当前位置: 仪器信息网 > 行业主题 > >

超薄绝热保温板

仪器信息网超薄绝热保温板专题为您提供2024年最新超薄绝热保温板价格报价、厂家品牌的相关信息, 包括超薄绝热保温板参数、型号等,不管是国产,还是进口品牌的超薄绝热保温板您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超薄绝热保温板相关的耗材配件、试剂标物,还有超薄绝热保温板相关的最新资讯、资料,以及超薄绝热保温板相关的解决方案。

超薄绝热保温板相关的论坛

  • 保温材料检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-17762.html[/url]保温材料检测对象如下(包含但不限):● 无机绝热产品:矿岩棉制品、玻璃棉制品、硅酸铝棉制品、泡沫玻璃制品、发泡水泥板、泡沫混凝土、发泡陶瓷板、硅酸钙制品、膨胀珍珠岩及制品、膨胀蛭石及制品● 有机绝热产品:EPS、XPS、PUR、PIR、PF、柔性泡沫橡塑、热固性改性聚苯板● 真空绝热板、绝热用气凝胶制品、玻化微珠、气凝胶● 保温装饰一体化产品、金属面绝热夹芯板、矿物棉装饰吸声板、硅酸钙装饰吸声板● 保温系统用胶粘剂、抹面胶浆(抗裂砂浆)、界面剂(界面砂浆)、粘结石膏、粉刷石膏、网布、锚栓、镀锌钢丝网等● 保温系统:外墙外保温系统、外墙内保温系统、外墙自保温系统、保温装饰一体化及装配式建筑等保温材料常用检测标准(包含但不限):GB/T 35608-2017 《绿色产品评价 绝热材料》GB/T5480-2017矿物棉及其制品GB/T 6343-2009泡沫塑料及其制品GB/T5486-2008无机硬质绝热制品GB/T 6669-2008软质泡沫聚合材料GB/T20313-2006建筑材料及制品GB/T 10294-2008材料导热系数和热阻 "GB/T 30708-2014低密度矿物棉毯状绝热材料热阻评价 "JG/T 469-2015蓄热系数GB/T 10299-2011材料憎水性GB/T 17146-1997材料水蒸气透过性能 "GB/T 7689.2-2013增强材料及制品GB/T 30802-2014建筑用绝热制品GB/T25998-2010" 矿物棉装饰吸声板 "GB/T11835-2016绝热用岩棉、矿渣棉及其制品GB/T 19686-2015建筑用岩棉制品GB/T 26746-2011矿物棉喷涂绝热层GB/T 23932-2009 建筑用金属面绝热夹芯板GB/T 25975-2018建筑外墙外保温用岩棉制品GB/T13350-2017绝热用玻璃棉及其制品GB/T17795-2008建筑绝热用玻璃棉制品GB/T 16400-2015绝热用硅酸铝棉及其制品GB/T 20219-2015喷涂硬质聚氨酯泡沫塑料GB/T21558-2008建筑绝热用硬质聚氨酯泡沫塑料JC/T 998-2006喷涂聚氨酯硬泡体保温材料JC/T 936-2004单组分聚氨酯泡沫填缝剂GB/T 10801.1-2002绝热用模塑聚苯乙烯泡沫塑料(EPS板)GB/T 10801.2-2002或GB/T 10801.2-2018绝热用挤塑聚苯乙烯泡沫塑料(XPS板)GB/T20974-2014绝热用硬质酚醛泡沫制品(PF)JC/T 2265-2014外墙外保温用硬质酚醛绝热制品GB/T 25997-2010聚异氰尿酸酯硬质泡沫塑料JC/T 209-2012膨胀珍珠岩JC/T 430-1991(1996)膨胀珍珠岩装饰吸声板JC 441-1991(1996)2009膨胀蛭石JC 442-1991(1996)2009膨胀蛭石制品JC/T 647-2014(2017)泡沫玻璃绝热制品JC/T 1051-2007铝箔面硬质酚醛泡沫夹芯板JC/T 1061-2007铝箔面硬质聚氨酯泡沫夹芯板JB/T 6527-2006组合冷库用隔热夹芯板GB/T 10699-2015硅酸钙绝热制品GB/T17371-2008硅酸盐复合绝热涂料JC/T 990-2006(2017)复合硅酸盐绝热制品GB/T 17794-2008柔性泡沫橡塑绝热制品ASTM C534柔性泡沫橡塑绝热制品GB/T 20473-2006建筑保温砂浆GB/T 26000-2010膨胀玻化微珠保温隔热砂浆JG/T 283-2010膨胀玻化微珠轻质砂浆JG/T266-2011泡沫混凝土JC/T 561.2-2006增强用玻璃纤维网布JC/T 841-2007(2017)耐碱玻璃纤维网布JC/T 1042-2007膨胀玻化微珠JG/T 159-2004外墙内保温板JG/T 438-2014建筑用真空绝热板JC/T 2077-2011复合保温石膏板GB 50404-2017屋面用硬泡聚氨酯JC/T 2200-2013水泥基泡沫保温板JG/T 435-2014无机轻集料防火保温板DG/TJ 08-2126-2013岩棉板(带)外墙外保温系统用岩棉板(带)、胶粘剂、抹面砂浆、耐碱玻纤网格布、锚栓GB/T 29906-2013模塑聚苯板(039级、033级)、胶粘剂(水泥基)、抹面胶浆(水泥基)、耐碱涂覆中碱网格布(160)、锚栓JGJ/T 261-2011复合保温板(纸面石膏板)、胶粘剂、粘结石膏、锚栓、EPS/XPS "DG/TJ 08-2138-2014发泡水泥板、胶粘剂、抹面砂浆、标准型/耐碱型耐碱涂覆网格布、耐碱网格布、锚栓DG/TJ 08-2088-2018无机保温砂浆、界面砂浆、抗裂砂浆、耐碱涂覆中碱、锚栓

  • 铝板-超薄切片

    各位好,我公司需要研究铝板上的缺陷,需要找到一家可以提供超薄切片的实验室,请帮忙提供信息,特别感激!

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 【转帖】我国建筑节能材料开发及推广方向

    在建筑上大量采用节能新型材料,具有显著的社会效益、经济效益和环境效益,潜力很大。目前,我国常见的节能绝热材料主要有岩棉、玻璃棉、聚苯乙烯泡沫塑料、水泥聚苯板、硅酸盐复合绝热砂浆。岩棉是以精选的玄武岩或辉绿岩为主要原料,经高温熔制成的无机人造纤维。自1983年北新建材集团从瑞典容格公司引进岩棉生产线以来,各种岩棉制品以其优良的绝热效果和经济效益引起人们的关注。岩棉制品主要品种有:岩棉板、岩棉玻璃布缝毡、岩棉铁丝网缝毡、岩棉保温条、岩棉管壳等。岩棉制品具有良好的保温、隔热、吸声、耐热、不燃等件能和良好的化学稳定性。岩棉用于建筑外墙。有三种绝热方式:内绝热、中间夹芯绝热和外绝热。玻璃棉是矿物棉的第二大类产品,以硅砂、石灰石、萤石等矿物为主要原料,经熔化,用火焰法、离心法或高压载能气体喷吹法等工艺,将熔融玻璃液制成无机纤维。玻璃棉制品具有良好的保温、隔热、吸声、不燃、耐腐蚀等性能,广泛应用于房屋、管道、贮罐、锅炉、飞机、船舶等有关部位的保温、隔热和吸声。目前我国的玻璃棉产量仅为美国的1/60。聚苯乙烯泡沫塑料是以聚苯乙烯树脂为基料,加入发泡剂等辅助材料,经加热发泡而成的轻质材料。它具有质轻、导热系数小、吸水率低、耐水、耐老化、耐低温、易加工、价廉质优等优点。自1996年以来,国内聚苯乙烯泡沫塑料制品生产进入了高速发展阶段。聚苯乙烯泡沫塑料板材(如舒乐舍板、泰柏板、GRG聚苯芯材保温板、EPS建筑模块、彩色钢板聚苯乙烯泡沫夹芯板)现已在建筑市场上广泛应用。我国在建材中已经大量使用聚苯乙烯泡沫塑料,但EPS板材所占的比例和数量是远远不够的。以西欧为例,EPS建材占其EPS总量的67%,即1995年西欧在建材中耗用45.5万多吨的EPS。而我国目前EPS建材占其EPS总量的25%,即不到6万吨/年。水泥聚苯板是由聚苯乙烯泡沫塑料下脚料或废聚苯乙烯泡沫塑料经破碎而成的颗粒,加水泥、水、EC起泡剂和稳泡剂等材料,经搅拌、成型、养护而成的一种新型保温隔热材料,具有质轻、导热系数小、保温隔热性能好、有一定强度和韧性、耐水、难燃、施工方便、粘贴牢固、便于抹灰、价格较低等优点,适用于建筑物外墙和屋顶的保温隔热层。硅酸盐复合绝热砂浆是一种新型墙体保温材料,是以精选海泡石、硅酸铝纤维为主原料,附以多种优质轻体无机矿物为填料,在数种加剂的作用下经细纤化、扩散膨胀、混溶、粘接等多种工艺深度复合而成的灰白色粘稠浆状物。此种材料显著特点为:保温隔热性能好,施工简便(直接涂抹),解决了板材拼接处罩面层开裂现象。针对此种新型绝热材料,北京市建委制定了《北京市采暖居住建筑使用浆体保温材料暂行规定》。硅酸盐复合绝热砂浆已被国家列为新型绝热材料及制品的重点发展对象。

  • 【资料】支持膜、微栅与超薄碳膜的区别

    支持膜、微栅与超薄碳膜的区别: 大多数透射电镜样品在制样时,为了确保样品能搭载在“载网”上,会在“载网”上覆一层有机膜,称为“支持膜”。这种具有支持膜的载网,称为“载网支持膜”。当样品接触载网支持膜时,会很牢固的吸附在支持膜上,不至于从载网的孔洞处滑落,以便在电镜上观察。 当样品放在电镜中观察时,“载网支持膜”在电子束照射下,会产生电荷积累,引起样品放电,从而发生样品漂移、跳动、支持膜破裂等情况。所以,人们考虑在支持膜上喷碳,提高支持膜的导电性,达到良好的观察效果。这种经过“喷碳的载网支持膜”,简称“碳支持膜”,一般膜厚度为7-10nm。 从制作成本和使用效果看,铜网最经济实用,所以被普遍采用。因此,人们经常提到的“铜网支持膜”、“碳支持膜”、“碳膜”、“方华膜”等,甚至被误称的“铜网”,大多是指这种具有“铜网喷碳的支持膜”。通常称“碳支持膜”。 准确的说,微栅是支持膜的一个品种,它是在制作支持膜时,特意在膜上制作的微孔,所以也叫“微栅支持膜”,它也是经过喷碳的支持膜,一般膜厚度为15-20nm。它主要是为了能够使样品搭载在支持膜微孔的边缘,以便使样品“无膜”观察。无膜的目的主要是为了提高图像衬度,所以,观察管状、棒状、纳米团聚物等,常用“微栅”支持膜,效果很好。特别是观察这些样品的高分辨像时,更是最佳的选择。 超薄碳膜,也是支持膜的一种。它是在微栅的基础上,叠加了一层很薄的碳膜,一般为3-5nm。这层超薄碳膜的目的,是用薄碳膜把微孔挡住。这主要是针对那些分散性很好的纳米材料,如:10nm以下的样品,分散性极好,如果用微栅就有可能从微孔中漏出,如果在微栅孔边缘,由于膜厚可能会影响观察。所以,用超薄碳膜,就会得到很好的效果。

  • 【求助】求助关于粉末超薄切片的问题

    这次参加催化会议,有位老师提到了对分子筛类材料做TEM观察的时候把样品要先包埋后超薄切片,这样观察时候可以排除活性组分负载于分子筛外表面的情况。我有个问题想向各位版友咨询一下,一般包埋-切片的步骤是否麻烦,需要什么样的原料与设备。包埋时候是不是把我的无机粉末撒到环氧树脂里就成了?树脂固化后只是用切片就可以直接去观察了么?不需要其他减薄手段么?各位对于超薄切片机有没有什么厂家和型号推荐一下啊!多谢了!

  • 氙灯老化试验箱保温效果好坏取决于保温材质

    氙灯老化试验箱保温效果好坏取决于保温材质

    保温材料是指导热系数小于或者等于0.2的材料,一般来说,导热系数较小,蓄热系数较大,强度较好,那么我们的氙灯老化试验箱是选用的什么材质,为什么要那么注意他的保温效果呢?怀揣这两点的疑问和小编一起往下看吧。  目前在环试行业中,采用较多的保温材料是玻璃纤维棉+聚氨酯硬质发泡,这种材料的保温效果会比较好。氙灯老化试验箱外壳是冰冷的不会有发热的感觉,绝不会对操作人员身体造成任何伤害。若质量稍微差些的则箱体外壳会发烫,温度极高也会影响实验室内均匀度。http://ng1.17img.cn/bbsfiles/images/2016/02/201602291056_585453_2930782_3.jpg  玻璃纤维棉是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差;它主要是由玻璃球或者是废旧玻璃作为原料,经过高温熔制、络纱、织布等工艺制成的;  聚氨酯硬质发泡具有绝热效果好、轻巧、施工方便等优良特性,同时它还具有防震、电绝缘、耐热、耐寒、耐溶剂等特点,聚氨酯硬泡一般为室温发泡,成型工艺比较简单;一般而言,较低密度的聚氨酯硬泡主要用作隔热(保温)材料,较高密度的聚氨酯硬泡可用作结构材料(仿木材);  该设备的保温材料可能会影响到其均匀度,由此可见,保温材料也是能够决定该设备性能的一个大的方面,因此,用户在对氙灯老化试验箱进行选择的时候,一定要考虑到其保温效果,这里小编建议,不论是从经济上还是保温性能方面无疑玻璃纤维棉+聚氨酯硬质发泡是最佳选择。

  • 环境试验箱保温隔热层的材质介绍

    环境试验箱保温隔热层的材质介绍

    环境试验箱温度均与度是试验检测的重点,影响均匀度因素有很多,其中保温材质就是一项,保温材质是决定试验箱性能的一大方面。一般行业采用的保温层材料分为两种:一是聚氨酯硬质发泡,二是超细玻璃纤维棉。这两种材质具备很好的保温效果,设备外形是冰冷的不会发热,如果质量要是差些的,外箱就会发烫温度很高影响到试验室内的均匀度。下面我们来详细分析一下这两种材质:[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/03/202103221538562982_5984_1037_3.jpg!w348x348.jpg[/img][/align]  一、环境试验箱硬质的聚氨酯材料塑料泡沫,通称聚氨酯材料硬泡,它在聚氨酯制品中的使用量仅次聚氨酯软泡。聚氨酯材料硬泡多见网膜囊构造,具备隔热好用、重量较轻、强度大、工程施工便捷等优质特点,另外还具备隔音降噪、抗震、绝缘、耐高温、耐低温、耐水洗等特性,普遍用以电冰箱、冷柜的壳体绝热材料、冻库、冷藏运输车等保温隔热材料,房屋建筑、储存罐及保温管道,小量用以非隔热场所,如仿木料、包装制品等。一般而言,较密度低的聚氨酯材料硬泡关键作为隔热保温(隔热保温)原材料,较密度高的的聚氨酯材料硬泡可作为构造原材料(仿木料)。但硬质的聚氨酯材料泡耐受性溫度一般范畴在-40℃~+80℃,溫度高过80℃会使硬质的聚氨酯材料泡结块、隔热保温性减少等特性上的变弱,针对一些更高溫设备不能选用。  二、环境试验箱极细玻璃棉板:极细玻璃棉板的耐火性能好,在许多阻燃材料上都加上有极细玻璃棉板,极细玻璃棉板具备非常高的耐高温、隔热性,一般用以实验自然环境保温隔热材料。在制做环境试验箱的隔热保温层时,极细玻璃棉板的添充全过程较为繁杂且有一定难度系数。这类原材料能够隔绝高溫和低温,融入的溫度范畴范围广,都是环境试验箱制造行业选用较多、实际效果不错的原材料。

  • 超薄材料的拍摄技巧

    使用超薄碳膜的情况下,加上物镜光阑,有些超薄的纳米颗粒的衬度依很低,无法拍摄清楚。拍摄这类材料有什么技巧吗?加大欠焦程度会使边界明显一点,但图像特别丑,可以作为常用手段吗?仪器型号FEI F20.

  • 超薄切片真难

    做高分子材料的超薄切片,切了一天楞是没切好一片.各位有没有好的经验?

  • 【资料】给大家看一个保温材料试验机

    【资料】给大家看一个保温材料试验机

    保温材料试验机,适用标准:1、保温材料抗拉强度试验(JGJ144-2004外墙外保温工程技术规程);2、胶粘剂与水泥砂浆粘结的拉伸粘结强度试验(JGJ144-2004外墙外保温工程技术规程);3、胶粘剂与EPS板粘结的拉伸粘结强度试验(JGJ144-2004外墙外保温工程技术规程);4、陶瓷墙地砖胶粘剂的压剪粘结强度试验(JC/T547-1994陶瓷墙地砖胶粘剂);5、陶瓷墙地砖胶粘剂粘结强度试验(JC/T547-1994陶瓷墙地砖胶粘剂)6、合成树脂乳液砂壁状建筑涂料的拉伸粘结强度试验(JG/T24-2000合成树脂乳液砂壁状建筑涂料);7、建筑外墙用腻子粘结强度试验(JG/T157-2004建筑外墙用腻子)8、建筑室内用腻子拉伸粘结性能试验(JG/T3049-1998建筑室内用腻子);9、胶粉聚苯颗粒保温浆料的抗压强度试验(JG158-2004胶粉聚苯颗粒外墙外保温系统);10、耐碱网布的断裂强力和断裂伸长率试验(GB/T7689.5-2001增强材料 机织物试验方法 第5部分玻璃纤维拉伸断裂强力和断裂伸长的测定);11、镀锌电焊网的焊点抗拉力试验(QB/T3897-1999镀锌电焊网);12、无机硬质绝热制品的抗压强度试验(GB/T5486.2-2001无机硬质绝热制品试验方法 力学性能);13、硬质泡沫塑料压缩试验(GB8813-88硬质泡沫塑料压缩试验方法)。等等[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910161123_175946_1614021_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910161123_175947_1614021_3.jpg[/img]

  • 求教超薄切片机故障

    一台Reichert-Jung Ultru E超薄切片机,购于90年,最近几年出现一个问题:冬季当室温较低时,出现"点头"故障,样品臂下降到刀口位置时,无法继续下移,来回晃动,同时伴有"咔咔"声,后来将室温升到25度以上后,切片机有时能恢复正常.不知何故?目前看来该型号切片机属于什么档次?

  • 南京玻璃纤维研究设计院质检中心刚刚发布了绝热材料检验检测工程师职位,坐标南京市,敢不敢来试试?

    [b]职位名称:[/b]绝热材料检验检测工程师[b]职位描述/要求:[/b]1.依据各类技术标准对绝热材料的物理性能、力学性能、保温性能的检测和评价;2.能够进行数据计算、分析;3.具备工作细致、严谨,稳重、踏实的精神,具备较强的动手操作能力;4.擅长PPT制作。[b]公司介绍:[/b] 南京玻璃纤维研究设计院质检中心是南京玻璃纤维研究设计院有限公司的下属单位,是非法人的第三方检测机构。中心拥有国家玻璃纤维产品质量监督检验中心、国家建筑材料工业玻璃纤维矿物棉节能服务中心、江苏省产品质量监督玻璃纤维及绝热材料产品质量检验站等多个机构。中心成立于1988年,是第一批授权的国家质检中心,承担国家和省级产品质量监督抽查、质量仲裁检验、社会委托检验等,实验室建筑面积5000多平米,检...[url=https://www.instrument.com.cn/job/user/job/position/64548]查看全部[/url]

  • TEM支持膜、微栅与超薄碳膜的区别

    载网支持膜:大多数透射电镜样品在制样时,为了确保样品能搭载在“载网”上,会在“载网”上覆一层有机膜,称为“支持膜”。这种具有支持膜的载网,称为“载网支持膜”。当样品接触载网支持膜时,会很牢固的吸附在支持膜上,不至于从载网的孔洞处滑落,以便在电镜上观察。 碳支持膜:当样品放在电镜中观察时,“载网支持膜”在电子束照射下,会产生电荷积累,引起样品放电,从而发生样品漂移、跳动、支持膜破裂等情况。所以,人们考虑在支持膜上喷碳,提高支持膜的导电性,达到良好的观察效果。这种经过“喷碳的载网支持膜”,简称“碳支持膜”,一般膜厚度为7-10nm。从制作成本和使用效果看,铜网最经济实用,所以被普遍采用。因此,人们经常提到的“铜网支持膜”、“碳支持膜”、“碳膜”、“方华膜”等,甚至被误称的“铜网”,大多是指这种具有“铜网喷碳的支持膜”。通常称“碳支持膜”。微栅:准确的说,微栅是支持膜的一个品种,它是在制作支持膜时,特意在膜上制作的微孔,所以也叫“微栅支持膜”,它也是经过喷碳的支持膜,一般膜厚度为15-20nm。它主要是为了能够使样品搭载在支持膜微孔的边缘,以便使样品“无膜”观察。无膜的目的主要是为了提高图像衬度,所以,观察管状、棒状、纳米团聚物等,常用“微栅”支持膜,效果很好。特别是观察这些样品的高分辨像时,更是最佳的选择。超薄碳膜:也是支持膜的一种。它是在微栅的基础上,叠加了一层很薄的碳膜,一般为3-5nm。这层超薄碳膜的目的,是用薄碳膜把微孔挡住。这主要是针对那些分散性很好的纳米材料,如:10nm以下的样品,分散性极好,如果用微栅就有可能从微孔中漏出,如果在微栅孔边缘,由于膜厚可能会影响观察。所以,用超薄碳膜,就会得到很好的效果。(转自互联网)

  • 高低温试验箱保温层用的是什么材料

    高低温试验箱广泛的用于科研、工业生产、航天、军工等行业,主要对试验样品或材料进行高温、低温的老化性测试,用以研究试验物品在温度变化时发生的热胀冷缩效应是否对物品性能造成影响。[url=http://www.dongguanruili.com/product/36.html][color=#333333]高低温试验箱[/color][/url]可以进行-70℃到100℃或150℃的温度范围测试,其温度控制精确,常用于科研试验。  高低温试验箱的温度能够稳定的保持,一是得益于其灵敏的温度传感器P.I.D自动调控系统,二是得益于其保温材料。高低温试验箱的保温层使用的材料一般有两种:一种是聚氨酯硬质发泡,一种是超细玻璃纤维棉(石棉)。两种保温材料的保温性能都非常好,但根据其材料特性,在不同的情况下选择不同的材料。下面我们来详细分析一下这两种材料。[align=center][img=聚氨酯硬质发泡,500,305]http://www.dongguanruili.com/d/file/6b182b01b05a3a7049e60fb29105c53e.jpg[/img][/align]  聚氨酯硬质发泡简称聚氨酯硬泡,呈海绵泡沫状,其绝热效果好、重量轻、强度高的特点使得在隔热材料的应用上广泛应用,在进行施工安装的时候比较容易,广泛用于冰箱、冰柜、烤箱、冷库、冷藏车等等,以及建筑物、传输管道的隔热等等。高密度的聚氨酯硬泡可以用于仿制木材,结构较硬。硬质聚氨酯硬泡能够承受的温度范围在-40℃~80℃,超过温度会出现结板状况,会使保温效果减弱,对于更高温的设备来说,这种材料不可采用。[align=center][img=超细玻璃纤维棉,500,280]http://www.dongguanruili.com/d/file/87c58f9d2d043cef9793d7b6c0dc4466.jpg[/img][/align]  超细玻璃纤维棉的隔热性能好,在很多防火材料中都添加有超细玻璃纤维棉,超细玻璃纤维棉具有极高的耐热、绝热性,通常用于试验环境保温材料。在制作高低温试验箱的保温隔热层时,超细玻璃纤维棉的填充过程比较繁琐且有一定难度。这种材料可以阻隔高温和低温,适应的温度范围较广,也是现在制作环境温度试验箱采用最多、效果最好的材料。

  • 电镜超薄切片辅助定位系统的开发与应用

    超薄切片技术是电镜样品的重要制备方法之一,随着科学研究的发展,需对样品的特定部位进行精准超薄切片的领域越来越多,但现有的超薄切片机无法实时原位观测样品的侧切面,导致定位过程繁琐、效率低、精度差。超薄切

  • 电镜超薄切片制样技术分享

    电镜产生的电子束穿透能力很弱,必须把样本切成厚度小于200nm以下的薄片才适用,这种薄片称为超薄切片。在透射电镜的样品制备方法中,超薄切片技术是最基本?最常用的制备技术,主要步骤包括包埋聚合?切片、捞片等步骤。

  • 恒温、恒湿试验箱——保温材料的选择

    超细玻璃纤维棉(石棉)、聚氨酯硬质发泡、发泡苯乙烯等保温方式的选择根据传感方式的不同而采取相应的方式和材料。例如,为了杜绝热空气分钟传热而采用真空隔热层。但是由于技术和成本的原因,目前环境试验设备均采用保温材料的方式。现在我们来分析分析这几种材料的区别:石棉:具有良好的保温性能、成本低、易于操作和填充,所以广泛的应用于热传导和保温领域。但是,它最大的问题就是玻璃纤维易吸入人体肺部,以及易穿透衣物而接触皮肤,再穿透皮肤进入人体。进入肺部和人体的上玻璃纤维不能被消化和排出,而玻璃纤维是易致癌物质。所以,近年来很多行业已经禁止使用石棉作为保温隔热材料。聚氨酯硬质发泡:也被广泛应用,但由于聚氨酯硬质发泡隔热的温度范围不能高于100℃,而根据恒温恒湿试验箱0℃~150℃的温度范围,限制了它的使用范围。

  • 【分享】德国研制出超薄显微镜

    新华社柏林5月3日电(记者班玮)德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。   这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。  达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部组合成整体图像。这些微小透镜由特殊模具对高分子材料加工制成,可以批量生产,因而成本相对低廉。  目前德国研究人员已研制出这种超薄显微镜的样品,但批量生产至少还需一两年时间。

  • 植物超薄切片

    我作的植物样品的超薄切片,在电镜下破损的非常厉害,不知是什么原因,有没有谁有这方面的经验,盼赐教。

  • 关于美国RMC公司生产的超薄切片机

    单位想购买新的超薄切片机,徕卡UC7目前的报价太贵,RMC公司的POWERTOME X/XL超薄切片机报价相对来说便宜,但没用过,根据他的国内总代所说国内用户有40来家,不知有没有用RMC超薄切片机的朋友常逛本坛,谈谈对此机器的看法?(产品质量,性能稳定性,操作方便性,配件,维修等)

  • 怎样做好塑料超薄切片???

    [em53] 试样是增韧过后的HDPE 都切快一个月了,还是大不到预期效果 实验室超薄切片机有个不足之处就是没有冷冻台 介绍点经验,怎样切好在没有冷冻台的情况下?

  • 真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    [size=16px][color=#cc0000]摘要:本文详细分析了目前稳态法(防护热板法和热流计法)测量真空绝热材料(真空绝热板和真空玻璃)导热系数中存在的技术难度,介绍了国外在提高测量精度方面所做的有意尝试和研究,结合热流计高精度校准技术的突破,展示了高精度准确测量真空绝热材料的实施途径,简单介绍了真正能在绝热材料产品生产和品控中灵活应用的导热系数测量装置。[/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#cc0000]1. 稳态法导热系数准确测量难度分析[/color][/size][font=宋体][size=16px] 真空玻璃和真空绝热板是目前市场上普遍使用的隔热性能最佳的两类材料,它们的隔热性能表征一般采用导热系数这一物理性能参数,而导热系数的准确测量则普遍采用精度最高的绝对测量方法——稳态保护热板法。下面将针对真空玻璃和真空绝热板这些超低导热系数材料来分析稳态保护热板法的测量难度,也就是说,通过分析来说明准确测量超低导热系数对稳态测试方法中存在那些具体难度。[/size][/font][font=宋体][size=16px] 根据傅里叶传热定律,在稳态且一维热流条件下,被测板材样品厚度方向上的导热系数[/size][/font][font=宋体][size=16px]定义为:[/size][/font][size=16px][img=,690,65]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112005539612_2783_3384_3.png!w690x65.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]式中:[/size][/font][size=16px]Q[/size][font=宋体][size=16px]表示流经样品厚度方向上的热量,单位[/size][/font][size=16px]W[/size][font=宋体][size=16px];[/size][/font][size=16px]d[/size][font=宋体][size=16px]表示被测板材样品的厚度,单位[/size][/font][size=16px]m[/size][font=宋体][size=16px];[/size][/font][size=16px]A[/size][font=宋体][size=16px]表示热流流经被测样品的横截面积,单位㎡;Δ[/size][/font][size=16px]T[/size][font=宋体][size=16px]表示被测板材样品两个表面之间的温度差,单位℃或[/size][/font][size=16px]K[/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]对于常用的真空绝热板,其厚度一般都在[/size][/font][size=16px]10~20mm[/size][font=宋体][size=16px]。在稳态法测试过程中,样品两面的温差一般控制在[/size][/font][size=16px]15[/size][font=宋体][size=16px]℃[/size][/font][size=16px]~25[/size][font=宋体][size=16px]℃范围内,而真空绝热板的导热系数一般为[/size][/font][size=16px]3~4mW/mK [/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]为了便于分析,假设稳态护热板测试过程中,样品厚度为[/size][/font][size=16px]10mm[/size][font=宋体][size=16px],温差控制在[/size][/font][size=16px]20[/size][font=宋体][size=16px]℃,样品横截面积为[/size][/font][size=16px]300mm[/size][font=宋体][size=16px]×[/size][/font][size=16px]300mm[/size][font=宋体][size=16px],导热系数为[/size][/font][size=16px]4mW/mK[/size][font=宋体][size=16px]。那么在测试过程中,流经样品厚度方向上的热量按照傅里叶定律计算为:[/size][/font][size=16px][img=,690,78]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112006318020_5772_3384_3.png!w690x78.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]由此可见,在稳态法测试真空绝热板样品过程中,流经样品的热流量非常小。这意味着如果采用传统的保护热板法测试仪器测量超低导热系数的真空绝热板会带来极大的误差,例如,采用目前国际上计量级别的稳态法测试仪器测量导热系数为[/size][/font][size=16px]0.04W/mK[/size][font=宋体][size=16px]的隔热材料,测量精度最高可达到±[/size][/font][size=16px]1%[/size][font=宋体][size=16px],而如果用来测量导热系数为[/size][/font][size=16px]0.004W/mK[/size][font=宋体][size=16px]的真空绝热板,则误差则会扩大到±[/size][/font][size=16px]10%[/size][font=宋体][size=16px],而普通的稳态法测量仪器此时的测量误差很容易扩大到±[/size][/font][size=16px]50%[/size][font=宋体][size=16px]以上。由此,显而易见,经典的保护热板法导热仪基本上无法准确测量真空绝热板和真空玻璃的导热系数,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]的研究也同样得出此结论。[/size][/font][font=宋体][size=16px][font=宋体] [/font]从上述傅里叶传热定律可以看出,真空绝热板导热系数的测量准确性,完全取决于热量、样品冷热面温差和样品厚度测量的准确性。[/size][/font][font=宋体][size=16px][font=宋体] [/font]有关样品冷热面温差和样品厚度测量准确性的影响因素以及保证措施,在等人[/size][/font][size=16px][2][/size][font=宋体][size=16px]的研究中进行了描述。针对具体导热系数测试仪器,温差测量和厚度测量都可以通过一系列具体措施来保证测量精度,如采用测温精度更高的热电阻温度传感器等。[/size][/font][font=宋体][size=16px][font=宋体] [/font]真空绝热板和真空玻璃导热系数准确测量的最大难度集中在测量流经样品的微小热量,与之相关的测试难点主要体现在以下几个方面:[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])稳态法测试中的保护热板法,要求主加热器的热量以尽可能小的热损失传递给被测样品,但在实际测试仪器中还是会存在一定程度的热损失,也就是测量得到的热量[/size][/font][size=16px]Q[/size][font=宋体][size=16px]一般会比实际热量偏低,按照傅里叶传热定律,由此得到的被测样品导热系数一般会比实际导热系数数值要低。如果采用保护热板法测量真空绝热板和真空玻璃的超低导热系数,则主加热器上的热量则会更低,如果还要求热损失在总热量中所占比重保持不变,则对热防护措施提出更高的要求,要实现热损失小一个数量级的热防护,这对于稳态护热板法测试仪器几乎是无法实现的技术难度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])稳态法测试中的热流计法,要求样品两面温度均匀,采用热流计来测量流经样品厚度方向上的热流密度。热流计法的优点是测量样品中心区域的热流密度而不用太考虑侧向热损失,但带来的问题是这里的热流计要采用稳态防护热板法仪器进行校准,如果要测量流经真空绝热板和真空玻璃的微小热量,同样需要稳态防护热板法仪器能准确提供如此小热量的准确热流来进行热流计校准。由此可见,热流计法测量真空绝热材料的测试难题同样归结到了上述稳态护热板法无法实现的技术难题上。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])为了实现稳态法微小热量下导热系数的准确测量,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]采用了[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]“薄加热装置稳态热传导特性的试验方法”对真空绝热板进行了测试研究,如图[/size][/font][size=16px]1[/size][font=宋体][size=16px]所示。[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]方法实际上一种防护热板法的变化形式,是将双样品防护热板法装置中的主加热器和护热加热器用一个薄加热器代替,两个尺寸和性能完全相同的被测样品板把此薄加热器加持在中间,这样可以有效的降低侧向热损,并认为施加在薄加热器中的电能完成转换为热量传递给样品。[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人的工作证明了薄加热器装置测量真空绝热板导热系数的有效性,但这种测试方法和装置只能适用于双样品测试,而且样品尺寸会因为真空腔体和薄加热器等因素的限制而有固定限制,不太适合作为适合各种不同规格尺寸真空绝热板和真空玻璃导热系数测试的通用型仪器设备。[/size][/font][align=center][size=16px][img=,438,500]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007008163_2840_3384_3.jpg!w690x786.jpg[/img][/size][/align][align=center][size=16px][color=#cc0000][font=宋体]图[/font]1 ASTM C 1114[font=宋体]薄加热器真空绝热板导热系数测试系统[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])尽管上述薄加热器改善了稳态法测试中的热损,但热损失还是实际真空绝热板和真空玻璃导热系数测量中的主要误差源,这是因为大多数真空绝热板外表面耐磨损的金属或塑料薄膜,而这些薄膜是侧向热损的主要热通道,而真空玻璃的外部玻璃也是热损的主要通道。这些热通道对于普通隔热材料而言所造成的热损可以忽略不计,但对于真空绝热板和真空玻璃测试中的微小热流,则这些热通道所带来的热损失则显着十分突出。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])目前稳态法测试中的一个突出难题是测试仪器很难覆盖各种规格尺寸真空绝热板和真空玻璃的导热系数测试评价,一般是采用庞大的测试设备来进行覆盖,使得测试仪器的造价十分昂贵。[/size][/font][size=18px][color=#cc0000]2.[font=宋体]解决方案[/font][/color][/size][font=宋体][size=16px][font=宋体] [/font]为了解决上述真空绝热材料导热系数测试中存在的难度,上海依阳实业有限公司采用最新独创性技术,提出了以下具体解决方案以及具体分析。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])测试方法还是基于稳态法,但采用的稳态热流计法,这样就无需考虑热损给准确测量带来的影响,同时还可以实现测试仪器的较低造价和灵巧尺寸。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])为了保证测量的准确性和快捷性,方案中所用的稳态热流计法是一种改进型方法,即护热式稳态热流计法,即在被测样品的两个表面都进行了高精度的护热,以在被测样品两个表面上形成一定面积的高精度均温区,避免被测样品表面导热对测量结果带来的影响。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])热流计法高精度测量绝热材料超低导热系数的核心技术是对热流计进行高精度的校准。上海依阳实业有限公司在热流计校准技术方面最近取得了突破,采用高精度量热技术,可以在测量仪器上通过量热模块以自校准方式快速和高精度的校准测量用热流计,校准精度远大于经典防护热板法测量仪器的校准精度。再结合使用高灵敏度热流计,可以实现对流经真空绝热板和真空玻璃微小热流的高精度测量。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])按照傅里叶稳态传热公式[/size][/font][size=16px](0.0.1)[/size][font=宋体][size=16px],在被测样品性能(导热系数和厚度)固定的条件下,如果要准确测量超低导热系数,可以设法增大热量和增大温差,即在测试过程中适当的增大被测样品冷热面的温差,从而在仪器的固定测量精度下能明显提高导热系数测量精度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])由于真空绝热板和真空玻璃的厚度普遍较小,测试面积(如正方形边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])完成能够满足稳态法测量实现一维热流过程中对测试面积的要求。因此,测量装置将采用正方形结构(边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])或圆形结构(直径[/size][/font][size=16px]100mm[/size][font=宋体][size=16px]),可以大幅度降低测试仪器尺寸和相应造价。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]6[/size][font=宋体][size=16px])真空绝热板和真空玻璃导热系数测量装置将采用便携式分体结构,如图[/size][/font][size=16px]2[/size][font=宋体][size=16px]所示。整个测量装置主要包含加热装置和热流测量装置两部分,它们的尺寸边长在[/size][/font][size=16px]200mm[/size][font=宋体][size=16px]左右。在测试过程中,分别将它们紧贴在被测绝热材料板两侧。由此可以看出,这种结构和尺寸的导热系数测量装置,基本可以覆盖所有真空绝热板和真空玻璃产品的导热系数测量,并十分具有灵活性,通过放置在产品的不同部位可测量产品的导热系数分布。[/size][/font][align=center][size=16px][img=,500,185]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007573283_8484_3384_3.jpg!w690x256.jpg[/img][/size][/align][font=宋体][size=16px][/size][/font][align=center][size=16px][color=#cc0000][font=宋体]图[/font][font=&]2 [/font][font=宋体]真空绝热材料导热系数稳态热流计法测量装置测量布局图[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]7[/size][font=宋体][size=16px])由于具有超高的测量精度以及样品尺寸的兼顾性,此方案的导热系数测量装置自然可以测量常温常压下普通隔热材料的导热系数。[/size][/font][size=18px][color=#cc0000]3.[font=宋体]参考文献[/font][/color][/size][font=宋体][size=16px]([/size][/font][size=16px]1[/size][font=宋体][size=16px])[/size][/font][size=16px]Wessling, Francis C., et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Subtle Issues in theMeasurement of the Thermal Conductivity of Vacuum Insulation Panels.” Journalof Heat Transfer-Transactions of The Asme, vol. 126, no. 2, 2004, pp. 155–160..[/size][font=宋体][size=16px]([/size][/font][size=16px]2[/size][font=宋体][size=16px])[/size][/font][size=16px]Cucchi, Chiara, et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Standard-BasedAnalysis of Measurement Uncertainty for the Determination of Thermal Conductivityof Super Insulating Materials”. 2020, pp. 171–184.[/size][align=center][size=16px]=======================================================================[/size][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制