当前位置: 仪器信息网 > 行业主题 > >

定位器

仪器信息网定位器专题为您提供2024年最新定位器价格报价、厂家品牌的相关信息, 包括定位器参数、型号等,不管是国产,还是进口品牌的定位器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定位器相关的耗材配件、试剂标物,还有定位器相关的最新资讯、资料,以及定位器相关的解决方案。

定位器相关的论坛

  • 小鼠MRI立体定位器

    [url=http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html][b]小鼠MRI立体定位器SRP-6M-HT2[/b][/url]是用于核磁共振环境的[b]小鼠立体定位仪器[/b],它采用兼容MRI的材料制造,是[b]小鼠核磁共振[/b]和显微操作实验的理想选择。[b]小鼠MRI立体定位器SRP-6M-HT2[/b]头部固定器组件是由100%塑料制成,AP框架棒和基板都由金属制成,保证了稳定和精确的立体定位记录,头部固定组件能够从基板拆卸下来,使得MRI可以扫描固定在相应位置的动物,核磁共振扫描之后,相应位置固定着动物的头部固定组件,能够轻易地放回在基板的原有位置,[b]小鼠MRI立体定位器SRP-6M-HT2[/b]能够用于多种多样的应用,只需更换头部固定组件用于小鼠,结合该设备可以注入标记或造影剂,用于MRI扫描,头部固定组件可以进行立体定位,记录对准动物的MRI扫描点。[img=小鼠MRI立体定位器]http://www.f-lab.cn/Upload/srp-6m-ht2_.jpg[/img][b]小鼠MRI立体定位器SRP-6M-HT2特色[/b]自从NARISHIGE的立体定位操作器根据此标准制作后,AP框架具有18.7mm的方形形状。如提供的 SM-15 立体定位显微操作器。需要带显微操作器的版本请访问SRP-6M。SRP-5M-HT2 和 SRP-6M-HT2 之间的差别在于AP框架杆的数目。 SRP-5装配有一个AP框架杆,而SRP-6装配有两个AP框架杆。用于大鼠的版本分别是SRP-5R-HT2 和 SRP-6R-HT2(SRP-5R 和 SRP-6R不带显微操作器)小鼠MRI立体定位器:[url]http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html[/url]

  • 萨姆森定位器可以进行智能组态设置

    萨姆森定位器按输入信号分为气动阀门定位器、电气阀门定位器和智能阀门定位器。气动阀门定位器的输入信号是标准气信号,智能电气阀门定位器它将控制室输出的电流信号转换成驱动调节阀的气信号,根据调节阀工作时阀杆摩擦力,抵消介质压力波动而产生的不平衡力,使阀门开度对应于控制室输出的电流信号。并且可以进行智能组态设置相应的参数,达到改善控制阀性能的目的。  萨姆森定位器按动作的方向可分为单向阀门定们器和双向阀门定位器。单向阀门定位器用于活塞式执行机构时,阀门定位器只有一个方向起作用,双向阀门定位器作用在活塞式执行机构气缸的两侧,在两个方向起作用。  按萨姆森定位器输出和输入信号的增益符号分为正作用阀门定位器和反作用阀门定位器。正作用阀门定位器的输入信号增加时,输出信号也增加,因此,增益为正。反作用阀门定位器的输入信号增加时,输出信号减小,因此,增益为负。  按萨姆森定位器输入信号是模拟信号或数字信号,可分为普通阀门定位器和现场总线电气阀门定位器。普通阀门定位器的输入信号是模拟气压或电流、电压信号,现场总线电气阀门定位器的输入信号是现场总线的数字信号。  按萨姆森定位器是否带CPU可分为普通电气阀门定位器和智能电气阀门定位器。普通电气阀门定位器没有CPU,因此,不具有智能,不能处理有关的智能运算。智能电气阀门定位器带CPU,可处理有关智能运算,例如,可进行前向通道的非线性补偿等,现场总线电气阀门定位器还可带PID等功能模块,实现相应的运算。  按反馈信号的检测方法也可进行分类。例如,用机械连杆方式检测阀位信号的阀门定位器:用霍乐效应检测位移的方法检测阀杆位移的阀门定位器:用电磁感应方法检测阀杆位移的萨姆森定位器等。

  • ABB定位器一个机械连杆提供位置反馈

    ABB定位器AV1 & AV2应用范围广泛,能提供快速、灵敏、高精度的定位器控制。适用于单、双作用,直行程、角行程执行器。从执行机构到定位器的一个机械连杆提供位置反馈。3个不同的特性化凸轮提供给客户灵活的选择,设定信号和执行器位置之间关系可以选:平方根、线性化、平方。ABB定位器AV1的选择接受外部的气动信号,并转化为一个气动输出。这个气动输出一个推动执行机构的力。ABB定位器AV2的选择接受外部的4-20mA信号并转化为一个气动输出,这个气动输出驱动执行机构动作。ABB定位器AV1 & AV2的产品数据紧凑、坚固的设计适用于高振动的环境快速、精确的校正单双作用通用可使用天然气作为气源可选隔爆型电器转换器ABB定位器电气AV3 & AV4应用范围广泛,适用于单、双作用,直行程、角行程执行器。从执行机构到定位器的一个机械连杆提供位置反馈。3个不同的特性化凸轮提供给客户灵活的选择,设定信号和执行器位置之间关系可以选:平方根、线性化、平方。ABB定位器电气AV3的选择接受外部的4-20mA信号并转化为一个气动输出,这个气动输出驱动执行机构动作。AV3具有失信号保位的功能。ABB定位器电气AV4的选择接受外部的24V脉冲信号并转化为一个气动输出,这个气动输出驱动执行机构动作。AV4具有失信号保位的功能。AV3 & AV4的产品数据紧凑、坚固的设计适用于高振动的环境快速、精确的校正单双作用通用可使用天然气作为气源

  • 关于萨姆森定位器如何控制阀门位置

    电气阀门萨姆森定位器是一种从控制器或控制系统中接受4~20mA直流直流电流信号,并向角行程气动执行机构输送空气来控制阀门位置的装置。并且阀位变送器把当前的开启状态等比列转换成4~20mA直流电流信号。定位器输出的电流信号提高了系统的稳定性。不用另装阀位变送器的支架。正向和反向,单作用和双作用之间可方便转换。 对于小型执行机构可通过缩小定位器的节流孔来防止震荡。 空气消耗量少,经济性好。电气阀门萨姆森定位器在5~200Hz范围内无共振现象。 正向和反向,单作用和双作用之间可方便转换。 对于小型执行机构可通过缩小定位器的节流孔来防止震荡。 空气消耗量少,经济性好。 不用更换零件就可以实现1/2范围内的分程控制

  • ABB定位器提供高温应用选项

    ABB定位器AV系列主要特点和优点快速简单的设置节省时间的设置:大型凸轮和从动机构具有独立的零点和量程校准功能,提供快速简便的设置。通用设计单作用或双作用:定位器的通用设计使其适用于单作用或双作用于线性或旋转式执行机构,提供各种安装套件。CE认证符合国际标准:经认证可在需要CE认证的国家使用。快速响应时间高风量:ABB定位器AV系列的先导阀机构能够提供27scfm @ 80psi 送风,确保小型到大型控制执行器的快速响应时间。最佳的控制稳定性动态负载的高供应压力:AV定位器设计允许高达150psi 的供应压力,以提供对高动态负载条件和严密截止阀要求的稳定控制。高温选项高达250⁰ F:AV1气动定位器提供高温应用选项,内部零件和组件适用于这些极端过程环境条件。应用灵活性可选择的控制特性:AV定位器的凸轮提供线性,平方和平方根选项,可根据应用场合选择,以及直接或反向选择。高性能气动装置先导阀设计:AV气动系统采用业界公认的先导阀机构,该机制原先由Bailey授予专利并引入。坚固的设计全金属结构:AV定位器适用于任何具有业界公认的性能和长使用寿命的过程应用。行业标准设计En闭合选项:AV定位器提供NEMA4X 外壳选件,适用于恶劣的工艺条件。简化的设计易于维护:[url=http://www.chinaabb-positioner.com/]ABB定位器[/url]AV系列的设计与详细的使用说明书提供了所有信息,便于现场服务和维护。

  • 萨姆森定位器所需的安装部件和附件

    萨姆森定位器附着在NAMUR上-所需的安装部件和附件-ries:1. 240系列阀门,执行器尺寸最大1400-60cm2:将两个螺栓拧到阀杆连接器的支架或直接连接到阀杆连接器(取决于在版本上),放置从动盘在顶部并使用螺钉固定它。3251型阀门,350至2800cm2:将较长的从动盘拧到阀杆连接器的支架或直接连接到阀杆连接器(取决于在版本上)。型号3254 Valve,1400-120 to2800cm2:将两个螺栓拧到支架。固定支架在杆连接器上,放置下板在顶部并使用螺钉紧固它。将萨姆森定位器安装在NAMUR罗纹上2.为了连接NAMUR,十个NAMUR连接块使用时直接进入现有的轭孔。螺钉和齿形锁紧垫圈。对齐NAMUR阀门上的标记连接(标记为“1”的一侧)到50%的行程。用于连接杆式阀门使用成形板的轭放在轭周围:拧四个钉入NAMUR连接块。放置NAMUR连接块在杆上并定位成形板在另一边。使用坚果和齿形锁紧垫圈紧固在螺柱上形成板。对齐在NAMUR阀门连接上标记(在标有'1'的一侧)到50%行程。3.将适配器支架放在支架上使用螺钉安装和安装。确保密封正确就位。对于带空气净化的[url=http://www.samson-china.com/]萨姆森定位器[/url],安装前取下塞子定位器。适用于没有空气的定位器吹扫,更换螺塞通气塞。4.选择所需的杆尺寸M,L或XL和根据执行器的销位置。在trav-中列出的阀门尺寸和阀门行程。引脚位置应该是位置35以外的位置。需要标准的M杠杆,或者需要L或XL杠杆尺寸,继续如下:-将从动销拧入指定的位置杠杆孔。只使用更长的跟随安装套件中包含的针脚。-将杠杆放在杆的轴上sitioner并使用磁盘紧固它弹簧和螺母。-一直向前移动杆一直到它会朝两个方向前进。

  • 山武定位器用SFC手操器组态调整

    山武定位器SVP是智能型阀门定位器,SVP 有两种形式,即:整体型和分离型,每种形式中有三种型号,各有不同功能。能连接到调节器的4- 20 mA输出回路上,所有调整有电子模块完成输入信号和调节阀开度之间的关系可任意设置,能容易设置分程和其他特殊的应用。整体型/AVP300:无阀位输出的模拟量信号(4- 20mA)AVP301:有阀位输出的模拟量信号(4- 20mA)AVP302: HART通信协议。分离型/AVP200:无阀位输出的模拟量信号(4- 20mA)AVP201:有阀位输出的模拟量信号(4- 20mA)AVP202: HART 通信协议。山武定位器SVP有三种组态方法,即:手动旋钮、用SFC手操器、用HART手操器。手动旋钮组态调整:只用一把螺丝刀就能完成SVP的内部组态,包括自整定、行程调整、调节阀的特性检测、零位/满度的调整。用SFC手操器组态调整。Yamatake SFC160/260型智能通信器能用于SVP的全部参数组态、调整、SVP的维护。SVP 的具体通信功能详见SFC操作手册。用HART手操器组态调整HART275通讯器能用于AVP302/202型的全部组态、校整、维护。SVP山武智能定位器适用于直行程和角行程的执行机构,重量约2.5kg。安装方式与普通定位器相同。

  • 阀门定位器的技术演变及其更新换代——电气比例阀

    阀门定位器的技术演变及其更新换代——电气比例阀

    [color=#ff0000]摘要:针对气动调节阀中的阀门调节装置,本文介绍了调节装置的技术发展过程,描述了调节装置从机械阀门定位器发展到电气阀门定位器和电气比例阀压力控制器的技术更新过程和内容。特别是针对目前广泛使用的电气阀门定位器与基于最新技术的电气比例阀压力控制器进行了详细对比,说明了电气比例阀势必会替代目前所使用的各种阀门定位器。本文还详细介绍了基于串级控制方法的电气比例阀压力控制器的典型应用。[/color][align=center][img=阀门定位器的技术发展及其更新换代——电气比例阀,590,395]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150224314813_1592_3221506_3.jpg!w690x462.jpg[/img][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=24px][color=#ff0000]1. 阀门定位器的技术发展过程[/color][/size][/b] 为了对气动调节阀进行自动调节以准确控制流体介质的流量和压力,作为气动调节阀的主要配套附件,阀门定位器接受外部调节器的控制信号,通过在气动调节阀顶部输入较大压力使得调节阀阀杆上下移动,从而实现对气动调节阀阀门开度的准确调节。阀门定位器的技术发展经历了以下几个阶段:[b][size=18px][color=#ff0000]1.1 机械阀门定位器[/color][/size][/b] 图1所示为气动调节阀与经典的机械式阀门定位器配套运行的原理图。[align=center][color=#ff0000][img=01.机械阀门定位器,500,434]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150229559032_2716_3221506_3.jpg!w690x600.jpg[/img][/color][/align][align=center][color=#ff0000][b]图1 气动调节阀与机械阀门定位器的工作原理图[/b][/color][/align] 当阀门定位器有信号输入时,力矩马达产生电磁场,杠杆2受电磁场力影响带动挡板靠近喷嘴。喷嘴的背压增加,经过气动放大器放大后,将气源的一部分送入气动薄膜调节阀的顶部气室,随着顶部气室压力的增大,隔膜向下变形使得阀杆带着阀芯向下移动逐渐将阀门开度变小。此时,与阀杆相连的反馈杆(图中摆杆)绕着支点向下移动,使轴的前端向下移动,与其连接的偏心凸轮做逆时针旋转,滚轮顺时针旋转向左移动,从而拉伸反馈弹簧。 由于反馈弹簧拉伸杠杆2下段向左移动,此时就会与力矩马达输出的力矩达到平衡,于是阀门就固定在某个位置不再动作。在阀门定位器运行过程中,它将阀杆上下位移信号作为反馈测量信号,以外部控制器的输入信号作为设定信号,并进行比较,当两者有偏差时,改变其到执行机构的输出信号,使执行机构动作,建立阀杆位移量与外部控制器输出信号之间的一一对应关系。由此可见,阀门定位器是以阀杆位移为测量信号,以外部控制器输入为设定信号,以气体压力输出为执行器的闭环反馈控制系统,即外部控制器的输出信号对应于气动调节阀的开度大小。[b][size=18px][color=#ff0000]1.2 电气阀门定位器[/color][/size][/b] 从上述机械阀门定位器的工作原理可以看出,阀门定位器主要起到两个作用,一是提供与控制电信号成线性关系的气体压力给气动调节阀,从而改变调节阀的开度大小;二是测量和反馈阀杆位置,以准确知道气动调节阀的开度大小。随着技术的进步,出现了如图2所示的电气转换器来代替机械阀门定位器中的喷嘴、挡板调压系统,以实现对输出气体压力的调节控制,从而实现阀门位置的精确定位,其工作原理如图3所示。[align=center][b][color=#ff0000][img=02.电气转换器,300,315]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150230296831_4135_3221506_3.jpg!w690x726.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 电气转换器(I/P或E/P转换器)[/color][/b][/align][align=center][b][color=#ff0000][img=03.电气阀门定位器工作原理图,600,313]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150230490440_5933_3221506_3.jpg!w690x361.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图3 气动阀门定位器的工作原理图[/color][/b][/align] 电气转换器的输入电流/电压信号与输出压力信号成比例关系,如输入信号从4-20mA变化时,电气转换器的输出气体压力会在20-100kPa范围内变化,从而将电流信号转换成了压力信号。电气转换器相当于是一个1:1的放大器,只不过其接收的是电信号。由于电气转换器与气动调节阀没有机械连接,因此比机械阀门定位器具有安装、调试、维修方便等优点。 电气转换器可以直接安装在气动调节阀上来使用,不需要安装反馈阀杆,但因没有反馈环节,无法成为一个闭环控制系统。因此,通常是将电气转换器与阀杆定位功能配套使用,构成电气阀门定位器。 由于组合了电气转换器和阀门定位功能,使得电气阀门定位器的功能和作用有了进一步的扩展,如可用来提高阀门位置的线性度。另外,由于克服了阀杆摩擦力和消除了调节阀不平衡力的影响,电气阀门定位器很适合应用在高压介质、高压差场合、快速调节场合以及想改善调节阀流量特性的场合,也还适用于大口径调节阀和高低温介质调节阀。目前,电气阀门定位器已经在逐步替代机械阀门定位器,是目前市场上的主流阀门定位器。[b][size=18px][color=#ff0000]1.3 电气比例阀压力控制器[/color][/size][/b] 从上述电气阀门定位器工作原理可以看出,电气转换器使用过程中并不知道加载到气动调节阀膜片上的压力值是多少,还需增加阀杆位置反馈装置才能实现阀门开度的准确测量和控制。这也就是说,如果准确已知加载在气动调节阀膜片上的气体压力值,根据此压力与膜片变形量和阀杆的线性关系,就可以准确知道压力与气动调节阀开度的线性关系。由此,此问题就可以归结为气动调节阀顶部气室内的气体压力测量和控制问题。 电气比例阀作为一种高速和准确的压力控制器,是近十年来发展起来的新技术,它使用了两个高速伺服或电磁(或压电)阀来根据需要增加或降低气体压力以实现减压压力控制。与电气转换器技术相比,电气比例阀压力控制器提供了更高的压力和更大的灵活性和鲁棒性。典型的电气比例阀压力控制器及其工作原理如图4所示。[align=center][color=#ff0000][b][img=04.电气比例阀及其工作原理示意图,550,355]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150231124953_2987_3221506_3.jpg!w690x446.jpg[/img][/b][/color][/align][b][/b][align=center][b][color=#ff0000]图4 电气比例阀压力控制器及其工作原理图[/color][/b][/align] 如图4所示,电气比例阀的基本工作原理是一种典型的气体动态平衡法,即通过使用一个高速进气阀和一个高速排气阀使内部压力保持动态平衡,使得位于两阀中间位置处的压力保持在所需的设定值上。一个压力传感器监控输出压力,一个数字或模拟控制器同时调节伺服阀(电磁阀)的快速开启关闭以控制设定点压力。 从结构上来说,电气比例阀是一个完整的闭环控制阀,包括两个高速电磁阀、一个底座、一个积分压力传感器和一个电子PID控制电路。 在电气比例阀压力控制器中,二个高速电磁阀分别控制进气、出气。进气阀门的操控与电子电路供给的压力信号成比例。内置压力传感器测量输出压力并提供反馈信号到PID控制电路。反馈信号与压力控制设定值相比较,当二者之间不同时,使其中一个阀门打开。如果要达到系统所需的压力,就会使进气阀动作,按比例消除比较信号中的差异。 典型电气比例阀通常需要直流电源和代表压力设定点的模拟信号进行工作。控制器通常接受电流(4~20mA)或电压(通常0~10或0~5VDC)输入信号。除了常见的模拟信号标准外,带数字电路的型号还可以接受串口通信(如RS-485或DeviceNet)。电气比例阀还提供代表压力传感器的模拟信号输出。有些型号的电气比例阀还会包含一个小放气阀(向大气排放少量气体),以便在非常低或无流量情况下使用。[b][size=24px][color=#ff0000]2. 电气比例阀与电气转换器的对比[/color][/size][/b] 从上述的介绍可以看出,电气转换器和电气比例阀的基本功能相同,都可用来进行减压控制,都属于电子式减压阀,但所用技术、功能和指标并不相同。表1对这两类压力调节阀进行更详细的对比。[align=center][b][color=#ff0000]表1 电气比例阀和电气转换器性能比较表[/color][/b][/align][align=center][img=T1.电气比例阀和电气转换器比较表,600,451]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150231388150_4925_3221506_3.jpg!w690x519.jpg[/img][/align][align=center][/align] 由此可见,电气比例阀压力控制器可以提供快速高精度的压力控制,并能够提供所控压力的反馈信号,而且电气比例阀压力控制器可以直接连接到气动调节阀上使用,应用和维护更加的简便,可完全替代电气阀门定位器,这也是目前各种流量压力应用领域的发展趋势。[b][size=24px][color=#ff0000]3. 电气比例阀压力控制器的典型应用[/color][/size][/b] 结合各种减压型气动调节阀,结合各种减压型气动调节阀电气比例阀压力控制器可应用于各种流体介质的压力和流量控制,最典型的应用场景是外置压力传感器对减压介质的压力进行准确控制,如图5所示。[align=center][b][color=#ff0000][img=05.电气比例阀压力控制器典型应用,600,397]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150232117234_9508_3221506_3.jpg!w690x457.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图5 电气比例阀结合外置传感器和控制器的压力控制[/color][/b][/align] 对于一般采用电气阀门定位器和电气比例阀压力控制器的气动调节阀控制回路,它们都可以直接安装在气动调节阀上进行控制,但只能与气动调节阀顶部气室形成控制回路,仅相当于一个电子信号控制阀门开度的控制器,无法对被控流体介质压力进行反馈控制,而这恰恰是所有装置希望实现的最终目的。 为了实现工程应用中工艺压力的准确控制,如图5所示,最准确和可靠的方法是增加压力传感器对被控介质压力进行实时测量,传感器压力型号反馈到外置PID控制器,由PID控制器根据设定值或设定程序对电气比例阀进行控制。由此,外置的压力传感器和PID控制器,与电气比例阀和气动减压阀构成一个完整的闭环控制回路,可真正实现介质压力的准确和快速控制。 图5所示的电气比例阀压力控制典型应用,其最大特点是采用了串级控制方法,可充分发挥串级控制的优势,在实现无超调快速控制的同时,还可以达到很高的控制精度。[b][size=24px][color=#ff0000]4. 总结[/color][/size][/b] 从上述技术综述和分析对比可以看出,电气比例阀采用了更新的技术,与现有传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,同时结合串级、比值和分程等复杂控制模式,为电气比例阀提供了极其丰富的拓展应用,可广泛应用于许多压力控制场合,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的控制回路,实现众多工业应用领域中的精密控制功能。[align=center][/align][align=center]~~~~~~~~~~~~~[/align]

  • 山武定位器调整到全开位置的步骤

    山武定位器零点量程调整当山武定位器自动设定后,定位器已将其自身标定到阀门的全关(零点)和全开(量程)值。如果阀门不能获得其开度与定位器控制信号之间的正确关系,则按以下步骤手动调整零点-量程。注:只有关闭和全开输入信号(例: 4-20) 与储存在山武定位器中的,或工厂中设定于定位器中的关闭和全开输入信号设定相同,开度开关才会工作。1.将阀门调整到关闭位置(零点)的步骤:a.从控制器输入对应阀门全关位置的电流信号(例: 4mA) b.通过按开度按钮“UP”或°DOWN”,调整阀门全关位置。强制关闭功能默认值设定为0.5%。2.将阀门调整到全开位置(量程)的步骤: a从控制器输入对应阀门全关位置的电流信号(例: 20mA) b.通过按开度按钮“UP”或“DOWN”,调整阀门全关位置。直至调整阀门位置到位。注:[url=http://www.azbil-positioner.com/]山武定位器[/url]完成零点-量程调整后,改变输入信号以确认阀门工作是否准确。

  • 西门子定位器对于控制单元改进的组件

    西门子定位器在易受到强加速作用力或振动场合的使用西门子定位器固定在如分流挡板、猛烈振荡或振动的阀门,或蒸汽喷射装置上会受到强加速力的作用,在极端情况下,会导致摩擦配合的移位。对此,请选用带加强摩擦配合的SIPART PS2。然而增加了扭矩需要更高的力来操作摩擦配合。外部位置传感器。存在上述措施不能涵盖的可能情况,如强大和持续的振动,高的或太低的环境温度,核辐射。对于这种情况,位置传感器和控制单元分开安装是非常有好处的。为此,有适用于直线和旋转型执行器的通用组件。你需要如下组件:• 位置传感器单元(订货号 C73451-A430-D78)。由带有综合摩擦配合的SIPART PS2外壳、内置电位器,和各种盲塞和密封件组成。• 控制单元,各种型号的 SIPART PS2西门子定位器。• 与电缆卡和 M-20 电缆格尽头成套的EMC过滤器板可以使用,订货号C73451-A430-D23。组装6EMC过滤器板必须要安装在 SIPART PS2[url=http://www.siemens-positioner.com/]西门子定位器[/url]上。与EMC过滤器一起提供的安装说明介绍了组件的组装。• 三芯电缆连接到组件。当用电位器(电阻值为 10KΩ)代替位置传感器单元 C73451-A430-D78 安装在执行器上时,对于控制单元必须要使用这些改进的组件。

  • 萨姆森定位器通过使体积适应执行器尺寸

    操作的设计和原理电动气动定位器已安装在气动控制阀上并用于分配阀门位置(控制变量x)到控制信号(设定点w)。萨姆森定位器比较电控信号控制系统到旅行或开幕控制阀的角度并发出信号压力(输出变量y)用于气动执行器。萨姆森定位器的设计取决于哪些配件选择直接附件SAMSON 3277型执行器或按照附件与执行器连接到NAMUR(IEC 60534-6)。此外,还包括一个耦合轮配件需要转移旋转根据的旋转执行机构的运动VDI / VDE 3845。无弹簧旋转执行器需要倒车放大器包含在附件中允许任何方向的动力操作。萨姆森定位器由一个行程传感器系统组成与电阻成比例,模拟具有下游空气容量的I / P转换器增压器和带微控制器的电子器件。萨姆森定位器配有两个可调节的软件限制联系人作为标准指示阀门的最终位置。阀杆的位置被传送作为旋转角度或行程通过拾取杆到达行程传感器并提供给模拟PD控制器。A / D转换器发送该位置的阀连接到微控制器。PD控制器比较这个实际情况位置为4至20 mA直流控制信号(参考变量)被转换后通过A / D转换器。在系统偏差的情况下,激活i / p模块的状态被改变,控制阀的致动器被加压或相应地在下游排气助推器。这导致了阀门插头移动到确定的位置设定点。供气被提供给助推器压力调节器。一个中间人使用具有固定设置的流量调节器清除定位器,并在同一时间,保证无故障运行助推器。输出信号由压力传感器提供助推器可以通过激活限制在2.4巴P9参数。体积限制用于优化[url=http://www.samson-china.com/]萨姆森定位器[/url]通过使其适应执行器尺寸。紧闭功能:气动执行器完全充满用空气或一旦设定点排气低于1%或超过99%。

  • 西门子定位器可使用天然气作气源

    西门子定位器SIPART PS2提供了决定性优点:安装简单,自动初始化(零位和行程范围自动调整)。使用三个按钮和双行显示可进行本地操作(手操)和组态,通过SIMATIC PDM组态。高质量的控制源于在线自适应程序。稳态工作时耗气量可忽略不计,"紧密关闭"功能(确保对阀座最大的定位压力)。通过简单的组态可实现众多功能(例如设置特性曲线和极限值),对阀门和执行机构的扩展诊断功能。直行程和角行程执行机构采用同一型号的西门子定位器。可动部件少,因此对振动不敏感,在极端的外界环境中,可选择外部非接触式位置传感器。"智能电磁阀":同一台定位器中具备部分行程测试及电磁阀功能,部分行程测试,例如可用于安全阀,可使用天然气作气源。西门子主要技术性能输入信号:0~20mA,4~20mA供气压力:1.4~6bar (140~600kPa)无阻流量:进气阀:压力从6bar(600kPa)降至0bar(0kPa)时为5.5N.m/h出气阀:压力从1bar(100kPa)降至0bar(0kPa)时为5N.m/h稳定状态下的耗气量:单作用:3.6×10N.m/h(0.6L/min)双作用:36×10N.m/h(1L/min)响应时间:2.5~40S行 程:10~120mm 0°~90°安装位置:任意电缆入口:M20×1.5电气连接:螺丝端子2.5mm2工作环境温度:-25—+80℃防爆等级:本安型EExia/ib ⅡCT4,T5,T6(符合EN50020),防爆型EExd外壳防护等级:IP65外壳材料:玻璃纤维强化聚脂[url=http://www.siemens-positioner.com/]西门子定位器[/url]SIPART PS2主要用于以下行业:化工/石化电厂造纸和玻璃水和污水食品和制药海上平台

  • 西门子定位器有关安装选件模块的常规信息

    有关安装选件模块的常规信息。只能使用经认证可在预期危险区中使用且具有相应标记的设备。下列选件模块可以安装到隔爆外壳的西门子定位器中:位置反馈模块报警模块内部NCS模块EMC滤波器模块在“隔爆外壳”版本中安装可选模块的常规步骤1.断开电源线连接或断电。2.打开安全锁扣。3.拧下螺帽。4.从执行机构上完全卸下西门子定位器。5.西门子定位器带一个环形齿轮和一个销(反馈杆支架),它们互锁并保证位置反馈无反向间隙。为了保证位置反馈无反向间隙,应小心地卸下适配器。为此,在定位器上旋转反馈轴,直到适配器下方的销(反馈杆支架)在拆卸方向出现。通过观察适配器下方的外壳确定销的位置。现在,可以从环形齿轮上轻松取下销。提示!环形齿轮包含两个相互交错固定的垫圈。这一偏移可以确保通道检测没有反向间隙。切勿机械更改此偏移。6.拧下四个固定螺钉。7.将适配器从外壳上彻底卸下。注意!O形环移位在适配器和外壳之间有数个形环。这些形环在拆卸时可能会脱落。小心地卸下适配器。确保拆卸期间O形环不会丢失。8.取下模块盖板。使用螺丝刀拧下两个螺钉。9.根据各个可选模块相应部分所述安装可选模块。10.现在开始装配。安装模块盖板。为此,逆时针旋转螺钉,直到其螺距已明显处于啮合状态。模块盖板为可选模块提供机械保护和锁定。提示!过早磨损模块盖板通过一个自攻螺钉固定在阀上。为避免阀过早磨损,请按此处所述步骤操作。将两个固定螺钉小心地顺时针拧紧。11.通过执行步骤7到5(反向)继续装配[url=http://www.siemens-positioner.com/]西门子定位器[/url]。检查O形环的位置是否正确。确保外壳中没有干扰装配的松动物件。12.现在,仔细检查反馈轴是否能平滑旋转360°。如果感觉到有阻力,切勿继续旋转,而是将反馈轴转回到拆卸点,确保记住之前执行的步骤。13.成功完成所有上述步骤后,通过执行步骤4至1(反向)继续装配。更多参考西门子定位器http://www.siemens-positioner.com/

  • ABB定位器完成操作步骤后保存设置方法

    ABB定位器怎样进入操作界面?打开气源,减压阀调到铭牌上规定的气源压力。接通4-20mA输入信号(11+、12-) 一直按住MODE键,用“▲”、“▼”键选择模式“1.3”,放开MODE键,用“▲”、“▼”键将阀门从最小到最大行程跑一遍,对于直行程,角度范围为-28°到+28°,对于角行程,角度范围为-57°到+57°。同时按住“▲”和“▼”键,再按一下“ENTER”键,一直等到数字显示从“3”到“0”,然后放开“▲”和“▼”键,此时进入设置菜单“P1…”用“▲”、“▼”键选择“LINEAR”(直行程)或“ROTARY”(角行程),这一步的选择非常重要,以下步骤的参数设定以此步骤为基准。ABB定位器怎样进行自动整定?进行完上述步骤后,一直按住MODE键,用“▲”键选择模式“P1.1”。放开MODE键。一直按住ENTER键直到数字从3到0显示完毕,放开ENTER键。此时自动整定开始,这个过程大约要持续20分钟左右,期间在50%处停留时间较长。注意!对于气开阀,自动整定结果默认为“DIRECT”(正作用)即4-20MA输入对应输出为0-100%,气关阀为“REVERSE”(反作用)即4-20MA输入对应输出为100-0%。对于气关阀为“REVERSE”(反作用)的情况,如果我们要求为4MA对应定位器输出最小,而20MA输出为最大,则在以下的参数设置中应相应的设置为“REVERSE”以达到我们的要求。具体设置方法见后。 自动整定完成后,会显示“COMPLETE”,此时按ENTER键以记住设置。如果还要再一次继续整定,操作方法同第2步。 完成上述步骤后保存设置方法:一直按住MODE键,用“▲”键选择模式“P1.4”(TZIDC型为P1.5),放开MODE键,用“▲”、“▼”键选择“NV-SAVE”,一直按住ENTER键直到数字从3到0显示完毕,放开ENTER键,显示自动切换到平时操作界面。此时设置就保存下来。注意:上述以及以下步骤的进行必须保持输入信号在4MA以上。ABB定位器怎样进入第2菜单设置步骤,即“P 2…”。当完成上述“A:怎样进入操作界面?”步骤后,在显示为P1.0(STANDARD)时,同时按住ENTER键和MODE键,用“▲”键选择,直至显示 “P2…”(SETPOINT)

  • 【求助】仪器定位和定位波长

    为什么我的仪器定位经常要进行多数定位.怎么调整?定位波长和测定波长经常不在一起,有是差别很大.我们一般是用铜灯来恢复.有没有别的办法处理.谢谢!

  • 【资料】控制阀性能差问题分析

    一、控制阀的选择问题: 更多阀门选型知识请点击进入:阀门选型专题。 目前,工程中普遍使用的控制阀主要是:电磁阀系列电磁阀 和电动阀。但在使用中它们均有缺陷,如电磁阀易被异物堵塞、水阻大,须长期专人维护等;而电动阀虽然无水阻,但由于需有必要的控制电路,所以,防水汽侵蚀影响使用寿命也是困扰推广的主要问题。    二、如何解决控制阀性能差的问题    无论是电磁阀还是电动阀,水垢不但会造成阀门泄漏,严重时甚至会影响阀门的正常工作,所以如何消除水垢的影响,已是业内人士普遍关注的问题。 控制阀的工艺要涉及的范围实在太广,不能在这里一一给你说清楚,有关这方面的内容还的自己亲自去查资料了。不过由于设计执行机构和使用填充材料不同造成控制阀性能差还是可以总结出其规律的: 1、工艺过程里死区的存在会使过程变量偏离原设定点。所以控制器凸轮控制器 的输出必须增大到足于克服死区,只有这一纠正性的动作才会发生。 2、 ①影响死区的主要因素。摩擦力、游移、阀轴扭转、放大器的死区。各种控制阀对摩擦里敏感是不一样的,比如旋转阀对于由高的阀座负载引起的摩擦力就非常敏感,故使用时注意到这一点。但是对于有些密封型式,高的阀座负载是为了获得关闭等级所必须的。哈哈,这样,这种阀设计出来就非常差,容易引起很大的死区,这对过程偏差度的影响是显而易见的,简直是决定性的。 ②磨损。阀门在正常使用时出现磨损是在所难免的,但是润滑层的磨损是最厉害的的,根据我们实验证实,润滑旋转阀只经过几百次循环动作,润滑层差不多可以刚刷子使用(夸张点,不然写文章很郁闷)。另外压力引起的负载也会导致密封层的磨损,这些都是导致摩擦力增加主要因素。结果呢?就是给控制阀的性能于毁灭性! ③、填料摩擦力是控制阀摩擦力的主要来源,使用的填料不同,造成的摩擦力有很大的差别。 ④,执行机构的类型不同也对摩擦力有根本性的影响,一般来说弹簧薄膜执行机构比活塞执行机构好。    3、定位器电气动定位器 的设计问题。 从设计的最初思维着想,执行机构与定位器设计必须一起考虑的。怎么来设计一个好的定位器呢?从他的重要特性就知道,必须是个高增益装置。其增益是由两部分组成的:静态增益和动态增益。提高静态增益的方法是设计一个前置放大器。例如喷嘴--挡板装置。那么有朋友要问动态增益怎么获得?是通过一个动力放大器获得的,这个动力放大器是滑阀(一般)。现在有人已经利用微处理器来设置定位器了。看样子阀门以后还会说话告诉咱们他哪里坏了。那时侯做维修的就简单了。言归正传。同时具有高静态和高动态增益的高性能定位器能为任何一个给定的阀门组件提供降低过程偏差度方面的最佳总体性能。

  • 立体定位微操作器特点规格

    [url=http://www.f-lab.cn/micromanipulators/sm-25b.html][b]立体定位微操作器SM-25B[/b][/url]是NARISHIGE公司专业为[b]微电极操作[/b]而设计的一款具有立体定位功能的薄型[b]显微操作器[/b],可以把数个微电极紧密地放在一起,是理想的[b]微电极操作器[/b]。[b][url=http://www.f-lab.cn/micromanipulators/sm-25b.html]立体定位微操作器SM-25B[/url]特点[/b]用于立体定位仪器的多通道记录,在不损害其稳定性下设计得尽可能薄。配备了一个固定夹持器,用来固定微电极,薄板以同样的方式固定微电极。[img=立体定位微操作器]http://www.f-lab.cn/Upload/SM-25A-L_.jpg[/img]三个平面都配备了旋转机械,水平平面可以用操作手柄转动。使用这种机械可以设置微电极角度,并且容易把微电极紧密地放置在一起。此系列有三种类型(A,B和C),通过Z轴移动单元的排列进行区分。 B型提供了一种简单粗动单元。[b][b]立体定位微操作器[/b]规格[/b][table=491][tr][td=1,2]移动范围[/td][td]粗调[/td][td]X轴40mm, Z轴40mm[/td][/tr][tr][td=2,1]透视角度调整[/td][/tr][tr][td=2,1]尺寸大小/重量[/td][td]W125 x D28 x H157mm, 330g[/td][/tr][/table]

  • 【讨论】仪器信息网的定位是什么呢?

    仪器信息网的人气还是非常高的,网站的定位是什么呢?假如定位是仪器,不妨在网站的首页添一些仪器最新技术的详细讲解。其实可以转载,就像21ic网站很多技术文章都是转自各个知名杂志。如果定位是分析化学什么的,那也可以有个专门的板块提供最新的技术文章。目前,网站有仪器资讯非常的不错,但在技术文章上确很少,而且深度不够。主要都是网友辛苦发的。其实,我感觉仪器信息网跟21ic的定位很像,都专注于技术。在21ic网站上,有个设计与应用板块,提供最新的设计应用文章。建议,网站首页设置一个设计与应用板块。一点建议,祝仪器信息网越来越红火。

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • ARL小试样夹具使用

    ARL小试样夹具使用

    http://ng1.17img.cn/bbsfiles/images/2012/05/201205032131_364782_1607403_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205032131_364783_1607403_3.jpg带14个大小不等的孔的,是磨直径不同的试样的磨具,如果用上端的7个小孔直径的试样,需要换小孔的激发台钨片,应用如下:http://ng1.17img.cn/bbsfiles/images/2012/05/201205031910_364762_2429497_3.jpg首先将你的待测小试样对照磨样器,找到合适的孔http://ng1.17img.cn/bbsfiles/images/2012/05/201205031912_364763_2429497_3.jpg然后将试样插到合适孔中,到砂轮机上磨样http://ng1.17img.cn/bbsfiles/images/2012/05/201205031914_364764_2429497_3.jpg将表面磨好的小试样插入夹具中http://ng1.17img.cn/bbsfiles/images/2012/05/201205031916_364765_2429497_3.jpg使待分析试样插入夹具后,分析面与夹具下表面在一个平面上http://ng1.17img.cn/bbsfiles/images/2012/05/201205031919_364766_2429497_3.jpg激发台上表面安装好定位器http://ng1.17img.cn/bbsfiles/images/2012/05/201205031920_364767_2429497_3.jpg将小试样夹具下端完全嵌入定位器http://ng1.17img.cn/bbsfiles/images/2012/05/201205031922_364768_2429497_3.jpg放好后,要左右晃晃,感觉是否与定位器完全吻合http://ng1.17img.cn/bbsfiles/images/2012/05/201205031923_364769_2429497_3.jpg盖好上盖,防止分析时漏气http://ng1.17img.cn/bbsfiles/images/2012/05/201205031925_364770_2429497_3.jpg用压样杆压好,进行分析,要注意:分析小试样,应该有小试样曲线,否则如果直接用FELAST,FECAIR分析,会因为火花强度过高而使分析结果异常

  • 质谱仪器采购,你是如何来定位的?

    仪器的选择,其实主要包括几个方面,就拿质谱仪器来说:1、应用:比如是科研、还是主要定性、还是主要定量2、对灵敏度的要求3、对价格的预算4、兄弟定位在各厂商仪器的应用比较...................质谱仪器采购,你又是如何来定位的?

  • 电动立体定位微量注射器规格特点

    [url=http://www.f-lab.cn/microinjectors/ims-20.html][b]电动立体定位微量注射器[/b]IMS-20[/url]是一款具有立体定位功能的[b]电动微量注射器,电动立体定位微量注射器[/b]是全球领先的全[b]自动微量注射[/b]的仪器,能够兼容所有的Hamilton注射器。电动立体定位微量注射器Motorized Stereotaxic Microinjector使得微量注射工作非常方便简单,只需要在控制器中输入注射时间和溶液注射量,选择合适的Hamilton注射筒,系统可自行自动完成微量注射,而且电动立体定位微量注射器还带有实时过程监测功能显示注射时间和量,注射完成后使用简单的闩锁机械轻易锁住注射器。Hamilton注射器参考表[table=990][tr][td][b]Hamilton的[b]系列注射筒型号[/b][/b][/td][td]5, 701, 702, 705, 710, 725, 1701, 1702, 1705, 1710, 1725, 7000.5, 7001, 7101, 7002, 7102, 7105[/td][td] [/td][/tr][/table]* 上述的Hamilton系列注射器内置于参考表。* 当直接输入内径和量时,用户可以使用参考表上的内置注射器之外的注射器。[img=电动立体定位微量注射器]http://www.f-lab.cn/Upload/IMS-20-L_.jpg[/img][url=http://www.f-lab.cn/microinjectors/ims-20.html]电动立体定位微量注射器[/url]规格[table=750][tr][td=2,1][b]配件[/b][/td][td]电源线(1.5m)连接电缆 (2.0m)[/td][/tr][tr][td=2,1][b]驱动源[/b][/td][td]5相步进马达[/td][/tr][tr][td=2,1]移动范围[/td][td]60mm[/td][/tr][tr][td=2,1]额度电压[/td][td]AC100V ~ 240V, 50/60Hz[/td][/tr][tr][td=2,1][b]消耗功率[/b][/td][td]10W[/td][/tr][tr][td=1,2]尺寸大小/重量[/td][td][b]驱动单元[/b][/td][td]W30 x D167 x H84mm, 426g[/td][/tr][tr][/tr][tr][td][b]控制单元[/b]W180 x D95 x H260mm, 2.45kg[/td][/tr][/table][b][url=http://www.f-lab.cn/microinjectors/ims-20.html]电动立体定位微量注射器[/url]特点[/b]*装载的注射器外径必须从6.5mm到9mm(少于9mm),Tritech研究公司的注射器不可用.* 与SM-15连接时,需要附加装置SM-15A.* 脚踏IMS-20F可以用于进行额外控制. (单独售卖)

  • B-580-3-L takigen顶盖用单触式滑撑容许负荷是多少?

    B-580-3-L takigen顶盖用单触式滑撑容许负荷是多少?

    B-580-3-L takigen顶盖用单触式滑撑分左用、右用,图纸为右用,打开盖后定位器会固定盖子。关闭时,将盖子稍向上抬起便可解除定位。材质∶冷轧钢板(SPCC)表面处理∶镀彩锌(MFZn-C)顶盖用容许负荷∶490N特殊用途:检查口、控制盘B-580-3-L takigen有多个不同的规格型号,选择型号的时候要注意尺寸!广州广泷是TAKIGEN五金品牌中国代理.10多年专注为设备制造业提供各种标准件的五金产品及解决方案。[img=,690,939]https://ng1.17img.cn/bbsfiles/images/2020/10/202010160945152538_6416_3339978_3.png!w690x939.jpg[/img]

  • 气相走混合对照时需要每次都对单个对照定位吗

    本人在药企,想请教大家一下,你们在每次实验检测时,会对混合对照每次进行单对照定位吗?还是定过一次后,以后每次(不是同一次实验)都根据第一次的出峰顺序来判定出的什么峰?本人觉得应每次都定位,因为每一次的系统都是不一样的,出峰时间可能会造成漂移,且考察杂质时,峰的个数也不一定相等,但又找不到相关的法规依据,不知各位是怎么觉得的

  • 气相程序升温总在固定位置出杂峰

    福立气相型号9790,程序升温时总是在固定位置出现一些杂峰,柱子是新的.检测器都烧过,看了也不脏,进样器端衬管,气垫,O型圈也都换了新的,还是不行.维修的说可能分流处被污染,逆时针转了几次又转回来,还是不行,此柱子在旁边连着相同载气的另外一台气相上没问题.请各位提出建议.

  • 【原创】关于天瑞仪器版面帖子定位的意见!

    发现天瑞版面发帖量较少,估计定位还不明确吧!1、帖子内容是否一定与天瑞相关?2、讨论内容是否应该只属于色谱,光谱?如果都可以,怎么与其他专业版面抗衡,很多问题,估计会到相关版面。3、版主定期开展一些活动:包括天瑞仪器使用感受,我与天瑞的相识,我的一定采购天瑞仪器过程等等,增加大家发帖积极性。4、如果有天瑞产品试用活动,效果更好吧!5、天瑞一些活动,如新产品发布征集意见,投票之类的。可以发到版面征集板油看法6、如果有天瑞仪器的相关线上讲座就更好了。希望天瑞仪器版面尽快火起来!

  • ABB公司是一家总部设在瑞士苏黎世的超大型著名跨国集团

    ABB公司是一家总部设在瑞士苏黎世的超大型著名跨国集团,系由瑞典的ASEA集团与位于瑞士巴登市的BBC集团公司于1988年合并而成。ABB现有17万多雇员,5000多 个分支机构遍布140多个国家,主要业务为工业自动化、发电、输配电以及金融服务等。99年1月11日,年销售额逾20亿美元的ElsagBailey过程自动化集团正式加入ABB集团。ElsagBailey拥有诸如Bailey. Fischer&Porter、 TBI、 Hartmann&Braun等 一批知名的自动化产品制造商和品牌。通过ABB和EB的有力合并,ABB集团因此成为世界电气与自动化领域无可争辩的双料巨人。其中在自动化领域已处于显著的全球领先地位,拥有85亿美元的年销额、45000多名员工,在45个国家共有1000多家分公司。ABB在中国设有1个控股公司、1个独资公司、22个代表处和22个合资企业,共有员工5500多人。 ABB连续几年被有影响的杂志和咨询公司评为管理最佳公司,ABB的战略是集中全球优势满足当地客户的需求。我们相信ABB能够为客户提供最好的“价值”。而我们之所以能够提供“价值”完全基于ABB在石油、化工、电力、冶金、造纸、建材等各种工业领域的详尽的过程自动化知识,项目管理技术及财政金融方面的力量,这些使得我们能够完成每一-浩大繁杂的综合工程。拥有世界领先的研发技术和优异性能,德国Hartmann&Braun (哈德曼.布朗,简称H&B公司)早在40年以前,就开始向中国提供其高效的电动执行机构和电气阀门定位器。1999年H&B随EIsag Bailey过程自动化集团正式并入ABB集团,由于采用了最先进的微处理数字信号过程转换、控制和数字通讯技术,加上“德国造”的高精度(最高到0.1%),高传动效率、和高可靠性(重庆电厂曾经连续无故障运行近20年),使得ABB电动执行机构和智能电气阀门定位器在许多项目成套时,都在关键部位被广泛选用却并不被留意其是ABB的品牌产品。[b][color=#ffffff]更多参考:ABB http://www.chinaabb-positioner.com[/color][/b]

  • 仪器仪表现场维护的经验分享和浅析

    目前,随着石化、钢铁、造纸、食品、医药企业自动化水平的不断提高,对现场仪表维护人员的技术水平提出了更高要求.一、现场仪表系统故障的基本分析步骤  现场仪表测量参数一般分为温度、压力、流量、液位四大参数。  现根据测量参数的不同,来分析不同的现场仪表故障所在。  1.首先,在分析现场仪表故障前,要比较透彻地了解相关仪表系统的生产过程、生产工艺情况及条件,了解仪表系统的设计方案、设计意图,仪表系统的结构、特点、性能及参数要求等。  2.在分析检查现场仪表系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障仪表的记录曲线,进行综合分析,以确定仪表故障原因所在。  3.如果仪表记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线;故障很可能在仪表系统。因为目前记录仪表大多是DCS计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是仪表系统出了问题;如有正常变化,基本断定仪表系统没有大的问题。  4.变化工艺参数时,发现记录曲线发生突变或跳到最大或最小,此时的故障也常在仪表系统。  5.故障出现以前仪表记录曲线一直表现正常,出现波动后记录曲线变得毫无规律或使系统难以控制,甚至连手动操作也不能控制,此时故障可能是工艺操作系统造成的。  6.当发现DCS显示仪表不正常时,可以到现场检查同一直观仪表的指示值,如果它们差别很大,则很可能是仪表系统出现故障。  总之,分析现场仪表故障原因时,要特别注意被测控制对象和控制阀的特性变化,这些都可能是造成现场仪表系统故障的原因。所以,我们要从现场仪表系统和工艺操作系统两个方面综合考虑、仔细分析,检查原因所在。二、四大测量参数仪表控制系统故障分析步骤1.温度控制仪表系统故障分析步骤(]量热仪[/url][/i])  分析温度控制仪表系统故障时,首先要注意两点:该系统仪表多采用电动仪表测量、指示、控制;该系统仪表的测量往往滞后较大。  (1)温度仪表系统的指示值突然变到最大或最小,一般为仪表系统故障。因为温度仪表系统测量滞后较大,不会发生突然变化。此时的故障原因多是热电偶、热电阻、补偿导线断线或变送器放大器失灵造成。  (2)温度控制仪表系统指示出现快速振荡现象,多为控制参数PID调整不当造成。  (3)温度控制仪表系统指示出现大幅缓慢的波动,很可能是由于工艺操作变化引起的,如当时工艺操作没有变化,则很可能是仪表控制系统本身的故障。  (4)温度控制系统本身的故障分析步骤:检查调节阀输入信号是否变化,输入信号不变化,调节阀动作,调节阀膜头膜片漏了;检查调节阀定位器输入信号是否变化,输入信号不变化,输出信号变化,定位器有故障;检查定位器输入信号有变化,再查调节器输出有无变化,如果调节器输入不变化,输出变化,此时是调节器本身的故障。2.压力控制仪表系统故障分析步骤  (1)压力控制系统仪表指示出现快速振荡波动时,首先检查工艺操作有无变化,这种变化多半是工艺操作和调节器PID参数整定不好造成。  (2)压力控制系统仪表指示出现死线,工艺操作变化了压力指示还是不变化,一般故障出现在压力测量系统中,首先检查测量引压导管系统是否有堵的现象,不堵,检查压力变送器输出系统有无变化,有变化,故障出在控制器测量指示系统。3.流量控制仪表系统故障分析步骤  (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。  (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制