当前位置: 仪器信息网 > 行业主题 > >

储罐类

仪器信息网储罐类专题为您提供2024年最新储罐类价格报价、厂家品牌的相关信息, 包括储罐类参数、型号等,不管是国产,还是进口品牌的储罐类您都可以在这里找到。 除此之外,仪器信息网还免费为您整合储罐类相关的耗材配件、试剂标物,还有储罐类相关的最新资讯、资料,以及储罐类相关的解决方案。

储罐类相关的论坛

  • 【资料】化学试剂应用——不锈钢储罐的酸洗钝化!

    不锈钢储罐的酸洗钝化 摘要:不锈钢的耐腐蚀性能主要是因为铬和镍加入铁中形成固容体。当铬镍的含量超过一定值,则在氧化性介质中钢的表面形成一种保护性的氧化膜,从而防止腐蚀,这就是铬和镍的钝化作用。 0 引言 酸洗钝化原理:不锈钢的抗腐蚀性能主要由于表面覆盖着一层极薄的(约1nm)致密的钝化膜,主要是使铁与铁的氧化物比铬与铬的氧化物优先溶解,去掉了贫铬层,造成铬在不锈钢表面富集。不锈钢酸洗钝化技术多种多样,企业根据不同的产品类型及现场操作条件采取不同的方法。现结合大庆油田化工集团一期工程储罐区3座5000m3,2座1000m3,2座600m3,3座100m3,共10座不锈钢储罐内壁现场进行整体酸洗钝化处理,谈谈我们的体会。 1 不锈钢储罐的酸洗钝化工艺流程的确定 酸洗钝化的主要流程为:前处理(净化表面)→酸洗钝化及冲洗→后处理(成品保护)。前处理的主要内容是净化酸洗、钝化物件的表面,清除表面的各种油脂、焊接飞溅、焊疤、氧化皮等。酸洗、钝化可以将酸洗、钝化分开处理,也可以将酸洗、钝化合二为一同步进行处理。将酸洗、钝化分开处理时,多采用将工件整体浸泡在酸洗钝化液中的方式,适合于小型零部件或内部可以进行液体循环的管线、线形设备。将酸洗钝化合二为一处理时,可以采用液体浸泡方式(适合范围同上),也可以采用膏体进行涂抹,由于膏体涂抹方便,在不同位置都可以保持较长时间不流失及润湿性,从而保证了酸洗钝化必要的时间,广泛应用在大型设备现场酸洗钝化处理上。不锈钢储罐容积大,无法实现整体浸泡方式进行酸洗钝化,并且无法实现酸洗钝化液在罐体内循环使用。为此,只能采用涂抹酸洗钝化膏体的方法进行酸洗钝化工作。将酸洗、钝化两个工序合二为一进行处理,节省工序,便于施工,并且膏体能长时间保持润湿状态,利于保证酸洗钝化的有效时间,保证能够行形成致密的氧化膜。为此,不锈钢储罐酸洗钝化的整体工艺流程为:脚手架的搭设→板材表面的清理→酸洗钝化膏的涂抹→清水(脱盐水即Cl-含量小于等于25ppm)冲洗→中性检测(pH值)→酸洗钝化质量检测→吹干,封罐成品保护。 2 酸洗钝化膏的配方 常用的酸洗钝化液配方有 考虑到在储罐内施工,通风不好,前四类配方刺激性气味浓、腐蚀性强并且HF毒性强,不利于安全施工,为此采用配方五。酸洗钝化液配方选定后,为利于涂抹,并保证酸洗钝化时间的充分性,应制作成酸洗钝化膏状物。硅藻土质轻、不溶于水,易加工成超细粉末,满足酸洗钝化液载体的要求。为此将300目的硅藻土按配方五混合搅拌成糨糊状即配成酸洗钝化膏。 3具体的工作工艺操作 3.1脚手架搭设 对储罐进行酸洗钝化处理搭设的脚手架应从耐腐蚀性、防止铁离子污染两个方面进行考虑。因酸洗钝化的酸液容易将材质为碳钢的架杆、卡扣、跳板等物件腐蚀,这样轻者造成机具腐蚀损失,严重时会引发塌架事故。另外,架杆、卡扣、跳板上的铁离子会污染已经酸洗钝化完的部位。将架杆、卡扣、跳板涂刷上耐酸涂料,既增强了耐腐蚀性能,又防止了铁离子污染。为防止脚手架破损罐底,在罐底铺设一层胶皮或草帘、木板进行隔离。 3.2表面清理 首先,去除焊缝及罐板表面的飞溅、焊渣;其次,对焊缝及焊接热影响区高温氧化部位涂抹用650g/LNaOH+220g/LNaNO3溶液+300目的硅藻土和成的糊状物,保持20~40分钟后,用水冲洗,将氧化皮去除;再次,对非高温氧化部位采用150g/LNaOH碱液去除钢材表面上的各种油脂,使钢材在酸洗钝化过程中能充分地与酸性液接触,最后用水冲洗,用石蕊试纸检查检测,保证板材表面为中性。 3.3酸洗钝化 在正式酸洗钝化前要采用试板进行试验,掌握控制酸洗钝化温度及时间,防止欠酸洗或过度酸洗而引起基本金属的腐蚀,必要时可采用添加缓冲剂的办法来抑制点腐蚀及过度腐蚀发生,如加入0.5%的乌洛托品。酸洗钝化后用清水冲洗,使表面不留残液。可用石蕊试纸检测,中性为合格。酸洗钝化膏涂抹厚度为2~5毫米,根据不同部位原钝化膜破损及污染情况灵活控制调整;钝化时间控制在15~30分钟;涂抹完后用塑料刷子刷蹭,增强酸洗钝化效果,但不可用钢丝刷刷蹭,防止破损形成的钝化膜,更不可用电动砂轮除锈机进行刷蹭,否则,不但破坏了形成的钝化膜,还易形成高温氧化层。酸洗钝化时罐内温度控制在10-25℃,若在夏季施工,应选择早晚期间施工或在外壁保温施工后施工,防止罐体温度过高,将涂抹的膏体内的酸洗钝化液蒸发掉,膏体变干,影响效果。

  • 大型气相液氮罐与常规储罐的比较:哪种更适合工业应用?

    大型气相液氮罐与常规储罐的比较:哪种更适合工业应用?

    在工业领域中,有效的储存和运输液体氮气是非常重要的。而在选择合适的储罐方面,大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐和常规储罐是两种常见的选择。但是,哪种储罐更适合工业应用呢?本文将比较这两种储罐的特点和优势,旨在为读者提供明智的选择方向。  1. 大型[url=http://www.yedanguan365.com/][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐[/url]的特点和优势  大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐是一种专门设计用于储存和运输液态氮气的设备。它具有以下几个特点和优势:  (1) 容量大:大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的容量通常远大于常规储罐。它们可以容纳数百到数千升的液态氮气,满足工业生产中大量液态氮气的需求。[img=http://www.mvecryo.com/,487,318]https://ng1.17img.cn/bbsfiles/images/2023/12/202312251057449944_7234_3312634_3.png!w487x318.jpg[/img]  (2) 高效保温:大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐采用先进的保温技术,可以有效减少液态氮气的蒸发率。这意味着储存的氮气可以更长时间地保持在液态状态,减少了频繁补充氮气的需求,提高了工作效率。  (3) 安全可靠:大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐配备了多重安全设备,如压力阀、温度控制系统和报警装置。这些措施可以确保氮气的储存和运输过程中的安全性,降低事故风险。  以一家名为“工业科技公司”的企业为例。该公司专注于生产高质量的电子元件,需要大量的液态氮气来冷却电子组件。由于工艺的特殊性,他们选择了投资一台大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐,以满足他们庞大的液态氮气需求。这种储罐的大容量和高效保温特性确保了工业科技公司能够持续、稳定地供应液态氮气,并提高了他们生产线的效率。  2. 常规储罐的特点和优势  常规储罐是指那些用于储存常规液体材料(如水、油等)的传统储罐。尽管它们不是专门为氮气设计的,但在某些工业应用中仍然可以发挥重要作用。下面是常规储罐的特点和优势:  (1) 多功能性:常规储罐具有多种容量和形状可供选择,适用于不同类型的液体物质储存。这使得它们在一些工业场景中可以用来存储氮气,以满足中小规模生产的需求。  (2) 低成本:相对于大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐,常规储罐通常价格更低,更适合预算有限的企业。这使得它们成为一些小型工业设施的理想选择。  举例来说,某家名为“创新科技公司”的小型制造厂需要储存少量液态氮气来支持他们的生产过程。考虑到预算限制,他们选择了购买一个常规储罐,并根据自身需求调整了储罐的大小。这个决策帮助创新科技公司在满足生产需求的同时,节省了成本。  鉴于大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][url=http://www.yedanguan365.com/]液氮罐[/url]和常规储罐各自的特点和优势,选择最合适的储罐取决于具体的工业应用需求。对于需要大量液态氮气、有较高安全要求和更长保温时间的工业场景,大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐是首选。而对于中小规模生产、预算有限的企业,则常规储罐是一个经济实惠的选择。  在做出选择之前,企业应仔细评估自身的需求,并与专业储罐供应商进行咨询。他们将根据企业的具体情况提供最佳的解决方案,确保选择的储罐能够满足工业应用的要求,提高生产效率和安全性。 [url=http://www.mvecryoge.com/]金凤液氮罐[/url] [url=http://www.mvecryo.com/chartmveduwaping/]杜瓦瓶[/url] [url=http://www.mvecryo.com/]mve液氮罐[/url]   通过本文的比较分析,读者可以更全面地了解大型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐和常规储罐的特点和优势,以便在工业应用中做出明智的选择。[b][url=http://www.mvecryo.com/1482.html]杜瓦瓶检验主要包含哪些项目[b]什么是液氮罐的公称容积?[/b][/url][/b]

  • 【转帖】试剂应用——不锈钢储罐的酸洗钝化!

    摘要:不锈钢的耐腐蚀性能主要是因为[color=#00008B][color=#00FFFF][color=#DC143C]铬和镍[/color][/color][/color]加入铁中形成固容体。当铬镍的含量超过一定值,则在氧化性介质中钢的表面形成一种保护性的氧化膜,从而防止腐蚀,这就是铬和镍的钝化作用。 0 引言 酸洗钝化原理:不锈钢的抗腐蚀性能主要由于表面覆盖着一层极薄的(约1nm)致密的钝化膜,主要是使铁与铁的氧化物比铬与铬的氧化物优先溶解,去掉了贫铬层,造成铬在不锈钢表面富集。不锈钢酸洗钝化技术多种多样,企业根据不同的产品类型及现场操作条件采取不同的方法。现结合大庆油田化工集团一期工程储罐区3座5000m3,2座1000m3,2座600m3,3座100m3,共10座不锈钢储罐内壁现场进行整体酸洗钝化处理,谈谈我们的体会。 1 不锈钢储罐的酸洗钝化工艺流程的确定 酸洗钝化的主要流程为:前处理(净化表面)→酸洗钝化及冲洗→后处理(成品保护)。前处理的主要内容是净化酸洗、钝化物件的表面,清除表面的各种油脂、焊接飞溅、焊疤、氧化皮等。酸洗、钝化可以将酸洗、钝化分开处理,也可以将酸洗、钝化合二为一同步进行处理。将酸洗、钝化分开处理时,多采用将工件整体浸泡在酸洗钝化液中的方式,适合于小型零部件或内部可以进行液体循环的管线、线形设备。将酸洗钝化合二为一处理时,可以采用液体浸泡方式(适合范围同上),也可以采用膏体进行涂抹,由于膏体涂抹方便,在不同位置都可以保持较长时间不流失及润湿性,从而保证了酸洗钝化必要的时间,广泛应用在大型设备现场酸洗钝化处理上。不锈钢储罐容积大,无法实现整体浸泡方式进行酸洗钝化,并且无法实现酸洗钝化液在罐体内循环使用。为此,只能采用涂抹酸洗钝化膏体的方法进行酸洗钝化工作。将酸洗、钝化两个工序合二为一进行处理,节省工序,便于施工,并且膏体能长时间保持润湿状态,利于保证酸洗钝化的有效时间,保证能够行形成致密的氧化膜。为此,不锈钢储罐酸洗钝化的整体工艺流程为:脚手架的搭设→板材表面的清理→酸洗钝化膏的涂抹→清水(脱盐水即Cl-含量小于等于25ppm)冲洗→中性检测(pH值)→酸洗钝化质量检测→吹干,封罐成品保护。 2 酸洗钝化膏的配方 常用的酸洗钝化液配方有 考虑到在储罐内施工,通风不好,前四类配方刺激性气味浓、腐蚀性强并且HF毒性强,不利于安全施工,为此采用配方五。酸洗钝化液配方选定后,为利于涂抹,并保证酸洗钝化时间的充分性,应制作成酸洗钝化膏状物。硅藻土质轻、不溶于水,易加工成超细粉末,满足酸洗钝化液载体的要求。为此将300目的硅藻土按配方五混合搅拌成糨糊状即配成酸洗钝化膏。

  • LNG储罐内罐自动焊接仪器

    LNG储罐内罐为9%镍钢,环向焊缝已经实现自动焊,竖向焊缝目前还为手工焊,能否实现竖向焊缝也为自动焊?有这样的焊机么?

  • 【原创大赛】外贴式超声储罐界面仪

    【原创大赛】外贴式超声储罐界面仪

    外贴式超声储罐界面仪1.1外贴式超声界面仪原理  外贴式超声界面仪是利用最新的多波束超声技术,将超声波透过固态层、 双层液态层并在气态层发生反射,通过对多层介质的反射波的分析判断和计算,得到罐体内的液体分层高度。本仪器克服了在罐体外安装的能量损失和在不同声阻抗情况下的声波大部分散射损失,特别是在复杂的现场环境下的微弱信号的提取保证了仪器能够可靠地运行。此仪器不同于以往的超声波液位计或是其他技术方式的界面仪,此仪器有两个主要的优点,一是完全外测式,不与罐体内液体产生直接接触,仪器稳定可靠,二是可以应用于两相液体的各式储存罐中,比如原油储罐中(一般未经脱水的原油储罐会形成油水分层),主要是根据液体的分层面反射得到罐内液体的高度值。  该仪表主要分两部分,一是测量头,一是主机。测量头直接吸附在容器壁外侧,负责收集信息;主机安装在仪表室,负责分析计算。1.2外贴式超声界面仪性能特点  外贴式超声界面仪从罐外连续、精确地测量罐内的液位,完全不接触罐内的液体,实现了真正的隔离测量。l 测量范围宽,可达15米,测量精度高,可达设定满量程的±1%可用于最苛刻的环境:   ——可测量任何压力的液体。    ——可测量剧毒的液体。   ——可测量腐蚀性最强的液体。    ——可测量要求无菌的或高纯度的液体。    ——可测量易燃、易爆,易泄漏,易污染液。l 安全性能好  在测量有毒害、有腐蚀、有压力、易燃易爆、易挥发、易泄漏的液体时,由于测量头和仪表都在容器外,所以安装、维修、维护操作时不接触罐内的液体和气体,非常安全。即使在仪表损坏或维修状态下,也绝无引起泄漏的可能。l 设备安全环保  无论是设备安装还是后期的设备维护都不会引起罐内液体泄漏,决不污染环境,是绿色环保仪表。本安防爆。l 方便  安装时不必在容器上开孔,不用法兰盘,不用连通管,可以不必动火,随时安装调校,不必停产,只需将测量头从容器外用测量头专用的磁性固定器或粘合剂固定在容器外壁,经过简单的接线,即可测量,安装、维修最方便、最经济。同时可自动进行参数校准,自动运算温度补偿系数,无论环境温度、液体温度或者被测液体成分如何变化,仪表始终保证具有较高的测量精度。l 耐用可靠  测量头和仪表中无机械运动部件,并严格密封,与外界隔离。不会磨损或腐蚀,十分耐用可靠。维护工作量很小。l 系统指标:n 测量分辨率:≤1cmn 测量精度:1%1.3外贴式超声界面仪的使用范围可适用于各种液体特别是两相液体的各式储

  • 【分享】GB 12337-1998 钢制球形储罐.pdf

    标 准 编 号:GB 12337-1998 简体中文标题:钢制球形储罐繁體中文標題:鋼制球形儲罐English Name:Steel spherical tanks 我们的目标:打造标准分享网领先平台 Www.Anystandards.com标准介绍:本标准规定了碳素钢和低合金钢制球制储罐的设计、制造、组焊、检验与验收的要求。

  • 外贴式超声储罐界面仪

    外贴式超声储罐界面仪

    1.1外贴式超声界面仪原理  外贴式超声界面仪是利用最新的多波束超声技术,将超声波透过固态层、 双层液态层并在气态层发生反射,通过对多层介质的反射波的分析判断和计算,得到罐体内的液体分层高度。本仪器克服了在罐体外安装的能量损失和在不同声阻抗情况下的声波大部分散射损失,特别是在复杂的现场环境下的微弱信号的提取保证了仪器能够可靠地运行。此仪器不同于以往的超声波液位计或是其他技术方式的界面仪,此仪器有两个主要的优点,一是完全外测式,不与罐体内液体产生直接接触,仪器稳定可靠,二是可以应用于两相液体的各式储存罐中,比如原油储罐中(一般未经脱水的原油储罐会形成油水分层),主要是根据液体的分层面反射得到罐内液体的高度值。  该仪表主要分两部分,一是测量头,一是主机。测量头直接吸附在容器壁外侧,负责收集信息;主机安装在仪表室,负责分析计算。1.2外贴式超声界面仪性能特点  外贴式超声界面仪从罐外连续、精确地测量罐内的液位,完全不接触罐内的液体,实现了真正的隔离测量。l 测量范围宽,可达15米,测量精度高,可达设定满量程的±1%可用于最苛刻的环境:   ——可测量任何压力的液体。    ——可测量剧毒的液体。   ——可测量腐蚀性最强的液体。    ——可测量要求无菌的或高纯度的液体。    ——可测量易燃、易爆,易泄漏,易污染液。l 安全性能好  在测量有毒害、有腐蚀、有压力、易燃易爆、易挥发、易泄漏的液体时,由于测量头和仪表都在容器外,所以安装、维修、维护操作时不接触罐内的液体和气体,非常安全。即使在仪表损坏或维修状态下,也绝无引起泄漏的可能。l 设备安全环保  无论是设备安装还是后期的设备维护都不会引起罐内液体泄漏,决不污染环境,是绿色环保仪表。本安防爆。方便  安装时不必在容器上开孔,不用法兰盘,不用连通管,可以不必动火,随时安装调校,不必停产,只需将测量头从容器外用测量头专用的磁性固定器或粘合剂固定在容器外壁,经过简单的接线,即可测量,安装、维修最方便、最经济。同时可自动进行参数校准,自动运算温度补偿系数,无论环境温度、液体温度或者被测液体成分如何变化,仪表始终保证具有较高的测量精度。l 耐用可靠  测量头和仪表中无机械运动部件,并严格密封,与外界隔离。不会磨损或腐蚀,十分耐用可靠。维护工作量很小。l 系统指标:n 测量分辨率:≤1cmn 测量精度:1%1.3外贴式超声界面仪的使用范围可适用于各种液体特别是两相液体的各式储罐中。http://ng1.17img.cn/bbsfiles/images/2011/07/201107051116_303159_2333795_3.jpg

  • 原油储罐切水口职业病危害分析及控制措施

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 通过对原油储罐人工切水作业过程中接触到的职业病危害因素进行分析、检测,讨论人工切水作业的职业病危害隐患,落实自动切水系统防护设施改造.原油储罐切水口自动化改造后,切水效果和职业病危害因素检测结果均符合相关要求和标准,避免了操作人员直接接触有毒有害物质的情况,从本质上实现安全和健康生产.[/color][/font]

  • 【原创大赛】一次让人后怕的液氩储罐搬运经历

    [align=center][font='宋体']一次让人后怕的液氩储罐搬运经历[/font][/align][font='宋体']实验室的一些仪器设备需要用到各种气体,比如氮气,氦气,氩气等等,现在实验室用的气体多为气瓶装,少数用量小的用气体发生器。我在的单位平常需要用到氩气,而这个氩气又是那种很大的杜瓦罐装的液氩。每隔一段时间液氩由厂家运送至公司楼下,由于没给小费,厂家的人不愿意帮我们送到[/font][font='宋体']6楼实验室,而是让我们自己运送至实验室内的气瓶间。虽然楼内有电梯,但要顺利运动气瓶间需要经过“两道坎”,一道“坎”是实验室门口的门槛,另一道“坎”是气瓶间又小又矮的防盗门。[/font][font='宋体']杜瓦罐本身就有一人高,再加上做的那种带轮子的底座,整个高度将近达[/font][font='宋体']2米,而气瓶间的门却没有这个高度,平常把杜瓦罐拿进拿出都要几个人合力将其倾斜,费好大力气才能弄进弄出。这种操作无疑是违规的,也是极其危险的,[/font][font='宋体']正确的操作不管是在使用还是运输过程中都是要将罐体保持垂直状态,避免颠簸的。[/font][font='宋体']每次让我帮忙一起搬我都心惊胆战,生怕出事情,公司领导也不出面解决,一直都是过一天是一天。[/font][font='宋体']后来果真是怕什么来什么,国庆前某天大早上,送液氩的卡车早早来到,公司里的人都还没上班,就来了几个人。领导叫了我和另外一个男[/font][font='宋体']同事[/font][font='宋体'],三个人准备把满瓶的液氩杜瓦罐给弄到气瓶间去。结果可想而知,三个人连第一道“坎”都没过去,整个重达好几百斤的大罐子就直接倒了下来压在了领导腿上,我的头上被砸了一个包,另外一个同事的脚也受了伤。倒下的满瓶的杜瓦罐三个人根本连搬都搬不起来,更别谈弄到气瓶间去了。[/font][font='宋体']虽然大家都受伤了,但也算是不幸中的万幸了,都只是皮外伤。[/font][font='宋体']经过此次事故,大家都怕了,公司领导也都重视起来,当天气体供应商公司领导还跑过来当面道歉慰问[/font][font='宋体'],公司也重新更换掉了这个不靠谱的供应商。[/font][font='宋体']很多时候不出事情有些问题根本不去解决,但是往往当出事后再去解决就为时已晚了。[/font]

  • 【原创大赛】钢制储油罐的腐蚀与防护

    介绍钢制储油罐的腐蚀环境、腐蚀成因及其所带来的危害。结合应用实例,阐述钢制储油罐腐蚀防护一些具体技术和措施。引言钢制金属储罐是目前石油化工,石油加工企业和油气集输系统中重要的储存介质的容器。主要用来储存汽油、柴油、原油等油品介质。在内部介质与外部环境综合作用下油罐的顶部、底板与底圈壁板易发生严重的腐蚀,造成罐防腐层脱落和大面积的点蚀现象的发生。严重的会使罐顶塌陷与罐底板穿孔漏油。由于油罐的维修不但会耗费大量的资金,还会导致停产。因此对储罐腐蚀的详细了解有助于对储罐更好地维护,使其延缓大修年限。油罐的腐蚀包括内腐蚀与外腐蚀。内腐蚀主要与储存的介质的含氧量,以及储存介质中的杂质有关。外腐蚀主要油罐周围的大气环境与罐底板接触的土壤性质有关。大气腐蚀主要分为化学腐蚀与电化学腐蚀两类;土壤对罐底板的腐蚀包括氧的浓差腐蚀、杂散电流腐蚀和细菌腐蚀等。另外设立一套完整的管理体系,加强对油罐检测与记录也可以对防腐工作起到关键作用。第一章油罐的外腐蚀储罐的外腐蚀包括大气腐蚀与土壤腐蚀。大气腐蚀主要作用于油罐顶部与罐壁。而油罐的底板外侧易发生土壤腐蚀。1.1油罐大气腐蚀油罐的大气腐蚀主要分为化学腐蚀与电化学腐蚀两类。油罐化学腐蚀与电化学腐蚀产生的区别在于油罐的外表面是否包裹一层水膜。在干旱少雨的地区,阴雨天一般持续时间比较短。对于没有保温层的油罐,雨后形成的水膜很快会被蒸发。电化学腐蚀由于缺少了所需的介质,所以在这些地区无论空气中存在何种化学腐蚀物质,油罐的外腐蚀主要是以化学腐蚀的方式进行的。化学腐蚀的速率比较慢对油罐的外腐蚀影响不大,但对外防腐层却危害比较大。电化学腐蚀是由于空气中的氧溶解于储罐外表面的水膜中面发生氧的浓差腐蚀。在大气被污染的地区,大气中的污染物,例如,二氧化硫、硫化氢、氯气、氯化氢等同样会溶解在水膜中。这些物质使水的电解质浓度增大,电导度增加,从而加重油罐的电化学腐蚀。例如,二氧化硫与水中溶解的氧作用生成三氧化硫。三氧化硫与水分子结合成硫酸。化学反应如下:SO2+1/2O2 → SO3SO3+H2O→ H2SO42Fe+3H2SO4→ Fe2(SO4)3+H2↑同样水膜中溶解的氯气、氯化氢都会与钢发生反应,从而腐蚀油罐的外壁。1/2Cl2+1/2H2→ HClFe+2HCl → FeCl2+H2↑1.2罐底板土壤腐蚀土壤对罐底板的腐蚀包括氧的浓差腐蚀、杂散电流腐蚀和细菌腐蚀等。这些腐蚀都可看做电化学腐蚀。地下水通过土壤的毛细管上升到沥青沙层(油罐的防腐垫层)。或从沥清沙层中渗透与罐底接触,或直接绕过沙层与罐底接触。地下水中的盐分与金属作用从而腐蚀罐底。第二章油罐的内腐蚀罐内腐蚀的速率根据油品的不同而不一样。一般情况下,原油对油罐的腐蚀最大,腐蚀率为0.6mm/年;轻质油和粗制汽油、煤油、粗制重油次之,腐蚀率为0.4mm/年;重油、石脑油和润滑油腐蚀性最小,腐蚀速率为0.2mm/年。油罐的内腐蚀主要与油品的含氧量和油品中的杂质有关。

  • 液体罐区设计

    最近公司部门培训了液体物料罐区的设计,我把会议纪要整理了下给发上来大家看看。在化工行业中罐是很常见的,它的作用主要是储存、装卸和运输(汽车、轮船、铁路)。下面讲一下我们部门储罐的常用情况,重点从四个方面来讲。一.设计依据1. 有多少介质归类在液体罐区范围里面;2. 甲方对罐的要求;3. 物料的进出口设计、计量方法;4. 物料的化学性质和物理性质,例如:沸点、凝固点、比重、雾点和粘度等等。5. 储罐的安全要依据设计规范和标准来设计,我们用的规范主要包括建筑设计防火规范(GB50016)和石油化工设计防火规范(GB50160)。6. 根据闪点划分,火灾危险等级划分,流体的性质,压力管道,流体的等级是有差别的。例如A1类流体=GC1对消防和安全要求都不一样。7. 物料的储存天数在不违反规范的情况下,以甲方的意见为主。8. 由汽车、轮船、管道和槽车为进出手段的,在总平面图中考虑物料的输入和输出。同时要根据《石油化工总图运输规范》,对罐区的位置、风向和地形,消防通道,消防设施,综合考虑。罐区一般放在总平面的最低处(有防火围堰),易燃易爆的罐放在下风向。9. 石油库规范(GB50074-2002),天然气设计规范(GB50489)石油化工罐区设计规范,(SH173007-2007)二、罐区设计程序1. 制作罐区的两图一表,工艺流程图,布置图,设备一览表。同时根据罐的作用,包括输送、导罐、调和来选择和合适的罐,因为罐也是有差异的,例如有立式储罐有卧式储罐,压力储罐和常压储罐。2. 罐区的布置。罐区应该集中在厂区的边缘地区或相对独立的安全地带,并宜设置在城市(区域)全年最小频率风向的上风侧;置留预留空间,留有发展余地;远离明火(烟囱),不要布置在人员集中的地方,也不要靠近厂区重要设施(变电站、空压站、高压线);布置要灵活,因地制宜。3. 设备选型。罐的类型有很多,例如拱顶罐、浮顶罐、压力罐、常压罐、低压罐和气柜等等。我们用的最多的是拱顶罐,一般设计压力在-0.5~2KPa,设计温度-19~15℃,公称容积100~30000m3。一般地基不好的用矮罐,地基好的用高罐,高度/直径=0.8~1.2。平时选用的罐按照标准图去选(HG21502.1-1992)。一般情况下内浮顶罐比较瘦高,高度/直径=0.8~1,内浮顶储罐,在其内部轴心线上安装一轴,以其剖面大小置放一个由特殊的轻质材料制作的顶盖,它可以随内部的物体的增多或减少而上下移动,起到限制作用。内浮盘浮于液面上,使得液相没有蒸发空间,可以减少蒸发损失达85%~90%;此外,通过浮盘阻隔了空气与储液,在减少空气污染的同时减少了火灾危险的程度;最后,由于液面上没有气体空间,减少了在运输过程中产生的振荡,防止储液对罐内壁产生撞击或内压力变大,减轻灌顶和灌壁的腐蚀,延长储罐使用寿命。低压储罐的特点是罐板厚,基础比较牢固。气柜需要保持压力恒定。罐的基础给结构提资料,按照罐的体积(物料)x1.1倍来提资,结构的允许沉降,在物料试验后要小于25mm,打桩后的地基沉降很小。罐的透气口按照进出最大流量选取,试验的时候把透气孔或者罐顶的人孔打开,防止鳖罐。4. 泵的选用。我们选用泵以离心泵为主,因为离心泵的流量大扬程高,操作简单,效率能达到80%[siz

  • 钢制储罐环氧涂料内防腐技术标准

    1、 原油罐:罐内底板及罐内壁下部沉积水部位可采用表面电阻率应不低于1010Ω(实际上应大于1011Ω)的绝缘防腐涂料,但罐内之静电压应符合GB 6951 强制性国家标准要求,即油面电位值应小于12000V 和GB 6950 强制性国家标准要求,即油品电导率应大于50ps/m,实际操作过程中可采用绝缘防腐涂料+牺牲阳极联合保护方案,阳极应选用铝合金阳极。涂层厚度不小于400 微米;原油罐罐内除上述部位外的其它内壁各部位要求具有导静电防腐功能的配套涂料。涂层厚度不小于350 微米。2、 中间产品罐:粗汽油、粗柴油、石脑油贮罐属热喷涂+导静电配套涂层封闭,喷铝涂层厚度宜200-250 微米、喷锌涂层厚度宜100-150 微米,涂层总厚度不低于400 微米。也可采用导静电配套涂层保护,罐内项部[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]部和内底板涂层总厚度不小于350 微米,其余内壁部位不小于300微米;其它中间产品罐可采用导静电配套涂层保护,涂层总厚度:罐内项部[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]部位和内底板不小于350 微米,其余内壁部位不小于250 微米;内浮顶、拱顶及罐壁上部1m-3m,采用导静电浅复(灰)色面漆封闭3、 成品油罐:喷气燃料罐底面配套涂层,其中面漆应采用白色或浅复(灰)色导静电防腐涂料,涂层总厚度不小于200 微米;其中罐内底板及罐内壁下部沉积水部位,涂层总厚度不小于300 微米;汽油、煤油和柴油罐面漆应采用浅复(灰)色导静电防腐涂料,涂层总厚度不小于200 微米;其中罐内底板及罐内壁下部沉积水部位,涂层总厚度不小于300 微米;苯类罐可采用耐溶剂导静电防腐涂料,涂层总厚度不小于200微米;若采用金属热喷涂+耐溶剂导静电防腐涂料,涂层总厚度不小于350 微米;沿海或腐蚀严重的潮湿工业大气环境中,油罐罐内底板、顶部[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]部位涂层总厚度不小于300 微米。

  • 今年要出关了!大虾门,我快杀回来了~~

    毕业课题马上收官,准备今年6月份的答辩以及毕业的后续工作,总之,我快出关了...唯一遗憾的是,我还是自由职业者,淡定中...http://simg.instrument.com.cn/bbs/images/default/em09506.gif

  • 原油储备油罐的防腐方法

    原油储罐,这是个国内已经做得很多的重防腐领域了。国内主要还是以阴极保护和环氧类基材的涂料涂装为主。 原油根据产地不同,里面含的杂质不同,石油之外的杂质主要表现为:H2O水相、S单质硫、H2S、SO2、HCl、O2、采油过程中导入的一些助剂和微量元素、其他含有复杂成分的污泥。原则上是,含硫量越高,酸值越大,对油罐的腐蚀越严重。油罐的腐蚀部位又分罐底、罐壁、罐顶气液交汇处。水、硫、氯离子等都是导致金属油罐内部腐蚀的主要因素,具体有几种:水相的电离渗透以及形成电解溶液、电位差导致的电化学腐蚀(主要是原油中的钙镁离子和油罐材质铁相互间的电位差引起)、游离酸(硫酸、氢硫酸、盐酸等)对金属的腐蚀、酸性气液混合相腐蚀等。 主要的防腐方案: 1 阴极保护:金属-电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护效应。利用阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护 。2 热喷金属(一般是铝)+导静电涂层封孔,这个方案在于喷铝的厚度、质量以及封孔的厚度、质量。导静电做到并不难,但封孔的涂层材料的选择就是一个zui让这个行业头疼的东西,大多数的有机涂层都不耐有机的油相,温度高了,时间长了,都会发生溶胀的,溶胀完了,水和酸就通过缝隙渗透到油罐的内壁铁上去了,就穿孔了。金属封孔后,有机涂层的选择问题,确实是个目前头疼的问题,热固性树脂,做的太薄,固化不完全,耐油不够,分子量太大,粘度太大,又渗不进人那些小小的孔里面去,选择非转化型热固性成膜类涂料,耐油好了,但耐酸往往有有所欠缺,尤其是里面添加的粉料,甚至金属氧化物(钝化金属基材作用)的萤丹,又会导致渗透性不佳,且时间长了会与酸反应,这些都是需要深入考虑的。 3 导静电非金属涂料,目前在国内应该是用得zui多的。成膜物的材质,是决定zui终防腐性能的关键,目前环氧应该还是用得zui多的,附着力,成本、涂料配方可变性范围、涂装工艺等等都是它的优点,但是缺点也很明显:耐油性不足、耐酸性不足,使用的其他有机涂料也有很多种,非转化型热塑性高分子材料成膜类涂料。优点是,耐油耐酸性较环氧有一些,但是缺点就是与基材的附着力这方面有些难解决,毕竟溶剂挥发完了,余下来的绝大部分都是热塑性高分子材料,而大部分的热塑性高分子材料与金属基材的附着力都非常有限。 4 玻璃钢防腐内衬。抗渗透性肯定是比有机涂料好很多,成本比涂料高。目前采用的玻璃钢热固性树脂多为环氧、酚醛、呋喃、乙烯基,应该比较成熟的也只是含硫污油罐。施工更加麻烦,玻璃钢一般都要做到3mm厚以上,做3mm厚以上的玻璃钢内衬,在国内外应用广泛。 5 导静电喷涂型玻璃鳞片涂料。抗渗性非常好,目前国外选用的多为酚醛型乙烯基酯树脂为基材的厚膜型鳞片涂料,但喷涂型玻璃鳞片目前国内做得确实不少可以做到喷涂型的配方了。一般都是油罐壁和顶部采用这个方案的,罐底部做得防腐措施一般还要苛刻一些,玻璃钢或者玻璃钢+鳞片涂料的方案目前采用较多。

  • 【讨论】便携式色谱氢气储罐问题

    上次在论坛上发了个帖子想和大家讨论一下关于这个[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]需要用的氢气存储问题。昨天上网一查看到上海的一种便携式[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]真的用的是合金作为储氢材料,减少了氢气储存的体积。我是没用过这种色谱仪,大家谁用过能不能说说。上海精密科学仪器有限公司型号是GC1990.[em0903]

  • 江苏靖江危化品仓储大火明火扑灭 尚未检出污染因子

    人民网泰州4月23日电 (王继亮 胡伟 陈天源)4月22日上午9时40分左右,位于江苏靖江市新港园区的江苏德桥仓储有限公司发生火灾,引燃相邻汽油储罐。在大火燃烧了约16个小时后,23日凌晨1时54分,罐体阀门被成功关闭,现场火势全部扑灭。目前,消防官兵正在密切监视,防止复燃。经监测,消防废水未外溢,空气质量未见异常,事故未发生人员伤亡。灭火难度大 千余消防官兵参与救援火灾发生后,江苏省公安消防总队先后调集泰州、南京、无锡等9个支队101台消防车、535名消防官兵赶赴现场扑救。当天17时左右,公安部消防局调集上海市公安消防总队化工灭火编队,共35台消防车、150名消防官兵、150吨泡沫灭火剂赶赴现场增援。22时,扬州消防支队先后调集特勤、仪征、江都、战保等三批次共19车101名消防官兵,火速驰援靖江德桥仓储火灾。浙江消防总队重型化工编队的26辆消防车、94名消防官兵,携带235吨泡沫液,也赶往靖江增援。但由于此次火灾燃烧面积大、火势流淌、高温辐射,灭火难度很大。昨日,与着火罐相连接的输油阀门一时关不了,油不断流进火场,火势非常猛烈。来自公安部消防局官方微博@中国消防的消息显示,现场共有3个5000立方米的汽油储罐燃烧,其中1个已经烧塌,引发流淌火,燃烧面积约2000平方米,流淌火威胁相邻多个危化品储罐。当地一位村民李先生在接受人民网采访时表示,火灾发生时他正在德桥仓储附近三四百米处干活,只见当时几个罐子突然着火,现场顿时黑烟滚滚。“火势很大,在很远处就可以看到,都没有人敢靠近。”“明火有十几米高,还有二三十米高的黑色浓烟,像蘑菇云。”经消防部门初步勘查,现场为江苏德桥仓储的二号软管站发生火灾,管路内主要包括混合芳烃、汽油、醋酸乙酯、醋酸丁酯等液体。起火部位为管道,引燃了5000立方汽油罐呼吸阀。经调查摸排,已摸清起火点,切断与火源的所有连接。4月22日事故发生后,江苏省委书记罗志军、省长石泰峰等领导赶赴现场,组织指挥扑救。省委常委、政法委书记王立科,副省长张敬华随同在现场指挥救援工作。靖江市第一时间启动应急预案,消防、环保、安监、卫生等部门赶赴现场,开展救援。现场人员及时疏散 未发生人员伤亡由于现场大火长时间未能有效控制,从22日15时开始,人员疏散工作启动。截至当晚22时,事故中心3公里半径内的187户居民和所有企业内的人员全都安全转移。尽管没有发生人员伤亡,但是省市县三级卫生医疗部门早已启动医疗应急预案,相关人员24小时待命。昨晚11点,记者在距离火灾现场5公里左右的一家家庭旅馆看到,老板娘通知所有的住客立即撤离。彼时,大火已经持续了13个小时,事故现场指挥部指令动员5公里范围内的群众撤离。“火烧一天了都没灭,事发点周围的村民都撤了。”一位妇女边走边和记者说。就在这时候,人们看到一辆公交车,原来是当地政府为了疏散群众派车来接送,车辆将开往近20公里外的靖江市区。距离事故现场最近的靖江市斜桥镇丹华村副村长陈良富昨日下午在接受人民网采访时透露,该村一千多人已被要求撤离,并已全部妥善安置,现撤离人员已陆续返回。另据新民网消息,目前,上海增援江苏靖江危化品仓储点大火消防力量已返沪。官方发布:周边环境未检出污染因子对于一些居民担心的危化品仓储起火可能带来的污染问题,江苏靖江市委宣传部官微@靖江发布22日16时30分发布消息称,环保部门已在现场设置了3个流动环境空气质量监测点、3个特征污染因子监测点,目前均未检出特征污染因子。在相邻的丹华港入江口水质检测中也未检出特征污染因子,水质符合地表水环境质量Ⅲ类水标准。南通海安、如皋等地市民担心此次事故对邻近的长青沙取水口造成污染。人民网记者前往了解得知,事故发生后,该水厂第一时间采取应急措施,经多次检测,水体样本平稳,没有发现污染物。不过当地居民表示,火灾现场有异味飘出:“我们还是有点担心,不知道是否对人体有害。”南京理工大学化工学院副院长陈网桦教授在接受媒体采访时表示:“混合芳烃、汽油、醋酸乙酯,这些都是常见的、低毒的化工产品,“虽然它们毒性不大,但是都有一个共同的特点:易挥发、易燃、易爆。比如甲醇在常温就有一定的挥发性,其液体蒸气与空气混合形成易燃易爆云团,毫焦量级的点火能量就能点燃,相当于我们脱毛衣时静电产生的能量。”一个月前安监曾现场调研该企业据江苏德桥仓储有限公司网站消息,该公司是一家外资企业,由新加坡上市公司恒阳石化物流有限公司投资组建,专业从事液态散化及油品的仓储中转、分拨、灌装业务。公司库区占地472.5亩,一期工程建设储罐42座,储罐容量是12.6万立方米,其中燃料油罐4座,柴油罐4座,汽油罐4座,化工罐30座。靖江市政府官网发布的另一条消息称,今年3月10日,安监局局长朱晓波赴挂钩的江苏德桥仓储有限公司进行现场调研,并深入现场察看了企业重点库区的监控、安全防护设施和应急救援装备等情况,并就企业的安全问题提出了意见。

  • 石油化工阻火呼吸阀防火规范

    石油化工阻火呼吸阀防火规范根据国家标准《石油化工企业设计防火规范》 (GB50160-90) 之规定。“甲、乙类液体的固定顶罐,应用阻火器和呼吸阀”。可见呼吸阀、阻火器是储罐不克缺少的安全设施。它不仅能维持储罐气压平衡,确保储罐在超压或真空时免遭破坏,而且减少罐内介质的挥发和损耗。呼吸阀是维护储罐气压平衡、减少介质挥发的安全节能产品,常与阻火器配套使用。今天为大家详细讲解一下阻火器和呼吸阀的各自用途、工作原理,以方便广大用户能够进一步了解它们两者之间的区别。一、石油化工阻火器防火规范呼吸阀的用途、工作原理油品储运系统的油罐如何能做到安全、稳定和长周期的运行关键问题是正确的使用与维护机械呼吸阀。机械呼吸阀能保证油罐内的压力平行防止油品不被空气氧化而变质,还能够减少袖品蒸发损耗确保油罐的安全。机械呼吸阀可以是整体式的,能够完成呼和吸两种工作。也可以是分离式的,单独完成呼或吸的工作。1、呼吸阀的种类和作用呼吸阀的种类很多,但主要有:防爆阻火呼吸阀和全天候防火呼吸阀,都是用于安装原油、气油、煤油、轻柴油、芳烃为固定式储罐上的通风装置,起减少油品挥发、损耗,阻止外界火陷传入保护储罐当超压或真空时免破坏的作用。常与液压安全阀配合使用,一旦呼吸阀出现故障失去作用或因其它原因罐内出现过高压力、真空,液压安全阀起调节作用。 2、呼吸阀工作原理:弹簧式呼吸阀是用弹簧限位阀板,由正负压力决定或呼或吸。还有重力式呼吸阀,是靠重力来调节的,当容器里面的气压达到超过重压时该阀打开卸压。具体描述:当储罐内压力与大气压力平衡时,呼吸阀呼出阀瓣与呼出口阀座严密配合,吸入阀瓣与吸入口阀座严密配合。当储罐内压力超过大气压力值(即产生过高正压)时,罐内高压直接作用于呼吸阀瓣下方,并克服阀瓣重力以及作用于阀瓣上的外气压力,从而打开呼吸阀瓣由A通道排出罐内过高气压,使罐内压力与大气压力保持平衡。当储罐内压力低于大气压值(即产生过低负压)时,大气压通过吸气通道B进入并直接作用于吸入口阀瓣下方,并克服阀瓣重力以及作用于阀瓣上方的罐内压力,从而打开吸入口阀瓣向储罐内补充压力,使罐内压力与大气压力保持平衡。3、阻火呼吸阀的相关参数及性能特点阻火呼吸阀操作压力:A级正压:355Pa(36亳米水柱)负压:295Pa(30亳米水柱)B级正压:980Pa(100亳米水柱)负压:295Pa(30亳米水柱)C级正压:1765Pa(180亳米水柱)负压:295Pa(30亳米水柱)阻火呼吸阀性能及特点:1、壳体选用铸钢和铝合金,耐腐蚀性好;2、纹阻火层采用不锈钢材料,阻火性能好,耐腐蚀性能好;3、结构简单,易检修,安全方便;二、石油化工阻火呼吸阀防火规范阻火器的用途、工作原理阻火器(又名防火器、隔火器)是用来阻止易燃气体和易燃液体蒸气的火焰蔓延的安全装置。广泛应用于那些加热燃料气、天然气、石油液化气的管路上及油气回收、煤矿瓦斯排放、气体分析等系统能有效地保证气体管道及气体使用点的安全运行。阻火器是阻止易燃气体或液体的火焰蔓延和防止回火导致引起爆炸的安全装置通常装在输送或排放易燃易爆气体的储罐和管线上。主要是用来满足储罐大小呼吸的通气要求与阻火器配套安装在储存甲、乙、丙类液体的储罐顶上,确保储罐在超压时免遭破坏,同时减小储罐内介质的蒸发损耗。全天候阻火呼吸阀在石油工业上按GB5908-97和SY7511-87标准进行制造和验收。全天候阻火呼吸阀有静电接地线,使该阀与罐体保持等电位。该阀具有防冻性能,适用于寒冷地区。全天候阻火呼吸阀结合了全天候呼吸阀和防火器的功能特点,将二者有效的结合起来。安装于石化储罐的罐顶,它是石化储罐必备的新型安全设备,其是阻火呼吸性能好,重量轻,维修方便。该产品适用于储存内点低于 28 ℃的甲类油品和闪点低于 60 ℃的乙类油品,如汽油、笨、甲笨、煤油、轻柴油、机油、原油等油品及性质相同的化工产品储罐使用,它在 -35 ℃ -60 ℃的温度环境中正常工作。全天候阻火呼吸阀工作原理:当罐内油气压力大于油罐允许压力时,油蒸汽经压力阀外逸,此时真空阀处于关闭状态;罐内油气压力小于油罐允许真空度时,新鲜空气通过真空阀进入罐内,此时压力阀处于关状态,允许压力(或真空压力)靠调节盘的重量来控制。1、阻火器的种类和作用阻火器按用途可将其分为储罐阻火器、加油站阻火器、加热炉阻火器、火炬阻火器、放空管阻火器、煤气输送管道阻火器等。2、阻火器的阻火机理:大多数的阻火器都是由能够通过气体的许多细小通道或孔隙的固体材质所组成,而对这些通道或孔隙要求尽量小到能使火焰被熄灭。导致火焰能够被熄灭的机理就是传热作用和器壁效应。阻火器的传热作用:波纹板式阻火器是由许多细小通道或孔隙组成的,当火焰进入到这些细小通道后就会形成许多细小的火焰流。由于通道的传热面积大火焰通过通道壁进行热交换后温度下降达到一定程度火焰可以熄灭。根据英国罗卜尔(MRoper)对波纹型阻火器进行的试验表明当把阻火器材料的导热性提高460倍时其熄灭直径仅改变2.6%。这说明材质问题是次要的。也就是说传热作用只是熄灭火焰的一种原因但还不是其主要的原因。石油化工阻火呼吸阀防火规范阻火器的器壁效应:根据了燃烧与爆炸连锁反应理论认为燃烧与爆炸现象不是分子间直接作用的结果,而是在外来能源(热能、辐射能、电能、化学能等)的激发下使分子键受到破坏,产生具备反应能力的分子(称为活性分子),而这些活性分子发生化学反应时首先分裂为十分活泼而寿命短促的自由基。化学反应就是靠着这些自由基进行的。自由基在与另一分子作用的结果除了生成物之外还能产生新的自由基。这些新的自由基不断反复地反应又消耗又生成不断地进行下去。由此可知易燃混合气体自行燃烧(在开始燃烧后又没有外界能源的作用)的条件是:新产生的自由基数等于或大于消失的自由基数。随着阻火器通道尺寸被减小让自由基与反应分子之间碰撞几率随之减少,而自由基与通道壁的碰撞几率反而增加这样子就能够促使自由基反应的减低。当通道的尺寸减少到某一数值时这种器壁效应就造成了火焰不能继续传播的条件火焰即被阻止。因此器壁效应才是阻止火焰的主要机理。3、石油化工阻火呼吸阀防火规范阻火器的基本性能要求:管端阻火器的阻火性能应能够达到GB5908《石油储罐阻火器阻火性能和试验方法》规定:①阻火器的壳体应能承受不小于0.9MPa的水压无泄漏、无裂痕或变形;②阻火器应能连续阻爆试验13次每次都能阻火;③阻火器应能够经受耐烧试验1h在此期间无回火。管道阻火器的阻火性能应能够达到GB13347《石油气体管道阻火器阻火性能和试验方法》规定:①阻火器壳体应能承受1.5倍于设计压力的水压试验无渗漏;②阻爆燃型阻火器必须连续经受住13次阻爆燃试验每次必须阻止亚音速火焰通过;③阻爆轰型阻火器必须连续经受住13次阻爆轰试验每次必须阻止超音速火焰通过。

  • 大家用的液氮罐都是带压力的么?

    各位专家,下午好! 各位实验室的SEM-EDS所用的液氮容器使用的都是带压力的么?操作这样的设备还需要专门取证么?我们本来用的是常压的杜瓦瓶装液氮,现在厂家供不上货了,想考虑下是否改用带压力的储罐类型,考虑到安全问题,所以跟各位请教下,在此先谢过了!

  • 石油化工全天候呼吸阀设计规范

    全天候呼吸阀用于油品及液体罐上,以免罐内液体蒸发损耗与保护储罐在受超压或真空时免遭破坏的作用,当物料注入储罐时,罐内压力增大到一定值时,该阀正压盘自动打开呼出气体,反之,当出料时,罐内产生负压,该阀负压盘自动开启,吸入空气。本阀能平衡罐内的正压和负压,使罐内液体进出方便。如罐体上不装呼吸阀罐内的液体进出有一定的障碍,很可能出现罐体变型和振动,GFQ-2全天候呼吸阀设计合理,结构简单,使用方便,是储罐的配套产品。此阀通常与阻火器配套使用。呼吸阀的主要作用是为了防止贮罐因超压或真空导致破坏,同时可减少贮液的蒸发损失为了确保新型全天候呼吸阀的性能达到完全使用的目的。呼吸阀在半年进行检查和保养。全天候呼吸阀用于油及液体罐上,来排除罐内的正压和负压气体,使罐内液体进出方便.如罐体上不装呼吸阀罐内的液体进出有一定的障碍,很可能出现罐体变型和振动。根据标准《石油化工企业设计防火规范》 (GB50160-90) 之规定。“甲、乙类液体的固定顶罐,应用阻火器和呼吸阀”。可见呼吸阀、阻火器是储罐不克缺少的安全设施。它不仅能维持储罐气压平衡,确保储罐在超压或真空时免遭破坏,而且减少罐内介质的挥发和损耗。呼吸阀是维护储罐气压平衡、减少介质挥发的安全节能产品,常与阻火器配套使用。该产品设计合理,结构简单,使用方便 是储罐的必备产品,不可缺少。石油化工全天候呼吸阀设计规范的检查和保养1、检查压力阀盘和真空阀盘动作是否灵活,导杆阀环接触有无损伤。2、重新安装压力阀盘时,就保证接触面要严密,导杆升降灵活。3、启用新的呼吸阀时,必须清除阀盘间的防震物。石油化工全天候呼吸阀设计规范操作压力:A级正压:355Pa(36亳米水柱)负压:295Pa(30亳米水柱)B级正压:980Pa(100亳米水柱)负压:295Pa(30亳米水柱)C级正压:1765Pa(180亳米水柱)负压:295Pa(30亳米水柱)石油化工全天候呼吸阀设计规范性能及特点: 全天候呼吸阀壳体选用不锈钢、铸钢和铝合金,耐腐蚀性好;阀盘采用四氟材料,耐低温,防冻性能好;结构简单,易检修,安全方便;性能符合石油工业部标准SY7511-87规定。本阀具有通风量大,密封性能好,泄漏量小的特点。 全天候呼吸阀安装在储罐顶部,是解决罐内正压,负压的气体,使罐内的液体进出没有受到阻碍,当外液体输入罐内时有大量的气体往外呼(称正压)。如罐内液体往外输出时罐内必须从外空气吸进罐内(称负压)。如停止工作时呼吸阀自动关闭不会把罐内液气往外泄漏,使罐内的液体质量得到了有利的保障。石油化工全天候呼吸阀设计规范维护与保养:为了全天候呼吸阀使用安全,在使用前先检查导杆和阀盘是否灵活。全天候呼吸阀要定期(6个月内)检查通气口正、负阀盘是否灵活,阀盘接触面有无损坏,如有损坏应立即检修。 检修完毕后,一切正常可重新使用。

  • 工厂罐体泄露应强制规定检测

    刚看到新闻:西江江门段鱼类大量死亡原因查明 系次氯酸钠泄漏。该公司存储产品次氯酸钠(俗称“漂水”)的13号罐体出口管道于1月9日上午约8时30分发生泄漏事故,当时储罐储存次氯酸钠约30吨(浓度10%),泄漏到西江的量大约10吨左右。事故发生后,该公司自行采取倒罐、关闭污水处理设施出水闸门等措施,约45分钟后完成堵漏工作,液体不再流入西江。 不仅要对工厂化学品的罐子内部检测,还要安全员巡视。管理上和技术上都要强制执行! 有哪些表能够完成这一任务?

  • 石油化工阻火呼吸阀防火规范

    石油化工阻火呼吸阀防火规范根据国家标准《石油化工企业设计防火规范》 (GB50160-90) 之规定。“甲、乙类液体的固定顶罐,应用阻火器和呼吸阀”。可见呼吸阀、阻火器是储罐不克缺少的安全设施。它不仅能维持储罐气压平衡,确保储罐在超压或真空时免遭破坏,而且减少罐内介质的挥发和损耗。呼吸阀是维护储罐气压平衡、减少介质挥发的安全节能产品,常与阻火器配套使用。今天为大家详细讲解一下阻火器和呼吸阀的各自用途、工作原理,以方便广大用户能够进一步了解它们两者之间的区别。一、石油化工阻火器防火规范呼吸阀的用途、工作原理油品储运系统的油罐如何能做到安全、稳定和长周期的运行关键问题是正确的使用与维护机械呼吸阀。机械呼吸阀能保证油罐内的压力平行防止油品不被空气氧化而变质,还能够减少袖品蒸发损耗确保油罐的安全。机械呼吸阀可以是整体式的,能够完成呼和吸两种工作。也可以是分离式的,单独完成呼或吸的工作。1、呼吸阀的种类和作用呼吸阀的种类很多,但主要有:防爆阻火呼吸阀和全天候防火呼吸阀,都是用于安装原油、气油、煤油、轻柴油、芳烃为固定式储罐上的通风装置,起减少油品挥发、损耗,阻止外界火陷传入保护储罐当超压或真空时免破坏的作用。常与液压安全阀配合使用,一旦呼吸阀出现故障失去作用或因其它原因罐内出现过高压力、真空,液压安全阀起调节作用。 2、呼吸阀工作原理:弹簧式呼吸阀是用弹簧限位阀板,由正负压力决定或呼或吸。还有重力式呼吸阀,是靠重力来调节的,当容器里面的气压达到超过重压时该阀打开卸压。具体描述:当储罐内压力与大气压力平衡时,呼吸阀呼出阀瓣与呼出口阀座严密配合,吸入阀瓣与吸入口阀座严密配合。当储罐内压力超过大气压力值(即产生过高正压)时,罐内高压直接作用于呼吸阀瓣下方,并克服阀瓣重力以及作用于阀瓣上的外气压力,从而打开呼吸阀瓣由A通道排出罐内过高气压,使罐内压力与大气压力保持平衡。当储罐内压力低于大气压值(即产生过低负压)时,大气压通过吸气通道B进入并直接作用于吸入口阀瓣下方,并克服阀瓣重力以及作用于阀瓣上方的罐内压力,从而打开吸入口阀瓣向储罐内补充压力,使罐内压力与大气压力保持平衡。3、阻火呼吸阀的相关参数及性能特点阻火呼吸阀操作压力:A级正压:355Pa(36亳米水柱)负压:295Pa(30亳米水柱)B级正压:980Pa(100亳米水柱)负压:295Pa(30亳米水柱)C级正压:1765Pa(180亳米水柱)负压:295Pa(30亳米水柱)阻火呼吸阀性能及特点:1、壳体选用铸钢和铝合金,耐腐蚀性好;2、纹阻火层采用不锈钢材料,阻火性能好,耐腐蚀性能好;3、结构简单,易检修,安全方便;二、石油化工阻火呼吸阀防火规范阻火器的用途、工作原理阻火器(又名防火器、隔火器)是用来阻止易燃气体和易燃液体蒸气的火焰蔓延的安全装置。广泛应用于那些加热燃料气、天然气、石油液化气的管路上及油气回收、煤矿瓦斯排放、气体分析等系统能有效地保证气体管道及气体使用点的安全运行。阻火器是阻止易燃气体或液体的火焰蔓延和防止回火导致引起爆炸的安全装置通常装在输送或排放易燃易爆气体的储罐和管线上。主要是用来满足储罐大小呼吸的通气要求与阻火器配套安装在储存甲、乙、丙类液体的储罐顶上,确保储罐在超压时免遭破坏,同时减小储罐内介质的蒸发损耗。全天候阻火呼吸阀在石油工业上按GB5908-97和SY7511-87标准进行制造和验收。全天候阻火呼吸阀有静电接地线,使该阀与罐体保持等电位。该阀具有防冻性能,适用于寒冷地区。全天候阻火呼吸阀结合了全天候呼吸阀和防火器的功能特点,将二者有效的结合起来。安装于石化储罐的罐顶,它是石化储罐必备的新型安全设备,其是阻火呼吸性能好,重量轻,维修方便。该产品适用于储存内点低于 28 ℃的甲类油品和闪点低于 60 ℃的乙类油品,如汽油、笨、甲笨、煤油、轻柴油、机油、原油等油品及性质相同的化工产品储罐使用,它在 -35 ℃ -60 ℃的温度环境中正常工作。全天候阻火呼吸阀工作原理:当罐内油气压力大于油罐允许压力时,油蒸汽经压力阀外逸,此时真空阀处于关闭状态;罐内油气压力小于油罐允许真空度时,新鲜空气通过真空阀进入罐内,此时压力阀处于关状态,允许压力(或真空压力)靠调节盘的重量来控制。1、阻火器的种类和作用阻火器按用途可将其分为储罐阻火器、加油站阻火器、加热炉阻火器、火炬阻火器、放空管阻火器、煤气输送管道阻火器等。2、阻火器的阻火机理:大多数的阻火器都是由能够通过气体的许多细小通道或孔隙的固体材质所组成,而对这些通道或孔隙要求尽量小到能使火焰被熄灭。导致火焰能够被熄灭的机理就是传热作用和器壁效应。阻火器的传热作用:波纹板式阻火器是由许多细小通道或孔隙组成的,当火焰进入到这些细小通道后就会形成许多细小的火焰流。由于通道的传热面积大火焰通过通道壁进行热交换后温度下降达到一定程度火焰可以熄灭。根据英国罗卜尔(MRoper)对波纹型阻火器进行的试验表明当把阻火器材料的导热性提高460倍时其熄灭直径仅改变2.6%。这说明材质问题是次要的。也就是说传热作用只是熄灭火焰的一种原因但还不是其主要的原因。石油化工阻火呼吸阀防火规范阻火器的器壁效应:根据了燃烧与爆炸连锁反应理论认为燃烧与爆炸现象不是分子间直接作用的结果,而是在外来能源(热能、辐射能、电能、化学能等)的激发下使分子键受到破坏,产生具备反应能力的分子(称为活性分子),而这些活性分子发生化学反应时首先分裂为十分活泼而寿命短促的自由基。化学反应就是靠着这些自由基进行的。自由基在与另一分子作用的结果除了生成物之外还能产生新的自由基。这些新的自由基不断反复地反应又消耗又生成不断地进行下去。由此可知易燃混合气体自行燃烧(在开始燃烧后又没有外界能源的作用)的条件是:新产生的自由基数等于或大于消失的自由基数。随着阻火器通道尺寸被减小让自由基与反应分子之间碰撞几率随之减少,而自由基与通道壁的碰撞几率反而增加这样子就能够促使自由基反应的减低。当通道的尺寸减少到某一数值时这种器壁效应就造成了火焰不能继续传播的条件火焰即被阻止。因此器壁效应才是阻止火焰的主要机理。3、石油化工阻火呼吸阀防火规范阻火器的基本性能要求:管端阻火器的阻火性能应能够达到GB5908《石油储罐阻火器阻火性能和试验方法》规定:①阻火器的壳体应能承受不小于0.9MPa的水压无泄漏、无裂痕或变形;②阻火器应能连续阻爆试验13次每次都能阻火;③阻火器应能够经受耐烧试验1h在此期间无回火。管道阻火器的阻火性能应能够达到GB13347《石油气体管道阻火器阻火性能和试验方法》规定:①阻火器壳体应能承受1.5倍于设计压力的水压试验无渗漏;②阻爆燃型阻火器必须连续经受住13次阻爆燃试验每次必须阻止亚音速火焰通过;③阻爆轰型阻火器必须连续经受住13次阻爆轰试验每次必须阻止超音速火焰通过。

  • 液氢储运中的几种绝热材料及其热性能

    液氢储运中的几种绝热材料及其热性能

    摘要:随着氢能源汽车的快速发展,液氢储运将大规模出现在商业应用中,被动防热中的绝热材料和系统是决定液氢储运经济性和安全性的重要因素。本文介绍了目前液氢储运中候选的几类绝热材料/系统,介绍了它们各自的特点及其热性能。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#333399]一、液氢的蒸发和损失[/color][/size] 由于氢气的正常沸点极低(20.4K),在储运过程,当外部温度接近环境温度(~300K)时,内部储罐的温度必须保持在20K或更低,从而导致约有280K的温差。由于这种显著温差,即使隔热良好,漏热热流也会非常显著。例如位于NASA肯尼迪航天中心的最大储罐LC-39B,3200m3容量(约224吨),如图1所示,每天会导致0.03~0.05%的蒸发损失[1]。[align=center][color=#000099][img=低温绝热材料热性能,600,382]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151909474272_5271_3384_3.jpg!w690x440.jpg[/img][/color][/align][align=center][color=#000099]图1 肯尼迪航天中心LC-39B液氢储罐[/color][/align] 如图2所示,以相对蒸发率BOR(单位:每天%)为指标评价液氢的相对损失(相对于储罐尺寸),储罐越小损失越大,较大储罐损失可能较小,因为从周围环境热量进入到储罐的热传递的单位体积表面积较小。尽管随着储罐尺寸的增大(容量约为20000 或更高),相对蒸发损失可降至0.01%以下,但对于较大储罐,液氢损失的绝对量非常可观。这不仅会导致有效储量(和生产能力)降低,还会带来其他安全威胁,因为汽化的氢气呈气态,如果暴露在环境中,会迅速升温。这些威胁包括但不限于易燃性和其他问题,例如焊接/阀门材料的脆化,以及通风管道/部件中环境空气的液化。 [align=center][color=#000099][img=低温绝热材料热性能,600,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151910230789_9197_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#000099]图2 绝热厚度(或漏热热流)固定时的每日蒸发率与罐体尺寸关系[/color][/align] 目前,低温介质的零蒸发存储技术(Zero Boil Off,ZBO)被用于控制蒸发损失,即利用低温制冷机主动冷却液氢储罐使其内部温度保持在20K以下,或者将沸腾的气态氢转化为[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]。 尽管主动冷却技术可有效减少净蒸发,然而对于实际的液氢储运,这种方法需要进一步评估,以确定这种方法在经济上是否可行,因为成本显著增加且有些储罐尺寸较大。总之,在任何情况下,无论有无采用主动冷却技术,被动防热技术中更有效的绝热材料以及绝热系统设计对于液氢储运都至关重要。[size=18px][color=#000099]二、六种候选绝热材料/系统[/color][/size] 在液氢储运方面,商业上存在多种绝热材料可供选择,材料性能差异很大,包括体积密度、复合结构、制造形式、老化、环境暴露和层密度等各种因素的具体变化,因此选择最佳绝热材料以最大限度减少热量进入储箱则是液氢储运中的一项重要内容。 (1)气凝胶材料 目前的气凝胶材料有多种形式,如颗粒(散装)、复合毯、无纺材料中的粉末或颗粒、片状和块状的聚酰亚胺交联气凝胶等。气凝胶复合毯可以提供非常低的热导率,同样,选择散装填充和复合毯型气凝胶材料可以提供额外的能力,因为它们具有纳米多孔结构的强度和超疏水性的化学成分。气凝胶材料的一个重要优点是它们可以吸附气体形式的单个氮分子,因为它冷却到稳态温度并避免形成液体。根据文献[2]中描述的测试及其结果,气凝胶有可能减轻非真空系统的低温泵浦效应。然而,这些实验是基于液氮的测试,还需在相关条件(液氢和非真空)下进行更多测试,以了解气凝胶材料对抗低温泵浦的性能和液氢储存的绝热效率。气凝胶材料相对较高的成本可能会限制其商业应用,但其安装成本可能低于传统泡沫材料,这意味着安装时的总成本以及生命周期考虑是关键指标。 (2)闭孔泡沫 闭孔泡沫材料主要有闭孔硬质泡沫板(RFP)和硬质喷涂泡沫绝热材料(SOFI),它们在限制传质方面表现良好,但有很大比例的开孔含量(至少5%),气态分子仍然可以通过这些开孔含量到达冷侧[3]。虽然闭孔泡沫刚性面板不存在此类问题,但随着时间的推移,它们可能会导致其他问题,例如所有接头、接缝和界面的完整性。由机械损坏(最初或随着时间的推移,或由热循环效应)产生的一系列小裂缝或间隙可能导致对抗低温泵浦或隔热效果的普遍退化。 (3)多层绝热(MLI)系统 虽然MLI在液氢储存方面的表现非常好,但它们可能不适合大规模装置,因为考虑到精致的物理结构,它们对真空的要求很高,而且在大规模工业使用中安装不切实际[4]。然而,已经开发成功的层状复合材料可以将MLI系统的反射特性与气凝胶的高机械强度、低导热性相结合,其中包括用于软真空到中等真空环境的分层复合绝热材料(LCI)[5]。LCI系统结合了气凝胶复合毯材料层,也已被证明具有机械强度[6]。 (4)分层复合绝热系统(LCX) 分层复合系统LCI的另一种变体是LCX,它用于非真空或室外环境[7]。组件包括第一层气凝胶复合毯与连续成对的气凝胶毯和可压缩阻隔层相结合。LCX系统也已成功用于7600升液氮储罐[8]和许多液氢输送管道和组件系统多年[9]。 (5)珍珠岩粉 用于真空夹层绝热系统的散装填充材料包括珍珠岩粉和中空玻璃微球(玻璃泡)。珍珠岩粉可以在施工现场通过裂解火山岩生产,成本相对较低。珍珠岩已广泛用于LNG绝热系统[10],也被NASA用在两个LH2球形罐的绝热系统[11]。 (6)3M玻璃泡 由硼硅酸盐玻璃制成的空心玻璃微球已被NASA广泛用于液氢储罐的应用测试,以替代珍珠岩[12,13]。玻璃泡在所有真空度下都比珍珠岩具有更好的热性能,并显示出更好的物理性能,即气泡不会因振动或热循环而破裂和压实变形。总体而言,玻璃泡表现出更强大的性能,并被证明是用于抽空液氢和其他低温介质储罐应用的优质散装绝热材料。[size=18px][color=#000099]三、绝热材料/系统热性能[/color][/size] 对于上述几种绝热材料或系统的热性能评价,采用了ASTM C1774“低温绝热系统热性能测试的标准指南”中推荐的测试方法。基于此方法测试获得的实验数据[14]对上述不同厚度绝热材料/系统在不同真空度下的等效热导率和漏热热流密度进行了汇总,如图3和图4所示。[align=center][color=#000099][img=低温绝热材料热性能,690,516]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912153362_1201_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#000099]图3 各种不同厚度低温绝热材料/系统在不同真空度下的等效导热系数测试结果[/color][/align][align=center][color=#000099][/color][/align][align=center][color=#000099][img=低温绝热材料热性能,690,515]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912292998_9572_3384_3.jpg!w690x515.jpg[/img][/color][/align][align=center][color=#000099]图4 各种不同厚度低温绝热材料/系统在不同真空度下的漏热热流密度测试结果[/color][/align] 决定热性能的一个主要因素是整个隔热系统在稳态操作条件下的真空度范围,即ASTM C1774中定义的冷真空压力(CVP)。因此,测试结果中的有效导热系数数据根据给定材料/系统分为三类CVP:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。另外所有测试中所设定的冷热面边界温度分别为78K和293K,残余气体为氮气。 基于实验数据[14]对上述绝热材料/系统的初步评估见表1,以进行一阶比较。[align=center][color=#000099]表1 各种低温绝热材料/系统及其性能[/color][/align][align=center][img=低温绝热材料热性能,690,319]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912524819_2938_3384_3.png!w690x319.jpg[/img][/align][size=18px][color=#000099]四、总结[/color][/size] 通过上述几类候选绝热材料和系统的介绍,以及它们的各自特点和热性能,可以得出以下几方面的结论: (1)软真空SV范围和高真空HV范围之间的最大区别是根据系统的尺寸和几何形状,在大约50mTorr下发生向自由分子气体热传导的转换,即在软真空范围内绝热材料或系统的有效导热系数和进入的热流密度会发生数量级上的急剧变化。因此在现有绝热材料或系统中,无真空范围内的热泄露会非常严重,但可以希望通过相对简单的真空抽气设备和工艺可实现约100mTorr的软真空抽取能力,而实现1mTorr在技术上更难实现,尤其是对于大型系统。 (2)迄今为止,NASA已对700多种材料和系统中的大约50%进行了测试分析,测试筛选的结果如图3和图4所示。图中的阴影区域代表“中等低温蒸汽压力”区域,该区域在集成绝热系统中具有最大的应用潜力,使用较低总压力下运行的系统将需要较少的造价和维护。 (3)多年来NASA已经在全球建立起了唯一完备和系统的低温绝热材料/系统的热性能测试评价平台,并倡导建立了测试方法ASTM C1774。然而,这些实验的绝大多数是基于液氮的测试,对于用于液氢储运的绝热材料还需在相关条件(液氢和非真空)下进行更多测试,以了解绝热效率和其他物理性能。 (4)对于超低导热系数的绝热材料/系统的测试,ASTM C1774确实是一种非常有效的测试方法,此标准从2013年颁布以来经过多次修订,但目前还是一种ASTM的“标准指南-Standard Guide”。由于还存在许多技术难题(如低温下绝热材料样品收缩后的厚度在线测量修正和蒸发量热计侧向精确护热等)、无法进行不确定度考核评定、各种边界和环境等条件需要精确控制以及测试系统整体造价昂贵等问题,造成此方法一直无法升级为一种标准测试方法(Standard Test Method)或标准实施规程(Standard Practice)。总之,针对大规模液氢储运中的绝热材料和系统的导热系数测试,需建立有效和经济的新型测试方法,需提高测量精度和重复性精度。[size=18px][color=#000099]五、参考文献[/color][/size][1] Peschka W. Liquid hydrogen: fuel of the future. Springer Science & Business Media 2012 Dec 6.[2] Fesmire JE, Sass JP. Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 2008 May 1 48(5e6):223-31.[3] Fesmire JE, Coffman BE, Meneghelli BJ, HeckleKW. Spray-on foam insulations for launch vehicle cryogenic tanks. Cryogenics 2012 Apr 1 52(4-6):251-61.[4] Fesmire J, Augustynowicz S, Darve C. Performance characterization of perforated multilayer insulation blankets. Proc Nineteenth Int Cryogenic 2002:843-6.[5] Fesmire JE, Augustynowicz SD, Scholtens BE. Robust multilayer insulation for cryogenic systems. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1359e66. 1.[6] Johnson WL, Demko JA, Fesmire JE. Analysis and testing of multilayer and aerogel insulation configurations. In: AIP conference proceedings. vol. 1218. American Institute of Physics 2010 Apr 9. p. 780-7. 1.[7] Fesmire JE. Layered composite thermal insulation system for nonvacuum cryogenic applications. Cryogenics 2016 Mar 1 74:154-65.[8] Fesmire JE. Layered thermal insulation systems for industrial and commercial applications. NASA report 2015. 2015 (report/patent#:KSC-E-DAA-TN26226).[9] Fesmire JE. Aerogel-based insulation materials for cryogenic applications. In: IOP conference series: materials science and engineering. vol. 502. IOP Publishing 2019 Apr, 012188. 1.[10] Bahadori A. Thermal insulation handbook for the oil, gas, and petrochemical industries. Gulf Professional Publishing 2014 Mar 14.[11] Krenn AG. Diagnosis of a poorly performing liquid hydrogen bulk storage sphere. In: AIP conference proceedings. vol. 1434. American Institute of Physics 2012 Jun 12. p. 376-83. 1.[12] Fesmire JE, Augustynowicz SD, Nagy ZF, Sojourner SJ, Morris DL. Vibration and thermal cycling effects on bulk-fill insulation materials for cryogenic tanks. In: AIP conference proceedings. vol. 823. American Institute of Physics 2006 Apr 27. p. 1359-66. 1.[13] Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD. Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1375-82. 1.[14] Fesmire JE, Swanger AM. Advanced cryogenic insulation systems. International Congress of Refrigeration. Montreal, Quebec, Canada: Intl Institute of Refrigeration Aug 2019.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制