验,和对油烟监控系统的深入理解,经过大量的实验和测试,最终研制出了BCNX-YY08 油烟数据采集器,采用全新的技术,可检测油烟管 道内的油烟浓度、颗粒物、非甲烷总烃三项参数,并将数据信息进行实时上传,也可扩展监控风机及净化器的状态,在平台及设备液 晶屏上实时显示监测各项信息,为环保局提供了真实有效的油烟数据,从而真正达到油烟在线监控的目的。 BCNX-YY08 油烟数据采集器集成 GPRS 无线通信模块 (可选 CDMA),采用实时在线、自动上报的方式工作。采 集器带有油烟探头专用接口,用于连接探头。采集器通过控制探头采集油烟原始数据,读取探头采集到的原始数据,并进行综合计算,最终得到油烟浓度值。 由于油烟成分复杂,所以 BCNX-YY08 的油烟探头采用 了特殊的技术,能对多种油烟成分进行综合分析,从而得到最准确的油烟排放数据。 针对餐饮业油烟排放的实际情况和烟道的实际情况,以及实时采样的要求,我们将探头设计成安装方便,稳定可靠。由于油烟极易污染传感器,所以 BCNX-YY08 的探头采用了特殊的设计,能有效过滤大直径颗粒烟尘,使得探头能有效抵抗油烟污染,延长探头的使用寿命,设备的维护简单,维护成本低。
  • 网格化监控还需更精准
    ●国内许多地方对大气网格化监控做了有益尝试,但是还存在覆盖范围和监测要素不全、信息化水平不高、监测与监管结合不紧密、监测数据质量有待提高等问题,难以满足大气污染治理需求。●传感器方法微型站设备成本较低、用电方便(可利用太阳能供电)、易于安装,能满足当前市场需求,可实现广泛布点。但是,微型化设备采用传感器监测方法,其数据易发生漂移,造成数据不准确。因此,推动采用国标监测方法的小型化设备与微型站设备进行组合布点,数据统一联动校准,就显得尤为重要。◆本报记者张杰 通讯员马江红当前,我国多地区面临大气环境质量改善巨大压力。对此,业内人士表示,只有精确找到本地污染物排放来源,结合地理、气象、环境衍生等众多原因综合分析,才能实现大气污染治理精准决策和快速应对。“国内许多地方对大气网格化监控做了有益尝试,但是还存在覆盖范围和监测要素不全、信息化水平不高、监测与监管结合不紧密、监测数据质量有待提高等问题,难以满足大气污染治理需求。”在近日召开的大气污染防治网格化精准监控及管理支持系统技术交流会上,不少行业专家这样表示。参会代表普遍认为,应建设区域网格全覆盖,在线实时提供精准数据,具有完善的数据校正和质控体系,能够客观真实反映污染现状,以及综合分析污染原因的网格化监控体系。当前网格化监控仍存在局限性人工监管方式和视频网格化监控,很难提供精准监测数据;传统空气自动监测站占地面积比较大,成本及后期运营费用较高中国环境科学研究院副研究员高健表示,目前各地网格监控取得了很大进步,下一步需在精细化方面做出突破。据了解,很多区域采用人工监管方式,即每个区域都设一个“网格长”进行管理。比如兰州、天津等地按照属地管理、分级负责,条块结合、无缝对接的原则,构建责任到位、监管到位、落实到位、督导到位的常态化管理体系。以区县、街道、乡镇、社区(村)为单位,分级划定大气污染防治管理网格,构建全民参与的大气污染防治网格化管理体系。“这种办法使相关人员的责任更加明确,聚集更多的人参与大气污染防治,有良好效果。但人力成本高,缺少精准的分析数据,并且对突发性污染事件很难做出快速响应和提前预判。”高健认为。另外,有的地方采用视频网格化监控,以了解、掌握本区域大气污染现状、污染物来源等信息,具有直观、清晰特点。但也缺乏精准监测数据作为支撑,并且由于受光照、雨雾、摄像头低分辨率等因素的影响,只能对污染浓度较大的可见性污染源进行监控。此外,还有地方采取常规空气自动监测站加密的方式进行监控,对大气污染防治起到了一定的支撑作用。“但传统的空气自动监测站的站房用地面积比较大,加上其成本及后期运营费用较高,因此很难进行大面积、精密化布点, 并且‘说不清污染来源’的问题仍然存在。”与会的监测人员表示。记者了解到,还有国内部分区域布设上千个单一的颗粒物监测网格,可以对PM2.5进行实时监测,掌握大气中颗粒物的实时变化趋势。对此,业内人士认为,这种方法对SO2、NOx等某些特征污染物排放监控不到位,无法提供全面的污染数据。市场需要怎样的网格化监控系统?能够在线、实时提供精准监测数据,实现区域网格全覆盖,监测设备需严格质控,并需要充分的运营保障与会代表普遍认为,目前大气监控需要寻找新的出路和解决方案,突破技术瓶颈,实现精准监控,以满足大气污染治防治需求。“由于大气污染具有涉及区域范围较大、区域之间污染物传输量大、污染源种类多、污染因子相对复杂等特点,环境监管难度非常大。地方政府需要一套实时、在线监测系统进行实时监控,克服人工、视频等网格监管存在的数据支撑不足等问题。”提供在线监测数据,需要监测仪器,而传统的空气监测站存在成本较高、占地面积大等不足。据某监测站人员介绍,传感器方法微型站设备成本较低、用电方便(可利用太阳能供电)、易于安装,能满足当前市场需求,可实现广泛布点。但是,微型化设备采用传感器监测方法,其数据易发生漂移,造成数据不准确。“因此,推动采用国标监测方法的小型化设备与微型站设备进行组合布点,数据统一联动校准,就显得尤为重要。”“以上两种监测设备组合布点,可以提供准确数据,但必须对不同监测区域(比如重点工业企业、道路交通、建筑工地和区域边界等)进行不同搭配布点,并对区域环境进行细密网格布点,实现区域网格全覆盖,才能保证数据完整、科学。”相关监测人员表示。与会代表普遍强调,网格化监控系统不但要能提供精准数据,并且需要能够长期稳定提供。“由于有的监测设备可能受到干扰气体影响或因为环境差异造成数据偏差,因此建立健全完善、严谨、规范的环境质量校准体系是非常关键的。”“由于网格化监控区域大、点位相对较多,后期的质控运营显得尤为重要。一方面需要进行仪器运营,另一方面还需要进行数据综合分析。没有足够的人员、技术支撑,很难能满足运营的需要。”业内人士认为。网格化精准监控系统有哪些优势?空气质量微型站和小型站搭配,体积小巧、便于安装,可以实现大面积应用;将城市全部区域细分为无数网格监控区域,实现实时预警和靶向治理河北先河环保科技股份有限公司副总裁范朝在技术交流会上进行了技术分享。 他介绍说,结合传感器技术、云计算、大数据的综合应用,公司推出了空气质量微型站和空气质量小型站,可以露天使用,体积小巧、便于安装,可以实现大面积应用。在提供PM10、PM2.5、SO2、NO2、CO、O3等6项参数数据的基础上,可扩展对VOCs、氯气、硫化氢、氨气等多种特征污染物进行监测。这一系统目前在多地得到推广应用。如何实现监控网格全覆盖?范朝解释说,基于其科研团队分析,根据城市面积,公司将需要监控城市的全部区域细分为无数网格监控区域,布设覆盖整个区域的监测仪器设备,实时评估空气质量动态变化。并结合常规监测、立体监测、移动监测,达到真正意义的“区域网格全覆盖”。先河环保的技术人员介绍说,公司的网格化监控系统除了布设大面积常规网格,还针对特殊污染区域设有专门的加密网格。比如针对未纳入总量减排体系的烟粉尘、VOCs、氨等大气污染物排放,以及重点污染源,城市环境管理中料场、料堆无棚化,露天烧烤、秸秆焚烧,建筑工地、道路扬尘,城中村、棚户区、城乡接合部原煤散烧,工业园区无组织排放污染等进行整体的监控布点。据介绍,由于传感器方法的微型站成本较低,在先河环保的网格化监控系统得到大面积使用。为了保证微型站数据准确,在一定范围内安装采用国标法小型化监测设备进行配套,对数据比对、校准,并利用大数据平台进行分析解析,判断整体数据的准确性。“由于国标法监测设备使用的监测方法符合国家相关规定,其校准的数据可作为政府相关部门的执法依据。”技术人员表示。“把污染源纳入监测网络中,系统一旦发现污染源异常排放行为,会将异常报警信息自动通过电脑web端、手机APP端或微信平台,传送到相关责任单位,并且清晰标注污染源所在地理位置及污染物排放时间,监管部门可快速锁定污染源采取处理措施,并对处理效果进行实时监控” 范朝说。与会的环保部门工作人员表示,基于大数据应用系统的网格化精准监控,打通了在线监控与政府监管之间的通道。通过网格化监控系统,不仅能实时监控区域内主要污染物动态变化,快速捕捉污染源的异常排放行为并实时预警,而且通过数据分析,可甄别区域污染的主要来源,对其实现靶向治理。如何保证长期稳定提供精准数据?推出 “全生命周期质控管理”、“三级修正”和“四级校准”系统,解决气体干扰或环境差异造成微型站数据不准等问题;并提供充分的运营管理保障对这套网格化监控系统,与会人员普遍关心的是稳定性问题,能否长期稳定提供精准数据?对此,公司技术人员表示,由于微型站产品数据容易受到环境干扰,他们推出了“全生命周期质控管理”、“三级修正”和“四级校准”系统。通过三级数据修正,解决气体干扰或环境差异造成数据不准问题;通过全生命周期质控管理、四级校准质控,解决零点漂移、温度漂移、时间漂移等问题。通过采用组合布点方式,运用大数据平台进行数据质控,甄别设备异常,并与传递校准结合,实现系统智能校准。通过严格、科学的质控体系,保证系统数据准确性。范朝介绍说,一套严格的运营管理制度规范也非常关键。尤其针对微型站设备,在安装后需定期进行传递校准。为此,公司投入专项资金成立网格化监控数据中心,及时查看和管理每一个数据质量、每一个设备状态,为数据准确性及运营管理的及时、有效性提供有力支撑。另外,公司还设立产品比对、质控实验室,人员、车辆等保证充分,备品备件充足;专业的科学家团队,用于定期对数据进行深入解析、挖掘、分析,为政府环境保护工作提供支撑。高健认为,这种创新的网格化监控系统,结合传统方法、标准方法等多种方法,对目前的监测体系是很好的补充。有些参会人员则表示,希望相关企业能够控制设备投资和运行成本,让用户能够支付得起相应费用,以便系统发挥应有作用。
  • 网格化监控仍存局限性 还需精细化发展
    p  a style="color: rgb(255, 0, 0) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/application/SampleFilter-S02004-T000-1-1-1.html"span style="color: rgb(255, 0, 0) "strong空气/strong/span/a网格化监控系统在提供PM10、PM2.5、SO2、NO2、CO、O3等6项参数数据基础上,可扩展对VOCs、氯气、硫化氢、氨气等多种特征污染物进行监测。/pp  国内许多地方对大气网格化监控做了有益尝试,但是还存在覆盖范围和监测要素不全、信息化水平不高、监测与监管结合不紧密、监测数据质量有待提高等问题,难以满足大气污染治理需求。/pp  传感器方法微型站设备成本较低、用电方便(可利用太阳能供电)、易于安装,能满足当前市场需求,可实现广泛布点。但是,微型化设备采用传感器监测方法,其数据易发生漂移,造成数据不准确。因此,推动采用国标监测方法的小型化设备与微型站设备进行组合布点,数据统一联动校准,就显得尤为重要。/pp  当前,我国多地区面临大气环境质量改善巨大压力。对此,业内人士表示,只有精确找到本地污染物排放来源,结合地理、气象、环境衍生等众多原因综合分析,才能实现大气污染治理精准决策和快速应对。/pp  “国内许多地方对大气网格化监控做了有益尝试,但是还存在覆盖范围和监测要素不全、信息化水平不高、监测与监管结合不紧密、监测数据质量有待提高等问题,难以满足大气污染治理需求。”在近日召开的大气污染防治网格化精准监控及管理支持系统技术交流会上,不少行业专家这样表示。/pp  参会代表普遍认为,应建设区域网格全覆盖,在线实时提供精准数据,具有完善的数据校正和质控体系,能够客观真实反映污染现状,以及综合分析污染原因的网格化监控体系。/pp  strong当前网格化监控仍存在局限性/strong/pp  人工监管方式和视频网格化监控,很难提供精准监测数据 传统空气自动监测站占地面积比较大,成本及后期运营费用较高。/pp  中国环境科学研究院副研究员高健表示,目前各地网格监控取得了很大进步,下一步需在精细化方面做出突破。/pp  据了解,很多区域采用人工监管方式,即每个区域都设一个“网格长”进行管理。比如兰州、天津等地按照属地管理、分级负责,条块结合、无缝对接的原则,构建责任到位、监管到位、落实到位、督导到位的常态化管理体系。以区县、街道、乡镇、社区(村)为单位,分级划定大气污染防治管理网格,构建全民参与的大气污染防治网格化管理体系。/pp  “这种办法使相关人员的责任更加明确,聚集更多的人参与大气污染防治,有良好效果。但人力成本高,缺少精准的分析数据,并且对突发性污染事件很难做出快速响应和提前预判。”高健认为。/pp  另外,有的地方采用视频网格化监控,以了解、掌握本区域大气污染现状、污染物来源等信息,具有直观、清晰特点。但也缺乏精准监测数据作为支撑,并且由于受光照、雨雾、摄像头低分辨率等因素的影响,只能对污染浓度较大的可见性污染源进行监控。/pp  此外,还有地方采取常规空气自动监测站加密的方式进行监控,对大气污染防治起到了一定的支撑作用。“但传统的空气自动监测站的站房用地面积比较大,加上其成本及后期运营费用较高,因此很难进行大面积、精密化布点,并且‘说不清污染来源’的问题仍然存在。”与会的监测人员表示。/pp  据了解,还有国内部分区域布设上千个单一的颗粒物监测网格,可以对PM2.5进行实时监测,掌握大气中颗粒物的实时变化趋势。对此,业内人士认为,这种方法对SO2、NOx等某些特征污染物排放监控不到位,无法提供全面的污染数据。/pp  strong市场需要怎样的网格化监控系统?/strong/pp  能够在线、实时提供精准监测数据,实现区域网格全覆盖,监测设备需严格质控,并需要充分的运营保障/pp  与会代表普遍认为,目前大气监控需要寻找新的出路和解决方案,突破技术瓶颈,实现精准监控,以满足大气污染治防治需求。“由于大气污染具有涉及区域范围较大、区域之间污染物传输量大、污染源种类多、污染因子相对复杂等特点,环境监管难度非常大。地方政府需要一套实时、在线监测系统进行实时监控,克服人工、视频等网格监管存在的数据支撑不足等问题。”/pp  提供在线监测数据,需要监测仪器,而传统的空气监测站存在成本较高、占地面积大等不足。据某监测站人员介绍,传感器方法微型站设备成本较低、用电方便(可利用太阳能供电)、易于安装,能满足当前市场需求,可实现广泛布点。但是,微型化设备采用传感器监测方法,其数据易发生漂移,造成数据不准确。“因此,推动采用国标监测方法的小型化设备与微型站设备进行组合布点,数据统一联动校准,就显得尤为重要。”/pp  “以上两种监测设备组合布点,可以提供准确数据,但必须对不同监测区域(比如重点工业企业、道路交通、建筑工地和区域边界等)进行不同搭配布点,并对区域环境进行细密网格布点,实现区域网格全覆盖,才能保证数据完整、科学。”相关监测人员表示。/pp  与会代表普遍强调,网格化监控系统不但要能提供精准数据,并且需要能够长期稳定提供。“由于有的监测设备可能受到干扰气体影响或因为环境差异造成数据偏差,因此建立健全完善、严谨、规范的环境质量校准体系是非常关键的。”/pp  “由于网格化监控区域大、点位相对较多,后期的质控运营显得尤为重要。一方面需要进行仪器运营,另一方面还需要进行数据综合分析。没有足够的人员、技术支撑,很难能满足运营的需要。”业内人士认为。/pp  strong网格化精准监控系统有哪些优势?/strong/pp  空气质量微型站和小型站搭配,体积小巧、便于安装,可以实现大面积应用 将城市全部区域细分为无数网格监控区域,实现实时预警和靶向治理。/pp  河北先河环保科技股份有限公司副总裁范朝在技术交流会上进行了技术分享。他介绍说,结合传感器技术、云计算、大数据的综合应用,公司推出了空气质量微型站和空气质量小型站,可以露天使用,体积小巧、便于安装,可以实现大面积应用。在提供PM10、PM2.5、SO2、NO2、CO、O3等6项参数数据的基础上,可扩展对VOCs、氯气、硫化氢、氨气等多种特征污染物进行监测。这一系统目前在多地得到推广应用。/pp  如何实现监控网格全覆盖?范朝解释说,基于其科研团队分析,根据城市面积,公司将需要监控城市的全部区域细分为无数网格监控区域,布设覆盖整个区域的监测仪器设备,实时评估空气质量动态变化。并结合常规监测、立体监测、移动监测,达到真正意义的“区域网格全覆盖”。/pp  先河环保的技术人员介绍说,公司的网格化监控系统除了布设大面积常规网格,还针对特殊污染区域设有专门的加密网格。比如针对未纳入总量减排体系的烟粉尘、VOCs、氨等大气污染物排放,以及重点污染源,城市环境管理中料场、料堆无棚化,露天烧烤、秸秆焚烧,建筑工地、道路扬尘,城中村、棚户区、城乡接合部原煤散烧,工业园区无组织排放污染等进行整体的监控布点。/pp  据介绍,由于传感器方法的微型站成本较低,在先河环保的网格化监控系统得到大面积使用。为了保证微型站数据准确,在一定范围内安装采用国标法小型化监测设备进行配套,对数据比对、校准,并利用大数据平台进行分析解析,判断整体数据的准确性。“由于国标法监测设备使用的监测方法符合国家相关规定,其校准的数据可作为政府相关部门的执法依据。”技术人员表示。/pp  “把污染源纳入监测网络中,系统一旦发现污染源异常排放行为,会将异常报警信息自动通过电脑web端、手机APP端或微信平台,传送到相关责任单位,并且清晰标注污染源所在地理位置及污染物排放时间,监管部门可快速锁定污染源采取处理措施,并对处理效果进行实时监控”范朝说。/pp  与会的环保部门工作人员表示,基于大数据应用系统的网格化精准监控,打通了在线监控与政府监管之间的通道。通过网格化监控系统,不仅能实时监控区域内主要污染物动态变化,快速捕捉污染源的异常排放行为并实时预警,而且通过数据分析,可甄别区域污染的主要来源,对其实现靶向治理。/pp  strong如何保证长期稳定提供精准数据?/strong/pp  推出“全生命周期质控管理”、“三级修正”和“四级校准”系统,解决气体干扰或环境差异造成微型站数据不准等问题 并提供充分的运营管理保障。/pp  对这套网格化监控系统,与会人员普遍关心的是稳定性问题,能否长期稳定提供精准数据?/pp  对此,公司技术人员表示,由于微型站产品数据容易受到环境干扰,他们推出了“全生命周期质控管理”、“三级修正”和“四级校准”系统。通过三级数据修正,解决气体干扰或环境差异造成数据不准问题 通过全生命周期质控管理、四级校准质控,解决零点漂移、温度漂移、时间漂移等问题。/pp  通过采用组合布点方式,运用大数据平台进行数据质控,甄别设备异常,并与传递校准结合,实现系统智能校准。通过严格、科学的质控体系,保证系统数据准确性。/pp  范朝介绍说,一套严格的运营管理制度规范也非常关键。尤其针对微型站设备,在安装后需定期进行传递校准。为此,公司投入专项资金成立网格化监控数据中心,及时查看和管理每一个数据质量、每一个设备状态,为数据准确性及运营管理的及时、有效性提供有力支撑。/pp  另外,公司还设立产品比对、质控实验室,人员、车辆等保证充分,备品备件充足 专业的科学家团队,用于定期对数据进行深入解析、挖掘、分析,为政府环境保护工作提供支撑。/pp  高健认为,这种创新的网格化监控系统,结合传统方法、标准方法等多种方法,对目前的监测体系是很好的补充。/pp  有些参会人员则表示,希望相关企业能够控制设备投资和运行成本,让用户能够支付得起相应费用,以便系统发挥应有作用。/p
  • 2017年第十届中国(武汉)食品安全检测技术及监控管理高峰论坛日程安排
    p  “2017年第十届中国(武汉)食品安全检测技术及监控管理高峰论坛 ”定于2017年12月6日至8日在武汉隆重召开,日程安排如下:/pp style="text-align: center "   2017年第十届中国(武汉)食品安全检测技术及监控管理高峰论坛/pp style="text-align: center "  主持人:李峰/pp style="text-align: center "  手机号:15117960210(微信同号) /ptable border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 25px "td width="69" height="25" style="padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 黑体 font-size: 19px "日期/span/p/tdtd width="30" height="25" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 黑体 font-size: 19px "时 间/span/p/tdtd width="242" height="25" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 黑体 font-size: 19px "议 题/span/p/tdtd width="255" height="25" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 黑体 font-size: 19px "嘉 宾/span/p/td/trtr style="height: 57px "td width="69" height="57" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan="8"p style="text-align: center "span style="color: black font-family: 黑体 font-size: 16px "12/spanspan style="color: black font-family: 黑体 font-size: 16px "月7日上午/span/p/tdtd width="30" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "8:40-8:50/span/p/tdtd width="242" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "会议致辞/span/p/tdtd width="255" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "国联股份(832340) 童颜 总监br/ 武汉市农科院农业环境安全检测研究所 曾令文 所长、国家973首席科学家/span/p/td/trtr style="height: 56px "td width="102" height="56" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "8:50-9:30/span/p/tdtd width="229" height="56" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "核酸生物传感器及其在分子诊断中的应用/span/p/tdtd width="308" height="56" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "武汉市农科院农业环境安全检测研究所 曾令文 所长、国家973首席科学家/span/p/td/trtr style="height: 57px "td width="102" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "9:30-10:00/span/p/tdtd width="229" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "食品安全风险评估 /span/p/tdtd width="308" height="57" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "华中农业大学动物医学院 br/ 袁宗辉 教授、博士生导师 国家973首席科学家 /span/p/td/trtr style="height: 46px "td width="102" height="46" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "10:00-10:30/span/p/tdtd width="229" height="46" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "REIMS LiveID /spanspan style="color: black font-family: 黑体 font-size: 16px "保护食品供应链崭新解决方案 /span/p/tdtd width="308" height="46" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "沃特世科技(上海)有限公司br/ 吴学立 华南业务拓展部经理及质谱产品经理/span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "10:30-10:50/span/p/tdtd width="444" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "span style="color: black font-family: 黑体 font-size: 16px "茶歇/span/p/td/trtr style="height: 19px "td width="102" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "10:50-11:20/span/p/tdtd width="229" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "电化学检测技术在食品安全快检中的应用/span/p/tdtd width="308" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "武汉中科志康生物科技有限公司 br/ 曾令虎 总经理 /span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "11:20-11:50/span/p/tdtd width="229" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "食品中微量有害重金属镉,六价铬和铅三者的离子交换-光谱分析难度比较/span/p/tdtd width="308" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "国家质监总局《检验检疫科学》原责任副主编 周锦帆 教授/span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "11:50-12:00/span/p/tdtd width="229" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "合影留念/span/p/tdtd width="308" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "/td/trtr style="height: 38px "td width="69" height="38" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan="8"p style="text-align: center "span style="color: black font-family: 黑体 font-size: 16px "12/spanspan style="color: black font-family: 黑体 font-size: 16px "月7日下午/span/p/tdtd width="30" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "13:30-14:00/span/p/tdtd width="242" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "快速检测/高通量检测技术在食品安全风险监测中的作用——展望及挑战 /span/p/tdtd width="255" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "武汉市疾病预防控制中心环境健康与食品安全所 梁高道 副所长/span/p/td/trtr style="height: 19px "td width="102" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "14:00-14:30/span/p/tdtd width="229" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "现代仪器捍卫舌尖上的安全/span/p/tdtd width="308" height="19" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "北京市化工研究院 尹洧 研究员 /span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "14:30-15:00/span/p/tdtd width="229" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "创新型实验室废液废气处理及一体化食品前处理新方法 /span/p/tdtd width="308" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "郑州嘉禾仪器设备有限公司 胡自胜 技术总监 /span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "15:00-15:20/span/p/tdtd width="444" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "span style="color: black font-family: 黑体 font-size: 16px "茶歇/span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "15:20-15:50/span/p/tdtd width="229" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "基于微流控芯片技术的食品安全即时检测系统 /span/p/tdtd width="308" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "浙江清华长三角研究院 叶嘉明 博士 /span/p/td/trtr style="height: 52px "td width="102" height="52" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "15:50-16:20/span/p/tdtd width="229" height="52" nowrap="" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: left "span style="color: black font-family: 宋体 font-size: 16px "高通量样品浓缩装置在食品检测中的应用/span/p/tdtd width="308" height="52" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "天津恒奥科技发展有限公司 刘自国 总经理 /span/p/td/trtr style="height: 41px "td width="102" height="41" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "16:20-16:50/span/p/tdtd width="229" height="41" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "农产品安全与质量控制体系研究/span/p/tdtd width="308" height="41" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "江南大学分析食品安全学研究所沈晓芳 副教授/span/p/td/trtr style="height: 38px "td width="102" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "16:50-17:20/span/p/tdtd width="229" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "基于新型纳米材料的食源性致病菌检测监测技术研究/span/p/tdtd width="308" height="38" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "中国科学院过程工程研究所 生化工程国家重点实验室 周蕾 博士/span/p/td/trtr style="height: 50px "td width="69" height="50" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 黑体 font-size: 16px "12/spanspan style="color: black font-family: 黑体 font-size: 16px "月8日/span/p/tdtd width="30" height="50" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "pspan style="color: black font-family: 黑体 font-size: 16px "8:00-16:00/span/p/tdtd width="497" height="50" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: left "span style="color: black font-family: 黑体 font-size: 16px "早上7:50酒店门口集合 8:00准时出发去武汉市农业科学院环境与安全研究所、武汉中科志康生物科技有限公司参观 16:00返回酒店/span/p/td/tr/tbody/tablep/p
  • 北京启用施工工地扬尘在线监控系统
    p  日前,由北京市环保局购买第三方服务,北京城市建设研究发展促进会负责运营维护的北京市施工工地在线监控系统正式启用。/pp  为加强扬尘污染控制,推动空气质量持续改善,北京市环保局利用财政资金,通过公开招标方式安装及运行扬尘在线监测系统,对扬尘污染行为进行抓拍,实现24小时监控,及时掌握重点扬尘源单位的颗粒物浓度排放情况,督促扬尘源单位做好扬尘控制工作。截至目前,全市已在各区和北京经济技术开发区的多个重点工地安装监控,涉及水务类、交通类、房建和市政基础设施、城市副中心、新机场建设工地及预拌混凝土搅拌站等扬尘源单位。/pp  系统的监测内容主要包括:全天候监控扬尘源单位,在线巡检施工工地扬尘行为,及时提醒现场负责人及主管部门,编制数据报表, 合理布置监测点位,对重点扬尘源单位进行现场巡检督查等。该系统实时监测施工工地扬尘排放情况,通过视频摄像头对施工单位进行在线巡检并针对曾经被提醒过的工地和被通报的工地进行重点监测。发现扬尘问题后,值班员通过短信和电话提醒的方式,及时督促施工单位做好降尘措施。/pp  截至2018年1月,三个多月时间内,该系统电话互动次数761次,检查视频9072次,摘抄数值2991次,形成周、期报,空气重污染期间日报等各类报告23份。/pp  为加强扬尘污染控制,北京市环保局于1月18日印发的北京市大气污染综合治理领导小组办公室关于建筑施工工地扬尘在线监控情况相关通报要求,督促各区落实属地责任、加大督查检查力度,促使相关扬尘源单位对扬尘行为及时整改,促进建设施工单位行业自律。/p
  • 我国首个污染源监控计量流动实验室投入使用
    福建省计量院自主研发我国首个污染源监控计量流动实验室  环境安全计量检测更快捷  将标准气体灌装瓶等计量检测器具分门别类归置与取用,操作数据监测系统,将实时数据一一统计录入电脑,并通过电脑平台进行数据比对与分析,最终出具检定报告。上述的一系列动作都在一辆约为4平方米的汽车厢内完成。这是日前记者跟随福建省计量院的技术人员来到福州红庙岭垃圾焚烧发电厂,现场观摩这个全国首创的“污染源监控计量流动实验室”开展环境安全计量检测的一幕。当天现场雾气笼罩,还下起小雨,气候不佳,但这个在过去极易受到气象条件影响的技术检测工作却进行得非常顺利,比以往采用传统检测方式缩短了近一半时间。  据了解,该实验室由福建省计量院自主研发,以车载的形式,可为在线烟气连续监测系统、水质在线监测仪器提供“现场应急监测取证、快速分析、实时处理、数据同步远程传输”等计量检定,可有效解决计量检定受自然恶劣环境干扰影响的问题,从而保证烟气、水质等环境安全监控的准确、高效,其中,该流动实验室的图像采集和数据传输系统可为减排纠纷提供执法依据,从而为福建省加强对烟气排放监测、水质监测提供有力的技术支持。  此次检测对象——福州红庙岭垃圾焚烧发电厂每日要焚烧市区所产生的2/3左右(约2200多吨)的垃圾,是目前福建省最大的垃圾发电厂。“对垃圾焚烧发电所产生的污染物进行有效监控管理,是保障福州优良空气质量的一个重要方面。福建省计量院每年定期对我们厂用于监测二氧化硫、氮氧化物污染排放的检测仪器进行检定,促进了我们对监测设备日常的操作、管理与维护,尤其是这套‘移动式’检测车的出现,大大提升了检测的效率,为我们厂达到国家环保排放标准提供了更为强有力的计量技术保障。”该发电厂技术人员叶建雄如是说。  “‘污染物监控计量流动实验室’是目前国内唯一可以同时开展对在线烟气污染源二氧化硫和氮氧化物、水污染源化学需氧量和氨氮监测设备进行现场检定的流动实验室,其监测技术达到了国内先进水平。”福建省计量院副院长池辉向记者介绍道,自去年完成验收后,该实验室已成功应用于福建省重点监控的百家污染源排放企业300多套监控系统检定,为政府减排监控、企业减排增效提供了可靠的技术支撑。
  • 哈希水质在线实时监控系统应用在承德市自来水出厂水端口
    近日,哈希水质在线实时监控系统经过近一个月时间的安装、调试,现已正式在承德市自来水厂投入使用。它标志着该市供水可以实施五项水质自动监测、实时连续监测、超标报警,实现了每一分钟采集、上传、更新一组PH值、电导率、余氯、浊度、温度的监测数据,使市水务局指挥中心和市自来水供水调度中心第一时间掌握水质情况,确保安全供水。 承德市自来水六个水厂的出厂水端口均安装了美国哈希公司水质实时监测设施:在线浊度仪、数字化在线PH测定仪、在线余氯/二氧化氯测定仪、数字化在线电导率测定仪、在线温度测定计。此项系统是目前世界上最大的水质测试集团核心企业的产品,运用国内先进的无线传输技术,实时上传各项水质数据,先进的技术设备为实施在线实时综合监控提供了精良的设备保证。 另外,配合在线实时监测系统,承德市自来水公司还添置了哈希便携式水质毒性分析仪。一旦出现水质污染事故或投诉,就可以协同相关部门第一时间出现场,监测污染总量,立刻采取相应措施,起到了对水质异常预警报警的作用。 据悉,承德市执行的水质标准是2007年7月1日开始实施的《生活饮用水卫生标准》,为了提高实验室检测能力,更好地监测本地区水质状况,2008年自来水公司在举债经营的情况下,投入资金、引进人员,进行实验室能力建设,目前水质检测项目已扩至87项,不重复检测项目达到124 项。先进的实验室检测仪器可以准确的评判水质和进行深层次的水质研究,但其所报结果大多是静态的、非直接的现场数据,不能适时地反映供水过程中的水质状况,因此,在原水、出厂水及管网水配备在线水质检测仪器并实施在线监测,对供制水过程水质控制和指导生产工艺的改进很有必要,特别是环境污染已经成为我国目前所面临的重大问题之一,甚至对人民群众的生活饮用水带来了很大的威胁,因此,及时有效地发现有毒污染物的泄漏或排放有着十分重要的意义。
  • 《2021年北京市大气污染物排放自动监控计划》印发 涉306家
    北京市生态环境局印发了《2021年北京市大气污染物排放自动监控计划》,要求列入计划的大气环境重点排污单位应于2021年9月30日前,安装大气污染物排放自动监测设备,并与北京市生态环境局监控平台联网。监控的排放口与监控项目按照《北京市固定污染源自动监控管理办法》执行。从计划可以看出,此次计划涉及的企业以热力企业和热电企业为主,还包括垃圾焚烧企业、汽车企业、环保企业等。那么相应的需要安装的大气污染物排放自动监控系统应该包括CEMS和VOCs等设备。计划还规定,本计划中已纳入《2020年北京市大气污染物排放自动监控计划》的单位,安装联网时限以2020年的规定为准。目前,北京市大气污染物排放自动监测设备安装联网及运行管理依据的主要技术标准及规范包括九项:1.《固定污染源自动监控(监测)系统现场端建设技术规范》(T/CAEPI 11-2017)2.《固定污染源烟气排放过程(工况)监控系统安装及验收技术指南》(T/CAEPI 25-2020)3.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》(HJ 75-2017)4.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》(HJ 76-2017)5.《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)及其修改单6.《污染治理设施运行记录仪技术要求及检测方法》(HJ/T 378-2007)7.《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017)8.《污染源在线自动监控(监测)系统数据采集传输仪技术要求》(HJ 477-2009)9.《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ 1013-2018)
  • 聚光通过“国控重点污染源自动监控运行管理系统”试点验收
    8月18日,聚光科技杭州有限公司顺利通过“国控重点污染源自动监控运行管理系统”试点工作验收。  当日,国家环境保护部环境监察局处长杨子江等一行专家在聚光科技,对公司“国控重点污染源自动监控运行管理系统”试点工作进行检查,并现场召开验收会议。与会专家听取了聚光科技关于试点管理系统建设及运行情况的汇报,对整个系统的实施情况进行了验收评估。  扬子江处长及与会专家对该公司开展国控重点污染源自动监控运行管理系统应用试点工作取得的成效给予了肯定。与会专家认为,聚光科技在“国控重点污染源自动监控运行管理系统”建设中已经形成了一个规范的管理模式,系统总体建设水平在全国处于领先,验收组一致同意项目通过验收,并希望聚光科技在环保监控环节中发挥重要作用,努力为我国的环境保护事业做出更大的贡献。  本次验收组由环境保护部环境监察局、环境保护部科技司、监测司、中国环境监测总站、浙江省环保厅监测与信息处、杭州市环保局信息中心、浙江大学、浙江工业大学、浙江工商大学以及相关省、市环保厅(局)等单位和部门的领导、专家30余人组成。随后,各位领导及专家就"国控重点污染源自动监控运行管理系统"试点工作展开了广泛的研讨。
  • 针对核酸检测机构监管、封控管理等,国务院联防联控机制回应!
    今天下午,国务院联防联控机制召开新闻发布会。国家卫健委、国家疾控局相关负责人和中国疾控中心专家介绍落细落实防控措施、有效抓好疫情处置有关情况,并回答媒体提问。封控管理快封快解应解尽解国务院联防联控机制表示,当前,各地正在抓实抓细做好疫情防控。要根据检测、流调结果做好风险研判,精准判定风险区域;封控管理要快封快解应解尽解,减少因疫情给群众带来的不便;要科学分类收治阳性感染者,妥善做好儿童、老年人和有基础性疾病患者的收治、照护,促进患者早日康复;要持续整治层层加码,对群众的合理诉求要及时回应和解决。国家卫健委:对出具虚假核酸检测报告等严重违法行为坚决依法依规严肃处理国家卫生健康委医疗应急司司长郭燕红介绍,对于核酸检测工作,我们历来严格检测资质的准入和质量控制,不断地优化技术规范,同时重点加强对检测机构包括第三方检测机构的监管。今年以来,像北京、安徽合肥、河北石家庄、河南许昌、内蒙古等地方卫生行政部门都对检测机构存在违法违规问题进行了严肃的处罚,有的违法机构和个人,还被追究了刑事责任。下一步我们将持续加大监管力度,对于出具虚假检测报告这样的一些严重的违法行为,坚决依法依规严肃处理。国家疾控局回应网友反映层层加码问题国家疾控局监督一司司长程有全:当前,全国疫情总体呈较快发展态势,疫情波及面广。近期,群众反映的问题主要不是针对疫情防控本身,而是集中在防控措施简单化、层层加码、“一刀切”、忽视群众诉求等方面。当前,各地成立整治层层加码工作专班,联防联控机制综合组每天都在进行调度,回应各地网民反映的各种问题,并转交有关地方予以推动解决。国家卫健委:持续加大对核酸检测机构监管力度国家卫健委回应部分地区尝试居民核酸自采:从各地处置的数百起聚集性疫情实践来看,核酸检测起到了早发现阳性的作用。目前,各地疫情形势严峻复杂,核酸检测任务重,居民自采核酸是一种新的探索,但应注意规范性、有效性和安全性。对于常规核酸检测,我们严格检测资质准入和质量控制,不断优化技术规范,重点加强检测机构的监管。
  • 《污染源自动监控设施现场监督检查办法》解读
    重点污染源自动监控系统建设、运行管理和使用是实现污染减排的重要举措,是国家污染减排“三大体系”能力建设的重要内容。  为全面完成“十一五”主要污染物削减10%的约束性指标,2007年,由国务院批准,中央财政专门安排20亿元用于污染减排“三大体系”能力建设。其中相当部分用于“国控重点污染源自动监控能力建设项目”。2007年底至今,中央财政又安排了大量资金用于国控重点污染源的运行与管理。  □为何要编制《办法》?  截至目前,国控重点污染源自动监控建设期工作已基本完成。主要建设成果有:一是初步建成了部、省、市三级上下联通、纵向延伸、横向共享的环保物联网体系。污染源监控现场端建设超额完成任务。二是形成一套法律、法规、制度、规范和标准体系。三是培养和锻炼了一批管理和技术的专业型、复合型人才。四是带动了环保产业大发展和科技创新。五是促进了环境管理手段的创新。六是推动了全国环境保护信息化能力的提高。  但是,建成后的污染源自动监控系统应用和管理中仍然存在诸多问题,制约了自动监控手段发挥更大的作用。尤其是污染源自动监控现场端设备的运行管理中问题较多。例如,设备运行维护不到位、监控数据弄虚作假等,导致自动监控系统不但不能发挥应有的作用,甚至成为违法排污企业的挡箭牌。  因此,当前污染源自动监控工作的重点之一是进一步加强对自动监控设施现场的监督检查,建立国控污染源自动监控系统运行和工作管理制度,着力提高自动监控数据的应用程度。  为指导各级环保部门加强国控污染源自动监控现场执法监督检查工作,确保自动监控设备运行正常、稳定,数据真实准确,有必要制定《污染源自动监控设施现场监督检查办法》(以下简称《办法》)和《污染源自动监控设施现场监督检查技术指南》(以下简称《指南》)。  □《办法》有何特点?  《办法》有总则、监督管理、现场监督检查、罚则等多章。《办法》起草编制时,西北环保督查中心同步编制了《污染源自动监控设施现场监督检查技术指南》,《指南》将以《办法》配套文件形式下发。  污染源自动监控是新生事物,技术性、系统性强,并涉及环境监察、监测、信息等多个部门工作职责。污染源自动监控设施的建设出资有排污单位全资、政府全资、排污单位出资加政府补助、BOT等多种方式。  上述几方面原因造成污染源自动监控设施的产权、属性的复杂化。监管对象既有排污单位,还有设备供应商、集成商、运营商。《办法》力图在现有法律、法规、规定框架下,考虑地方工作的现状,主要规范现场监督检查的有关工作。  此外,污染源自动监控设施种类繁多且系统性强,为了使环保部门全面掌握分散安装在重点排污单位的污染源自动监控设施的基本情况,参照排污申报制度,《办法》规定了污染源自动监控设施的登记备案制度。  □现场监督检查由谁实施?  《办法》规范的是对污染源自动监控设施运行管理的现场执法检查,应由具有环境执法权的部门组织实施。  考虑到现场监督检查大部分地方是由环境监察机构具体负责,但同时山西、河南、内蒙古等设立独立监控中心专门负责污染源自动监控管理工作的实际情况,具体的监督检查主体表述为“由各级环境保护主管部门或者其委托的行使现场监督检查职责的机构”。  □《办法》怎样定位?  《办法》定位是基于现场环境监督检查人员对已安装污染源自动监控设施的企业进行的现场执法监督检查。  随《办法》同步编制《指南》,进一步细化了现场检查的内容和方法步骤,作为各级环保部门对重点污染源自动监控设施进行检查时的技术支撑。  《办法》和《污染源自动监控管理办法》(原环境保护总局令第28号)、《国家重点监控企业污染源自动监测数据有效性审核办法》、《污染源自动监控设施运行管理办法》等文件共同构成了污染源自动监控的工作管理体系。  其中,《污染源自动监控管理办法》作为环保部门开展污染源自动监控管理的总纲,《国家重点监控企业污染源自动监测数据有效性审核办法》规定了解决数据产生源有效性问题的程序,是环境监测机构开展有效性审核工作的依据。《污染源自动监控设施运行管理办法》约束了设施日常运行维护中各方责任,是运营管理的依据。而《办法》则是环境监督检查机构开展自动监控现场日常监督检查工作的依据。  □《办法》如何操作?  污染源自动监控设施现场监督检查是一项业务性较强的工作,涉及大量的仪器仪表、化学分析、计算机网络等专业知识。  从2005年起,国家出台了一系列污染源自动监控的相关制度、标准和规范。包括设备安装、校验、验收等各个方面。《办法》定位于执法人员的现场监督检查,突出的是可操作性。在检查内容和方法的设置上,力求深入浅出。  例如,关于检查频次问题,《办法》一是对检查频次的规定与现行检查频次保持一致,二是未强调污染源监控设施必须单独检查,而是提倡污染源自动监控设施的现场监督检查应与其他污染防治设施的现场检查相结合。  同时,鉴于快速监测仪在现场执法中发挥快速、便捷和初步定量分析的作用,可为判断企业排污行为提供第一手资料。考虑到现场环境执法的实际需要,现场快速监测是必要的,在《办法》中规定了“必要时,由环境监测机构进行监督性监测或者比对监测并出具监测结果”。  此外,在与《办法》配套的《指南》中,设计了现场检查表,涵盖了例行检查和重点检查的所有内容,且均只需填写是或否,力争在一定程度上用选择题的方式克服污染源自动监控设施现场监督检查专业性强、难于操作的问题。  当然,由于污染源自动监控设施具有多学科的集成性,《办法》配套的《指南》相对较专业,也对现场环境监督检查人员提出了考验。  □责任怎么追究?  由于各地污染源监控现场端仪器设备的出资、采购、产权归属、运维模式的多样化,把建设、运行管理的责任全部都推给排污单位是不合理的,但排污企业是污染产生的责任方,也是环境执法的对象,作为污染防治设施组成部分的污染源自动监控设施其运行状况与排污企业的管理、工作配合等有很大关系。按照《污染源自动监控管理办法》的精神,规定了排污单位的相关责任。  同时,《办法》按照《污染源自动监控管理办法》中污染源自动监控设备是“污染防治设施的组成部分”的规定,依据《水污染防治法》和《大气污染防治法》等法律法规的有关规定,将污染源自动监控设施视为污染防治设施,引申出《办法》中对于拒绝申报和谎报、拒绝检查、不正常使用、弄虚作假等违法行为的处罚规定。  对于弄虚作假行为的处罚,除一般性规定外,应该体现从严从重的原则。因此,《办法》试图建立市场退出机制,从各个方面进行递进式的约束,以达到杜绝弄虚作假的目的。  一是对于排污单位,强调其弄虚作假行为的责任主体,除罚款和通报批评并向社会公布外,如以弄虚作假行为掩盖超标或超总量排污的,还要限期治理和追缴排污费,并对其法人处以罚款,加大对弄虚作假行为的打击力度。  二是对于设施生产厂商,如协同或参与排污单位弄虚作假的,公开通报批评,对同类产品列为重点检查对象,同时重新启动该生产厂商已有各类污染源自动监控设施的国家适用性检测和环境保护产品认证审查程序。在未通过重新检测、审查前,暂停其环保产品认证标志使用,使其退出污染源自动监控设施生产、经销市场。  三是对于社会化运行单位,如协同或参与排污单位弄虚作假的,公开通报批评,对其负责运行管理的设施一律列为重点检查对象,同时重新启动对其有关资质的国家认证审查程序,在重新审查通过前,暂停其有关资质,使其退出运行市场。  四是对于地方政府和环保部门,经查实通过污染源自动监控设施弄虚作假获取总量减排核定削减量或有关环保考评优秀等次的,一律取消,使地方政府和环保部门加强对污染源自动监控设施的监管。
  • 公开征求|国家生态环境标准《污染物自动监控(监测)系统数据传输技术要求(征求意见稿)》意见
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国土壤污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国噪声污染防治法》《中华人民共和国固体废物污染环境防治法》,指导污染物自动监控(监测)系统的建设,规范数据传输,保证各种污染物监控(监测)仪器设备、传输网络和监管部门应用软件系统之间的连通,制定本标准。本标准首次发布于 2005 年,本次为第二次修订,是对《污染物在线自动监控(监测)系统数据传输标准》(HJ 212-2017)的修订。近年来,固定污染源烟气连续监测技术规范、水污染源在线监测技术规范均进行了修订, 生活垃圾焚烧发电、火电、水泥、造纸等行业已出台了关于自动监测数据的标记规则和管理 规定,生态环境部也已制定发布了《污染物排放自动监测设备标记规则》,对自动监测数据 有效性判别和认定做出了规定,为管理部门运用自动监测数据、实现非现场监管执法、提高 监管执法效能、提高自动监测数据有效性方面奠定了基础。由于《污染物在线自动监控(监测)系统数据传输标准》(HJ 212—2017)适用范围越 来越广,其产生的影响也越来越大,污染物排放过程监控逐渐的被重视。随着环境监管的深 入,排污单位在生产和治理过程中的用电监控的重要性日益显现。由此,新标准将排污单位 生产设施及污染治理设施用电监控系统纳入标准,同时也与即将出台的生活垃圾焚烧发电、 火电、水泥、造纸行业的关键工况参数与用电监控的相关技术规范相衔接,为行业管理奠定 基础。新标准对适用范围进行了扩充,适用于直接或间接实施环境监测或污染源监控(监测)的各类仪器仪表数据传输。为切实加强标准的实施,以促进环境监控(监测)及环保物联网的发展,需要从系统构 成角度和技术实现角度两方面入手。系统的各部分设计、生产、使用单位都需要充分理解并在实际工作中运用标准,使标准发挥出应有的作用。附件:征求意见单位名单.pdf污染物自动监控(监测)系统数据传输技术要求(征求意见稿).pdf《污染物自动监控(监测)系统数据传输技术要求(征求意见稿)》编制说明.pdf反馈意见建议格式.doc
  • 智易时代发布车载OBD远程在线监控终端新品
    车载OBD远程在线监控终端 ZWIN-OBD-06是一款重型柴油车OBD远程排放管理终端。采用车规级设计,集J1939 CAN总线协议数据、国密SM2加密、4G蜂窝网络、GPS+北斗卫星定位、G-SENSOR及FLASH存储等功能为一体,安装应用在重型车上用于采集、存储和传输车辆OBD信息和发动机排放数据。集合车辆0BD总线数据采集、位置信息、无线通讯技术,适配国内部分国三及所有国四以上柴油车品牌。通过智能自动适配技术无需对不同品牌车辆进行协议的破解及适配,可以高效便捷完成项目实施。并且通过行业应用案例的检验,符合政府和行业对柴油商用车辆在大气环境治理、能耗统计、安全监管、时效提升等项目的需求。建立全覆盖的重型货车在线监控网络,加强实际道路监测,实施高排放柴油车技术改造。具体措施包括:规划建设全国重型机动车污染在线监控平台,实现全覆盖、全天候的排放监控功能 对重型柴油车开展精细化管理,建立一车一档的环保电子档案 以车载诊断系统(OBD)远程监控为技术手段,严格监控车辆实际排放。了解车辆运行态势,为污染源头地区实施应急措施提供技术保障,为京津冀、汾渭平原、长三角地区等重度污染区域和项目区域等其他区域的尾气污染源排放的治理提供数据支撑。 1.2产品规格产品名称:车载OBD远程在线监控终端产品型号:ZWIN-OBD-06产品规格:L130.0*W78.0*H30.5MM执行标准:GB17691-2018、GB/T32960.2-2016 1.3产品实物图 1.4产品设计原则①先进性和实用性使用先进、实用和具有良好发展前景的技术,使得各个子系统具有较长的生命周期,不盲目追求档次,既能满足当前的需求,又能适应未来的发展。②安全性和稳定性高效稳定的系统,能提供全年365天,一天24小时的不停顿运作。对于安装的车载远程通讯装置能适应严格的工作环境,以确保系统稳定性。③实时性和高效性设备和终端必须反应快速,充分配合实时性的需求。注重信息共享,提高整个系统高效率传输与运行能力。提供与各种外界系统的通信功能,确保信息的完整性并充分利用在整体系统的运作上。提供易于使用的数据存储功能,满足记录至少7天的数据要求,网络恢复时应自动上传。④可扩展性把系统有机结合起来,充分考虑将来需求的发展空间,所提供的技术将充分配合未来功能及扩充项目的需求,以避免将来重复的投资。标准化、结构化、模块化的设计思想贯彻始终,奠定了系统开放性、可扩展性、可维护性、可靠性和经济性的基础。以保证我们的硬件设备端可以满足未来拓展需求,对于机动车污染防治工作起到推进作用。 创新点:ZWIN-OBD-06是一款重型柴油车OBD远程排放管理终端,安装应用在重型车上用于采集、存储和传输车辆 OBD信息和发动机排放数据。当车载终端采集到车辆状况信息后将其上传至服务器,管理员登录相应平台,可实现远程车辆监控、报警提醒,异常情况远程抓获和车辆行车日志等广泛功能,极大的节省了人力、物力。车载OBD远程在线监控终端
  • 污染排放过程(工况)在线监控系统软件
    p  strong系统概述/strong/pp  污染源排放过程(工况)监控系统通过对企业生产数据、治理设施运行状态数据、污染排放数据的采集,利用虚拟仿真、智能模型分析等技术实现对污染排放的全过程监管,帮助环境监察部门解决偷排漏排,设施不正常运行,数据造假等问题。/pp  strong系统界面/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/34afa10d-48c1-463c-af4c-969913e5a750.jpg" title="信息看板_副本.jpg"//pp style="text-align: center "图 信息看板/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/45b57a9d-c2b3-495c-b72f-ae0b70adb0e6.jpg" title="移动终端_副本1.jpg"//pp style="text-align: center "图 工况监控移动终端/p
  • 环保产业协会开展环境自动监控系统运维能力评价
    随着国家对环境的重视,我国环境监测网络也在不断完善,如我国338市1436监测点已全部开展空气质量新标准监测,因此环境自动监控系统的运行维护市场也在不断扩张,那么各公司提供的运维服务如何?如何引导此市场的健康发展?为此,中国环境保护产业协会日前发布了《自动监控系统运行服务能力专项评价指南(试行)》的通知。全文如下:  关于印发《自动监控系统运行服务能力专项评价指南(试行)》的通知  中环协〔2015〕3号  各省、自治区、直辖市环境保护产业协会:  根据《国务院关于促进市场公平竞争维护市场正常秩序的若干意见》中&ldquo 发挥行业协会商会的自律作用&rdquo 的相关精神,引导自动监控系统运行服务业健康发展,规范自动监控系统运行服务能力评价工作,中国环境保护产业协会制定了《自动监控系统运行服务能力专项评价指南(试行)》及其配套文件(相关文件可登录http://www.caepi.org.cn/进行查询下载),现予印发,自2015年1月29日起施行。  中国环境保护产业协会  2015年1月29日  自动监控系统运行服务能力专项评价指南(试行)  第一章总则  第一条为了贯彻《国务院关于促进市场公平竞争维护市场正常秩序的若干意见》中关于&ldquo 发挥行业协会商会的自律作用&rdquo 的精神,加强行业自律,提高自动监控系统运行管理水平,引导自动监控系统运行服务业健康发展,根据《中国环境保护产业协会章程》,制定本指南。  本指南提出了自动监控系统运行服务能力专项评价(以下简称专项评价)遵循的原则和工作内容,供各相关方采用。  第二条本指南所称自动监控系统运行服务,是指从事环境质量和污染源自动监控系统运行维护的社会化有偿服务活动。  第三条专项评价是针对会员单位开展的、立足于行业自律的自愿性第三方评价活动,是按照统一的指标和程序,对相关单位提供自动监控系统运行服务的能力进行评价,并将评价结果向社会公开,供公众监督和有关部门、机构及企事业单位采用。  第四条专项评价包括自动监控(水)和自动监控(气)两类,每类分为一级和二级两个级别。  第五条中国环境保护产业协会对专项评价实行统一管理,会同省级环境保护产业协会共同组织实施。  第六条中国环境保护产业协会统一环境污染治理设施现场运行人员培训教材,组织考试并核发考试合格证书。各省级环境保护产业协会负责本地区培训工作的具体实施。  第二章评价条件和指标  第七条申请专项评价的单位,应具备以下条件:  (一)环境保护产业协会会员   (二)具有与其运行服务活动相适应的质量管理体系、检测能力、专业人员配备和运行实践   (三)从事自动监控系统运行服务的主要现场运行人员,应参加专业化的培训与考试,经考试合格,并接受继续教育。  第八条申请专项评价的单位,应提交以下材料:  (一)自动监控系统运行服务能力专项评价申请表   (二)企业法人营业执照复印件或事业单位法人证书复印件   (三)中国环境保护产业协会会员证书复印件   (四)运行服务质量保证体系文件   (五)检测能力的证明   (六)各技术人员的专业技术资格证书复印件、主要现场运行人员的环境污染治理设施运行人员考试合格证书复印件,申请单位与上述人员签订的劳动合同复印件、社会保险基金管理机构出具的本单位为上述人员缴纳社会保险费用的证明   (七)运行服务业绩实例,包括委托运行合同、用户意见、比对监测报告,以及所有运行项目的清单   (八)上一年度本单位财务状况报告或者其他资信证明   (九)能够证明申请单位运行服务能力的其他材料。  第九条专项评价的内容,包括运行质量管理、检测能力、运行专业人员和运行实践四个方面。具体评价指标见《自动监控系统运行服务能力专项评价指标》。  第十条评价方式:根据申请单位的申报材料按照评价程序,对专项评价指标进行评价,得出评价结果,确定申请单位的自动监控系统运行服务能力级别。  第三章评价程序  第十一条申请单位应将申报材料递交单位登记地省级环境保护产业协会。省级环境保护产业协会进行初审,符合各级评价指标要求的,签署意见后提交中国环境保护产业协会。不符合评价指标要求的,将原因告知申请单位。  第十二条中国环境保护产业协会对各省级环境保护产业协会递交的申报材料组织型式审查。对通过型式审查的单位,安排专家审查 对未通过型式审查的单位,将名单及原因告知省级环境保护产业协会。  第十三条专家审查分为技术审查和现场核查两个步骤。  技术审查重点是根据申报材料,按照评价指标给出建议的评价结果。对建议的评价结果为一级和二级的单位安排现场核查。现场核查重点是申报材料的真实性、质量管理体系建立和保持情况,以及运行项目(从运行服务业绩中随机抽取)现场的运行情况。  现场核查应成立现场核查组,邀请技术专家及相关方参与,并形成现场核查报告。  中国环境保护产业协会应将专家审查未达到一级和二级评价指标要求的单位及原因告知省级环境保护产业协会。  第十四条中国环境保护产业协会对评价结果为一级或二级的单位在中国环境保护产业协会网站进行公示,核发证书 对未达到一级或二级评价指标的单位,将名单及原因告知省级环境保护产业协会。  第四章证书  第十五条自动监控系统运行服务能力专项评价证书采用统一样式、统一编号,包括下列主要内容:  (一)单位名称、法定代表人、工商注册登记或者事业单位登记地址   (二)运行服务能力类别与级别   (三)有效期限   (四)发证日期和证书编号   (五)发证单位名称和印章。  第十六条自动监控系统运行服务能力专项评价证书有效期为三年。  第十七条持证单位分立、合并,或者变更单位名称、法定代表人、登记地址等事项,需要变更证书的,向原发证单位提交下列申请材料:  (一)自动监控系统运行服务能力专项评价证书变更申请表   (二)变更后的营业执照复印件或事业单位法人证书复印件   (三)原发证单位授予的自动监控系统运行服务能力专项评价证书   (四)单位发生分立、合并的,还应提供技术人员专业技术资格证书复印件、现场运行人员考试合格证书复印件、劳动合同及社会保险基金管理机构出具的本单位为上述人员缴纳社会保险费用的证明。  第五章证书有效性保持  第十八条通常情况下,对持证单位从首次颁发证书之日起,进行年度审查。年度审查的重点是确认持证单位持续符合证书中的运行服务类别和级别要求,以及持证期间运行项目的情况。  第十九条持证单位应在每年3月底前,对上一年所提供的自动监控系统运行服务情况进行年度评估,填写《自动监控系统运行服务情况年度报告表》,提交给本单位登记地的省级环境保护产业协会。  第二十条中国环境保护产业协会总体负责专项评价的年度审查,根据情况可委托省级环境保护产业协会负责对所在地登记的持证单位进行年度审查。必要时,中国环境保护产业协会可根据持证单位上一年的运行服务情况,抽查部分持证单位的运行项目现场,最终根据自动监控系统运行服务情况年度报告表和现场抽查情况对持证单位做出年审结论,并予以公告。  第二十一条持证单位应向发证单位提交自律承诺书,在运行期间严格遵守国家环境保护等相关规定,保证自动监控系统正常运行,遵守运行合同约定。  第二十二条持证单位有下列情节之一的,一经核实,发证单位可根据情节轻重,进行公开通报或取消证书资格。  (一)不按照要求年审或年审不合格的   (二)在取得证书和年审过程中徇私舞弊、弄虚作假的   (三)出卖、转让、出借、涂改、伪造证书的   (四)因持证单位原因造成所承担的自动监控系统出现重大事故的   (五)被环境保护行政主管部门通报或处罚的   (六)持证单位分立、合并,技术人员、现场运行人员等影响运行服务能力的条件发生较大变化未及时申请变更的   (七)其他违反法律、法规的行为。  被取消证书资格的单位,自证书资格取消之日起,发证单位两年内不接受重新申请。  第二十三条中国环境保护产业协会将设置信息公开平台,及时公开持证单位证书保持等相关情况,提供公众投诉和监督平台。  第六章评价收费  第二十四条专项评价工作不向申请单位收取评价费。评价所需的专家评审、证书制作、申报系统开发维护费用由发证单位支出。现场核查产生的费用由申请单位承担。  第七章监督管理  第二十五条专项评价工作应严格遵守国家有关法律、法规、政策和本指南的规定,保证专项评价结果的公正性、科学性、一致性和完整性 严格执行自律机制,设立并公布投诉渠道,接受会员和社会公众的质询和监督,认真对待和处理能力评价过程中的投诉和反馈信息。  第二十六条中国环境保护产业协会和省级环境保护产业协会参与专项评价的相关工作人员和专家应公正廉明、实事求是地开展工作,有义务为申请单位保守商业和技术秘密,不得随意修改申请单位评价级别,不得纵容申请单位提供虚假信息。对在专项评价工作中有违规行为的,将视其严重程度给予警告、通报批评、取消其参加专项评价工作资格等处理。  第二十七条申请单位在申请专项评价过程中,不得有隐瞒事实、弄虚作假、行贿等行为。如发现有上述行为的,取消其参评资格 对已获得证书的,取消其证书并予以公告,且两年内不得重新申请。因虚假申报对社会公众利益造成损害或引发纠纷的,由申请单位及其有关责任人承担相关责任。  第二十八条申请专项评价的单位,经过专项评价获得证书后,应信守承诺并接受发证单位和社会监督。  第八章附则  第二十九条本指南由中国环境保护产业协会负责解释。  第三十条本指南自发布之日起实施。
  • “1831”生态环境监控系统 江苏启动“智慧环保”建设
    在江苏省生态环境监控中心监控大屏上,全省重点污染源的基本信息、生产工艺、污染治理设施运行情况、排污状况、排污数据等信息一览无余。   “十一五”以来,江苏省环保厅在信息化运用方面不断改革探索创新,持续加大对环境监测工作的投入,建立起利用大数据和云计算等先进技术的“1831”生态环境监控系统。   在大数据时代,如何让“智慧”重新定义“环保”,江苏环保人有着自己的考量。   让污染无所遁形   数据不能共享是当前实现环保智慧化管理的最大问题,“1831”系统可以说是解决这个问题的一种方式。   利用大数据和云计算等技术手段,“1831”系统可将水、声、辐射、汽车尾气等和环保有关的数据集成在地理信息系统中,真正实现了平台统一、系统集成、网络整合、数据集中、硬件集群、软件管理、安全提升、服务保障等多种功能。   “目前‘1831’系统实现了‘一网尽收,内外两分;一八三一,工作随行’。”江苏省生态环境监控中心副主任黎刚告诉记者,江苏省环保专用网络以江苏省环保厅为中心,连接13个省辖市环保局和110个区(县)环保局,共127条线路,使用数字专线连接,省市一级的带宽为100M和20M,市县一级带宽为20M和10M,与互联网物理隔离。   江苏省环保厅结合环境管理各项业务需求,还在“1831”系统平台上开发了众多环保工作相关应用。“信息强环保”在各部门的日常工作中得到了充分体现。   “过去危险废物的转移全依靠纸质联单记录,监管上还存在一些漏洞。”江苏省固体废物监督管理中心副主任余令玮告诉记者,如今,依托于“1831”系统,全省万余家产废、经营企业进行危废产品的生产、转移、处置、贮存等信息都可实现网上申报,全省22家危废企业的工况信息可以进行实时视频监控。   今年6月,江苏环保厅与江苏省交通厅架设了专线,实现了危险废物管理信息系统和车辆运输管理系统之间的信息互通,对运输企业、运输车辆、运输人员以及运输车辆定位信息进行数据共享,对危险废物转移过程中运输车辆的运行轨迹进行实时追踪。   改变环境管理思维   建立了庞大的数据信息系统,为的是提供更好的服务。信息化运用逐渐改变了江苏省环保部门的环境管理思维。   “为方便公众随时查看PM2.5的数值,我们将‘1831’系统中的某些模块移植到了江苏环保网等互联网渠道向公众发布。”江苏省生态环境监控中心信息部的徐洁表示,如果想随时随地掌握身边PM2.5的变化趋势,只需在手机上下载名为“我的PM2.5”的APP,就可通过其了解各个监测点位的PM2.5数据。   在企业环保信用管理方面,“1831”也发挥着重要的“把关”作用。   据了解,江苏省环保厅依托“1831”系统建立了省、市、县三级环保部门对企业环保信用评价的审核制度和直报系统。在江苏省企业环保信用管理系统里,各级管理人员可以看见辖区内所有参与信用评价管理的企业信息。   为了使企业环保信用评价信息能够服务于工商审批和绿色贷款,江苏省环保厅专门与江苏省公共信用信息中心进行数据对接,梳理全省约150万家企业的基本信息,并录入信用评价系统企业库;整理了全省914家国控重点企业名单并加入参评企业库,用于辅助环保信用评价工作。   如果企业在生产中出现环境问题,就会被环保部门在环保信用管理系统中记上一笔,环境问题一多,企业环保信用等级就会下降,这在无形中倒逼企业加强环保自律。   “授信审批贷款时,企业环保信用等级是我们的前置条件,如果某企业环保信用评价结果为红色、黑色,就会被直接拒绝。”工商银行江苏省分行授信审批中心工作人员告诉记者。   建设“智慧环保”工程   如今,“1831”已走过4个年头,大数据等技术的发展给环保产业带来了新的机遇,也给环保工作带来了新的工作思路和工作方法。对于“1831”系统未来的发展,江苏省环保厅又有了新的构想。   “目前的‘1831’系统,实现了一数一源、一源多用、信息共享、部门协同,改变了过去多数多源、多源并用、信息不共享、部门难协同的现状。”黎刚表示,江苏正在启动“智慧环保”建设工程,积极利用信息技术化解环保工作面临的被动困境,探索环保管理工作从重点治理向全面管理转变、从孤军奋战向全社会共同治污转变、从被动监管向主动服务转变的路径。   谈及“智慧环保”工程的建设目标,江苏省环保厅总工程师刘建琳表示,“智慧环保”工程将致力于强化跨部门、跨区域的政务协作,完善发改、工商、税务、交通、银行、环保、公安等部门工作机制,推进政府管理部门信息互换、监管互认、执法互助,鼓励跨部门多维度大数据应用示范,对经济社会发展实施智能调控和风险预警,确保经济安全、生态安全、社会公共安全。   据了解,“智慧环保”建设工程将历时两年,分9个子工程。其核心工程当属环保大数据云计算中心建设工程,将研发利用大数据技术的环境保护信息采集、传输、处理一体化平台,利用大数据对采集的企业排污数据真实性进行审计。   预测性分析能力是大数据分析最重要的应用领域。从大量复杂的数据中挖掘出规律,建立起科学的事件模型,将新的数据代入模型,就可以预测事件的未来走向。   徐洁说:“‘智慧环保’工程未来将起到辅助环保决策的作用,在‘1831’系统的基础上,江苏将整合相关信息资源,搭建环境影响评价会商与信息公开系统,结合水、气、声环境影响预测模型,实现项目信息、环境准入、方案比选、环境影响等建设项目可行性会商功能。”   此外,在“智慧环保”工程中,江苏以洪泽湖湿地为试点,建设具有洪泽湖湿地特色的生态信息服务平台。通过平台,有关部门可以实时掌握湿地自然生态系统的动态变化及趋势,为湿地的保护和决策提供科学依据,同时为依法查处非法狩猎、捕捞等行为提供手段与依据。   刘建琳表示,在“智慧环保”工程 的带动下,江苏将进一步建设和完善环保公共服务平台,服务民生、改善环境。  来源:中国环境报
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制