当前位置: 仪器信息网 > 行业主题 > >

超高温熔点仪

仪器信息网超高温熔点仪专题为您提供2024年最新超高温熔点仪价格报价、厂家品牌的相关信息, 包括超高温熔点仪参数、型号等,不管是国产,还是进口品牌的超高温熔点仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高温熔点仪相关的耗材配件、试剂标物,还有超高温熔点仪相关的最新资讯、资料,以及超高温熔点仪相关的解决方案。

超高温熔点仪相关的论坛

  • 超高温3000℃热物理性能测试中的红外测温计在线校准

    超高温3000℃热物理性能测试中的红外测温计在线校准

    [color=#990000]摘要:本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出了采用高温固定点的在线校准方法,介绍了用于超高温条件下的几种固定点,并针对典型超高温测试设备描述了具体固定点单元形式和校准实施方法。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、在线校准的必要性[/color][/size] 在超高温1500~3000℃范围内的材料热物理性能测试中,普遍使用非接触式红外测温仪进行样品温度测量。温度测量精度决定了热物性参数的测量准确性,所以红外测温仪要定期进行校准。但在实际使用中,校准过的红外测温仪还存在以下几方面因素对温度测量精度带来影响: (1)如在激光闪光法热扩散系数和热膨胀系数等测试设备中,测温仪一般直接测量样品表面温度,但往往测温仪的焦点位置并未与样品测温面重合,或测温仪的对准没有完全集中在样品上,而是部分聚焦在靠近样品周围的部分样品支架上,这些测温仪的轻微错位都会导致温度测量出现重大误差。 (2)如在超高温下落式量热计比热容测试设备中,很多时候测温仪是对装有被测物的样品盒表面温度进行测量,样品盒的表面温度与内部被测样品的实际温度还有一定差别,测温仪获得的并不是样品的真实温度。 (3)红外测温仪普遍对被测物表面的发射率比较敏感,如果没有进行特殊的黑体空腔处理,对于未知发射率表面的温度测量则很难测准。 (4)超高温下的温度测量,红外测温仪一般需要透过加热炉光学观察窗和内部保护气体监测温度,光学窗口和气体的透射率通常是未知的,并且可能会随着加热炉使用过程中蒸发材料的沉积而演变。 由此可见,在实际应用中,为了保证温度测量的准确性,需要对红外测温仪进行现场校准,而不仅仅是将它们从实验装置中取出进行定期校准。 本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出采用高温固定点的在线校准方法,还将介绍用于超高温条件下的几种固定点,并针对典型超高温测试设备说明具体固定点单元形式和校准实施方法。[size=18px][color=#990000]二、高温固定点在线校准方法[/color][/size] 高温固定点在线校准方法是一种典型的对比法,原理是基于准确已知被测样品温度来校准接触和非接触式测温仪。具体方法是按照被测样品的外形测试和外表材质制作固定点单元,然后将固定点单元作为被测样品进行升温和升降试验,通过对已知的固定点标准温度与测温仪的测量值进行对比,达到对红外测温仪进行校准的目的。 固定点是国际温标中规定的可复现的平衡温度,是纯物质的三相点、沸点和凝固点,固定点都是根据物质的相变过程实现的,所选用的固定点绝大部分都是纯物质的变相点。 ITS-90温标在-189.3442℃~961.78℃温度范围共有九个定义固定点,分别为:纯银、纯铝、纯锌、纯锡、纯铟五个固定点,水、汞、氩三个三相固定点 以及镓熔点。 高温固定点是一系列金属的碳共晶与碳包晶固定点,主要有Pd-C(1492℃)、Rh-C(1657℃)、Pt-C(1738℃)、Ru-C(1954℃)、Ir-C(2292℃)、Re-C(2474℃)、WC-C(2749℃)和HfC-C(3185℃),由此可覆盖1500℃ 至3200℃范围内的红外测温仪在线校准。[size=18px][color=#990000]三、高温固定点单元[/color][/size] 固定点单元是一种样品尺寸大小的坩埚,坩埚内通过熔融灌装或直接镶入的方法植入了固定点材料。高温固定点单元要求满足以下几方面条件: (1)耐高温,且高强度避免损坏; (2)只有纯度最高的材料金属和石墨,不能有其他杂质; (3)外形尺寸与被测样品一致,且密封严紧避免熔液泄露; (4)集成有黑体空腔,降低发射率影响; (5)整体结构设计和布局要保证温度的均匀分布。 针对超高温热物性测试中的红外测温仪在线校准,需要根据相应的样品摆放形式和尺寸采用不同结构的固定点单元,如在各种超高温3000℃热物理性能测试设备中,样品的摆放主要有立式和卧式两种结构,那么就需要采用相应不同结构的高温固定点单元。 在很多超高温3000℃激光闪光法热扩散系数和下落式量热计比热容测试设备中,样品是立式摆放形式,红外测温仪一般从下至上或从上至下对样品的底部或顶部进行测温,相应的固定点单元结构如图1所示。固定点主体和端帽为高纯石墨,图中的多个长孔内浇灌固定点材料,或直接插入固定点材料细棒,图1(a)中左侧的黑体空腔朝向红外测温仪。[align=center][img=红外测温仪在线校准,690,170]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060915316401_7706_3384_3.jpg!w690x170.jpg[/img][/align][align=center][color=#990000]图1 立式结构高温固定点单元:(a)主体剖面图;(b)主体顶视图;(c)端帽剖面图;(d)端帽顶视图[/color][/align][align=left][/align][align=left] 对于一些样品是卧式摆放形式的超高温3000℃热物性测试设备,如热辐射性能以及顶杆式和光学热膨胀仪,红外测温仪或高温热电偶一般在样品的水平方向上进行测温,相应的固定点单元结构如图2所示,固定点材料一般是直接熔灌入石墨坩埚内。图中的黑体孔对准红外测温仪,也可以插入被校热电偶。[/align][align=left][/align][align=center][color=#990000][img=红外测温仪在线校准,500,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060916391456_3774_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图2 卧式结构高温固定点单元[/color][/align][size=18px][color=#990000]四、采用固定点在线校准过程[/color][/size] 在超高温热物性测试设备中采用固定点进行红外测温仪或热电偶在线校准的过程,首先是确定需要校准的温度测量范围,并选择不同的标准温度固定点单元尽可能的覆盖此温度范围,然后分别采用相应的固定点单元单独进行校准。 在每个固定点单元校准时,首先是用固定点单元代替被测样品,然后以低速率加热至固定点温度10℃以上并恒温,恒温一段时间后再以低速进行降温。在整个升降温过程中被校温度计连续测量温度,并将测量值随时间的变化曲线识别固定点单元的相变温度。图3示出了温度计测量纯铜固定点熔化和凝固过程的原始温度变化曲线。[align=center][color=#990000][img=红外测温仪在线校准,600,353]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060917182923_7753_3384_3.jpg!w690x407.jpg[/img][/color][/align][align=center][color=#990000]图3 采用纯铜固定点单元在线校准升降温过程[/color][/align] 得到随时间变化的原始温度变化曲线后,对原始曲线进行一阶微分和二阶微分处理得到相应的微分曲线。根据一阶微分曲线中的极大值点可确定第一起始点和第一终止点,根据二阶微分曲线可确定第二起始点和第二终止点。基于得到的四个温度位置点,可最终确定原始温度变化曲线中在此加热速率下固定点单元熔化温度的测量值,此测量值与固定点标准值相差就是校准值。 为了减小升降温速率对校准精度的影响,可采用不同升降温速度进行更精确的校准,即采用不同的加热冷却速率进行加热冷却,得到不同速率下的校准值(测温仪误差),将此温度误差外推至加热或冷却速率为零的情况。[size=18px][color=#990000]五、总结[/color][/size] 综上所述,高温固定点技术可为各种超高温3000℃热物理性能测试设备中的温度测量提供全温区范围内的准确校准,而且高温固定点技术具有良好的重复性、再现性和长期稳定性,并可溯源到国际温标,由此彻底解决了超高温热物性测试中一直困扰着的温度测量准确性评估难题,为材料高温热物理性能准确测量提供了可靠的技术保障。[align=center]=======================================================================[/align]

  • 超高温瞬间灭菌机使用操作手册

    超高温瞬间灭菌机使用操作手册  超高温瞬间灭菌机原理主要分为直接和间接加热两种,其中直接加热中有蒸汽吹入物料式和物料吹入蒸汽式两种(无锅炉用户也可选用电加热超高温瞬时灭菌机),而间接加热的又分为管式灭菌机和板式灭菌机。国内生产的超高温灭菌机中间接加热的最为常见。管式超高温灭菌机,即我们通常称为瞬时超高温灭菌机因其在乳品、饮料、酒类、冰淇淋、果汁及酱油等流体食品中广泛应用,且具有其它设备无可比拟的优越性,得到食品行业生产厂家使用的青睐。  超高温瞬间灭菌机原理:  一般物料由离心泵进入灭菌机中冷热料热交换装置中而得到预热,再经过充满高压的高温桶,物料被迅速加热到杀菌温度并在此前后保持约3秒,其中的微生物及酶类很快被杀灭。物料出高温桶后通过与冷料的热交换获得冷却,一般温度低于65℃。如果下道工序需要提高温度则可通过调节角式截止阀或循环等途径达到要求,反之则通过接入冷却水来降低出料温度。出料通过节流阀控制,此阀能使在维持一定压力下物料的沸点高于最高温度。正常生产时调节此阀,由泵的推动力克服弹簧压力而产生背压控制流量,在清洗灭菌机时则应全部开启。循环贮槽可用来配制酸碱溶液,对盘管内壁积垢进行有效清洗。由于同时采用不锈钢三通旋塞,流量可以得到适当调节。  超高温瞬时灭菌机使用注意事项  为保障瞬时超高温灭菌机使用性能及寿命,保证安全生产,使用中需注意以下问题。  1、定期检查疏水器及过滤器,防止蒸汽凝结水排出受阻。  2、经常检查安全阀、压力表及温度计是否失灵。  3、如发现进料泵轴封处渗漏严重应及时检修,或调换端面密封圈。  4、如与均质机同时使用,可选用3WR—1.5型高压泵配套,并按该产品说明书要求维护保养。  5、如果在冬季停用期间有受冻可能的地区,应把管道中的水放尽或用1%的碱液充满管子。  6、物料接头及旋塞应经常检查密封性能是否良好,防止泄露产生,空气混入。如果物料中带有空气将会加速物料在管壁上的积垢。  7、设备不用时,蒸汽排出阀应是开启的,以利于今后使用。  8、进料离心泵的电机轴承应一年清洗一次,并要换润滑油,用量不能过多,只要充满轴承壳一半就可以。  9、进料泵不允许在无液体时空转。  10.灭菌过程中遇上突然停电应迅速关闭蒸汽,打开排汽阀排尽高温桶内的蒸汽,同时打开进水截止阀。  11.灭菌过程中若出现停汽或气压达不到工艺要求,应调节阀门使物料在其中循环或暂时停机。  12.防止杂物等进入堵塞灭菌机,空气的进入也会加速盘管的结垢。

  • 超高温杀菌牛奶

    在乳制品制作工艺上,为提高液体乳的外观、营养价值与保存时间,缓解牛乳地域分布不均等现象,进入市场分销的长保质期液体乳,按规定要经过一道超高温灭菌的工序,以破坏其中可生长的微生物和芽孢。此做法是否妥当?有没有杀菌前后数据对比?

  • 超高温材料冲击测试装置蒸发器冷冻油多怎么处理?

    超高温材料冲击测试装置中配件比较多,大到压缩机小到电气元器件都是很重要的,冠亚超高温材料冲击测试装置如果发现蒸发器冷冻油比较多的话,建议及时处理比较好。  超高温材料冲击测试装置蒸发器中冷冻油太多,也能引起制冷量不足而导致降温缓慢。超高温材料冲击测试装置蒸发器中存油,可直接通过其油面的冷热分界线来判断,如超高温材料冲击测试装置油位过高应及时放出。  有些氟利昂与冷冻机油互相溶解,因此,超高温材料冲击测试装置制冷系统里的制冷剂在循环流动时,就免不了会有冷冻机油残留于各部件。超高温材料冲击测试装置冷冻油残留在换热器内会影响传热系数。特别是当冷冻机油进入超高温材料冲击测试装置蒸发器后,若结构设计或安装不合理时,超高温材料冲击测试装置冷冻机油就会只进不出或多进少出,使蒸发器里残留的冷冻机油愈来愈多,严重影响其吸热效果,出现制冷量不足的情况,到这地步不处理的话温度就降不下去,因此,必须进行超高温材料冲击测试装置放油工作。  如何判断超高温材料冲击测试装置蒸发管内留有较多的冷冻机油而影响制冷是件较困难的事情。若遇到超高温材料冲击测试装置这种情况,则会出现一个明显的反常现象,即蒸发管上的白霜是稀稀拉拉的,结得不完全,并且呈浮霜,若无其他故障的话,那很可能是蒸发管内残留冷冻机油太多的缘故。清除超高温材料冲击测试装置蒸发器内冷冻机油,必须将它拆下来,进行吹洗再烘干。对排管式蒸发器,因拆卸很不方便,可将超高温材料冲击测试装置蒸发器的进口用压缩空气吹,然后用喷灯烘蒸发管。  超高温材料冲击测试装置的蒸发器种类也是比较多的,一旦存在冷冻油比较多的话,就需要我们及时解决。

  • 万米地层的“照相师”——超高温高压小井眼电成像测井仪

    3月4日,当得知深地塔科1井钻探深度突破10000米大关时,马雪青激动不已。马雪青是中油测井制造公司一级工程师,也是深地塔科1井四开测井电成像仪器保障组组长。她主要负责200摄氏度、170兆帕[b]超高温高压小井眼电成像测井仪[/b]的研发、试验和保障工作。为满足深地塔科1井的测井耐温耐压指标要求,该仪器提前一年就完成了研发。2023年底,两支样机经高温测试和标准井功能验证后,从西安奔波2800余公里,与马雪青同时抵达轮台基地。可万万没有想到,经过验证的仪器来到塔里木却“掉了链子”,出现主电流突增通信中断、极板电路供电电源微跳等问题。马雪青对自己说:“必须在一个月内完成所有整改工作。”她逐一分析原因、查找源头,很快就设计出工艺、算法、电路的改进方案,带领团队对仪器进行整改。不料,整改后的仪器在接受万米井验收井——满深11井的检验时,仪器极板图像依然欠佳,地质信息显示不全。满深11井与深地塔科1井的四开井况相似,只有过了这一关,仪器才能具备挺进万米深井的能力和实力。走路、吃饭、睡觉……马雪青脑子里想的都是这件事。一天中午吃饭时,她发现这里的饭菜比西安的咸一些,这激发了她的灵感:“与之前的试验井相比,塔里木的两口试验井泥浆矿化度高,仪器可能是‘水土不服’。”马雪青立刻返回厂房,用食用盐水模拟井下环境,将极板放置其中,终于发现了问题,找到了症结。随之,她带领团队改变了仪器下回路地线结构和极板内部地线安装方式,这一次,仪器终于在高对比度井眼环境中通过了验证。目前,[b]中油测井自主研发的电成像、密度、能谱等6种12支测井仪器均已通过试验验证[/b],准备就位、整装待发。[来源:中国石油新闻中心][align=right][/align]

  • 【分享】什么叫巴氏杀菌奶和超高温灭菌奶?

    [size=5][b]什么叫巴氏杀菌奶和超高温灭菌奶?[/b][/size]巴氏杀菌奶,是以新鲜牛奶为原料,经过离心净乳,在低于牛奶沸点(100.55℃)的温度对牛奶进行加热杀菌。一般以塑料袋、玻璃瓶或新鲜盒包装。巴氏杀菌奶需要冷藏保存,保质期在1-7天左右,超高温灭菌(Ultra High Temperature,简称UHT)是通过瞬间(一般3~4秒)升高灭菌温度(135~140℃)来达到理想的灭菌效果。这种灭菌方式能杀死牛奶中绝大部分细菌,同时避免了对牛奶营养成分造成破坏。一般以利乐包包装。超高温灭菌奶可以常温保存,保质期可以达6个月,特别方便运输和储存。

  • 超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    [color=#ff0000]摘要:本文针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统TESCOM ER5000,提出相应的国产化解决方案。解决方案采用的也是电气比例阀驱动背压阀实现高压精密控制,整个压力控制系统为分体式结构,但采用了独立的精度更高的双通道PID控制器作为外部控制器,与电气比例阀一起构成双环控制模式。此方案除了实现国产替代之外,最大特点是可以驱动两个背压阀实现高压全量程的精密控制,且控制精度更高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][b]一、问题的提出[/b][/size]高温高压流变仪是在特殊的高温高压条件下测量流体材料流变特性(如粘度等)的精密分析仪器,模拟材料的使用工况条件,研究流体材料的黏度与温度、压力的关系,对石油开采(如钻井液、压裂液、酸化液、原油)、石化生产(如润滑油)、煤化工(如油煤浆)、食品加工(如淀粉糊化)等行业有重要指导意义。国内外都非常重视流变仪的研发和使用,但是其核心技术以前一直由西方国家掌握,我国的流变仪一直依赖进口,迫切需要中国自主研发的设备。为此,科技部设立了重大科学仪器设备开发专项“超高温高压钻井液流变仪的研发及产业化”(项目编号:2012YQ050242)以期彻底解决核心技术卡脖子问题。此开发专项由北京探矿工程研究所牵头承担,于2018年取得了重大技术突破,开发完成了Super HTHP Rheometer 2018超高温高压流变仪,并编制了相应的企业标准“Q/HDTGS0006-2018 超高温高压流变仪”,可用于测试钻井液、压裂液等样品在高温高压(最高320℃、220MPa)及低温高压(最低-20℃、220MPa)条件下的流变性。尽管Super HTHP Rheometer 2018超高温高压流变仪在关键技术上取得了突破,但根据文献“王琪, 赵建刚, 韩天夫,等. 超高温高压流变仪中高精度压力控制系统的实现[J]. 地质装备, 2018, 19(2):3.”报道,高压流变仪中的压力控制采用的是美国艾默生公司的全套压力控制系统,其中包含了TESCOM ER5000压力控制器和相应的背压阀。本文将针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统,提出相应的国产化解决方案。本文将详细介绍国产化替代方案的具体内容和相应配套产品。[b][size=18px]二、国产化替代解决方案[/size][/b]在高温高压流变仪中使用的TESCOM ER5000压力控制系统是一种典型的双回路串级PID控制方式(双环模式),如图1所示,其工作原理是采用0.7MPa量程的低压电气比例阀来驱动200MPa量程的背压阀实现精密高压调节。[align=center][img=01.TESCOM压力控制系统结构示意图,690,301]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941118441_5182_3221506_3.png!w690x301.jpg[/img][/align][align=center]图1 TESCOM ER5000压力控制系统结构示意图(内置和外置双压力传感器,双环模式控制)[/align]根据我们对高压压力控制的使用经验和具体实际应用的了解,特别是针对高温高压流变仪中的高压压力精密控制,应用TESCOM ER5000压力控制系统特别需要注意以下几方面的问题:(1)尽管TESCOM ER5000压力控制系统采用的是双回路PID串级控制模式,但由于采用的是16位AD转换器,所以在控制精度上还有潜力可挖,如采用更高精度的AD转换器。(2)在整个200MPa的高压范围内,采用一个艾默生TESCOM背压阀并不能准确覆盖整个高压范围的压力精密控制,在某些压力区间会出现失调现象。这也是所有背压阀都会出现的问题,解决方法是采用至少2个背压阀来覆盖整个高压范围的精密控制。由此,如果采用2个背压阀进行全量程的高压控制,这势必要采用两套ER5000压力控制器,会明显提升成本。目前国产的背压阀已经非常成熟,技术难度主要在于ER5000压力调节器的国产化替代。针对高精度的压力控制,我们分析了ER5000压力调节器的技术思路,特别基于ER5000压力调节器所采用的这种非常有效的双环模式高精度压力控制方法,我们提出了精度更高和更经济国产化替代方案。如图2所示,方案的技术核心为:[align=center][img=02.双阀高压压力精密控制系统结构示意图,690,497]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941243661_3252_3221506_3.png!w690x497.jpg[/img][/align][align=center]图2 双阀结构高压压力精密控制系统结构示意图[/align](1)采用分体结构形式,与TESCOM ER5000系统的工作方式相同,同样采用电气比例阀驱动背压阀。根据高压压力控制范围,选择2个不同工作压力范围的背压阀来覆盖整个量程。(2)采用国产电气比例阀作为背压阀的驱动,自带PID控制功能的电气比例阀组成内部闭环控制回路,实现背压阀压力输出的精密调节。(3)外置压力传感器和双通道PID控制器构成外部闭环回路,控制器输出作为电气比例阀设定值,由此可实现ER5000压力控制器的双环工作模式。(4)国产化替代的技术核心是双通道PID控制器,每个通道都具有24位AD和16位DA,双精度浮点运算和最小输出百分比为0.01%,控制器具有RS 485通讯和标准的MODBUS协议,并配备了测控软件,可遥控操作和存储显示测试曲线。此PID控制器性能指标远优于ER5000控制器。我们经过大量试验,已经验证了这种国产比例阀和高精度PID控制器组成的串级控制模式可有效的实现和改善高压压力控制精度,完全可以实现对ER5000压力控制系统的国产化替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 耐驰——STA超高温测试氧化铝纤维

    耐驰——STA超高温测试氧化铝纤维

    [color=#000000]STA[/color][color=#000000]配备的钨样品支架拥有确定的热流路径和高量热灵敏度。圆锥形的样品坩埚可以稳固地放置在样品支架上。热电偶采用非焊接设计,可以精确测量温度和DTA信号,方便更换。此外,样品坩埚可以彼此堆叠,方便测试特殊样品。[/color][color=#000000][img=,559,375]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131352287360_7764_163_3.png!w559x375.jpg[/img][/color][color=#000000][color=#000000] 氧化铝纤维熔融和结晶的[/color][color=#000000]DTA[/color][color=#000000]信号,样品挥发产生少量失重[/color][/color][color=#000000][color=#000000][color=#000000]和石墨相比,钨的蒸气压较低,所以常被用在超高温条件下的测试。此处,采用钨炉体和[/color][color=#000000]W3%Re/W25%Re[/color][color=#000000]样品支架来测量高温[/color][color=#000000]TGA-DTA[/color][color=#000000]信号。将[/color][color=#000000]6.8mg[/color][color=#000000]氧化铝纤维置于钨坩埚中加热到[/color][color=#000000]2100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000],之后再冷却,整个过程采用[/color][color=#000000]He[/color][color=#000000]气氛保护。上图显示:在红色加热[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]2047[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现氧化铝纤维的熔融吸热峰,在蓝色冷却[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]1936[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现结晶峰。在绿色[/color][color=#000000]TG[/color][color=#000000]曲线上约[/color][color=#000000]1900[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]以后出现[/color][color=#000000]1.1% [/color][color=#000000]的轻微失重,这是由于样品在高温下发生少量挥发。[/color][/color][/color]

  • 【讨论】一个关于熔点的问题

    最近,实验室在做一个酸酐,文献报道其熔点为92-93度,可我在用熔点仪检测时发现到了100多度后还是不熔!这就奇怪了,一般物质不纯的话,熔点应该是降低的,可这个东西却是那么高!后来我用熔点管加硅油用酒精灯加热的方法测,发现在86度左右就开始有一点熔化,可再过一段时间就不熔了。而且这个时候再那另外一根样品放进硅油的话,马上就熔化了。我怀疑是因为该样品在高温下容易分解变质,所以如果我把样品放在熔点仪或是硅油里超过一定的时间后就不能测出其熔点了。也就是说我的样品是易分解的,那这应该如何来检测其熔点呢?希望大家参与讨论

  • 通过改进超高温3000℃热物理性能测量来优化工业过程——欧盟Hi-TRACE项目简介

    通过改进超高温3000℃热物理性能测量来优化工业过程——欧盟Hi-TRACE项目简介

    [size=16px][color=#990000]摘要:本文介绍了欧盟Hi-TRACE项目,此将建立新的方法来表征超高温3000℃下任何固体材料的热物理性能,并建立一系列可供工业使用的参考装置和材料网络。通过支持可靠的测量方法,该项目将提高对高温材料的理解,并使航空航天和能源等行业能够开发新颖和创新材料。[/color][/size][hr/][size=16px][/size][size=18px][color=#990000]1. 概述[/color][/size][size=16px] 在航天、航空、核能和玻璃等许多行业中各种设备都在1500℃以上的高温环境下运行,为了优化工艺和提高竞争力,这些行业正在开发能够在更高温度下工作的新材料。该项目的总体目标是建立一个由各种参考装置组成的计量基础装置,以便为各行业提供高达3000℃下任何固体材料可追溯的热物理特性数据。该项目的产出将使欧洲各行业能够显著提高能效、减少气体排放、提高安全性并提高关键应用的可靠性。[/size][size=18px][color=#990000]2. 需求[/color][/size][size=16px] 近年来,安全关键应用中的加工厂或部件的操作温度已经升高到更高的温度,例如1500℃以上。[/size][size=16px] (1)在空间应用中,空间模块在高达2500℃的温度下需要可靠的热物理特性数据(热扩散率、比热、发射率和熔化温度),以优化再入飞行器设计。ArianeGroup已经表明,数值模型可能会将再入飞行器的防护罩温度高估600℃。为了实现更好的预测,需要采用合适的模型和精确的热物理特性数据。[/size][size=16px] (2)在核应用中,使用当前的锆基合金制造燃料包壳是非常普遍的。碳化硅基复合材料被认为是一种很有前途的事故容忍燃料的替代品,因为它们的氧化温度远远高于锆基合金(约2000℃对1200℃)。了解这些三维非均匀复合材料的热扩散率和比热对于预测它们在工业条件下的行为至关重要。[/size][size=16px] (3)在燃气轮机中,许多设计因素会影响整体效率,但在使用热障涂层时,通过将发动机温度提高7%,已经取得了重大进展。然而,对于这些涂层,结合状态(影响界面间的热阻)对其可操作性非常关键,因为所用材料接近其温度极限,几度的差异会显著改变燃气轮机的可操作性。[/size][size=16px][size=16px] [/size]在上述例子中,在非常高的温度下(1500℃以上),不存在可追踪的热物理性质测量值,以评估测量值的不确定度。为了填补这一空白,有必要开发基于参考装置及其相应不确定度预算的计量工具,并使用参考材料和与参考装置的比较来验证新的测量技术。[/size][size=18px][color=#990000]3. 目标[/color][/size][size=16px] 该项目的目标是通过参考装置、新设备、校准方法、不确定度预算和参考材料,增加在非常高的温度下热物理特性测量的可追溯性。[/size][size=16px] Hi-TRACE项目的具体目标是:[/size][size=16px] (1)建立一个基于激光闪光法的参考装置,可追溯测量固体材料在1500℃和3000℃之间的热扩散率,并确定不确定度预算。[/size][size=16px] (2)开发经过验证的方法并建立参考装置(基于下落式量热法或激光闪光法),用于1500℃至3000℃之间固体材料比热的可追溯测量。目标不确定度为1000℃以下0.5%,以上1.5%。[/size][size=16px] (3)建立一个参考装置,用于基于辐射或量热方法对1500℃以上固体材料发射率进行可追溯测量。目标不确定度低于1000℃为0.5%,高于为1.5%。此外,开发有效的方法来测量高达3000℃的材料熔化温度[/size][size=16px] (4)开发有效的方法,通过接触热阻量化固体材料(尤其是功能层)在1000℃以上的热防护或侵蚀防护中的机械附着力。[/size][size=16px] (5)促进标准开发组织和最终用户采用项目中开发的技术和测量基础装置。[/size][size=18px][color=#990000]4. 项目进程[/color][/size][align=center][img=,690,385]https://ng1.17img.cn/bbsfiles/images/2020/09/202009072243460555_6722_3384_3.jpg!w690x385.jpg[/img][/align][size=16px][/size][align=center][color=#990000]图1 Hi-TRACE启动[/color][/align][size=16px] 该项目始于2018年7月在法国LNE举行的启动会议。Hi-TRACE项目正在寻找工业利益相关者参加咨询委员会,每年一次。[/size][align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2020/09/202009072244127296_3413_3384_3.jpg!w690x276.jpg[/img][/align][size=16px][/size][align=center][color=#990000]图2 Hi-TRACE第一次会议[/color][/align][size=16px] Hi-TRACE联合体于2019年4月在贝尔格莱德(塞尔维亚)VINCA举行会议,讨论项目进展,并为下一个工作周期制定详细的工作计划。此外,还组织了咨询委员会2019年12月的下一次会议。仍然欢迎感兴趣的公司加入咨询委员会并参加会议。[/size][align=center][img=,600,322]https://ng1.17img.cn/bbsfiles/images/2020/09/202009072244333897_6176_3384_3.jpg!w600x322.jpg[/img][/align][size=16px][/size][align=center][color=#990000]图3 Hi-TRACE第二次会议[/color][/align][size=16px] Hi-TRACE联合体2019年12月在英国伦敦举行会议,讨论项目进展。此外,为了有效地考虑项目内的工业需求,同时在英国国家物理实验室(NPL)成立了一个咨询委员会。[/size][size=18px][color=#990000]5. 超越现有技术的进步[/color][/size][size=16px] 一些国家计量和指定机构运行固体材料(合金、聚合物、复合涂层等)热物理性能测试设备,以便为行业提供具有相关不确定度的认证值。比热、热导率和光谱发射率的测量最高可达1000℃,有时最高可达1500℃。在之前的项目中,已经开发了一些参考装置,并以2000℃(热扩散率的情况)为计量标准进行了表征。与此同时,设备制造商和学术实验室已经开发并扩展了高达3000℃的新测量方法。该项目将进一步开发这些特性的参考装置,以获得1500℃至3000℃的固体材料参考值,并为工业和学术用户提供可追溯性,以验证其他新方法。[/size][size=16px] 已知很多材料的熔化温度高达几千摄氏度,这些数值要么是由学术机构获得的,要么是由行业本身获得的。然而到目前为止,温度在1500℃以上的参考材料和参考装置都不存在,这意味着这些测量是在不可追溯的情况下进行的。该项目将提出测量高达3000℃的耐火材料熔化温度的不确定度预算方法[/size][size=16px] 以前已经研究过应用在涡轮叶片上的隔热层的脱粘现象,通过使用光学或红外辐射来量化粘附状态的非接触和无损技术的现有方法还是无法令人满意,并且没有得到验证。该项目将超越现有技术水平,提供经过验证的接触热阻测量设备、专用人工参考制品和数字工具,用于表征从室温到1000℃以上温度下的脱粘状态。[/size][color=#990000][size=18px]6. 结果[/size][size=16px]6.1. 在高达3000℃的温度下建立热扩散率测量的可追溯性[/size][/color][size=16px] 通过改进所使用的感应炉(高频发生器的改进)和实施校准温度高达3000℃的新型双色辐射温度计,两个现有的激光闪光法装置已被改进为在非常高的温度下工作。[/size][size=16px] 通过对石墨样品进行热扩散率测量,对其中一种设备的性能进行了测试。在第一步中,使用由改进的感应炉然后由电阻炉加热的相同样品进行比较热扩散率测量,电阻炉用于在中等温度范围内进行测量的参考装置中,因为它比感应炉具有更好的温度均匀性。在这两个炉子的共同工作温度范围(从500℃到800℃)内,获得的结果非常一致(偏差小于1%)。第二步,在感应炉中测量这种材料的热扩散率,最高可达2995℃[/size][size=16px] 辐射温度计的现场校准方法是通过使用金属-碳低共熔高温固定点(HTFPs)来开发的,该固定点位于炉中样品的位置。钯-碳(1492℃)、铂-碳(1738℃)和铱-碳(2290℃)定点单元的不同几何形状已被设计并用于测试所提出的校准方法。就不确定度而言,与样品具有相同形状和尺寸的单元给出最佳结果。[/size][size=16px][color=#990000]6.2. 建立温度高达3000℃的比热容测量的可追溯性[/color][/size][size=16px] 基于不同技术解决方案的两种下落法量热仪正在开发中。[/size][size=16px] 在第一种情况下,由两个热电堆组成的热流式量热仪被集成在一个位于感应炉下方的等温块中。为了限制热辐射从炉子进入热电堆,在炉子和量热仪之间安装了一个活门系统。为了提高加热区的温度均匀性,已经对炉中的样品位置进行了优化。通过修改熔炉的冷却回路,增强了基线的稳定性(试样下落前热电堆发出的信号)。[/size][size=16px] 该量热仪的热流校准是通过电气替代来执行的,这是由于坩埚配备有特定的加热器,该加热器安装为4线制电阻,并放置在热电堆中。在每个样品下落后,通过焦耳效应散发的能量与样品下落后在量热仪中释放的能量大致相同,从而对热电堆进行校准。通过电校准对热电堆灵敏度的首次测定显示,相对于消耗的电能,线性度良好。用于测量样品下落前温度的辐射温度计的原位温度校准程序与热扩散率测量中描述的程序相同。第一次比热测量是在钨样品上用这种下落法量热仪进行的,温度高达2000℃。[/size][size=16px] 在第二种情况下,量热仪原型的不同元件(装有热敏电阻的铜块、快门系统、感应炉、高温计等)已经组装好了。落样机构及其控制(电子、软件)正在建设中。此外,还进行了数值模拟,以评估样品在感应炉加热后自由下落过程中散失的热量。[/size][size=16px]针对光谱发射率已知的样品,提出了基于激光闪光技术的动态比热测量的理论概念。使用沉积在钨样品上的石墨涂层对其进行了实验测试,并建立了初步的不确定度预算。[/size][size=16px] 亚秒脉冲加热装置已被改进,用于测量温度高于1500℃时的比热。首次高温脉冲加热测量已使用该装置在2300℃以下的纯钨样品上进行,这些初步结果与文献中的比热数据吻合良好。[/size][size=16px][color=#990000]6.3. 建立发射率测量的可追溯性,并改进3000℃以下熔化温度的计量[/color][/size][size=16px] 在先前项目中开发的基于量热法的计量参考装置正在进行改造,以便能够在非常高的温度下对法向光谱发射率进行可追踪的测量。已经研究了适用于样品架的材料,认为候选材料是氮化硼、石墨和钨。由于氮化硼样品架在目前的设计中很难安装,所以只设计了石墨和钨样品架。已经进行了朝向更高温度的加热过程的有限元模拟,目前测试的最高工作温度为1700℃[/size][size=16px] 基于辐射测量方法的其他三个现有装置的升级正在进行中,这些辐射测量系统将通过实验室间比对与参考系统进行比较。[/size][size=16px] 联盟选择了固体均质材料,用于本项目第二部分组织的三个实验室间热扩散率、比热和发射率测量的比较。所选材料(钼、钨和各向同性石墨IG210)因其熔点高而被选中,可作为激光闪光装置、量热仪和发射率测量装置在极高温度下校准的候选参考材料。三个实验室间比较所需的样品(每种材料约75个样品)已在相同的钼、钨和各向同性石墨块中加工,以根据每个合作伙伴在尺寸和几何形状方面的要求限制潜在的不均匀性影响。在这些同质固体材料上获得的结果将在一个资源库中提供,并可由学术界和工业界的最终用户下载和重复使用。[/size][size=16px] 在这些实验室间的比较之后,合作伙伴将描述“工业”材料(复合材料和金属合金)在超高温下的热物理特性(热扩散率、比热和发射率),这些材料将由参与项目的工业合作伙伴或利益相关者咨询委员会提供。[/size][size=16px][color=#990000]6.4. 建立高温下(1000℃以上)量化脱粘的方法[/color][/size][size=16px] 激光闪光装置适用于通过测试样品正面和背面的温度测量来测量多层系统中的接触热阻。基于控制体积法的数值模型预测了激光闪光实验中温度场随时间的发展,并得到了验证。用另一种装置(基于热成像测量)对具有特定缺陷的样品进行测量,以找到一种有效的方法来检测机械脱粘。[/size][size=16px] 已经编写了一份报告,介绍了为项目制作相关多层的可行性,并提出了潜在的多层系统。双层和三层系统以及部分脱粘的双层和三层系统的开发和表征正在进行中。潜在的候选多层材料系统的初步测试已经在4个系统上进行:碳化硅-瓷土-莫来石、氧化铝-玻璃陶瓷、氮化硅-烧陶瓷-氮化硅和氧化铝-铝箔-氧化铝。基于这些初步测试,碳化硅-瓷土-莫来石已被推荐用于详细表征。[/size][size=16px] 因此,在室温下对碳化硅-瓷土-莫来石系统的双层和三层样品进行了激光闪光试验,并利用建立的反向传热模型计算了它们的界面热阻值(没有部分脱粘)。[/size][size=18px][color=#990000]7. 影响[/color][/size][size=16px] Hi-TRACE项目的活动和早期成果已在国家和国际会议上通过13次投稿(口头介绍或海报)进行了介绍。该项目已提交给2019年4月在意大利举行的EURAMET测温技术委员会。该委员会由欧洲国家计量研究所的温度或热物理特性实验室的代表组成。2019年12月编写了一份通讯,并放在项目网站上,一篇文章已提交给核能领域的行业刊物。[/size][size=16px] 2018年底,在欧洲计量技术中心组织的热计量暑期学校期间,向来自土耳其、斯洛伐克、希腊、波斯尼亚和黑塞哥维那、塞尔维亚和意大利的国家计量研究所和指定研究所的年轻研究人员提供了与热物理特性测量相关的专门培训课程。将于2020年9月在ZAE(德国维尔茨堡)举办一次研讨会,介绍该项目的工作。[/size][size=16px] 为了确保项目活动与利益相关者的需求保持一致,联合体已经建立了一个利益相关者咨询委员会。该委员会目前由六名成员组成,另外两名潜在候选人已确认希望成为成员。[/size][size=16px] 继与CEN TC 184 SC1“复合陶瓷”公司建立联系之后,有人提议在针对先进技术陶瓷领域的研究、工业和科学界的“论坛研究和标准化”期间介绍Hi-TRACE项目的进展。该活动计划于2020年9月10日与CEN/TC 184会议同时举行,将提供一个机会,在Hi-TRACE项目框架内取得成果后,推进标准化的任何新要求,这些成果可被认可为标准化行动。[/size][size=16px][color=#990000]7.1. 对工业和其他用户群体的影响[/color][/size][size=16px] 欧洲共同体以及全世界的计量和科学界将受益于参考装置网络产生的高温下可靠的热物理特性数据,每个装置都将附有其不确定度预算、一些候选参考材料和校准程序。这将使NMIs和DIs能够准备商业报价,以便在项目结束后提议校准和测试服务。[/size][size=16px] 可能直接受益于项目结果的主要工业领域作为利益相关者出现在项目中:航空航天工业、核工业和测量设备制造商,它们都配备了测量热扩散率、比热、熔化温度和发射率的设备。[/size][size=16px][color=#990000]7.2. 对计量和科学界的影响[/color][/size][size=16px] 根据项目的结果,将发布一份通过激光闪光法测量3000℃以下热扩散率的良好实践指南。该指南将包含有关样品要求、测量方法和测量分析的信息,以获得热扩散率值。[/size][size=16px] 该项目的科学成果将通过会议发言、出版物和培训会议传播。除此之外,还将确定在超高温下用于校准激光闪光装置、量热仪和发射率装置的材料。[/size][size=16px][color=#990000]7.3. 对相关标准的影响[/color][/size][size=16px] 核应用中新型陶瓷基复合材料的使用需要热物理测试标准,不仅要支持材料开发和性能数据库,还要支持设计规范和部件规范文件,以及核管理委员会关于核设计批准、认证和许可的规定。[/size][size=16px] 这些标准经过全球专家的验证,将使人们对用这些“认可的”测试方法测量的热性能的可靠性以及用这些值建立的设计和论证文件充满信心。在该项目中,一个合作伙伴是CEN/TC 184/SC 1“先进技术陶瓷-陶瓷复合材料”的主席和国际标准化组织TC206 WG4的成员,并积极参与陶瓷性能测量领域标准的修订。计划利用该项目的结果提出发射率测量的新标准或更新现有的两个标准:ISO 19628“精细陶瓷(先进陶瓷,先进技术陶瓷)——陶瓷复合材料的热物理性质——比热容的测定”和ISO 19629“精细陶瓷(高级陶瓷,高级技术陶瓷)——陶瓷复合材料的热物理性质——用闪光法测定一维热扩散率”。[/size][size=16px][color=#990000]7.4. 长期经济、社会和环境影响[/color][/size][size=16px] 与通常的工业部门(炼铁、食品、电信等)相比,航天和核工业从事长期项目(通常为10至20年)。预期的长期效益是本项目中开发的材料的完整特性(热扩散率、比热、发射率、熔化温度),具有定量不确定度,甚至在可追溯性方面也没有校准证书。[/size][size=16px] 航空部门将受益于使用新的实验工具和接触热阻测量模型来评估烧蚀现象的进展,例如,它有助于减少空间模块重量、耐火材料的可持续性以及延长燃气轮机寿命,从而减少浪费。[/size][size=16px][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=16px][/size]

  • 熔点仪的原理

    熔点是指物质在大气压力下固态与液态处于平衡时的温度。固体物质熔点的测定通常是将晶体物质加热到一定温度时,晶体就开始由固态转变为液态,测定此时的温度就是该晶体物质的熔点。熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。因此,熔点仪在化学工业、医药研究中据有重要地位,是生产药物、香料、染料及其他有机晶体物质的必备仪器,也是实验室常用的基础仪器之一。纯净的固体有机物,一般都有固定的熔点,而且熔点范围(又称熔程或熔距,是指由始熔至全熔的温度间隔)很小,一般不超过0.5—1℃;若物质不纯时,熔点就会下降,且熔点范围就会扩大。利用这一性质来判断物质的纯度和鉴别未知化合物。例如,一个未知化合物,测得其熔点与某一已知化合物的熔点相同或者十分相近时,将未知样品与已知样品等量混合后测定其混合熔点。若熔点没有变化,且熔点范围不超过1℃时,一般可以认为二者是同一物质,如果混合熔点发生变化,熔点范围大,则可判定它们不是同一物质。这种鉴定方法叫做混合熔点法。测量熔点的方法有两种:一种是毛细管熔点测定法,另一种则是熔点仪测定熔点法。基于科技的发展与进步,熔点仪不断的更新换代,实现了许多实用性功能,且操作方便,数据精确。因此实验室常用的是采用熔点仪测定熔点的方法。目前全球使用最广泛的熔点仪是美国斯坦佛大学研究所最新研究成果的MPA100全自动熔点仪。MPA100熔点仪是按照药典规定的熔点检测方法而设计的,MPA100熔点仪利用电子技术实现温度程控,初熔和终熔数字显示。应用了线性校正的铂电阻作为检测元件,并用电子线路实现了快速“起始温度”设定,三通道同时设定及可供选择的线性的升温速率。MPA100熔点仪采用药典规定的毛细管作为样品管,通过高分辨率的数码成像检测器观察毛细管内样品的熔化过程,清晰直观,是制药、化工、燃料、香料、橡胶等行业理想的熔点检测仪器。http://www.sinoinstrument.com/UploadFiles/Image/s2013050910524395610(2).jpg

  • 熔点仪报错

    测完一个样品后将毛细管拔出,熔点仪显示里面还有一根熔点管从而报错不能使用,可里面没有熔点管了啊。该怎么办呢?

  • 熔点仪知识

    熔点仪的特点:主要用于染料、药物、香料等晶体有机化合物熔点之测定,以便确定其纯度。丈量方法完全符合药典标准,一般最多可同时丈量三根样品,自动计算初、终熔均匀值。分为目视熔点仪,数字熔点仪,微机熔点仪,显微熔点仪等几大类。 熔点仪原理,根据物理化学的定义,物质的熔点是指该该仔细搜索由固态变成液态时的温度。在有机化学领域中,熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。因此,熔点测定仪在化学产业、医药研究中占有重要地位,是生产药物、香料、柒料及其他有机晶体物质的必备仪器。 测定方法:测定熔点方法一般用毛细管法和微量熔点测定法,在实际操纵中,我们就用专业的熔点测定仪来测物质熔点。通过熔点仪,我们可以测定样品的熔点值。通过和纯物质的熔点值对比就可以得到样品的纯度情况。因此,熔点测定仪在化学产业、医药研究中占有重要地位,是生产药物、香料、染料及其他有机晶体物质的必备仪器。应用:熔点仪在化学产业、医药研究中具有重要地位,是生产药物、香料、染料及其他有机晶体物质的必备仪器。

  • 用熔点仪测熔点,哪些因素对结果误差影响较大?

    按药典方法,用熔点仪测原料药熔点,作者猜测以下因素对测熔点结果有影响:样品干燥程度、 样品在毛细管中填充高度(猜想填得过高,刚开始熔化看得更明显,初熔点偏低)、 样品被碾碎得是否充分、 样品在毛细管中填充的密实程度。但不知那些因素的影响较大。请各位专家高手讨论。还有什么因素没有列出的大家也可讨论一下。

  • 什么是表面活性剂的冻点、熔点、沸点、浊点

    到底什么是表面活性剂的冻点、熔点、沸点、浊点呢?相信很多表面活性剂使用者都想知道,充分理解这几点对我们购买和使用表面活性剂大有好处!下面我们就用一种更适合简单易懂的方法了解它们!第一:表面活性剂的冻点简而言之就是一种表面活性剂在外界温度降到一定值的时候,开始凝固“结冰”时的温度即是该表面活性剂的冻点,例如:聚醚多元醇CF-60冻点是5℃,就表示改表面活性剂在5℃时就凝固了!第二:表面活性剂的熔点熔点就是表面活性剂在冻点以下凝固以后,我们继续提高温度,当外界温度达到冻点以上,表面活性剂开始融化时的温度就是熔点;可能有的同学会问,理论上应该冻点和熔点不是一样吗,高于熔点就融化了,这就是小编要提示的地方,熔点如果与冻点一样,那还是冻点不是熔点,因为要使表面活性剂融化,首先要使外界温度高于冻点,一般至少要高于2-3℃才能熔化,因为能量是守恒的只有一边的能量高于另一边才能有多余的能量去推动表面活性剂熔化!例如:聚醚多元醇CF-60熔点是8℃。第三:表面活性剂的沸点直截了当就是使一种表面活性剂达到沸腾的温度,例如:三乙醇胺沸点335.4℃(数据来源:表面处理联盟化工百科),也就是说只有当外界温度到达335.4℃时,三乙醇胺开始沸腾,常压下水的沸点是100℃一个道理;第四:表面活性剂的浊点1%表面活性剂充分溶解,持续加温到达一定温度溶液变浑浊即是浊点,反之亦然!

  • 【原创】数字熔点仪

    仪器用途及特点根据物理化学的定义,物质的熔点是指该该仔细搜索由固态变为液态时的温度。在有机化学领域中,熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。因此,熔点测定仪在化学工业、医药研究中据有重要地位,是生产药物、香料、染料及其他有机晶体物质的必备仪器。 WRR熔点仪是按照药典规定的熔点检测方法而设计的,该仪器利用电子技术实现温度程控,初熔和终熔数字显示。应用了线性校正的铂电阻作检测元件,并用电子线路实现了快速“起始温度”设定及四档可供选择的线性的升温速率。仪器采用药典规定的毛细管作为样品管,通过高倍率的放大镜观察毛细管内样品的熔化过程,清晰直观,是制药、化工、染料、香料、橡胶等行为理想的熔点检测仪器。操作步骤及使用方法使用前的准备工作注意:进入正式测试前,必须进行使用前的准备工作。

  • 关于熔点仪的问题

    我们使用的数字熔点仪显示温度与实际温度不一致,是不是熔点管松动了的问题呀,上次仪器有搬动过一次。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制