当前位置: 仪器信息网 > 行业主题 > >

红外单频单脉冲激光器

仪器信息网红外单频单脉冲激光器专题为您提供2024年最新红外单频单脉冲激光器价格报价、厂家品牌的相关信息, 包括红外单频单脉冲激光器参数、型号等,不管是国产,还是进口品牌的红外单频单脉冲激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外单频单脉冲激光器相关的耗材配件、试剂标物,还有红外单频单脉冲激光器相关的最新资讯、资料,以及红外单频单脉冲激光器相关的解决方案。

红外单频单脉冲激光器相关的资讯

  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展  我国飞秒脉冲激光参数准确度国际领先  日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。  该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。  据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 上海光源实现储存环单束团流强高于20 mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20 mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。 图1. 超导三次谐波腔的安装、就位和带束调试图2. 单脉冲X射线超快成像在激光加载后不同时刻(15 μs、20 μs、30 μs、40 μs、50 μs)获得的水中气泡的瞬态图像并观测到气泡中的射流现象上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2 K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。图3. 快速X光成像线站实验站图4. 研制的单脉冲超快X射线成像探测器。(a)研制的大数值孔径三镜头双路光学转换系统,与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器;(b)研制的大数值孔径三镜头双路光学转换系统,与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器图5. 基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,两幅图像之间最短时间间隔为1.44 μs此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 我国科学家实现储存环单束团流强高于20mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。   上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。   快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。   此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 我国超短脉冲激光技术始终走在世界前列——访中国科学院物理研究所魏志义研究员
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了中国科学院物理研究所魏志义研究员。据了解,魏志义主要从事超短脉冲激光(即超快激光)研究。采访中,魏志义向我们介绍,激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。此外,科研人员关心的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中对高频功率非常关注和感兴趣。以下为现场采访视频:
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 中科院物理所成功研制高精度脉冲升温-纳秒时间分辨中红外瞬态光谱仪
    &ldquo 十年磨一剑,不敢试锋芒,再磨十年剑,泰山石敢挡&rdquo 。每一位从事实验研究的科研人员都梦想手中有一把利器,能够和侠客一样在科学的天地里纵横天下,快意恩仇。然而当看准一个研究方向后,手头不可能都有现成的设备,尤其是遇到国外设有技术壁垒的时候。  5月27日,Review of Scientific Instruments 发表了中科院物理研究所软物质物理重点实验室翁羽翔研究组的一篇题为A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity的仪器研制论文,便是一项磨剑之作。  蛋白质的动态结构信息是理解其生物学功能的基础。为此国际上发展多种蛋白质动态结构的测量方法,各有千秋。脉冲升温-纳秒时间分辨瞬态红外光谱便是其中的一种,相比较而言,该方法的特点时具有高的时间分辨率。其中涉及的关键设备之一为可调谐连续工作中红外激光源,用于蛋白质二级结构变化的红外指纹光谱指认。由于其在军事用途方面的敏感性,在2009年之前一直属于对华出口限制物资。  翁羽翔研究组长期致力于脉冲升温纳秒时间分辨红外光谱技术的发展及其在蛋白质动态结构方面的应用研究。该课题组与大连理工大学于清旭教授开展长期合作,于2005年建立了基于国内一氧化碳气体中红外激光技术的宽谱带脉冲升温-时间分辨瞬态光谱仪(测量精度为千分之一的吸光度差10-3&Delta OD ,Chin. Phys. 2005, 14, 2484),并用于蛋白质动态结构的研究,取得了系列成果(Biophysical Journal, 2007,93, 2756-2766  2009, 97, 2811-2819  Scientific Reports, 2014, 4,4834)。在前期大量工作的基础上,该课题组意识到只有将已有设备的测量精度再提高一个数量级,即到达万分之一的吸光度差(10-4&Delta OD)之后才能满足普适性要求,由此对脉冲升温光源和一氧化碳气体红外激光光源提出更高的要求。  为此该课题组在2008年申请了中科院科研装备研制项目,提出研制新一代具有国际先进水平的脉冲升温-纳秒时间分辨中红外吸收差光谱仪 包括研制高稳定连续输出可调谐一氧化碳中红外激光探测光源,以及研制新型的脉冲激光加热光源,即空间模式稳定、输出能量稳定的纳秒调Q的Ho:YAG脉冲近红外激光光源(2.1微米,与安徽光机所吴先友研究员合作)。该设备对蛋白质细胞色素c的脉冲升温-时间分辨中红外光谱测量结果表明,在蛋白质酰胺I' 光谱范围(1600-1700 cm-1)内达到的平均测量精度为2× 10-4&Delta OD 。该指标目前领先于国际上同类设备。论文第一作者为物理所博士研究生李得勇,署名单位为中科院物理所,安徽光机所和大连理工大学,并申请了国家发明专利。  该工作的意义在于,通过对高性能设备的自主研发,不仅能够满足基础研究的需求,同时还带动了国内特种激光技术的发展。  此项工作得到了中科院科研装备研制项目和国家自然科学基金委的资助。  图例. 脉冲升温诱导的细胞色素c在重水中温度由25℃阶跃到35℃、温度跳跃2微秒后在酰胺I' 内的瞬态吸收谱。作为比较,实线为35℃和25℃间测得的傅里叶红外吸收差谱。
  • 突破!睿创团队中红外带间级联激光器研究取得重要进展
    近日,睿创研究院及睿创光子团队在中红外带间级联激光器(Interband cascade laser,ICL)的研究取得重要进展,相关团队实现了高性能、室温连续工作、多个激射波长的带间级联激光器系列,结合分子束外延技术,在InAs衬底上生长带间级联激光器材料,制备的窄脊器件室温激射波长接近4.6μm和5.2μm。目前大部分带间级联激光器生长在GaSb衬底上,而睿创团队报道的带间级联激光器生长在InAs衬底上,波导包层由InAs/AlSb超晶格和高掺杂的InAs层构成。相比于常见的GaSb基带间级联激光器,InAs基带间激光器在较长波长处(例如长于4.5μm)具有更低的阈值电流密度。(a)4.6μm波长、2mm腔长、10μm脊宽的器件在20℃-64℃之间连续激射光谱;(b)同一器件在20℃-64℃之间的连续电流-电压-功率曲线对于4.6μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为292A/cm²;2mm腔长和10μm脊宽的窄脊器件的连续工作温度可达64℃,室温输出功率为20mW;在相近波长处为目前报道的最高连续工作温度。对于5.2μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为306A/cm²;2mm腔长和10μm脊宽的窄脊器件最高连续工作温度为41℃,室温输出功率为10mW;其中阈值电流密度在类似波长为报道的最低水平。相关论文“High-temperature continuous-wave operation of InAs-based interband cascade laser”和“InAs-based interband cascade laser operating at 5.17 μm in continuous wave above room temperature”分别发表于Applied Physics Letters 和IEEE Photonics Technology Letters。(a)5.2μm波长、2mm腔长、10μm脊宽的器件在15℃-41℃之间连续激射光谱;(b)同一器件在15℃-41℃之间的连续电流-电压-功率曲线带间级联激光器是基于能带工程和量子力学产生激射,技术含量很高并且研制难点众多,是国家纳米和量子器件核心技术的重要体现,目前和量子级联激光器(Quantum cascade laser,QCL)并列为重要的中红外激光光源,在环境监测、工业控制、医疗诊断和自由空间通信等领域具有重要的应用价值和科学意义。带间级联激光器的原始概念由美国俄克拉荷马大学的杨瑞青教授(Rui Q. Yang)于1994年首次提出,目前基本上都采用近晶格匹配的InAs/GaSb/AlSb三五族材料体系来构造,有源区大多为InAs/GaInSb二类量子阱,其能力可覆盖从中红外到远红外的波长范围。带间级联激光器结合了传统半导体二级管激光器和量子级联激光器的优势,与同样能覆盖中红外波段的量子级联激光器相比,具有更低的阈值功耗密度和阈值电流密度,这种极低功耗的优势在一些需要便携和电池供电设备的应用中显得非常重要。目前全球带间级联激光器市场仍由国外企业占据主导地位,国内仍处于产业发展的初始阶段。本文报道的这两项工作标志着睿创光子在带间级联激光器的外延设计和器件制备等多个方面同时达到了较高的技术水平,成为掌握高性能带间级联激光器技术的企业。该工作也为后续单模可调谐的DFB带间级联激光器的研发和量产打下了坚实的基础。睿创光子(无锡)技术有限公司是烟台睿创微纳技术股份有限公司的控股子公司,聚焦III-V族光电子器件、硅基光电子器件等光子芯片技术研发与产业化。
  • 遇见“Prima”——德国PicoQuant全新推出多色激光器
    近日,在德国柏林最近的一次网络研讨会上,PicoQuant向大家展示了其最新的激光创新良心之作:独立的、全电脑控制的激光模块Prima。PicoQuant公司的产品经理Guillaume Delpont阐述了这款激光器的设计初衷:“许多科研人员在工作中都面临着同样的困难,那就是他们需要多个激发波长来研究他们的待测样品,而购买多个激光器又会变得非常昂贵。PicoQuant公司为了给科研人员面临的共同挑战提供解决方案,最终依托自身在激光开发方面长达25年的专业背景和研发实力,创造了Prima—— 一种经济实惠、紧凑的激光模块,可以发出红色、绿色和蓝色的脉冲激光。”Prima——三色皮秒脉冲激光器Prima是一款独立、紧凑、价格合理的激光模块,提供3个独立的发射波长,可以在皮秒脉冲和连续波(CW)模式下工作。皮秒脉冲可以由Prima模块的内部时钟触发,也支持高达200MHz的外部触发。该模块采用全电脑控制,操作非常简单:通过USB端口将Prima连接到PC端,所有操作参数的更改都可以通过一个方便的软件接口完成。 红、绿、蓝:三种最有用的波长Prima可以提供三种波长的激光:640nm、515nm和450 nm。每种颜色都可以单独输出,每次输出一个波长。 这三种颜色是材料科学、化学和生命科学中最常用的3种波长,广泛应用于光谱学或显微镜应用的常规激发,进行种类多样待测样品的研究,其中包括新型纳米材料、量子点、分子和荧光团。 Prima是一款几近完美的工具:当涉及到日常实验室任务时,能够满足您的大多数需求,如寿命或量子产率测量,光致发光和荧光测量等。 灵活多样的工作模式:脉冲、连续和快速开关模式在进行时间分辨或稳态测量的时候,无论您需要哪种类型的操作模式,Prima的灵活性都可以轻松实现。Prima同时也支持快速连续开关功能。脉冲模式支持内触发和外触发,内触发的重频率范围从100 Hz至200 MHz可调,外触发支持的重复频率范围从单次脉冲至200 MHz。 每个波长的平均输出功率高达5mW。在CW工作模式下,每个波长可以达到更高的平均输出功率(高达50 mW)。在CW工作模式下,进行ON和OFF状态切换的上升/下降时间小于3 ns。 恒定的重复频率可以通过内部触发来进行设置,Burst工作模式也可以由合适的外部触发源实现触发(例如,PicoQuant的Sepia PDL 828的振荡器模块)。您甚至可以将Prima与其他激光模块组合使用,从而实现更为复杂的激发模式,不仅包括Burst模式,还包括脉冲交替激发(PIE)或交替激光激发(ALEX)。 这使得Prima成为一个通用的工具,可以在许多环境中使用。 易于使用作为一个独立的激光模块,Prima不需要任何其他外部激光驱动对齐进行控制。其参数设置和操作通过一个基于成熟的Sepia的图形用户界面软件进行全电脑控制。
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 光纤激光器技术市场份额2013有望增长到30%。
    过去的10年,大功率光纤激光器技术快速从实验室向商业化转移。同传统的二氧化碳激光器技术相比较,光纤激光器技术可以提供高质量、更完美和远距离的激光束,额外的优势还包括高效低能耗、低运营成本、工业化维修和便于生产工艺的自动化。在快速增长的世界激光技术应用市场中,光纤激光技术的市场份额已从2006年的占8%增长到2008年的占10%,2013年有望增长到中30%。  先进的光纤激光器技术,以毫微微秒(Fentosecond,10-15秒)量级产生激光脉冲,自诞生之日起就以复杂、昂贵和不稳定的特点而闻名。欧盟第七研发柜架计划(FP7)资助1000万欧元,总研发投入1600万欧元,由德国科技人员进行总协调,欧盟7个成员国及联系国德国、瑞士、英国、法国、芬兰、丹麦和瑞典21家机构科技人员参与的欧洲LIFT研发团队,成功地研制出新型的、稳定的和价格合理的大功率毫微微秒光纤激光源,为光纤激光技术的推广应用奠定了基础。研发团队能在相对较短的时间内开发出基于光纤的短脉冲激光发生器和被称作“冷处理”的超短脉冲激光发生器,完全得益于研发团队科技人员的构成及相互协调配合。研发团队的科技人员来自广泛的学科领域,覆盖激光技术科研机构、激光源供应商和光学仪器组件生产企业的科研、实验和工程研究人员及工程师。  研发团队在开发光纤激光器技术上的成功,将继续保证欧盟在激光技术及激光制造业的世界领先水平和竞争力。目前,研发团队的主要目标已转向光纤激光技术的商业化应用,包括:利用新一代光纤激光技术的运程切割与焊接工艺的开发 应用于医学的痤疮及粉刺技术已申请发明专利 应用于部分癌症治疗技术的开发 应用于太阳能电池组件制造技术的开发等。
  • 中智科仪逐光IsCMOS像增强相机用于纳秒脉冲DBD在空气消毒领域的应用机理研究
    清华大学电机工程与应用电子技术系付洋洋老师团队利用逐光IsCMOS像增强相机进行大气压介质阻挡放电等离子体在空气消毒方面的应用研究,相关成果近期以“Air disinfection by nanosecond pulsed DBD plasma”为题发表在“Journal of Hazardous Materials”期刊上。   1、研究背景   在公共场所的空气消毒应用中,大气压介质阻挡放电(dielectric barrier discharge,DBD)等离子体是一种新兴且有前景的技术。放电电源是其中的关键因素,但其对等离子体空气消毒性能的影响尚不清楚。   作者采用纳秒脉冲电源驱动一种新型光栅式DBD阵列,实现快速单次通过空气消毒。揭示了脉冲参数和环境因素对放电特性和单次细菌灭活效率的影响。为纳秒脉冲DBD的放电特性和空气消毒研究提供了基础认知。   文中给出了两个可能的评估参数:   1. 特定输入能量(Specific Input Energy,SIE),定义为单位体积的气体接受到的放电能量。   2. Z值,定义为使微生物存活率下降一个数量级所需的特定输入能量SIE。Z值越小,意味着消灭同样数量的微生物所需的能量越小。   2、实验装置和材料   实验装置部分是用于测试DBD等离子体对细菌气溶胶单次通过灭活效率的通风管道系统,以下为该系统各部分的说明。   1. 通风管道:在气溶胶入口前增加了一个可调节的管道加热器(0-1200 W),用以瞬间加热入口空气,探究在仅加热或“加热+等离子体”条件下气流温度对等离子体放电特性和细菌气溶胶存活特性的影响。   2. 温度和湿度监测:在加热器出口后安装了温度计,同时在等离子体反应器前后放置了两个温湿度计,用以监测气流的温度和相对湿度。   3. 气流速度:使用风速计测量反应器前的空气面速度(vin),在实验中固定为1米/秒,总流量为40立方米/小时。   4. DBD反应器:建立了一个垂直型光栅式DBD反应器,其电极被石英管包围,交替连接到高压和地线产生等离子体阵列。反应器内部空气通过尺寸为85×85平方毫米,有16个空气间隙。   5. 电源激发:DBD由单极纳秒脉冲源或交流电源激发,测量了电压和电流波形。   6. 放电功率和臭氧浓度:计算了脉冲DBD的平均放电功率,并使用臭氧分析仪测量了臭氧浓度。   7. 光学诊断:使用光谱仪(MX2500+, 海洋光学)记录等离子体的光发射光谱,并使用逐光IsCMOS像增强相机(TRC411-H20-U,中智科仪)和变焦镜头对等离子体进行了成像,以探测放电区域形成的激发的物质种类,确定放电均匀性。   图1 光栅式DBD反应器测试系统示意图   实验装置的设计允许研究者控制和监测影响DBD等离子体放电和细菌灭活效率的关键参数,如气流速度、温度、湿度和电源类型。   3、实验结果和讨论   为了比较由脉冲源驱动的DBD与交流(AC)源的电气参数和光发射信号,保持了气流速率、湿度和放电功率尽可能相同。脉冲电压的基本参数包括脉冲上升时间(tr)、宽度(tw)、下降时间(tf)、频率(f)和电压幅度(Vp),而交流电压包括电压频率(f)和幅度(Vp)。   将电压频率固定在5 kHz,vin为1 m/s,RH在15-17%。脉冲参数如下:tr = tf = 50 ns,tw = 100 ns,Vp约为14 kV。为了保持与脉冲源相当的放电功率34-35 W,将交流源的电压幅度调整为10.75 kV。   图2   图2 共对7个气隙进行了成像,并给出了第3个气隙的线发射密度。(a)脉冲源和(b)交流源的放电图像比较,交流源和脉冲源的线平均强度分别为135.6和175.5 a.u.(相对单位) 。注意:气隙旁边的光是由透明石英管的光折射和反射产生的。对于两种光源,曝光时间固定为200 μs(一个周期)。以上等离子体图像由中智科仪IsCMOS相机拍摄。   为了可视化放电的空间分布,应用了短曝光成像。曝光时间固定在200 μs,对应一个周期,成像区域为45 × 30.5 平方毫米,包括总共七个空气间隙。如图2(a)所示,对于交流DBD,放电丝非常明显,几乎均匀分布在空气间隙中,间隔约1 mm。与此同时,脉冲DBD的放电更加均匀,但整体发射强度似乎更弱(图2(b))。   以第三个间隙为例,图3显示了间隙中心线和线平均强度的发射强度。尽管单个放电丝的最大强度更高,但对于交流源,放电丝更稀疏。结果,平均发射强度比脉冲源低22.7%,这与光谱仪测量结果一致。   4、结论   研究发现,通过提高电压幅度、缩短脉冲上升时间以及增加气流湿度和温度,可以增强光栅式DBD的单脉冲放电能量。相反,提高频率则会降低放电能量。这些发现与先前关于脉冲放电的报告一致。比较了脉冲源和交流源消灭微生物的性能。脉冲源在低频率(1 kHz)下产生的Z值低于交流源,但在某些情况下略高。这表明脉冲源在特定条件下可能更优。建议将特定输入能量(SIE)作为基于等离子体的空气消毒的剂量参数,而Z值主要取决于湿度。该研究提供了纳秒脉冲DBD等离子体空气消毒特性的基础认识,为供暖、通风和空调系统中的高效节能空气消毒提供了理论和工程基础。      免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。   5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 光谱学技术获最新突破,利用阿秒激光爆发作为泵浦和探测脉冲
    近日,柏林的Max Born研究所、伦敦大学学院和匈牙利的ELI-ALPS研究所在共同参与的一个项目中,展示了一种利用阿秒激光爆发作为泵浦和探测脉冲的新型光谱学技术。据介绍,在正常运行的光谱学平台上使用这种短脉冲有助于研究复杂的光学过程,而该项目则主要是利用它来研究原子的非线性多光子电离过程。近日,相关成果发表在光学和光子学专业期刊Optica上。飞秒(1飞秒= 10-15秒)泵浦探针光谱技术彻底改变了人们对极快过程的理解。例如,如果一个分子的解离是由飞秒泵脉冲引发的,它可以使用延时飞秒探针脉冲来实时进行观察,捕捉分子的演化状态,从而得到记录分子解离细节过程的动态图像。1999年,这项强大的技术甚至被授予了诺贝尔化学奖。然而,自然界中的一些过程甚至更快,并且发生在阿秒的时间尺度上(1阿秒= 10-18秒)。到目前为止,阿秒泵浦阿秒探针光谱学已经被证明用于涉及两个光子吸收的相对简单的过程。然而,由于全阿秒泵浦-探测光谱非常具有挑战性,目前大多数得到实际应用的方法只使用一个阿秒脉冲泵(或探针),而另一个步骤则会使用飞秒脉冲。而在最新进展中,研究人员成功演示了一个泵-探针实验。在这个实验中,复杂的多光子电离过程使用了两个阿秒脉冲序列。这个实验需要产生非常强的阿秒脉冲,为此需要使用一个大型激光系统。同时,两个阿秒脉冲必须与阿秒时间和纳米空间稳定性重叠。考虑到这样大的挑战性,研究人员选择在马克斯波恩研究所(Max Born Institute)最大的实验室进行了上述这项实验。“原子和分子中的多电子动力学经常在亚秒至几飞秒的时间尺度上发生,”发表在Optica杂志上的论文中指出,“以前极端紫外(XUV)光子阿秒脉冲的可用强度允许对双光子、双电子相互作用进行时间分辨的研究。而最新的进展中,我们研究了氩原子的双电离和三电离,包括了多达5个XUV光子的吸收。”在以往的场景中,产生所需的强阿秒脉冲通常需要使用大型和强大的激光系统,幸而每个项目合作伙伴都在这一方面颇具优势。其中,极光基础设施阿秒光脉冲源(ELI-ALPS)研究中心正在开发一种价值600万欧元的激光器,旨在以1千赫兹的重复频率提供超过15太瓦的峰值功率,脉冲持续时间小于8飞秒。在新的研究中,两个阿秒脉冲串(APTs)与一个氩原子相互作用,吸收了四个光子,从而从原子中去除三个电子。根据该项目,有许多可能的方式来发生这种多光子吸收,要详细地找出电子是如何从原子中去除的,则需要改变两个阿秒脉冲之间的时间延迟,并观察产生了多少离子。结果表明,多光子吸收是分三步进行的:在前两步中,每一步都吸收一个光子;而在第三步中,两个光子同时被吸收。这些结果已经被计算机模拟所证实,并证明了强APTs的应用能够更好地理解复杂的多光子电离途径。据介绍,这项已开发的实验技术未来不仅可以用于研究原子中的复杂过程,还可以用于研究分子、固体和纳米结构。该项目还希望能进一步回答有关几个电子如何相互作用的问题,这有助于在最短的时间内理解最基本的过程。
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 激光诱导击穿-拉曼光谱分析仪
    成果名称激光诱导击穿-拉曼光谱分析仪(LIBRAS)单位名称四川大学生命学院分析仪器研究中心联系人林庆宇联系邮箱lqy_523@163.com成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 □合作开发 &radic 其他成果简介: 台式LIBS(左)、便携式LIBS(右) 手持式LIBS 技术背景 作为一种激光光谱分析技术,同其他光谱分析技术相比较而言,激光诱导击穿光谱(简称,LIBS)技术具有诸得天独厚的优势,特别是分析速度快,无需样品前处理,多元素同时分析以及所有元素都可测定等优势,这些优势都已经使LIBS技术逐渐成为一种非常流行的元素分析手段,在冶金地质、航空航天等众多应用领域也逐渐得到尝试性的使用。基于上述技术优点,本中心开发了激光诱导击穿光谱系列仪器,包括:台式LIBS系统,便携式LIBS仪器以及手持式LIBS分析仪,相关仪器的样机已展开多次的优化升级,实现了LIBS仪器的国产化突破。但是,虽然LIBS技术有上述众多优点,但是该技术本身却只是一种原子发射光谱技术,利用该技术也只能对被分析样品进行元素分析,获取被分析物质单一的元素构成信息,不能得到相关组成元素的结构信息,因此,利用单一的LIBS技术无法对样品进行全面系统的检测分析。而在地质勘探、石油录井等实际应用需求中,往往不仅仅要求对组成样品的元素进行分析,更重要的是要获取被分析物的结构信息,特别是关于地层岩石的岩性、结构以及矿物种类的综合信息,在这一点上,单纯靠LIBS技术肯定是无法实现的。因此,开发出一种即可实现元素分析,又同时可实现结构鉴定的快速原位光谱分析技术就显得十分重要。Raman光谱作为一种非破坏性的光谱分析技术,是很具吸引力的。该技术利用低能量激光作用于样品表面,通过接收物质所产生的散射光谱,知道物质的振动转动能级情况,从而可以鉴别物质结构、分析物质的性质。Raman光谱技术可以提供快速、简单、可重复、且无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头测量,一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。因此,Raman光谱技术和LIBS技术从仪器构成、光路设计到结果分析等方面都有着诸多相同或相似之处,将这两种技术结合在一起,开发出可同时得到原子光谱、分子光谱的激光光谱分析系统将有非常广阔的应用潜力。仪器先进性LIBRAS仪器可用于分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。仪器关键技术研发1. 独特的光学设计。采用一套光学系统,实现两种不同波长激发的两种不同类型信号的获取,光学系统内无任何移动镜片组件,结构稳,性能强。2. 创造性的高能风冷脉冲激光系统。采用自主研发风冷脉冲激光器作为LIBS光源,单脉冲能量100 mJ,整机无需水冷,体积紧凑。3. 创造性的实现高能激光器的低压低功耗供电。激光器可采用锂电池供电,使仪器的便携化成为可能。性能指标光斑尺寸:LIBS光路100 µ m;Raman光斑20 µ m;分析距离:40 mmLIBS部分:激光波长1064 nm;脉冲激光能量100 mJ;激光频率1 Hz(可联系激发);脉冲宽度8-10 ns;光谱接收范围:可全谱接收(200-800选配);Raman部分:激光波长532nm;能量 20 mW;光谱接收范围:540-750 nm(选配)应用前景:LIBRAS技术是LIBS技术的提升和扩展。由于Raman光谱可以用来研究分子的振动和转动情况,提供物质内部的结构信息,各种简正振动频率及有关振动能级的情况,但在物质所含元素,尤其是次要元素和痕量元素的检测方面,能力及其有限。而在油气开采、地质勘探、冶金、电力生产、环境卫生和深空探测等领域,如果既要检测物质中的主要、微量和痕量元素,也要知晓物质中分子组份和结构信息,单独的Raman技术,以及其他的现有光谱检测技术(比如,电感耦合等离子体发射光谱法、X射线荧光光谱法、气相色谱分析法等)都不能完成任务,只有把LIBS技术和Raman技术有机结合起来才能满足此要求。以油气开采为例:在录井现场完成分析,可以快速的做出解释评价,及时为勘探开发的的决策提供依据,减少了钻井现场等措施的时间,避免决策的失误。通过应用该技术,提高录井解释符合率上升10%以上,每年减少10%试油工作量,仅西南油气田每年可以节约勘探成本5-6亿元人民币。在国内外油气田推广应用,每年可以节约勘探开发成本50-60亿元人民币。降低油气勘探开发成本,扩大油气开发规模,为国民经济的持续发展做贡献。除此以外,例如在冶金、地质等领域,亦可以带来相当巨大的经济效益。知识产权及项目获奖情况:专利1:单脉冲激光源的双波长同轴激光诱导击穿-脉冲拉曼光谱联用系统及方法(发明专利,已提交);专利2:激光诱导击穿光谱与拉曼光谱联用仪自动化测控系统(发明专利,已提交);专利3:激光诱导击穿/拉曼光谱联用分析仪(外观专利,已提交);其他:LIBRAS仪器入选&ldquo 2014中国科学仪器与分析测试行业十大新闻&rdquo 。
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p  近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。/pp  今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。/pp  据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。/pp  受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。/pp  从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。/pp  未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。/ppbr//p
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 新发现!紧凑型 X 射线自由电子激光器项目成功推进
    经过五年的努力,亚利桑那州立大学的研究人员已经实现了构建紧凑型 X 射线自由电子激光器的第一个目标——创造最终将产生超短 X 射线脉冲的最重要的电子。ASU Physica 教授、应用结构发现生物设计中心研究员 William Graves 教授说:“这是一种灵光乍现的时刻,当我们打开所有这些复杂系统的所有东西时,我们看到了第一个电子的产生。”研究人员打算使用电子束的纳米图案,通过电子衍射,将他们杂乱无章的电子包转换成原子大小的“箱”,提高功率并产生完全相干的 X 射线。完全可操作的紧凑型 X 射线光源 (CXLS) 长约 10 m,可产生超短 X 射线脉冲以拍摄化学反应和分子活动的“高速电影”。紧凑型 X 射线光源紧凑型 X 射线光源将极短的紫外激光脉冲聚焦到铜表面上来产生电子包。然后,这些电子将被 1 m 长的直线加速器和具有兆瓦峰值功率的强微波频率电磁场加速到接近光速。接下来,电子将通过一系列精确对准的磁铁形成定向束。产生的电子束将被强烈的短脉冲激光发射,使电子产生起伏运动,从而产生强烈且可预测的 X 射线发射。使用光学激光场作为波荡器从电子产生 X 射线,而不是一英里长的自由电子激光设施中常见的磁铁,如直线加速器相干光源,减少了电子波荡器的长度和加速器的数量级。至关重要的是,减少规模和成本意味着更多的研究机构可以建立类似的资源,投入更多的精力来研究光合作用和药物相互作用等现象。事实上,一旦产生,X 射线将用于揭示生物分子和新材料的原子结构和功能。一个关键应用就是阿秒物理学,它研究分子如何相互连接以及化学反应和催化的动力学。阿秒动力学是自然界中最快的过程,对工业也具有重要意义。同时,可以研究量子材料和时间分辨生物化学——涉及生物和化学过程之间微妙的相互作用。ASU 紧凑型 X 射线自由电子激光器 (CXFEL) 计划“我们不仅要捕捉静态结构,还要捕捉它的工作原理,”格雷夫斯说。“不同分子的功能是什么?我们真的能看到正在发生的反应吗?我们想制作一种关于化学键形成和断裂的定格电影。”“通过这样做,我们可以更深入地了解化学和分子的工作原理,”他补充道。“例如,药物如何影响病毒……或研究高温超导体如何彻底改变能源生产。我们还不了解它的物理原理。”如果没有Annette 和 Leo Beus 为创建 Beus Compact X 射线自由电子激光实验室提供了 1000 万美元的慷慨捐助,该计划就不可能实现。在过去的几年中,该计划引起了该领域科学家的极大期待和兴奋,并吸引了数十名科学家来到亚利桑那州立大学。从创新的 CXLS 过渡到设想的未来紧凑型 X 射线自由电子激光器 (CXFEL),需要进一步的突破。2019 年,美国国家科学基金会宣布支持下一阶段的 CXFEL 项目,拨款 470 万美元,用于资助新设备的综合设计研究。尽管 Covid-19 大流行仍在持续,但来自ASU 和其他机构的大约 100 名研究人员和学生参与了该项目,CXLS 的设计工作和建设仍在快速进行。文章来源:MicroscopyX-Ray Analysis(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • 南方科技大学550.00万元采购激光脉冲沉积
    详细信息 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 广东省-深圳市-南山区 状态:公告 更新时间: 2022-11-21 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 深圳市南科大资产经营管理有限公司(以下简称“采购代理机构”)受采购人委托,就物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)进行公开招标,欢迎符合资格条件的投标人前来投标。物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)的潜在投标人应登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载获取本项目的招标文件,并于2022年12月05日14时00分(北京时间)前递交投标文件。 一、项目基本情况 1.项目编号:AOMC-2022-096-C(SZDL2022002186) 2.项目名称:物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次) 3.预算金额:人民币5,500,000.00元 4.最高限价:人民币5,500,000.00元 5.所属行业:工业 6.采购需求: 标的名称 数量 单位 简要技术需求(服务需求) 脉冲激光沉积系统 1 套 详见招标文件 7.本项目不接受联合体投标。 二、申请人的资格要求 (1)具有独立法人资格或具有独立承担民事责任的能力的其他组织(提供营业执照或事业单位法人证书等法人证明扫描件,原件备查)。 (2)本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 (3)参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (4)参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (5)具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (6)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”、“深圳信用网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以开标当日的查询结果为准。 (7)本项目的特定资格要求:无。 三、获取招标文件 时间:2022年11月22日00时01分 至2022年11月28日23时59分(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购的供应商,请访问深圳公共资源交易中心(http://www.szzfcg.cn/),先办理注册手续(注册咨询:83938966),后办理密钥(电子密钥咨询:83948165 4008301330 ),并前往深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)绑定深圳政府采购智慧平台用户(地址:深圳市福田区景田东路70号雅枫国际酒店北侧二楼市政府采购业务窗口服务大厅),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2022年12月05日14时00分(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2022年12月05日14时00分(北京时间),在深圳政府采购智慧平台公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30(北京时间)期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2022年11月30日17时00分(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2022年12月02日17时00分(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以线下方式向我公司递交提出书面质疑函。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳公共资源交易网(www.szggzy.com),在深圳公共资源交易网上公布的与本次招标项目有关的信息视为已送达各投标人。 4.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南方科技大学 地 址:深圳市南山区西丽学苑大道1088号 联系方式:张老师 13910520071 2.采购代理机构信息 名 称:深圳市南科大资产经营管理有限公司 地 址:深圳市南山区学苑大道1001号南山智园A7栋11楼 联系方式:王老师 0755-88012180 3.项目联系方式 项目联系人:赵老师 电 话:0755-88012181 深圳市南科大资产经营管理有限公司 2022年11月21日 [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.pdf SZDL2022002186-A物理系激光-氧化-还原分子束外延联合系统采购项目采购公告.pdf [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.szczf 附录.中小企业及残疾人福利性单位相关文件.zip [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光脉冲沉积 开标时间:2022-12-05 14:00 预算金额:550.00万元 采购单位:南方科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:深圳市南科大资产经营管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 广东省-深圳市-南山区 状态:公告 更新时间: 2022-11-21 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 深圳市南科大资产经营管理有限公司(以下简称“采购代理机构”)受采购人委托,就物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)进行公开招标,欢迎符合资格条件的投标人前来投标。物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)的潜在投标人应登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载获取本项目的招标文件,并于2022年12月05日14时00分(北京时间)前递交投标文件。 一、项目基本情况 1.项目编号:AOMC-2022-096-C(SZDL2022002186) 2.项目名称:物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次) 3.预算金额:人民币5,500,000.00元 4.最高限价:人民币5,500,000.00元 5.所属行业:工业 6.采购需求: 标的名称 数量 单位 简要技术需求(服务需求) 脉冲激光沉积系统 1 套 详见招标文件 7.本项目不接受联合体投标。 二、申请人的资格要求 (1)具有独立法人资格或具有独立承担民事责任的能力的其他组织(提供营业执照或事业单位法人证书等法人证明扫描件,原件备查)。 (2)本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 (3)参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (4)参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (5)具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (6)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”、“深圳信用网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以开标当日的查询结果为准。 (7)本项目的特定资格要求:无。 三、获取招标文件 时间:2022年11月22日00时01分 至2022年11月28日23时59分(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购的供应商,请访问深圳公共资源交易中心(http://www.szzfcg.cn/),先办理注册手续(注册咨询:83938966),后办理密钥(电子密钥咨询:83948165 4008301330 ),并前往深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)绑定深圳政府采购智慧平台用户(地址:深圳市福田区景田东路70号雅枫国际酒店北侧二楼市政府采购业务窗口服务大厅),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2022年12月05日14时00分(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2022年12月05日14时00分(北京时间),在深圳政府采购智慧平台公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30(北京时间)期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2022年11月30日17时00分(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2022年12月02日17时00分(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以线下方式向我公司递交提出书面质疑函。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳公共资源交易网(www.szggzy.com),在深圳公共资源交易网上公布的与本次招标项目有关的信息视为已送达各投标人。 4.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南方科技大学 地 址:深圳市南山区西丽学苑大道1088号 联系方式:张老师 13910520071 2.采购代理机构信息 名 称:深圳市南科大资产经营管理有限公司 地 址:深圳市南山区学苑大道1001号南山智园A7栋11楼 联系方式:王老师 0755-88012180 3.项目联系方式 项目联系人:赵老师 电 话:0755-88012181 深圳市南科大资产经营管理有限公司 2022年11月21日 [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.pdf SZDL2022002186-A物理系激光-氧化-还原分子束外延联合系统采购项目采购公告.pdf [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.szczf 附录.中小企业及残疾人福利性单位相关文件.zip [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.docx
  • 美研制新型中红外激光二极管
    美国西北大学的研究人员研制出了一种小型中红外激光二极管,其转换效率超过50%。有关报道称这一成果是量子级联激光器(QCL)研究的重大突破,使量子级联激光器向多个领域的实际应用,包括对危险化学品的远程探测,迈出了重要一步。相关研究成果刊发在最近的《自然—光子学》(Nature Photonics)杂志网络版上。  量子级联激光器是一种发光机制异于传统半导体激光器的新型二极管激光器,根据量子力学原理设计,其发光波长可覆盖中红外区域。与传统的二极管激光器不同,量子级联激光器是单极器件,仅需电子即可运作,利用电子在一维量子化的导带间的跃迁来实现发光。经过多年的研究和工业化开发,现代近红外(波长在1微米左右)激光二极管的转换效率已接近极值,而中红外(波长大于3微米)激光二极管却很难达到效率极值。先前的报道认为,即使冷却到低温状态,高效量子级联激光器的转换效率也不会高于40%。  美国西北大学量子器件研究中心(CQD)的研究人员通过优化激光器设备的材料质量,在量子级联激光器效率方面取得了突破性进展。他们剔除了在低温条件下激光器操作中非必要的设计元素,研制出的新型激光器在温度冷却到40开尔文时,4.85微米波长光的转换效率达到了53%。  该研究小组的领导者、美国西北大学麦考密克工程与应用科学学院电气工程和计算机科学教授玛尼杰拉泽吉认为,这种高效激光器的问世是一个重大突破,这是科学家们首次使激光器发出的光能超过热能。她强调,激光器的转换效率突破50%这个门槛,是一个里程碑式的成就。  报道称,提高转换效率依然是目前激光器研究的首要目标。而新型设备所展现的高效率,可大大扩展量子级联激光器的功率标定范围。最近的研究表明,伴随着量子级联激光器的广泛发展,单体脉冲激光器的输出功率已高达120瓦特,而在一年前,只有34瓦特。  该研究得到了美国国防部高级研究计划局高效中红外激光器(EMIL)项目和美国海军研究所的共同资助。
  • 脉冲功率激光技术国家重点实验室顺利通过验收
    11月2日,受科技部基础司委托,基础研究管理中心组织专家对依托中国人民解放军电子工程学院的脉冲功率激光技术国家重点实验室进行了验收。科技部基础研究司相关人员出席会议。  专家组听取了脉冲功率激光技术国家重点实验室主任的建设情况报告,并进行了实地考察。经过认真研究讨论,专家组认为脉冲功率激光技术国家重点实验室在科学研究、人才培养、平台建设和管理运行等方面基本完成了建设计划任务,同意其通过建设验收。  脉冲功率激光技术国家重点实验室是首个建设的军民共建国家重点实验,是军民共建科研体制的有益探索。该实验室以脉冲功率激光产生机理为主线,重点开展脉冲功率激光传输与控制和脉冲功率激光与物质作用等基础科学和军民应用技术的研究。
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p  由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。/pp  高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。/pp  该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制