当前位置: 仪器信息网 > 行业主题 > >

高电压漏电起痕试验仪

仪器信息网高电压漏电起痕试验仪专题为您提供2024年最新高电压漏电起痕试验仪价格报价、厂家品牌的相关信息, 包括高电压漏电起痕试验仪参数、型号等,不管是国产,还是进口品牌的高电压漏电起痕试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高电压漏电起痕试验仪相关的耗材配件、试剂标物,还有高电压漏电起痕试验仪相关的最新资讯、资料,以及高电压漏电起痕试验仪相关的解决方案。

高电压漏电起痕试验仪相关的资讯

  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 志高不服空调被指漏电 欲另聘机构检测
    8月13日,杭州市萧山区宁围镇好立方连锁超市前,发生了空调漏电致人死亡的惨剧,遇难者为一位10岁男童。事发后,经空调品牌销售方同意,作为空调的使用方,8月20日,好立方超市委托第三方浙江省质量技术监督检测研究院对空调漏电情况进行了检测,9月3日,该检测报告正式出炉。   通过有关渠道获悉的检测报告显示,就技术分析形成了四个结论,其中就此次事件中的志高空调,该检测报告认为,志高空调外机电阻为零,外机机壳电压达到100V,并能点亮220V-40W的白炽灯,泄漏电流在70mA以上,大大超过人体30mA摆脱电流。并通过活鸡试验证明,志高空调外机外壳带电电压能在短时间内将活鸡电击致死。   《21世纪经济报道》援引目击者称,当天的现场检测结果显示,志高空调在活鸡通电试验中,活鸡只经过短短8秒钟,就过电死亡,其中另一人士则称,“现场检测显示,志高的空调最高漏电有147V”。   检测报告因此认为,现场不符合GB4706-1国家标准中的相关电气安全性能要求,同时该产品存在严重电气安全缺陷。该检测报告还认为,志高空调开机运行时,其外壳超过100V以上的电压,是造成本次事故的直接原因 同时,志高空调外机电源插头内接地线悬空,不符合GB4706-1国家标准的相关要求,失去接地线保护功能。   该检测报告最后下鉴定结论称,志高空调外机机壳带电,泄露电流超标,存在严重的电气安全隐患,直接导致事故发生。   对于此检测报告,志高发言人接受港媒查询时,表示公司对事件检测报告有异议,将另聘机构检测,暂亦不会停售产品。   志高公司秘书梁汉文表示,公司对检测报告有异议,故亦未有签署。他指出,最初相关机构指事件与志高无关,但后来又将矛头指向志高,是前后矛盾,并且认为其采用的活鸡测试方法并不标准,故公司将另外委托一间或多间国家权威机构作检测。他又强调,公司产品一直全数依照国家标准制造,公司对产品有信心,并指是次只是个别事件,暂时亦无其它个案,故不会考虑停售,但如有客户要求公司作出检测,公司亦乐意提供协助。
  • 恒温油浴漏电该怎么处理?
    恒温油浴使用时必须先将油加入锅内,再接通电源。数字温度控制表显示实际测量温度,调节旋钮开关,同时观察读数至所需设定温度值。当设定温度值超过油的温度时,加热指示灯亮,表明加热器已开始工作。当油的温度达到您所需的温度时,恒温指示灯亮,加热指示灯熄灭。应注意锅内的油不能使用电热管露出油面,以免烧坏电热管,造成漏电现象。  其实,不一定非要用水和油,只要有固定沸点的物质都可以用,只是水和油比较常见。锅都是相同的,只是添加的传热介质不同。如果温度不要求高于100摄氏度,就加入水;如果要求高于100摄氏度,就要用一些高沸点的介质,如导热油。
  • 航天科工紫外成像漏电检测仪问世
    记者日前从中国航天科工集团公司二院获悉,该院207所自主研发的紫外成像漏电检测仪近日正式面世并投入市场。该产品可为高压设备的运行评估和维修决策提供可靠依据。  紫外成像漏电检测技术是近年新兴的一种远距离检测高压线路、输电设备状态的新技术,它主要通过检测电力高压设备电场发射的紫外线,发现引起电场异常的设备缺陷,观察放电情况并判断危害。  207所研制的这款紫外漏电检测仪,将紫外和可见光技术结合形成融合图像,可快速发现、精确定位漏电位置。该产品还创造性地搭载无人机平台,适合对远距离、大范围的高压输电线进行空中巡检,在电力系统、高铁等领域有广泛应用前景。
  • 新建医疗器械实验室,拟采购大量仪器设备
    北京某公司计划新建医疗器械实验室,拟采购大量仪器设备,主要依据标准为:GB 9706.1-2020医用电气设备第1部分,标准中涉及的检测项目所需仪器设备均需采购,请能做的供应商联系(联系方式见文章底部)。部分仪器设备如下:功率计电源线拉力扭转试验装置温湿度计存储示波器温湿度箱接地电阻测试30N推拉力计数显推拉力计照度计耐压试验仪示波器扭矩仪接地电阻测试仪(50HZ/60HZ,空载电压小于6V)钳形电流表耐压测试仪球压试验装置高温箱水压试验机漏电起痕试验仪等台式压力蒸汽灭菌器推拉力计(100Min)水平垂直燃烧试验机辐射测试仪红外黑体炉火花点燃试验装置脉冲发生器角度仪绝缘电阻测试仪耐压测试仪,泄漏电流测试仪测功机推拉力计(250Min)恒温恒湿箱(包括冷却系统)高频率耐压测试仪冲击碰撞试验台辐射剂量率仪低气压箱请能提供以上仪器设备及GB 9706.1-2020中涉及的其他仪器设备的供应商联系:徐先生-质量经理-18810813577 (联系时请说:在仪器信息网上看到的)
  • 张承青电镜实验室环境约稿[7]:谈谈电子显微镜的接地
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之七,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之七 谈谈电子显微镜的接地众所周知电器设备都需要安全接地保护。各种设备的外壳或外露金属部分,都要与大地直接连接,以保证在万一短路漏电时,还能够使外壳或外露金属部分的电压保持在人体能够容忍的范围内(我国现行规定安全电压为不超过24V),以确保人身安全。电子显微镜也不例外,同样需要安全接地保护,万一系统发生漏电时提供一个泄放回路,确保操作人员或维修人员的人身安全。不过另外还有一个特殊的地方就是,电子显微镜的地线同时还是电子显微镜内各个分系统(如探测器、信号处理放大、电子束控制等等)的共同“零电位”端,必须保持电压稳定在“零”。理论上地线端是一个电压为零的参照点,但是实际上,当地线回路上存在电流时(这个电流通常称为漏电流或接地电流,由各用电设备分别产生,其大小为各漏电电流的矢量和),在这个地线回路上的任何一个接地端都有接地电压存在(因为任何地线的接地电阻R尽管很小但不可能为零,根据欧姆定律V=IR,接地电压V在漏电电流I不为零的情况下不会为0),尽管这个接地电压很小以至于我们时常忽略它。但在电子显微镜系统里,这个接地电压使得“零电位”端的电压不能稳定在“零”,这样就会使得电子显微镜不能保持在最好的工作状态下。因为总漏电电流不可能为恒定值,所以接地电压的大小是无规则变化的。即便是一般认为小到微不足道的接地电压,对于经常需要把图像放大几万到一百多万倍的电子显微镜来说,所产生的影响也往往是不可忽视的。接地电压的变化,直接致使SEM模式的图像垂直边缘产生类似磁场和振动干扰的毛刺,严重时还会使图像抖动。解决这个问题的方法很简单,就是专门为电子显微镜设置一个单独的接地回路,我们称之为“独立地线(single earth loop)”。这样就排除了同一供电回路中其它用电设备的漏电流对电子显微镜的干扰。注意,必须从接地体到接地线到接地端子都是独立且不与任何导电体相连接的,这样才能保证该地线的完全独立。必须防止以下几种常见错误:1)没有埋设完全独立的接地体,只是单独布放一根地线联接到公共接地体;2)虽然有单独的接地体但是接地线或接地端子与公共地线或其它用电设备相联接;3)尽量不要接“等电位端子盒”,那玩意儿一般都是接公共地线或者与轻钢龙骨短接的;4)独立地线尽量不要两台或更多的电镜合用(有些有好几台电镜的用户,实在不情愿给每个电镜配一套独立地线啊);5)注意不可以利用现成地下金属导体做独立地线的接地体,像是大楼底梁阀板里的钢筋什么的,那都是公用的;也不要借用弱电系统的接地体,那些都不可靠;6)与电镜信号系统连接的设备(如波谱能谱计算机显示器等,它们的地线必须与公共地线分离,这点实践中经常被疏忽)。电子显微镜对独立地线的接地电阻要求实际不高,前些年某品牌要求是100欧姆以下即可。目前一般各家厂商都只是要求在1~10欧姆即可(小于0.1欧姆的地线成本急剧上升,并且有些土质环境很难做到)。地线制作一般有“深井式”和“浅坑式”两种(参见图一和图二)。注意无论那种方法,都要与地下任何金属物保持四米以上直线距离以防干扰。深井式制作说明(供参考):1.钻深孔:直径约50~100毫米,深度约为3~20米,达到到潮湿土层即可。2.接地体:铜管壁厚2毫米(铜棒亦可,多花些银子就是)直径约30毫米、长约0.5米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2~3公斤。5.施工工艺:将接地体吊放到孔的底部,准备一细长工具(钢筋、水管等),将逐渐放入的降阻剂由下而上地捣实,然后继续回填捣紧,特别注意在接地体周围一定要捣实捣紧,同时注意不要把接地线碰断。图一 深井式示意图浅坑式制作说明(供参考):1.挖浅坑:深度约为0.5~2米,达到潮湿土层即可。2.接地体:铜板约0.5×0.5米,厚度2~3毫米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2.5~5公斤。5.施工工艺:将铜板垂直放到坑的底部,周围先以降阻剂覆盖,并捣实捣紧,然后继续回填捣紧,注意不要把接地线碰断。 图二 浅坑式示意图 “深井式”适合地面难以开挖或地下水位很深的某些地方。比较而言,“浅坑式”是更为常见的做法。无论是“深井式”或是“浅坑式”,按照此工艺施工,接地电阻都可以达到4~10欧姆(单接地体)。接地线与接地体的连接如果不便焊接的话,也可以钻孔用螺栓连接。注意必须用铜螺栓铜垫圈铜螺母,不要用哪怕是不锈钢的来代替。这不仅是防锈,还是防止产生化学电势、防止产生电腐蚀。特别需要注意,板型接地体或者条带型接地体必须垂直埋下及回填捣实,这很重要的哦!在土壤电阻很大的地方,为降低接地阻抗,还可以将两个以上的接地体连接起来构成一个小型接地系统,此时各接地体间距0.3~0.5米即可(深井式可以使用同一钻孔)。经实测,一般一个接地体接地电阻可达4欧姆左右,两个个接地体接地电阻可达3欧姆左右,三个接地体接地电阻可达2欧姆左右,六到十个接地体接地电阻可达1欧姆以下(视土壤电阻率而定)。因为不会有“跨步电压”的危险,所以不需要参照防雷电格栅式地线网的做法。同时为减少附近地下其它导体的影响,这个小型接地系统也应尽量少占用地下面积。为防止意外短路,接地线进入室内后应直接与电子显微镜的接地线(或电子显微镜内部的地线汇流排)连接,而不要配置一般常见的地线盒或地线端子箱等,不要进入其它等电位端子箱或开关箱,不要与其它汇流排相连。道理很简单,说穿不值钱。不过因为地线属于地下隐蔽工程,做好后很难判断它的独立性究竟好不好。曾经多次碰到磁场好,振动噪声都没问题,电镜本身也是正常的,就是偏偏图像有毛刺,最后临时断开所有接地线毛刺就大为改善,问题所在很清楚了吧。还有市售UPS的接地制式,基本都是不符合单独接地要求的。UPS主机一般共有八个桩头、进出八根线,除两个接电池组外,另有相零地三进三出。要知道:进来的地线桩头在UPS主机内部是与输出的地线桩头完全相通的!UPS厂商工程师按照标准作业规范,把八个头八根线一个一个接好,开机、正常、走人。可是说好的独立地线呢?没啦,在UPS的鼎力相助下,和公共地线网连起来了。呜呜!怎么办?断开就是,两个都断开?显然不对。好,再问,(卖个关子)应该断开哪一个?临时断开地线时必须注意是断开所有的接地线,包括附属设备如能谱波谱拉伸台等等,还包括插在墙上电源插座的显示器,扒拉扒拉一堆呢。包括三个爪子的电源插头,可以拔的都拔掉。如果疏忽漏掉一个没有断开,后面都是做无用功。噢,不,算上误导,就是做负功,不如不做。还有一点需要注意,有时电镜会有循环冷却水箱、空压机、UPS等一大堆附属设备,这些设备也需要接地,但必须和电镜的独立地线分开(有些电镜厂商有明确说明,有些没有),可以使用另一个独立地线,也可以接入公共地线。真空泵由于是从电镜取电(其开启和停止由电镜端控制),一般出厂配置就是用三芯电缆(相、零、地)与电镜相连,曾有人画蛇添足,再给它外壳接个地(说是保险一些),这个地线很自然就接到等电位端子箱、接到公共地线去了。哦噢,独立地线又没有啦!有时图像不好,排查电镜自身原因后,地线就是最可疑的(磁场振动都可以测出来,地线的独立性没法测)。所以,提高对地线的认识,事先与用户(可能还有用户单位电务管理人员)有明确沟通,是很重要的。不幸也是最容易被疏忽的一个方面,唉。2020.11张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 低温脆性试验机的技术参数和使用方法
    低温脆性试验机的技术参数和使用方法型号:BWD-C 仪器标准: 本仪器是根据 GB1682 国家标准设计的,各项技术指标符合 HG 2-162-1965 塑料低温冲击压缩试验方法和 GB5470-2008 塑料 冲击脆化温度试验方法等国家标准的要求。 技术参数: 1.控温范围:室温 -70℃(室温≤25℃) 2.恒温精度:±0.3℃ 3.降温速度:0℃~﹣30℃ 约 2.5℃/min ﹣30℃~﹣40℃ 约 2.5℃/min ﹣40℃~﹣70℃ 约 2.0℃/min 4.大外形尺寸:900×500×800mm(长×宽×高) 5.工作室有效工作空间:280×170×120mm(长×宽×高) 6.可装试样数量:1 7.数字计时器数字计时器:0 秒 -99 分钟,分辨率 1 秒8.冷却介质:乙醇或其他不冻液 9.搅拌电机:8W 10.工作电源:220V--240V,50Hz,1.5kW 11.工作温度:≤25℃ 结构原理 A、本设备由制冷压缩机主机体、加热装置、电子控制箱、冷却槽、 冷却介质循环系统、自动报警装置等部分组成。启动制冷开关后,压 缩机开始工作,制冷系统进入正式工作状态。制冷压缩机连续不断的 工作,当接近设定温度时,冷却槽中的加热装置开始按比例提供热量, 用以平衡制冷系统产生的多余冷量,以达到恒温的目的。搅拌可使冷 却槽内的冷却介质不断循环,使温度均匀一致。 B、试样夹持器 试样一边夹持 4 个试样(橡胶类),另一边夹持 15 个试样(塑料类)。 C、冲击装置 冲击装置由冲和自锁机构组成。 D、冲击器 冲击头半径为 1.6±0.1mm; 冲击时,冲击头和试样夹持器之间间隙为 6.4±0.3mm; 冲击头的中心线与试样夹持器之间的距离为 8±0.3mm。 特点及用途: 低温脆性试验机是测定材料在规定条件下试样受冲击出现破坏时的 高温度,即为脆性温度,可以对塑料及其他弹性材料在低温条件下 的使用性能作比较性鉴定。可以测定不同橡胶材料或不同配方的硫化橡胶的脆性温度和低温性能的优劣。因此无论在科学研究材料及其制 品的质量检验,生产过程的控制等方面均是不可缺少的。 适用行业: 可以用来考核和确定电工、电子、汽车电器、材料等产品,在低温环 境条件下贮存和使用的适应性,适用于学校,工厂,研位,等 单位。 使用方法 1 接通电源,温控仪和计时器显示灯亮。 2 向冷井中注入冷冻介质(一般为工业乙醇),其注入量应保证夹持 器的下端到液面的距离为 75±10mm。 3 将试样垂直夹在夹持器上。夹的不宜过紧或过松,以防止试样变形 或脱落。 4 按下夹持器,开始冷冻试样,同时启动时序控制开关(或按动秒表) 计时。试样冷冻时间规定为 3.0±0.5min。试样冷冻期间,冷冻介质 温度波动不得超过±1℃。 5 提起升降夹持器,使冲击器在半秒钟内冲击试样。 6 取下试样,将试样按冲击方向弯曲成 180°,仔细观察有无破坏。 7 试样经冲击后(每个试样只准冲击一次),如出现破坏时,应提高 冷冻介质的温度,否则降低其温度,继续进行试验。 温度,如这两 个结果相差不大于 1℃时,即试验结束。低温脆性试验机注意事项 1 在试验过程中不能切断冷却循环,否则会产生不制冷的效果。 2 气缸压力在出厂前已调节好,不能任意变动 北广精仪公司简介 北广精仪公司是一家专业从事检测仪器,自动化设备生产的高新科技企业公司, “精细其表,精湛于内”是北广精仪一惯秉承的原则。其先进的设计风格,卓越的制造技术和完善的服务体系,为科研机构、大专院校,企业和质量检测机构提供的产品和优质的服务。 北广公司保持以发展与中国测试产业相适应的应用技术为主线,通过与产业界协调发展的方式提高本公司的竞争实力和技术含量。 与此同时,本公司自成立以来,坚持走"研发生产"相结合的道路,借助国家工业研究院的理论知识和强劲的科研实力,在消化、吸收国际先进生产技术的基础上,大胆创新、锐意改革、努力创造,开发出具有中国特色的新产品,为提高中国的科研及产品质量作出了应有的贡献。 经营理念: 一、诚信待户 顾客至上 全心全意为顾客考虑,使顾客能切身感受到人性化的仪器。 二、检测 保质保量 检测是我们的责任 保质保量是我们对客户的郑重承诺 三、技术 创新理念 储备的开发人才,引进世界技术,采用先进的设计理念,打造精良的检测仪器。 北广产品广泛应用于国防、大专院校以及检测所等行业,本公司以技术的创新为企业的发展方向,以新型实用的产品引导客户的需求 北广公司所供产品严格按照国家标准生产制造,严谨的制造环节确保每一台出厂仪器质量和性能的卓越,服务优质,质优价廉 确保您的放心 !本公司是一家专门研发、制造、销售试验机设备的专业厂商。公司拥有先进的加工设备、严格的管理体系以及雄厚的技术实力和良好的售后服务。公司专注于金属、非金属等材料的机械性能测试设备的研发制造。主要完成螺纹钢、金属板材、电力金具、紧固件、铸造材料、锚杆、托盘、医疗用接骨板、接骨螺钉、弹条、钢管、铜板、弹簧、减震器、扣件、安全网、玻璃钢、塑料、橡胶、医用手套等材料和产品的拉伸、压缩、弯曲、剪切、撕裂、剥离等性能试验。满足GB、ASTM、ISO、DIN等国家和行业的标准测试要求。正在运行的400多个标准,配置合适的夹具,几乎可完成所有的力学性能测试。本公司秉承“诚信*,服务至上”的宗旨,力争为客户提供较成熟的产品和最完善的服务,使用户得到很大的满足。 售后服务 售后内容: 我公司派工程师负责安装调试及培训。 产品自客户验收之日起,免费保修 2 年,终身维修。 1、设备安装调试: 免费为用户提供所购仪器的安装调试服务。在进行安装调试前用户方应 提供相应的准备工作,并予以提前通知,具体安装调试日期双方可以协商而 定。设备安装调试由多年行业工程师免费进行。保证用户可以正确使用、 软件操作和一般维护以及应及故障的处理。 2、培 训: 我公司工程师免费为用户提供操作人员培训,直到操作人员能独立操作 为止。 3、设备验收标准: 用户方按订货技术要求进行验收。并符合国家标准要求。设备验收在用 户方进行并由我公司安装调试技术人员和用户共同在维修报告上签字以确 认仪器的调试工作完成。 4、设备维修服务: 我公司产品自用户现场调试验收合格后 2 年内免费保修,终身维护。在 2 年免费保修期内产品发生非人为质量问题,我公司为客户提供免费维修。 如产品在免费保修期外出现故障,维修服务只适当收取材料成本费。 5、技术支持: 对于所需仪器的用户,根据用户的要求提供专业的技术方案。除了常规 的仪器服务外,我公司技术部还可为用户提供各种非常规设备的技术支持。 6、售后响应: 在接到用户维修邀请后,2 小时内做出反应,并给予解决。如未解决, 我公司指派工程师及时到达用户现场,解决问题至设备正常使用为止。其他相关产品BDJC-50KV型电压击穿强度试验仪BDJC-100KV型电压击穿强度试验仪BEST-121型体积表面电阻测试仪BEST-212型体积表面电阻率测试仪BEST-991型导体和防静电材料电阻率测试仪GDAT-A型介电常数及介质损耗测试仪GDAC-C型介电常数及介质损耗测试仪BQS-37工频介电常数介质损耗测试仪BLD-600V漏电起痕试验仪BLD-6000V高压漏电起痕试验仪BDH-20KV耐电弧试验仪BWK-300系类热变形维卡温度测定仪BRT-400Z系类熔体流动速率测定仪M-200橡胶塑料滑动摩擦磨损试验机BYH-B球压痕硬度计JF-3型数显氧指数测定仪CZF-5水平垂直燃烧试验机 HMLQ-500落球回弹仪HMYX-2000海绵压陷硬度测试仪 BWN系类电子拉力试验机
  • 滨海正红发布满足ICP、痕量、超痕量分析用酸高纯酸提纯器新品
    酸提纯器一、 产品简介:酸提纯器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的纯酸往往由于价格较贵,难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:高纯酸提纯器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,多应用于样品处理及分析实验中。三、我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称高纯酸提纯器高纯酸提纯器高纯酸提纯器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯FEP、PTFE材质制造,值低无腐蚀3.结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,少量酸气逸出五、使用注意事项:1、所有配件(控制器、电源线、加热片等除外)放入按实验要求一定浓度的酸液中浸泡,去除杂质。2、加酸前必须做好个人防护如:防溅眼镜、防酸手套等(蒸水除外)。实验数据(仅供参考):仪器:CH-I 高纯酸提纯器;试剂:优纯HF蒸馏后,经中国地质大学地质过程与矿产资源重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)BeCrEuNiErRb0.01南京滨正红仪器有限公司 创新点:加大了提取酸的容量,使用中可拆卸清洗,方便操作,无需人员值守,提取的酸的纯度可达到0.01PP 满足ICP、痕量、超痕量分析用酸高纯酸提纯器
  • 5万亿设备更新:高等职业学校光伏发电技术与应用专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。《方案》明确了5方面20项重点任务,其中在实施设备更新行动方面,提到要提升教育文旅医疗设备水平,明确指出将“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平;严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备……”以下为仪器信息网整理的高等职业学校光伏发电技术与应用专业仪器设备装备规范,以飨读者。表1 基础实验仪器设备装备要求实 训 教 学 场 所教学实训 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范电 工 电 子 实 验 室1.理解基 本电路原 理;2.会识读 电气图纸; 3.会根据 测量信号 分析电路 工作特性; 4.掌握常 用电子元 器件识别 的基本检测方法;5.掌握常 用电子仪 器仪表的 使用方法。1电 工 电 子 实 验 台1.能验证电路基本定理定律;2.具有基本电参数的测量功能;3.可完成 R、L、C 等电路元件的特性分析及 电路实验;4.具备单相、三相交流电路的实验功能;5.具有模拟电子电路、 具有数字电子电路的 实验功能;6.具有漏电保护功能。台10202万用表1.直流电压: (0~25)V;20000Ω/V (0~500)V;5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V;±5.0%; 3.电阻: 量程,0~4kΩ~40kΩ~400kΩ~ 4MΩ~40MΩ 25Ω 中心; ±2.5%;4.音频电平: -10dB~+22dB。台10203信号发 生器1.频率范围: 0.1Hz~1MHz;2.输出波形: 正弦波、方波、三角波、脉冲 波;3.输出信号类型: 单频、调频、调幅等; 4.外测频灵敏度:100mV;5.外测频范围: 1Hz~10MHz;6.输出电压: ≥20Vp-p(1MΩ) ,≥10Vp-p(50Ω);7.数字显示; TTL/CMOS 输出;台10204双踪示 波器1.频宽: 20MHz;2.偏转因数: 5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式: CH1、CH2、ALT、CHOP、 ADD ;5.扫描时间因数: 0.2μs/div~0.5s/div; 6.触发方式: 自动、常态、TV-H、TV-V;7.触发源: 内(CH1,CH2,交替)、外、电源; 8.触发灵敏度:内触发不小于 1div,外触 发不小于 0.5Vp-p。台10205交流毫 伏表1.测量范围: 0.2mV~600V;2.频率范围: 10Hz~600kHz;3.电压测试不确定度: ±1%;4.输入阻抗: 1MΩ。台1020表2 基础实训仪器设备装备要求实 训 教 学 场 所教学实训 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范电气控制与PLC控制实训室1. 了解单 相、三相 交流电机 的基本电 气控制原 理 与 方 法 。 2. 掌 握 电气系 统 一般故 障的产生 原因与故 障排除方 法;3. 熟 悉 PLC 基 本 指令编程 方法,掌 握 用 PLC 控制简单 对象的方 法 和 技 能。1电气控 制 与 PLC 控 制实验 装置1.具有可靠的漏电保护功能;2.配有常用低压电器,可在该装置上完成 低压电器控制实验实训项目;3.采用可编程逻辑控制器进行控制实训项 目;4.输入电源:三相四线制,380V±38V, 50Hz;单相 ,220V±22V,10A,50Hz;直 流电源,24V/2A;5.I/O 点>20;6.可进行 PLC 硬件接线与软件编程功能, 能对 PLC 进行安装与维护操作;7.有可用 PLC 控制的控制对象,实现其动 作执行;8.有可供开放式连接的按钮及 I/O 量和模 拟量输入传感器。套1020电力电子实训室1.理解常 见电力电 子器件工 作原理; 2.理解常 见整流电 路工作原 理;3.理解逆 变电路工作原理。1电力电 子实训 装置1.具有可靠的漏电保护功能;2.可进行单相、三相不可控整流电路连接 与测试实验;3.可进行单相、三相可控整流电路连接与 测试实验;4.可进行单相桥式有源逆变电路实验; 5.可进行单相交流调压电路实验;6.可进行三相交流调压电路实验;7.可进行六种直流斩波电路(Buck、Cuk、 Boost、Sepic、Buck-Boost、Zeta)的电路 实验;8.可进行单相交直交变频电路实验;9.可进行正弦波(SPWM)逆变电路实验; 10.可进行全桥 DC/DC 变换电路实验。台1020表3 专业实验仪器设备装备要求实 训教 学 场 所实训教学目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准代码备注合格示范光 伏 原 理 及 应 用 实 验 室1. 了解光照 条件和其它环 境因素对太阳 能电池发电量 的影响;2.了解光伏产 业链不同环节 的生产工艺流 程;3.了解光伏发 电的应用;3.理解控制器、蓄电池、 逆变器的工作 原理,掌握其 使用方法;4.能进行光伏 发电系统的安 装与调试;5.能进行太阳 能电池的电性 能测试。1光伏电 池特性 测试仪1.能测试不同光强度下完整的 I-V 曲线、P-V 曲线、开路电压和短路 电流;2.能测试太阳能电池负载特性及转 换效率等。台20402太阳光 测试仪1.具有检测太阳光强度的功能;2.具有检测太阳光有效辐射 的功 能;3.具有检测分析太阳光光谱 的功 能。套10203环境检 测仪能够检测风速、温度、露点、湿度、 气压、海拔高度等环境参数套124光伏产 品展示 柜(室)1.展示硅砂、工业硅、太阳能级硅、 硅块、硅棒、硅片等原材料;2.展示各型电池片;3.展示单晶硅、多晶硅和非晶硅等 光伏组件以及其它类型光伏电池;4.展示典型光伏产品,如: 太阳能手电筒、太阳能充电器等;5.光伏产业工艺流程展示图。套115光伏发 电实验 装置1.系统包括:光伏组件、控制器、 逆变器、蓄电池、光源和负载;2.系统各部件之间相对独立,可根 据实验要求连接;3.能进行光伏发 电原理 的相关实 验,包括 I-V 特性曲线实验、直流 负载实验、充放电实验、逆变和交 流负载实验。套1020光伏系统安全 应符合GB/T 20047.1-2006表3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范光 伏 材 料 检 测 实 验 室1.能进行硅 片的外观特性检测;2.能利用冷 热探针法测 量半导体类型;3.能利用四 探针电阻率 测量法对半 导体材料电 阻率及薄层 电阻进行检测;4.能进行单 晶硅、非晶 硅的非平衡 少数载流子寿命的测量;5.会对硅片 制绒时的绒 面,丝网印 刷时的栅线 宽度等进行 检测;1游标卡尺测量范围: 0mm~200mm;测量精度:机械游标卡尺 0.02mm;数显游标卡尺 0.01mm。把4040示范数显游标卡尺不少于20把2翘 曲 度 测 量仪翘曲度测量范围:1μm~20μm; 重复精度:0.5%;测量参数:曲率半径、晶圆弯曲高 度、翘曲度。台23P-N 型测试 仪测量范围:电阻率: 0.01Ω ²cm~200Ω ²cm功耗:≤30W。台5104四 探 针 电 阻 率 测 试 仪数字电压表量程:0 mV~199.999mV;灵敏度: 1μV;输入阻抗: 1000MΩ 可测电阻范围: 1μΩ~1MΩ 可测硅片尺寸:Φ15 mm~Φ200mm。台5105半 导 体 少 子 寿 命 测 量仪寿命测试范围: ≥2μs;光脉冲发生装置:重复频率≥25 次/s;脉宽≥60μs;光脉冲关断时间≤5μs;红外光源波长:1.06μm~1.09μm;低输出阻抗,输出功率≥1W; 配用示波器:频带宽度不低于 10MHz。台11表3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学目 标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范光 伏 材 料 检 测 实 验 室6.会根据单 晶硅和多晶 硅太阳能电 池的电性能 参数进行分 选。6电子天平量程: ≥100g;精度: ≤0.01g;称盘尺寸: ≥150mm³200mm。台127金 相 显 微 镜物镜倍数: 5X、10X、20X、50X、 100X;目镜倍数: 10X;观察功能: 明场、高级暗场、圆偏 光;可配图像分析系统(摄像头、图像 分析软件)。台5108太 阳 能 电 池分选机光谱范围:应符合 GB/T 6495.9-2006(等级 A)要求;辐照强度调节范围:70 mW/cm2~120mW/cm2;辐照不均匀度≤3%;辐照不稳定度≤3%;测试结果一致性≥99%;电性能测试误差≤2%;有效测试面积≥125mm³125mm; 有效测试范围:0.1W~5W;测试参数:短路电流、开路电压、 最大功率、最大电流、填充因子、 转换效率、测试温度。台129椭偏仪光源:氙灯;波长范围:250 nm~830nm; 波长分辨率:1.0 nm;入射角范围:20º~90º 入射角精度:0.001º 椭偏参数精度:D ±0.02º、 Y ±0.01º 光学常数精度优于 0.5% 膜厚准确度: ±0.1nm。台12表4 专业实训仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序号名称规格、主要参数或主要要求单 位数量执行标准代码备注合 格示 范光 伏 组 件 加 工 实 训 室1.了解光 伏组件的组成;2.了解光 伏组件的 生产工艺流程;3.掌握电 池片切割、 测试、焊 接、串接、 敷设、组件 层压、修 边、装框、 接线盒安 装等操作方法;4.掌握光 伏组件光电性能的 检测方法; 5. 掌 握 异 常情况下 的处理方 法。1激光划 片机激光波长: 1.064μm;激光重复频率: 200Hz~50kHz;激光功率: ≥20W;划片线宽:≤300μm;最大划片速度:≥100mm/s;划片精度:≤10μm工作电源: 380V(220V)/50Hz使用电源功率:≥2.5kVA。台122台11表4 专业实训仪器设备装备要求(续)实 训 教 学 场 所执行标准 代码备 注合 格示 范光 伏 组 件 加 工 实 训 室同上
  • 断路器28昼夜及温升特性试验装置与天津电传所喜结善缘
    随着家用及类似场所用过电流保护断路器应用范围不断扩大,对此类断路器的性能要求也越来越严格,GB10963.1-2005《电气附件 家用及类似场所用过电流保护断路器 第1部分:用于交流的断路器》标准的要求,对家用及类似场所用过电流保护断路器产品的耐热性、耐异常发热和耐燃、温升试验及功耗测量、脱扣特性、运行短路能力等检验项目提出了较为严格的要求;每一年国家市场监督管理总局对家用及类似场所用过电流保护断路器产品质量国家监督抽查结果总会有很多企业的产品是不符合标准的规定。Delta德尔塔仪器针对GB10963.1-2005标准中28天(昼夜)试验专门设计研发了相应的28昼夜试验装置,通过实际试验验证断路器长期工作的可靠性。 2020年底,Delta德尔塔仪器接到天津电气科学研究院有限公司(原天津电气传动设计研究所)委托非标定制一款“断路器28昼夜及温升特性试验装置”,天津电传所老师对设备提出的要求如下,设备定制生产周期要求两个月内完成。本项目设备已经于2021年3月份顺利验收结束。 (Delta德尔塔仪器交付天津电传所&28昼夜及温升特性试验台) 1、设备概述: 1.1、总说明 本“采购技术要求”所要求采购的 28 周期试验装置用于“天津电气科学研究院有限公司低压元器件直流短路、交直流寿试验能力提升项目”。该设备以满足相关工程的试验能力为准,设备供应商为此可以进行必要的优化与性能提升,故最终技术数据以最终实际协商一致的数据为准。1.2 、供货范围: 本“采购技术要求”所要求的供货及服务范围包括:28周期试验装置的设计和制造与检验、运输、现场安装以及其他必要的售后服务和培训等。1.3、运行条件:海拔高度:≤1000m;环境温度:-10℃~+45℃;z大日温差:≤25℃;日相对湿度平均值:≤95%;安装地点:户内;一般情况下仅有非导电性污染,必须考虑到凝露和潮湿引起的绝缘下降。2、性能要求:2.1、功能用途 依据国家标准GB10963.1中9.9款,对MCB进行28 天试验、断路器1.13~1.45倍延时脱扣试验,也适用于GB16916.1第9.22.1.5中1.25倍脱扣电流试验。兼顾产品做200A 以下的温升试验,环境温度、湿度本设备不包含。 2.2、技术标准: 本项目设备的设计、制造、试验等遵循以下标准,但不限于此,且下列相应标准号的标准在合同签订时有更新版本发布时,应满足该更新标准要求。(1)GB10963.1-2005 电气附件 家用及类似场所用过电流断路器 第 yi 部分:用于交流的断路器;(2)GB 10963.2-2008 家用及类似场所用过电流保护断路器第 2 部分:用于交流和直流的断路器;(3)GB16917.1-2014 家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第 1 部分:一般规则;(4)GB14048.2-2008 低压开关设备和控制设备 第 2 部分:断路器。 3 、主要设备(部件)技术要求: 3.1 、电源构成: 本装置为三相电源,也可以作为 3 个单相回路进行检测。 3.2、关于输出电压的要求: 标准要求:电路的开路电压至少为 30V,分辨率不低于 0.1V。电源具备电容补偿, 以减少对实验室电源的容量要求。测试电流:0~200A 可长期连续工作,分辨率 0.1A。电流波形:正弦波。3.3、其他要求: 装置应配备稳流功能,配备 9 个工位的续流功能(即可同时进行 9 只 3 相试品的串联试验)。续流要求时间在 1~2s 内实现,并能防止续流后瞬间的电流过冲。装置应具备触摸屏或液晶显示器等元件用于电流显示和设定。标准规定在z后一个周期后需要将电流升到 1.45In,因此要求能够实现至少 2 段电流和时间设定,用于实现断路器特性检测 2 种电流的转换功能。2 个电流转换之间的时间应保证“5s 内稳定的从第yi个电流稳定的升到第二个电流”。3.4 、温升测量记录测试通道:54 通道;设备能带电测量:测量范围:0-200℃;温度传感器:镍铬—镍硅热电偶测量精度:0.2 级;温度曲线显示:具有温度数值以及曲线显示记录;系统应带记录温升的功能,在z后一个流过电流期间,应测量接线端子的温升。 3.5、安全配置:漏电保护,短路保护,过流保护,运行指示,试验结束指示,故障报警自动停机。 3.6 、其他要求 具有基于 Modbus RTU 或 Modbus TCP 通讯协议,可组成计算机控制的智能型设备。 4、安装与调试 在设备安装完毕后,需要根据相关设计文件和订货设备的技术资料,进行调试工作。调试前需确认技术资料完整、有效,与系统及设备实物状况一致,对备进行检查以及完好性和功能验证,也包括参数整定等。 天津电气科学研究院有限公司(原天津电气传动设计研究所)是原国家机械工业部直属研究所,现为中国机械工业集团有限公司所属科技型企业,主要从事电气传动自动化系统工程、中小型水力发电设备成套、低压电控配电装置和新能源电控设备的科研开发、生产制造和检测认证。自1954年8月成立以来,荣获了150余项省部级以上科技奖励,取得了近千项科技成果,承接了万余项国内外工程项目,见证了国家冶金、矿山、交通、国防、电力、石化等国民经济支柱行业的技术进步和产业发展。天津电传所是国家ji"国家电控配电设备产品质量监督检测中心"和部属 "中小型水力发电设备产品质量监督检测中心"的挂靠单位,所拥有的先进检测手段多年来承担着行业产品的试验、检验和认证任务,特别是低压配电产品强制性安全(3C)认证工作。依托于该所的"电气传动国家工程研究中心"拥有电气传动及自动化工程化系统和产业化产品的各类实验室,为国家电气传动工程化研究开发与工程化验证能力以及产业化开发提供了优越的科研条件,大大提高了国家电气传动及自动化行业的技术水平和装备水平。 Delta德尔塔仪器专业致力于为3C低压电器企业提供符合IEC 60898-1:2015+A1:2019 电气附件.家用和类似设施用的过电流保护断路器.第yi部分:交流操作断路器 《Electrical accessories - Circuit-breakers for overcurrent protection for household and similar installations - Part 1: Circuit-breakers for a.c. operation》、GB14048.1-2012《低压开关设备和控制设备 第yi部分:总则》、GB14048.2-2008《低压开关设备和控制设备 第yi部分:断路器》、GB10963.1-2005《电气附件-家用及类似场所用过电流保护 断路器 第yi部分:用于交流的断路器》、GB 10963.2-2008 《家用及类似场所用过电流保护断路器第 2 部分:用于交流和直流的断路器》、GB 16917.1-2014 《家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第yi部分 一般规则》、IEC60947-1:2011《Low-votage switchgear and controlgear Part1:General rules》、IEC60947-2:2006《Low-votage switchgear and controlgear Part1:Circuit breakers》等标准的检测设备。 Delta德尔塔仪器为3C低压电器实验室提供以下项目的专业检测设备:低压断路器——检验项目及设备低压开关、隔离器、隔离开关及熔断器组合电器 ——检验项目及设备一般工作特性额定运行短路分断能力额定极限短路分断能力额定短时耐受电流带熔断器的断路器的性能综合试验耐湿热性能试验附录B剩余电流保护断路器附加试验附录C用于相地系统中的断路器附加试验附录F电子过电流保护断路器附加试验附录H用于IT系统中的断路器附加试验温升介电性能泄漏电流额定接通和分断能力操动器机构的强度操作性能额定短时耐受电流额定短路接通能力熔断器保护的短路耐受能力熔断器保护的短路接通能力耐湿热性能抗非正常热和着火危险过载试验接线端子机械性能电磁兼容(EMC)(如适用)低压机电式接触器和电动机起动器——检验项目及设备机电式控制电路电器——检验项目及设备耐湿性能耐非正常热和着火危险温升动作条件及动作范围介电性能额定接通和分断能力外壳防护等级(如适用)接线端子的机械性能接触器耐受过载电流能力约定操作性能短路条件下的性能电磁兼容(EMC)(如适用)辅助触头的通断能力和额定限制短路电流(如适用)保护功能报警功能控制功能(验证面板控制功能)热记忆功能故障记忆功能(验证面板显示)一般工作特性额定运行短路分断能力额定极限短路分断能力额定短时耐受电流带熔断器的断路器的性能综合试验耐湿热性能试验附录B剩余电流保护断路器附加试验附录C用于相地系统中的断路器附加试验附录F电子过电流保护断路器附加试验附录H用于IT系统中的断路器附加试验交流半导体电动机控制器和起动器——检验项目及设备控制和保护开关电器(设备)——检验项目及设备介电性能温升极限操作性能动作和动作范围混合式电器中串联的机械开关电器的接通和分断能力及约定操作性能短路条件下的性能接线端子的机械性能带外壳的控制器和起动器防护等级EMC的试验耐湿性能动作范围温升介电性能操作性能短路条件下的性能接通和分断能力电磁兼容性耐湿性能抗非正常热和着火危险外壳防护等级接近开关——检验项目及设备自动转换开关电器——检验项目及设备标志温升介电性能正常条件和非正常条件下开关元件的接通和分断能力限制短路电流性能结构要求防护等级动作距离操作频率电磁兼容性冲击耐受能力振动耐受能力耐湿性能抗非正常热和着火危险附录BII级封装绝缘的接近开关的附加试验具有整体连接电缆的接近开关的附加试验结构要求操作操作控制、程序及范围温升介电性能接通和分断能力操作性能能力短路接通能力短路分断能力短时耐受电流限制短路电流EMC耐湿性能抗非正常热和着火危险外壳防护等级设备用断路器 ——检验项目及设备家用及类似用途机电式接触器 ——检验项目及设备标志检查一般规则检查、机构检查电气间隙和爬电距离标志耐久性螺钉、载流部件及其连接的可靠性,连接外部导体的接线端子的可靠性防触电保护耐热耐异常发热和耐燃防锈介电性能温升28昼夜试验耐漏电起痕脱扣特性额定电流下的性能额定通断能力下的性能在规定的过电流条件下的性能限制短路电流能力温升试验动作与动作范围额定接通和分断能力介电性能约定操作性能耐湿性能过载电流耐受能力抗锈性能标志耐久性耐撞击性能检验电气间隙和爬电距离接线端子的机械性能安装、维修用螺钉和螺母性能验证耐热性能抗非正常热和着火危险试验耐漏电起痕耐老化性能外壳防护等级短路条件下的性能
  • 半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!
    【科学背景】二维(2D)半导体具有原子级厚度,是潜在的高度缩放晶体管沟道材料,因其能够抑制短沟道效应而成为研究热点。然而,要超越传统的硅基晶体管,需要在2D半导体上开发无瑕的超薄高介电常数(κ)介电材料,以实现高效的栅极控制。然而,由于2D半导体表面没有悬挂键,直接进行原子层沉积(ALD)来沉积介电层存在非均匀成核和电流泄漏的问题,特别是在介电层厚度小于3nm的情况下。为了解决这个问题,科学家们提出了多种界面工程方法,包括等离子预处理和种子层预沉积,但这些方法通常会引入额外的界面电荷散射、较差的热稳定性或整体栅极电容降低等问题。有鉴于此,南开大学材料科学与工程学院张磊,吴金雄等教授提出了一种垂直金属辅助的范德华(vdW)集成方法,这种方法能够在不损伤2D半导体表面的情况下,将高κ介电材料层叠到2D半导体上。研究中开发了一种铋氧化物(Bi2O3)辅助的化学气相沉积(CVD)方法,用于垂直生长钯、铜和金等单晶纳米片,这些纳米片具有原子级平整的表面。通过无聚合物的机械压合方法,这些纳米片可以轻松转移到目标基板上。此外,CVD生长的钯与ALD过程兼容,能够在其上沉积超薄高κ介电材料如Al2O3和HfO2,同时保持其原子级平整表面。通过一步转移过程,研究人员将小于3nm的Al2O3/Pd和HfO2/Pd异质结构堆叠在几层的MoS2或石墨烯上,形成了清洁的vdW界面,没有有机污染或沉积引起的损伤。结果表明,使用2nm厚Al2O3或HfO2介电材料的顶栅MoS2场效应晶体管(FET)展示了约61mV/dec的亚阈值摆幅、0.45V的低工作电压、107的开/关比、10&minus 6A/cm² 的栅极漏电流和~1mV的可忽略滞后。【科学亮点】(1) 实验首次介绍了铋氧化物辅助化学气相沉积(CVD)方法:&bull 首次开发了铋氧化物辅助CVD方法,用于垂直生长单晶金属纳米片,如钯、铜和金,这些纳米片具有原子级平整表面。&bull 创新性地展示了纳米片通过无聚合物机械压合技术轻松转移到目标基板上,这一过程没有引入有机污染物,保持了原子级平整度。(2) 实验通过vdW集成成功实现了亚1nm CEC的2D晶体管的制备:&bull 使用了铋氧化物辅助CVD生长的钯纳米片作为基础,成功实现了超薄高介电常数(高κ)介电材料(如Al2O3和HfO2)的原子层沉积(ALD),保持了介电材料的原子级平整度。&bull 在少层二硫化钼(MoS2)和石墨烯上,通过一步转移过程堆叠了小于3nm厚的Al2O3/Pd和HfO2/Pd异质结构,形成了清洁的vdW界面,避免了常见的沉积损伤和有机污染物的引入。(3) 实验所制备的MoS2顶栅场效应晶体管(FET)展示了亚1nm CEC(0.9nm)的高介电常数(高κ)介电材料(Al2O3或HfO2)的优异性能。具体包括低至0.45V的操作电压、106 A/cm² 的栅极漏电流。【科学图文】图1:垂直生长的单晶金属化学气相沉积chemical vapour deposition,CVD生长、无聚合物转移和表征。图2:垂直生长钯Pd纳米片的原子层沉积atomiclayer deposition,ALD兼容性和范德华van der Waals,vDW集成。图3:以亚3nm Al2O3/Pd作为顶栅介质和电极的MoS2晶体管。图4:以2nm HfO2/Pd作为顶栅介质和电极的MoS2晶体管。【科学结论】本文的科学启迪在于了一种新颖的方法,利用铋氧化物辅助化学气相沉积(CVD)生长垂直单晶二维金属纳米片,并成功将其作为高质量原子层沉积(ALD)氧化物的平台。这一方法不仅解决了传统ALD技术在二维半导体表面上沉积难题,还避免了传统转移技术中介电层厚度过大的问题。通过铋氧化物的引入,实现了在原子级别上对金属表面的垂直生长,从而为超薄介电层的制备提供了一种新途径。此外,本文还通过简化的一步法集成过程,成功在二维半导体上形成了范德华界面,避免了传统转移过程中的有机污染和损伤,确保了介电层的质量和性能。这不仅有助于在极小的电容等效厚度下实现高效的栅极控制,还为制造更高性能的二维场效应晶体管(FET)奠定了基础。原文详情:Zhang, L., Liu, Z., Ai, W. et al. Vertically grown metal nanosheets integrated with atomiclayerdeposited dielectrics for transistors with subnanometre capacitanceequivalent thicknesses. Nat Electron (2024). https://doi.org/10.1038/s41928024012023
  • 北大陈雷课题组发现钠漏通道复合物的冷冻电镜结构
    近日,北京大学未来技术学院分子医学研究所研员陈雷课题组发现了钠漏通道NALCN-FAM155A-UNC79-UNC80复合物的冷冻电镜结构及UNC79-UNC80调节NALCN-FAM155A的机制。这一研究于5月12日发表在《自然-通讯》上。  神经细胞的静息膜电位(Resting Membrane Potential, RMP)影响着神经细胞的可兴奋性,对于维持神经细胞正常的生理功能至关重要。钠漏通道NALCN(Sodium Leak Channel, Nonselective)介导了神经细胞的钠漏电流,能使静息膜电位更加去极化,从而提高神经细胞的可兴奋性。  NALCN在哺乳动物中高度保守,与电压门控钙离子通道(CaV)和电压门控钠离子通道(NaV)同源性较高。且参与了诸多与神经系统相关的重要的生物学过程,包括呼吸节律的调节、痛觉感知、生物钟的调节和快速动眼睡眠等。  “在人群中,NALCN的单点突变会引起多种严重的神经发育遗传疾病,包括精神运动发育迟缓和具有特征面相的小儿肌张力低下症及四肢和面部先天性挛缩、肌张力低下和发育迟缓症等。尽管NALCN通道有着如此重要的功能,但其工作机制仍不清楚。”陈雷告诉《中国科学报》。  在2020年,陈雷研究组曾解析NALCN-FAM155A亚复合体的高分辨率结构,阐明了NALCN的钠离子选择性、胞外钙离子阻塞和电压调节特性的结构基础,发现了在NALCN通道中独有的位于II-III linker上的CIH螺旋可以结合在其胞内结构域上。但是UNC79和UNC80的结构以及它们是如何激活NALCN的并不清楚。  先前的研究表明,UNC79和UNC80容易与NALCN-FAM155A亚复合体发生解离。在本项研究中,作者们在NALCN的C末端融合了GFP,UNC80的N末端融合了与GFP高亲和力结合的纳米抗体以稳定UNC79/80与NALCN间的相互作用。  经过同源蛋白筛选等步骤,研究人员确定以大鼠NALCN和小鼠FAM155A, UNC79和UNC80亚基组成的复合体为研究对象,并在克服了样品制备、数据处理等困难后,通过单颗粒冷冻电镜技术获得了整体分辨率为3.2埃的四元复合物的电子密度,并搭建了原子模型。  结构显示,UNC79和UNC80均由富含螺旋的结构组成,这些螺旋进一步的组装成HEAT重复或ARM重复等超螺旋结构。UNC79的N端与UNC80的C端、UNC79与UNC80的中间铰链区以及UNC79的C端与UNC80的N端均存在着紧密的相互作用,形成钳子状的复合体,整体形状类似于无穷号“∞”。 进一步的研究发现,NALCN主要通过胞内loop区与UNC79-UNC80发生相互作用的:NALCN胞质侧的I-II linker中的一段β-发卡结构(UNIM-A)与UNC79发生相互作用,II-III linker中的一段loop-螺旋结构(UNIM-B)以及一段L型螺旋结构(UNIM-C)与UNC80发生相互作用。作者们将NALCN与UNC79/80发生相互作用的基序命名为UNC Interacting Motif (UNIM)。  陈雷介绍,该项研究还发现,UNC79, UNC80和FAM155A三个附属亚基对于NALCN能够正确的转运到细胞膜上是必不可少的。“这有可能是因为这些互作使UNC79/80遮挡了NALCN胞质侧loop上的内质网滞留信号,从而促进NALCN上膜。另外,这些互作也释放了CIH对NALCN的自抑制,使其激活。这为深入理解NALCN复合体的工作机制奠定了基础。”他说。
  • 仪器采购潜伏大户:江苏省质监局
    以往,我们把注意力过多地放在数千万的仪器采购大单上,如质检总局2.73亿144套仪器(120万以上)大单、药监局1.06亿元238套仪器大单、四川质监局1.16亿元仪器大标等,其实,还有更多的仪器采购大户&ldquo 隐于世&rdquo 而未被发觉!   例如,江苏质监局。据仪器信息网小编统计,自2013年1月至今,江苏质监局半年来已在中国政府采购网,就其检测设备及相关服务项目发布了30多次招标公告,采购内容包括气质联用仪、高效液相色谱、气相色谱、光电直读光谱、原子吸收光谱等近百套仪器设备,目前已公布的中标金额合计约有7500万元人民币,可谓是一个&ldquo 潜伏&rdquo 的仪器采购大户!   不同于质检总局、药监局、中科院等大佬们的一次几千万元,甚至于上亿元的&ldquo 大手笔&rdquo ,江苏质监局这种&ldquo 少量而多次&rdquo 的仪器采购量也不容小觑!而像这种潜伏着的仪器采购大户更是难以计数,如2012年河南省医药采购服务中心的1.75亿元仪器耗材大单、广东省环境监测中心2012年出资1.16亿元采购监测仪器、中国中医科学院2011年则耗资1.07亿元购买科研装备&hellip &hellip (数据来源于仪器信息网资讯中心)   具体中标情况参见下表:   招标项目名称及标书编号:0660-13400597   评标日期:2013年6月25日   招标项目名称及标书编号:0660-13580629/1/2/3   评标日期:2013年7月2日   招标项目名称及标书编号:0660-13330601   评标日期:2013年6月25日   招标项目名称及标书编号:0660-13400598/1/2/3/4   评标日期:2013年6月20日   招标项目名称及标书编号:0660-13330579   评标日期:2013年6月17日   招标项目名称及标书编号:0660-13400557 、0660-13400558 、0660-13400365/1/2   评标日期:2013年6月14日   招标项目名称及标书编号:0660-13400455   评标日期:2013年5月24日   招标项目名称及标书编号:0660-13400329、0660-13400442/1/2   评标日期:2013年5月16日   0660-13400329  货物名称:恒温恒湿实验室系统 1套   中标商:江苏泰盛冷气工程技术有限公司 中标金额:259.899万元人民币   0660-13400442/1  货物名称:万能工具显微镜 1套   中标商:常州时代计量仪器有限公司 中标金额:14.7万元人民币   0660-13400442/2 货物名称:检衡车 1套   中标商:江苏富力达工程机械有限公司 中标金额:23万元人员币   招标项目名称及标书编号:0660-13400429/1/2/3/4/5/6/7/8/9/10   评标日期:2013年5月21日   包1:煤岩分析仪系统 1套   中标商:南京皓海仪器仪表有限公司 中标金额:79万元人民币   包2:自动测硫仪 1台(套)   中标商:南京瑞兰达仪器有限公司 中标金额:41.5万元人民币   包3:元素分析仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:68万元人民币   包4:自动量热仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:27万元人民币   包5:分光光度计 1台(套)   中标商:南京瑞兰达仪器有限公司 中标金额:13万元人民币   包6:火焰-石墨炉原子吸收光谱仪 1台(套)   中标商:江苏苏美达仪器设备有限公司 中标金额:48.5万元人民币   包7:联合制样机 1台(套)   中标商:长沙开元仪器股份有限公司 中标金额:12万元人民币   包8:焦炭反应性及反应后强度测定仪 1台(套)   中标商:南京皓海仪器仪表有限公司 中标金额:11.8万元人民币   包9:全自动消解仪 1台(套)   中标商:江苏万科科教仪器有限公司 中标金额:24.6万元人民币   包10:原子荧光光度计 1台(套)。   本包废标   招标项目名称及标书编号:0660-13400292/1/2、0660-13400301   评标日期:2013年4月24日   0660-13400292/1/2 包1:三相电能表检定装置 13 套   中标商:深圳市科陆电子科技股份有限公司 中标金额:141.96 万元人民币   包2:单相电能表检定装置 13 套   中标商:南京电力自动化设备三厂有限公司 中标金额:141.7 万元人民币   0660-13400301 AGPS OTA测试设备 1套   中标商:无锡市邦达仪器仪表设备有限公司 中标金额:348万元人民币   招标项目名称及标书编号:0660-13400271/1/2/3/4/5   评标日期:2013年4月18日   包1:电器部件火花点燃装置(电热毯火花点燃装置) 1台(套)   电器部件热冲击栅格(电热毯热冲击栅格) 1台(套)   电器部件滚筒跌落试验机(电热毯滚筒跌落试验机) 1台(套)   电器部件成品耐电压试验在线检测试验装置(电热毯成品耐电压试验在线检测试验装置) 1台(套)   电器柔性织物渗漏试验机(电热毯柔性织物渗漏试验机)1台(套)   柔性物件发热元件燃烧性能试验机(柔性物件发热元件燃烧性能试验机)   1台(套)   电器部件机械强度试验机(电热褥垫机械强度试验机) 1台(套)   电热垫机械强度试验机(电热垫机械强度试验机) 1台(套)   中标商:东莞市越铧电子科技有限公司 中标金额:18.2万元人民币   包2:针焰试验仪 1台(套)   漏电起痕仪 1台(套)   卤酸气体释出测定装置 1台(套)   单根电线电缆垂直燃烧试验机 1台(套)   成束线缆燃烧试验机 1台(套)   电线电缆烟密度试验机 1台(套)   空气弹/氧弹老化试验机 1台(套)   中标商:东莞市中诺质检仪器设备有限公司 中标金额:34.85万元人民币   包3:微机控制电液伺服万能试验机(600KN) 1台(套)   微机控制电液伺服万能试验机(1000KN) 1台(套)   微机控制电液伺服万能试验机(3000KN) 1台(套)   以上试验机相应配套的:弯曲用各种弯芯&Phi 6~&Phi 200   以上试验机相应配套的:螺栓试验夹具M10-M48   以上试验机相应配套的:楔负载装置   摆锤式冲击试验机(低温自动送样装置)(750J) 1台(套)   冲击试样低温试验箱(与冲击试验机相配套) 1台(套)   微机控制(塑料)管材耐压爆破试验机 1台(套)   中标商:美特斯工业系统(中国)有限公司 中标金额:168万元人民币   包4:高强螺栓扭矩系数试验机 1台(套)   研究级倒置万能材料显微镜及图像分析系统 1台(套)   自动研磨金相抛光机 1台(套)   电磁辐射分析仪 1台(套)   工业内窥镜 1台(套)   平面光带检测仪 1台(套)   金属电导率仪 1台(套)   激光测平仪 1台(套)   中标商:南京艾蒙飞电子科技有限公司 中标金额:153.5万元人民币   包5:橡胶低温脆性测试仪 1台(套)   耐液体试验机(恒温油槽) 1台(套)   硫化橡胶压缩耐寒系数试验机 1台(套)   橡胶压缩应力松弛仪 1台(套)   气压式自动切试片机 1台(套)   中标商:高特威尔检测仪器(青岛)有限公司 中标金额:36.8万元人民币   招标项目名称及标书编号:0660-13400269   评标日期:2013年4月16日   包1:X射线衍射光谱仪 数量:1台(套)   中标商:南京菲奇工贸有限公司 中标金额:27.95万元人民币   包2:全自动凯式定氮仪 数量:1台(套)   中标商:南京嘉顺多科学仪器有限公司 中标金额:19.29万元人民币   包3:塑料管材试验用恒温水浴箱及配套设施 数量:1台(套)   中标商:承德市金建检测仪器有限公司 中标金额:138万元人民币   招标项目名称及标书编号:0660-13400231/1/2/3   评标日期:2013年4月9日   包1:出租车计价器检定装置 1 套   中标商:无锡市瑞丰精密机电技术有限公司 中标金额:17.5万元人民币   包2:温湿度计检定装置 1 套   中标商:南京英格玛仪器技术有限公司 中标金额:44万元人民币   包3:三相电能表检定装置 1 套   本包废标   招标项目名称及标书编号:0660-13400151   评标日期:2013年3月19日   包1:步入式恒温恒湿室(含冷却水塔) 1套   中标商:上海汉测试验设备有限公司 中标金额:170万元人民币   包2:冲击试验台 1套   跌落试验台 1套   碰撞试验台 1套   中标商:北京航天希尔测试技术有限公司 中标金额:59.8万元人民币   包3:三综合试验箱 1套   振动试验系统 1套   中标商:重庆银河试验仪器有限公司 中标金额:168万元人民币   招标项目名称及标书编号:0660-13400137   评标日期:2013年3月13日   招标项目名称及标书编号:0660-13400107/1/2、0660-13400112   评标日期:2013年2月26日   0660-13400107/1  便携式光谱仪 1台(套)   本包废标   0660-13400107/2 气相色谱仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:41.8万元人民币   0660-13400112  声发射检测系统 1台(套)   中标商:南京瑞兰达仪器有限公司 中标金额:128.5万元人民币   招标项目名称及标书编号:0660-13400072/7/8/9/10/11/12/13   评标日期:2013年2月22日   包7:电器部件火花点燃装置(电热毯火花点燃装置) 1台(套)   电器部件热冲击栅格(电热毯热冲击栅格) 1台(套)   电器部件滚筒跌落试验机(电热毯滚筒跌落试验机) 1台(套)   电器部件成品耐电压试验在线检测试验装置(电热毯成品耐电压试验在线检测试验装置) 1台(套)   电器柔性织物渗漏试验机(电热毯柔性织物渗漏试验机)1台(套)   柔性物件发热元件燃烧性能试验机(柔性物件发热元件燃烧性能试验机)   1台(套)   电器部件机械强度试验机(电热褥垫机械强度试验机) 1台(套)   电热垫机械强度试验机(电热垫机械强度试验机) 1台(套)   本包废标   包8:针焰试验仪 1台(套)   漏电起痕仪 1台(套)   卤酸气体释出测定装置 1台(套)   单根电线电缆垂直燃烧试验机 1台(套)   成束线缆燃烧试验机 1台(套)   电线电缆烟密度试验机 1台(套)   空气弹/氧弹老化试验机 1台(套)   本包废标   包9:微机控制电液伺服万能试验机(600KN) 1台(套)   微机控制电液伺服万能试验机(1000KN) 1台(套)   微机控制电液伺服万能试验机(3000KN) 1台(套)   以上试验机相应配套的:弯曲用各种弯芯&Phi 6~&Phi 200   以上试验机相应配套的:螺栓试验夹具M10-M48   以上试验机相应配套的:楔负载装置   摆锤式冲击试验机(低温自动送样装置)(600J) 1台(套)   冲击试样低温试验箱(与冲击试验机相配套) 1台(套)   微机控制(塑料)管材耐压爆破试验机 1台(套)   本包废标   包10:高强螺栓扭矩系数试验机 1台(套)   金相显微镜 1台(套)   自动研磨金相抛光机 1台(套)   电磁辐射分析仪 1台(套)   工业内窥镜 1台(套)   平面光带检测仪 1台(套)   金属电导率仪 1台(套)   激光测平仪 1台(套)   本包废标   包11:固定式光电直读光谱仪 1台(套)   手持式光电直读光谱仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:145万元人民币   包12:维氏硬度计 1台(套)   洛氏硬度计 1台(套)   布氏硬度计 1台(套)   中标商:泉州市丰泽东海仪器硬度块厂 中标金额:48.2万元人民币   包13:气相色谱仪 1台(套)   中标商:江苏汇鸿同源进出口有限公司 中标金额:24.6万元人民币   招标项目名称及标书编号:0660-13400072/1/2/3/4/5/6   评标日期:2013年2月21日   包1:高低温湿热步入试验箱 1台(套)   高低温冷热冲击试验箱 1台(套)   中标商:重庆国耀科技有限公司 中标金额:156.8万元人民币   包2:高低温湿热试验箱(高低温湿热交变试验箱) 1台(套)   沙尘试验箱 1台(套)   浸泡试验箱(沉浸试验箱) 1台(套)   光老化试验箱(光照耐候老化试验箱) 1台(套)   紫外老化试验箱 1台(套)   中标商:上海汉测试验设备有限公司 中标金额:48.5万元人民币   包3:盐雾试验箱(盐雾二氧化硫腐蚀箱) 1台(套)   循环腐蚀试验箱 1台(套)   中标商:常州瑞比国际贸易有限公司 中标金额:45万元人民币   包4:挠曲疲劳试验台 1台(套)   最大膨胀量试验台 1台(套)   制动液相溶性试验台 1台(套)   长度变化率和气密性试验台 1台(套)   耐负压试验台 1台(套)   软管扣压机 1台(套)   软管剥胶机 1台(套)   橡胶和塑料软管动态弯曲疲劳强度试验机 1台(套)   DIN磨耗机 1台(套)   制动软管高温脉冲试验台 1台(套)   制动软管变形试验用量规 1台(套)   制动软管缩颈通过量探针 1台(套)   中标商:天津格特斯检测设备技术开发有限公司 中标金额:57.5万元人民币   包5:计算机控制轮胎强度、脱圈阻力试验机 1台(套)   车轮径向疲劳试验机(双工位) 1台(套)   13° 轮胎冲击试验机1台(套)   轮胎动平衡机 1台(套)   轮胎装卸机 1台(套)   标准轮辋按轮胎规格 20台(套)   中标商:昆山市创新科技检测仪器有限公司 中标金额:187万元人民币   包6:橡胶低温脆性测试仪 1台(套)   耐液体试验机(恒温油槽) 1台(套)   硫化橡胶压缩耐寒系数试验机 1台(套)   橡胶压缩应力松弛仪 1台(套)   气压式自动切试片机 1台(套)   本包废标   招标项目名称及标书编号:0660-13400036/1/2   评标日期:2013年2月1日   招标项目名称及标书编号:0660-12401166   评标日期:2013年1月18日   0660-12401166/1/2/3 连云港市产品质量监督检验所   包1:金相显微镜 1台(套)   中标商:江苏旭王科技发展有限公司 中标金额:45.7万元人民币   包2:100kN拉伸试验机 1台(套)   本包废标   包3: 2000KN材料试验机 1台(套)   中标商:深圳三思纵横科技股份有限公司 中标金额:26.6万元人民币   0660-12401166/4/5/6/ 江阴市产品质量监督检验所   包4:铝合金型材高温负荷持久试验机 2台(套)   中标商:南京奎林特电气科技有限公司 中标金额:33.2万元人民币   包5: 气相色谱仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:38.5万元人民币   包6:气相色谱-质谱联用仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:68.5万元人民币   招标项目名称及标书编号:0660-12401167   评标日期:2013年1月17日   0660-12401167/1/2/3/4/5 江苏省特种设备安全监督检验研究院   包1:高温蠕变试验机 12台(套)   中标商:长春科新试验仪器有限公司 中标金额:130.52万元人民币   包2:紫外可见分光光度计 1台(套)   中标商:江苏苏美达仪器设备有限公司 中标金额:9.4万元人民币   包3:Toc仪 1台(套)   中标商:南京国思源商贸有限公司 中标金额:29.6万元人民币   包4:电解抛光腐蚀仪 1台(套)   本包废标   包5: 体式显微镜(含摄像头、图像分析软件、电脑) 1台(套)   中标商:矩阵科工检测技术(北京)有限公司 中标金额:26.8万元人民币   0660-12401167/6 江苏省特种设备安全监督检验研究院无锡分院货物名称:氧氮氢联合测定仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:94.6万元人民币   招标项目名称及标书编号:0660-12401108/1~3   评标日期:2013年1月5日   包1:冲击试验台 1台(套)   中标商:苏州苏试试验仪器股份有限公司 中标金额:22万元人民币   包2:动态衡检定装置 1台(套)   中标商:北京环达汽车装配有限公司 中标金额:89.9万元人民币   包3:出租车计价器整车检定装置 1台(套)   中标商:无锡市瑞丰精密机电技术有限公司 中标金额:17.5万元人民币   招标项目名称及标书编号:0660-12401082/12/13/14/15/16/17/18/19   评标日期:2012年12月26日   包12:红外发射率测定仪 1台(套)   中标商:江苏省生产力促进中心 中标金额:19.4万元人民币   包13:组织破碎仪 1台(套)   中标商:上海嘉合生物科技有限公司 中标金额:20万元人民币   包14:快速溶剂萃取仪 1台(套)   中标商:江苏苏美达技术设备贸易有限公司 中标金额:46.8万元人民币   包15:气相自动顶空进样器 1台(套)   中标商:江苏苏美达技术设备贸易有限公司 中标金额:20.8万元人民币   包16:氮气发生器 1台(套)   中标商:易安科仪(北京)国际贸易有限公司 中标金额:13.7万元人民币   包17:高温导热系数仪 1台(套)   中标商:上海瑞起实业发展有限公司 中标金额:42.5万元人民币   包18:全自动固相萃取仪 1台(套)   中标商:北京普立泰科仪器有限公司 中标金额:24万元人民币   包19:燃气采暖炉耐久性能测试装置 1台(套)   燃气采暖锅炉测试台 1台(套)   灶具耐久性能试验台 1台(套)   中标商:南京德律科技有限公司 中标金额:44万元人民币
  • GB/T 2611-2007 试验机通用技术要求
    7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 《GB/T 2611-2007试验机通用技术要求》简介 标准编号: GB/T 2611-20077ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 中文标准名称: 试验机 通用技术要求7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 代替标准号: GB/T 2611-1992 试验机通用技术要求7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 标准简介:7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 本标准代替GB/T 2611-1992 试验机通用技术要求《试验机 通用技术要求》。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 本标准规定了试验机的基本要求,并规定了装配及机械安全、机械加工件、铸件和焊接件、电气设备、液压设备、外观质量、随机技术文件等要求。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 本标准适用于金属材料试验机、非金属材料试验机、平衡机、振动台、冲击台与碰撞试验台、力与变形检测仪器、工艺试验机、包装试验机及无损检测仪器。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 本标准与GB/T 2611-1992的主要差异如下:7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 1、标准的结构和格式按GB/T 1.1-2000《标准化工作导则 第1部分:标准的结构和编写规则》的要求进行编写 2、增加了前言 3、修改了规范性引用文件一览表 4、删除了对试验机型号的要求 5、删除了质量保证期要求 6、增加了符合人类工效学原理的要求 7、增加了低能耗、高效率、环境保护的要求 8、增加了电测量和自动控制系统及其软件的要求 9、增加了对机械零部件有关机械安全的要求 10、增加了焊接件的要求 11、修改了装有电气器件的外壳上警告标志的要求 12、增加了电气设备保护接地电路连续性的要求 13、修改了绝缘电阻和绝缘强度的要求 14、增加了插头和插座组合配套标志、唯一对应性的要求 15、增加了电气设备离地高度的要求 16、增加了电磁兼容性的要求 17、增加了液压系统防水防尘要求 18、增加了对气动设备的要求 19、修改了随行技术文件的内容。 《GB/T 2611-2007试验机通用技术要求》内容 1、范围 本标准规定了试验机的基本要求,并规定了装配及机械安全、机械加工件、铸件和焊接件、电气设备、液压设备、外观质量、随机技术文件等要求。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 本标准适用于金属材料试验机、非金属材料试验机、平衡机、振动台、冲击台与碰撞试验台、力与变形检测仪器、工艺试验机、包装试验机及无损检测仪器(以下统称试验机)。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 2、规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 GB 5226.1-2002 机械安全 机械电气设备 第1部分:通用技术条件(IEC 60204-1:2000,IDT) GB/T 5465.2 电气设备用图形符号(GB/T 5465. 2-1996,idt IEC 417:1994) GB/T 6444 机械振动 平衡术语(GB/T 6444-1995,eqv IS0 1925:1990) JB/T 7406(所有部分) 试验机术语 3、基本要求 3.1 术语、计量单位 3.1.1 试验机所使用的术语应符合GB/T 6444和JB/T 7406的规定。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 3.1.2 试验机所使用的计量单位应采用中华人民共和国法定计量单位。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 3.2 标识和检验分类 3.2.1 试验机上应有铭牌和必要的润滑、操纵、安全等指示标牌或标志,并能长期保持清晰。 3.2.2 试验机上的各种标牌应固定在合适的明显位置,并且平整牢固、不歪斜。可以采用艺术形式的专用标志或在试验机上铸出清晰的汉字识别标志。 3.2.3 试验机的检验可分为出厂检验(或交收检验)和型式检验。 有下列情况之一时,一般应进行型式检验:7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 a) 新产品试制或老产品转厂生产的定型鉴定; b) 产品正式生产后,其结构设计、材料、包装、工艺以及关键配套元器件有较大改变能够影响产品性能时; c) 正常生产的产品,定期或积累一定产量时; d) 产品长期停产后,恢复生产时; e) 国家质量监督机构提出进行型式检验的要求时。 3.3 设计、安装 3.3.1 试验机的设计除了应结构合理、性能良好、符合人类工效学原理以外,还应操作简单,便于维修、组装和分解。 3.3.2试验机的设计应考虑低能耗、高效率和环境保护。 3.3.3 试验机的电测量和自动控制系统及其软件应保证整机正常工作,保证试验数据的准确性和一致性。 3.3.4 试验机及其辅助装置(携带式除外)安装或安放的环境既不应妨碍操作又不应影响其性能。 3.3.5 安装的试验机应保证检验人员能够用方便的、常规的方法进行操作,且安装场地应留有足够的操作所需的活动空间和通道。 3.3.6 各种类型的试验机应在其产品标准中规定的工作环境条件下正常工作。 3.4 随机提供附件和工具 3.4.1 保证试验机使用性能的附件和工具应随机提供。附件和工具一般应标有相应的标记和规格,如夹头所能夹持试样的直径范围等。附件和工具应装在附件箱(袋)内。 3.4.2 扩大试验机使用性能的附件和工具,应根据用户要求按协议提供。 4、装配及机械安全 4.1 装配 4.1.1 试验机及其部件应按装配工艺规程进行装配,不应放入图样及工艺规程未规定的垫片和套等。 4.1.2 外购件应有合格证或入厂检验合格后方可使用。 4.1.3 传动机构应运行平稳、动作灵活,并能正确定位。 4.1.4 所有紧固零件(如螺钉、销、键等)应紧固,不应有松动脱落现象。 4.2 机械安全防护 4.2.1 质量较大的试验机或零部件应便于吊运和安装,并应设有起吊孔、起吊环或采用其他便于搬运的措施。 4.2.2 试验机在运输和运行中有可能松脱的零件、部件,应有防松措施。 4.2.3 试验机外露的皮带轮、轴等传动件应有防护装置。 4.2.4 设计和加工试验机的各零部件时,在考虑不影响使用功能的情况下,不应留有可能导致对人产生伤害的锐边、尖角、毛刺、凸出部分、粗糙的表面和可能造成刮伤危险的各种开口等。 5、机械加工件 5.1 加工件应符合有关图样要求。 5.2 钢制零件经常扭动和易磨损的部位应进行热处理,热处理后的零件不应有裂纹和其他缺陷。 5.3 热处理后的零件不应有退火和过烧的现象。 5.4 用磁性工作台等进行磨削加工的零件不应留有明显的剩磁。 5.5 加工件的配合面、摩擦表面不应打印记。 5.6 试验机分度部分的标度标记(刻线、文字、数字等)应准确、均匀、清晰、耐久,数字要对应于相应的刻线。 5.7 手轮轮缘和操纵手柄应光滑。 5.8 主要加工件应进行去应力处理。 6、铸件和焊接件 6.1 铸件 6.1.1 试验机上各种铸件的材料和力学性能应符合相应材料标准的规定。 6.1.2 铸件表面应平整,非机械加工表面应符合相应图样的要求。 6.1.3 铸件上的型砂和粘结物应仔细清除,飞边、毛刺、浇口、冒口等应铲平。 6.1.4 铸件不应有裂纹,铸件的重要结合面和外露的加工面不应有超过有关规定的砂眼、气孔、缩孔等缺陷。对不影响产品使用性能的铸件缺陷,允许进行修补。 6.1.5 泵体、阀体、缸筒等铸件不应有气孔、缩孔、砂眼等降低耐压强度的铸件缺陷。在规定压力下,不应有渗液(油、水)现象。 6.1.6 试验机的重要铸件均应进行时效处理。 6.2 焊接件 6.2.1 试验机上焊接件的力学性能、焊缝的尺寸和形状应符合有关图样和工艺文件的要求。6.2.2 焊接件的焊缝不允许出现裂纹,连续焊缝不允许出现间断。 6.2.3 焊接件的外观表面不应有锤痕、焊瘤、熔渣、金属飞溅物及引弧痕迹。边棱尖角处应光滑,外观焊缝应呈光滑的或均匀的鳞片状波纹表面并打磨平整。 6.2.4 重要的焊接件应进行消除应力处理。 7、电气设备 7.1 电气设备标志及项目代号 7.1.1 电气设备所使用的各种标志应置在容易观察的位置,并应清晰醒目。 7.1.2 装有电气器件的外壳应有警告标志,并应符合GB 5226. 1-2002中17.2的规定。 7.1.3 电气设备控制装置应在其门或适当位置标有铭牌,其内容一般包括: a) 制造者名称或标志、产品编号(用于分体控制装置); b) 电源额定电压、相数和频率; c) 整机耗电总容量或满载电流总和; d) 总电源短路保护器件的断流能力或熔断器的额定电流。 7.1.4电气设备的手控操作件如按钮、选择开关等均应有清楚、耐久的功能标志。该标志可以是形象化的符号,也可以是文字说明。若为形象化符号,则应符合GB/T 5465.2的规定。 7.1.5 电气设备使用熔断器时,其电流数值应在熔断器架上或近旁予以标注,如果限于位置无法标出时,应在产品说明书中说明。 7.1.6 电气设备的按钮、指示灯、光标按钮的颜色应分别符合GB 5226.1-2002中10.2.1、10.3.2、10.4的规定。 7.1.7 电气设备中每一个元器件,应有与技术文件相一致的项目代号。其代号应使用耐久的方法在元器件附近或其上面标出,所有的接线端子、电缆和导线均应有耐久的、与技术文件上相应接点一致的线路标记(线号)。 7.2 保护接地电路的连续性、绝缘电阻和耐压 7.2.1 电气设备保护接地电路的连续性检验应符合GB 5226.1-2002中19.2的规定。 7.2.2 电气设备的绝缘电阻检验应符合GB 5226.1-2002中19.3的规定。 7.2.3 电气设备的耐压试验应符合GB 5226.1-2002中19.4的规定。 7.3 电击的防护 7.3.1 电气设备应具备保护人身安全、防止电击的能力。 7.3.2 在正常工作情况下电击的防护,应采用7.3.3和7.3.4规定的二种防护措施之一。 7.3.3 用电柜作防护应符合下列要求之一: a) 打开电柜应使用钥匙或工具,且打开门后,电柜内所有高于50 V的带电部分应加以保护,预防意外触电。 b) 打开电柜前,应先断开电源。此项要求应由门与电源开关的联锁机构来实现,使切断开关时才能打开门,关闭门后才能接通开关。 c) 如果不需使用钥匙或工具开门,或者不用断开带电部分就能进行工作(如换灯泡或换熔断丝)时,应在电柜内设置挡板,预防接触带电部分。当采用50 V以下电压时,可不设挡板。 7.3.4 通过隔绝带电部分进行防护,应采用不能拆除的绝缘物包覆带电部分的方法。此种绝缘应能经受住工作时出现的机械、电气或热的应力作用。油漆、清漆、漆膜不得单独用作正常工作条件下的电击防护。 7.3.5 在漏电情况下电击的防护,应采用如下二种防护措施之一: a) 把裸露导电零件接到保护电路上; b) 采用漏电保护开关自动切断电源。 7.3.6 试验机及其电气设备的所有裸露导电零件(包括机座)应连接到保护接地专用接地端子上。 7.3.7 金属软管不得用作接地导线。金属软管和所有电缆的金属护套(钢管、铝套等)应与保护接地电路良好接触。 7.3.8 在取出电气设备进行带电调整和维修的情况下,则应使用保护导线将裸露的导电零件连接到保护接地电路上。 7.3.9 保护接地电路中禁止使用开关或断路器。 7.3.10 由连接器或插销中断时,保护接地电路应在送电导线断开后才断开;重新连接时,保护接地电路应在送电导线接通前先接通。 7.4 元件、导线及端子基本要求 7.4.1 电气设备中设有几个电源开关时,必须有一个总开关,并应有足够的切断能力,但不应切断安全接地。电源开关不应使用金属柄开关。 7.4.2 为防止相互插错,电气设备上使用几个插头和插座组合时,应对它们做出清楚配套标记,建议插头和插座具有唯一对应性。 7.4.3 为了方便维修、调整和安全防水,电气设备中的元器件、导线及接线端子等应距地面0.2m~2m。 7.4.4 在试验中突然停电后,再恢复供电时,应能防止电力驱动等装置自动接通。 7. 4.5 电气设备电路的外接端和插头,应尽可能加罩或采用凹槽形式。 7. 4.6 单方向旋转的电动机,应在适当的部位标出电动机的旋转方向。 7.4.7 所有导线的连接,特别是保护接地电路的连接,应牢靠,不得松动。 7.4.8 导线的接头除必须采用焊接情况外,所有导线应采用冷压接线头。如果电气设备在正常运行期间承受很大振动,则不应使用焊接的接头。 7. 4.9 电气设备的保护导线和中线必须分色,其他不同电路的导线应尽可能分色,导线颜色应符合下列要求: a) 保护导线为黄绿双色; b) 动力电路的中线为浅蓝色; c) 交流或直流动力电路导线为黑色; d) 交流控制电路导线为红色; e) 直流控制电路导线为蓝色; f) 用作控制电路联锁的导线,如果是与外置控制电路连接而且当电源开关断开仍带电时,其联锁控制电路导线为桔黄色; g) 与保护导线连接的电路导线为白色; h) 电缆中芯线颜色不受上述规定的约束。 7.4.10 在导线管内或电气箱配电板上以及二个端子之间的连线必须是连续的,中间不应有接头。 7.4.11 保护接地端应有符号&ldquo ± &rdquo 或字母&ldquo PE&rdquo 标记。 7.5 电磁兼容 电气设备产生的电磁干扰不应超过其预期使用场合允许的水平,应具有足够的抗电磁干扰能力,以保证电气设备在预期使用环境中可以正确运行。7ZS拉力机,拉力试验机,恒温恒湿试验箱,高低温试验箱-东莞市越联检测仪器有限公司 8、液压设备 8.1 液压系统的活塞、油缸、阀门等零件的工作表面不得有裂纹和划伤。 8.2 液压传动部分在工作速度范围内不应发生超过规定范围的振动、冲击和停滞现象。 8.3 液压系统应有排气装置和可靠的密封,且不应有漏油现象。 8.4 油箱结构和形状应满足下列要求: a) 在正常工作情况下,应能容纳从系统中流来的全部液压油; b) 防止溢出或漏出的污染液压油直接回到油箱中去;c) 油箱底部的形状应能将液压油排放干净; d) 油箱应便于清洗,并设有加油和放油口; e) 油箱应有油面指示器。 8.5 液压系统应采取防水防尘措施。为消除液压油中的有害杂质,应装有滤油装置,使液压油达到规定的清洁要求。含有伺服阀、比例阀的系统应在压力油口处设置无旁通的滤油器。 8.6 滤油装置的安装处应留有足够的空间,以便更换。 8.7 所有回油管和泄油管的出口应深入油面以下,以免产生泡沫和进入空气。 8.8 当液压系统回路中工作压力或流量超出规定而可能引起危险或事故时,则应有保护装置。 8.9 液压传动部分必要时应设有工作行程限位开关。 8.10 当液压系统中有一个以上相互联系的自动或人工控制装置时,如任何一个出故障会引起人身安全和设备损坏时,应装有联锁保护装置。 8.11 当液压系统处于停车位置,液压油从阀、管路和执行元件泄回油箱会引起设备损环或造成危险时,应有防止液压油泄回油箱的措施。 8.12 液压系统应有紧急制动或紧急返回控制的人工控制装置,且应符合下列要求: a) 容易识别; b) 设置在操作人员工作位置处,并便于操作; c) 立即动作; d) 只能用一个控制装置去完成全部紧急操纵。 8.13 必要时,液压系统应装有温度控制装置。 9、气动设备 9.1 气动系统的活塞、气缸、阀门等零件的工作表面不得有裂纹和划伤。 9.2 气动传动部分在工作速度范围内不应发生超过规定范围的振动、冲击和停滞现象。 9.3 气动系统应可靠密封,不应有漏气现象。 9.4 气源进口应有气水分离装置,并且压力可控,必要时还应设置气体过滤和(或)干燥装置。 9.5 当气动系统中工作压力超过规定而可能引起危险或事故时,则应有保护装置。 9.6 必要时,气动系统应设有工作行程限位开关。 10、外观质量 10.1 试验机外观表面不应有图样未规定的凸起、凹陷、粗糙不平和其他损伤。 10.2 试验机零部件结合面的边沿应整齐匀称,不应有明显的错位。 10.3试验机零件的已加工面,不应有锈蚀、毛刺、碰伤、划伤和其他缺陷。 10.4试验机的外观颜色应色调柔和,套色协调,不同颜色的界限应分明,不得互相污染。 10.5试验机的油漆和腻子应有足够的强度,能起抗油和耐蚀作用,不应有起皮脱落现象。 10.6试验机所有喷涂件的表面应平整、均匀和色调一致,不应有斑点、气泡和粘附物等。 10.7电镀件的表面应无斑点,镀层应均匀,无脱皮现象。 10.8氧化件的表面色泽应均匀,无斑点、锈蚀等现象。 11、随行技术文件 1 1.1应随试验机提供下列技术文件: a)使用说明书; b)合格证, c)装箱单; d)随行备附件清单. 11.2 使用说明书应能正确指导安装、使用和维修试验机。装箱单应便于清点。
  • 川一仪器发布实验室二氧化硫蒸馏仪CYZL-3新品
    二氧化硫检测仪主要原理是将中药材以蒸馏法进行处理,样品中的亚硫酸盐系列物质加酸处理后转化为二氧化硫后,随氮气流带入到含有双氧水的吸收瓶中,双氧水将其氧化为硫酸根离子,采用酸碱滴定法测定,计算药材及饮片中的二氧化硫残留量。本产品在严格遵循药典要求的基础上,整合加热,蒸馏,水循环及氮吹等功能为一体,可同时提供3-5个样品(空白样,平行样)的处理,提高了检测数据的精度和减少了工作时间。符合标准中药二氧化硫残留量测定仪系列产品是根据《中华人民共和国药典》第四部通则2331的规定,用于测定经硫磺熏蒸处理过的药材或饮片中二氧化硫的残留量。应用范围三联二氧化硫检定仪主要适用各类中药生产企业,中药科研院所,以及与硫磺薰蒸相关的食品生产企业等,用于常规二氧化硫残留量测定。 三联二氧化硫检定仪主要特征1、选用密封红外陶瓷加热套,集热性好,加热效率高,并可防止液体洒漏引起的设备损坏问题。2、全触屏控制,人机交互界面,操作简单易控。3、加热装置单孔控温,加热功率可调。4、加热时间功能,蜂鸣提醒,自动停止加热。5、外置冷却水循环机(内置可选),无需外接自来水冷却6、配置精密氮气流量控制系统。并可配备氮气发生器。 技术参数 显示方式 液晶触摸屏 加热方式 远红外陶瓷加热(无明火加热,功耗小效率高) 氮吹控制 主机设有氮气总接口,单孔的氮气流量可通过流量计单独控制 冷却方式 外置冷却水循环机(内置可选),无需外接自来水冷却 温度控制 内置微沸加热控制系统,温度控制范围可到200℃ 蒸馏单元数 3组 蒸馏烧瓶规格 标配:1000ml烧瓶 接收瓶规格 标配:100ml*3锥形瓶 额定功率 1850W 额定电压 220V/50HZ 外形尺寸(mm) 800*520*850 漏电保护装置 有 防干烧设计 有 适用范围 适用于中药材及中药软片二氧化硫残留量的蒸馏前的处理创新点:二氧化硫蒸馏仪是在一体化蒸馏仪的基础上加以改造的,更适用于食品中药二氧化硫的检定。 1、二氧化硫蒸馏仪选用密封红外陶瓷加热套,集热性好,加热效率高,并可防止液体洒漏引起的设备损坏问题;2、配置精密氮气流量控制系统;3、内置微沸加热控制系统,温度控制范围可到200℃。 实验室二氧化硫蒸馏仪CYZL-3
  • 2025年版《中国药典》4019公示稿解析 | 药典玻璃制品抗热震性试验机
    2025年版《中国药典》4019公示稿解析 | 药典玻璃制品抗热震性试验机热冲击,或称热震性,是衡量玻璃容器在短时间内承受急剧温度变化能力的重要指标。这一特性在酿酒、饮料及制药等需经历高温灭菌工艺的行业中扮演着至关重要的角色。它直接关系到玻璃容器在使用过程中的安全稳定性,是确保产品质量与消费者安全不可或缺的一环。为了科学且精准评估药用玻璃容器的热冲击耐受能力,国家药典委员会发布了“4019玻璃容器热冲击及热冲击强度测定法”,该标准预计将在2025年版中国药典的药品包装材料部分中得到正式体现。这一举措旨在通过标准化流程,为行业提供科学、有效的测试指导。测试原理与操作细节在这一条件背景下,三泉中石研发的玻璃制品抗热震性试验机RCY-05符合新老标准试验要求。测试原理:该测试通过预设高温槽与低温槽之间的温差,模拟实际使用中的极端温度变化。将待测玻璃瓶在高温槽中充分加热后,迅速转移至低温槽中,随后观察并记录其在经历冷热交替后的破损情况。仪器特点:三泉中石生产的玻璃制品抗热震性试验机,专为各类玻璃瓶设计,包括但不限于啤酒瓶、酒瓶、饮料瓶、医疗输液瓶及抗生素瓶等。该仪器具备自动调节浸水深度功能,可灵活设置冷热水温度及停留时间,满足不同测试标准需求。同时,内置的漏电保护装置确保了测试过程的安全无忧。标准修订的意义与亮点修订此标准的目的在于提升对玻璃容器热冲击性能的评估精度与效率。不合格的耐热冲击性能可能引发高温处理过程中的破裂,进而污染或损坏内容物,特别是药品,其后果不堪设想。因此,建立一套科学、高效的测定方法显得尤为重要。本次修订基于2015版YBB药包材标准,并参考了GB/T 4547-2007及ISO国际标准,对测试时间进行了优化,如热水槽浸泡时间缩短至至少5分钟,冷水槽浸没时间固定为30秒,显著提升了测试效率。同时,仪器允许用户根据具体标准自由设置温度与停留时间,增强了测试的灵活性与适用性。测试方法与注意事项对于温差小于100℃的玻璃容器,推荐使用冷热水槽法进行测试。测试过程中,需确保冷水槽容量充足,至少为待测样品总体积的五倍,并配备水循环器、温度控制组件及恒温控制器,以维持水温在指定范围内。特别注意的是,尽管自来水初始温度可能符合要求,但测试过程中水温易上升,自然降温将极大延长测试周期,因此建议配备低温控制装置以确保测试准确性。 结果判定标准测试完成后,根据规定的温差条件下,若破裂样品数量低于限定值,则判定为热冲击性能合格。热冲击强度的评估则以导致50%样品破裂的温差为基准,若该温差满足标准要求,则视为合格。作为药品包装玻璃容器检测领域的专业供应商,济南三泉中石实验仪器紧跟国家标准动态,积极参与相关标准的制定工作,依托丰富的技术积累与行业经验,为标准的完善提供坚实的数据与理论支持,助力国家药品包装标准体系的持续优化与提升。
  • 三思纵横即将精彩亮相2012中国国际科学仪器及实验室装备展览会
    中国国际科学仪器及实验室装备展览会(CISILE)经过九年的培育,已成为我国规模最大、产品覆盖面最广、专业水平最高的科学仪器展。CISILE以展示推广科学仪器先进装备与技术为出发点,以打造国家级精品和国际知名品牌展会为目标,已形成了显著的品牌效应,成为业界国内外厂商发布最新产品与技术的首选平台。 第十届中国国际科学仪器及实验室装备展览会(CISILE)将于2012年5月 15-17日在北京中国国际展览中心举行,三思纵横科技股份有限公司作为中国领先的材料试验解决方案的专业服务厂商,是每一届CISILE的参展商。今年,三思纵横以全新的面貌精彩亮相,向广大客户及业内人士展示公司电子万能试验机、高温持久蠕变试验机等备受青睐的主流试验机型。 展会时间:5月15日-17日 地点:北京-中国国际展览中心 三思纵横展位号:4号馆 D8 此次展会,三思纵横将会展出: 1.UTM4000系列微机控制电子万能试验机 主要特点: 本产品采用高强度光杠固定上横梁和工作台面,使之构成高刚性的门式框架结构。采用伺服电机驱动,伺服电机通过传动机构带动移动横梁上下移动,实现试验加载过程.分为单空间和双空间两种机型。主本机采用先进的 DSP+MCU全数字闭环控制系统进行控制及测量,采用计算机进行试验过程及试验曲线的动态显示,并进行数据处理,试验结束后可通过图形处理模块对曲线放大进行数据再分析编辑,产品性能达到国际先进水平。 2.CTM-A1型机械式高温持久蠕变试验机 主要特点: ①筒式高温炉配置,工作效率高,是传统对开式高温炉的十几倍,无需降温升温和保温过程即可进行更换试样重复试验; ②电动升降筒式高温炉,操作人员无需接触高温炉,大幅降低劳动强度并且安全可靠; ③筒式高温炉保温效果好,均温带长(200mm),高温可达1200℃,电炉寿命长,在不高于1200℃的条件可以保障使用30000小时; ④筒式高温炉安全性能好,安全电压(25V)下大电流供电,没有漏电隐患,符合国际安全标准; ⑤筒式高温炉炉表温度低,进口隔热材料确保低于90℃(1200℃时)的炉表温度,操作使用安全; ⑥整机结构紧凑(是同类设备的3/5),占地面积小,充分利用试验室的面积。 3. SEM系列进口全程测量电子引伸计 主要特点: ① 可跟踪至试样断裂,安全性能高,采用柔性钢丝绳保护装置,试样断裂时不需要取下引伸计,并且双向超行程机械停止; ② 安装方便,使用快速弹簧夹持装置,可在几秒钟内单手将引伸计安装到试样上; ③ 满足现有ASTM B-1级和ISO9513 0.5级精度要求; ④ 可按温度范围选择引伸计,适用的温度范围为-267.7℃--+176.6℃; ⑤ 臂和隔板维修简便,并可根据实验要求改变标距。 4. 夹具系列
  • 专家约稿|功率器件可靠性研究和失效分析的全面解析
    功率器件可靠性研究和失效分析的基本介绍邓二平(合肥工业大学 电气与自动化工程学院 230009)摘要:功率器件可靠性是器件厂商和应用方除性能参数外最为关注的,也是特性参数测试无法评估的,失效分析则是分析器件封装缺陷、提升器件封装水平和应用可靠性的基础。可靠性测试项目的规范性、严谨性和可追溯性,对于功率器件可靠性评估和失效分析至关重要,也是保障分析结果全面性、准确性和有效性的基础。本文结合团队多年的可靠性和失效分析研究的相关经验,对研究步骤等进行了基本介绍,旨在为行业的发展提供可能的参考。1、引言功率器件近年来在国内得到了大力发展,尤其是第三代半导体器件SiC MOSFET与新能源汽车应用的结合,迎来了功率器件国产化的重大发展机遇,包括芯片、封装、测试和设备等。而可靠性研究和失效分析则是器件封装后评估器件长期稳定运行的基础,对器件封装改进、可靠性评估等具有重要意义。本文结合团队多年的可靠性研究经验,主要介绍了进行功率器件可靠性研究和失效分析的一些基本步骤、原理和需要注意的事项等,具体测试电路请参考相应的测试标准(如IEC、MIL、JESD和AGQ等测试标准)。功率器件主要包括:Si IGBT/diode, Si MOSFET/diode, SiC MOSFET/diode, GaN器件,目前市场上比较成熟的产品还是以硅基为代表的IGBT器件,电压等级最高可到6500V,电流目前最大到3600A。随着使用开关频率的提升、能耗要求和基础材料的发展,SiC基的功率器件己逐渐成熟,典型的代表是SiC MOSFET,新能源汽车的800V平台正大量使用1200V的SiC MOSFET。进一步地,GaN工艺的不断成熟以及在射频领域的发展经验,目前600V左右的高频开关领域GaN器件非常有优势,尤其是车载充电机(OBC)。不同类型的功率器件具有不同的特性,因此在测试方法和细节上要有所区分,如SiC器件由于栅极的不稳定性以及GaN动态的快速性需要重点关注。2、测试项目分类功率器件的测试一般分为基本特性测试来表征器件性能优良、极限能力测试来评估器件的鲁棒性、可靠性测试来评估器件长期运行稳定性以及失效分析助力器件改进和优化升级,具体如下。2.1 基本特性测试主要包括:静态特性测试(以IGBT为例一般指饱和压降Vces,阈值电压Vgeth,集-射极漏电流Ices,栅-射极漏电流Iges,稳态热阻Rth等静态参数)和动态特性测试(一般指双脉冲测试,包括开通延时时间td(on),下降时间tf等动态参数),其中动态特性测试还可包括安全工作区SOA的测试,有RBSOA和SCSOA。静态特性主要表征模块的一些基本性能参数,是表征模块优良的重要指标,如饱和压降Vces表征器件的导通能力,Vces越小,模块工作过程中的导通损耗越小,相同条件下温升越小。器件加速老化可靠性实验前必须进行模块的基本特性测试,尤其是静态特性测试,一方面确保被测器件功能的完整性,另一方面可用于老化后的对比分析,助力器件失效模式的分析。但一般在可靠性老化测试中不进行器件的动态特性测试,即使是进行栅极老化的高温栅偏实验,一方面是动态特性测试时间很短,封装的老化并不会影响器件的动态特性,另一方面器件的部分动态特性可通过Iges和Vgeth表征,甚至可进行栅极电容的测试来表征。2.2极限能力测试主要包括:短路能力测试、浪涌能力测试和极限关断能力测试,考核的是器件在极端工况下的能力,尤其是关断能力。如短路能力测试主要考核器件在短路(一般有3类短路情况)条件下器件的极限关断能力,一般为10µs能关断电流的数值,主要考核芯片的能力。浪涌能力则是考核反并联二极管抗浪涌能力,一般是10ms正弦半波的冲击,尤其是SiC MOSFET的体二极管非常重要,可能还会影响栅极的可靠性,由于时间较长,主要考核封装的水平。极限关断能力则是考核器件饱和状态下在毫秒级的关断能力,如电网用的直流断路器需要在3ms关断6倍的额定电流。从物理和传热学理论来看,短路测试虽然会有大量的能量产生,最终也是由于能量超过芯片极限而损坏,但由于测试时间非常短,反复的短路测试不会引起封装的老化,而浪涌能力和极限能力测试则将进一步影响封装的老化,是加速老化测试未来应该重点关注的测试。进一步地,极限能力是特种电源等极端应用时需要重要关注的测试。2.3可靠性测试主要包括:功率循环、温度循环、温度冲击、机械冲击、机械振动、高温栅偏、高温反偏、高温高湿反偏和高低温存储等,额外的还包括盐雾等测试。按照应力的来源区分其实可分为电应力加速老化和环境应力加速老化,从器件研发到量产以及应用过程中,需要经过大于10项可靠性测试,机械冲击、机械振动、温度存储等主要考核的是器件在运输或者存储过程中的可靠性,而最重要的测试主要有高温栅偏、高温反偏、高温高湿反偏、温度循环和功率循环。这些实验也是工业界和学术界研究最多,最复杂的测试,尤其是功率循环测试。通过上述加速老化实验,提前暴露器件在芯片设计、封装工艺、样品制备、运输存储、实际应用过程中可能存在的问题,一方面可为器件厂商提供改进建议,优化器件的性能并提高器件可靠性,另一方面可为器件的应用方提供技术指导以及实际产品设计和可靠性验证提供数据支撑。2.4失效分析主要包括:SAM超声波扫描分析、X-ray材料损伤检测分析、SEM电子显微镜分析、光学显微镜分析和有限元仿真分析。SAM超声波扫描分析主要是通过超声波对器件内部各层材料进行探伤,尤其是材料的界面处,当存在一个空洞时,返回的超声波能量和相序发生了变化,即可进行定位。X-ray则更多是用于材料本体探伤研究,多用于材料级的失效分析,SEM电子显微镜和光学显微镜也是一样,但光学显微镜需要打开模块才能对相应的位置进行深入探究。有限元仿真分析是一个除实验外最好的检测、分析和研究手段,通过实验测量数据的对比和修正,完全重现实验过程中器件内部的细节和薄弱点,也是失效分析最难和最为重要的环节。3、可靠性研究步骤可靠性研究的基本步骤如下图1所示,一般需要在可靠性测试前进行一些基本特性测试确保器件的性能以及方便与老化后的进行对比分析,然后进行加速老化等可靠性测试,再进行基本特性测试和失效分析,探究器件的失效模式和失效机理。为了进一步深入探究器件内部各层材料在可靠性测试过程中的应力分布情况,可采用SAM超声波扫描以及有限元分析方法配合进行相应的失效分析。上述可靠性测试中高温栅偏100%与芯片有关、高温反偏约80%情况与芯片有关,也有因为封装老化导致的退化、高温高湿反偏测试也是类似的情况,其他所有可靠性测试均与封装有关,尤其是热特性和机械特性有关。图1所示的基本步骤也只是通用的研究过程,对于具体的问题还需要进行特定的对待和分析。比如大部分情况在可靠性研究中是不会进行极限能力测试的,但如果要研究器件老化对极限能力的影响,则需要进一步考虑,包括多应力的耦合测试。图1 功率器件可靠性测试基本流程这里以Si基IGBT器件的功率循环为例简单介绍一下可靠性加速老化的基本流程和各项参数测试的必要性,如下图2所示。以Infineon公司1200V, 25A Easypack封装的IGBT器件为例进行功率循环的老化测试、寿命评估和失效机理研究等。第I步:确定研究对象,也就是FS25R12W1T4,此封装内有6个开关组成的三相全桥,如下图3所示。上桥臂的IGBT开关共用一个上铜层,下桥臂的IGBT开关均是独立的,这里以U相的下桥臂开关S2为例,减小热耦合影响。S2的上铜层面积与芯片面积相当,热扩散角小,导致散热条件相对较弱,热量会更集中于芯片焊料层。第II步:器件基本特性测试,包括常温下饱和压降Vces (@VGE=15V,Ic=25A,Tvj=25ºC),阈值电压Vgeth (@VGE= VCE,Ic=0.8mA,Tvj=25ºC),集-射极漏电流 Ices (@ VGE=0V,VCE=1200V, Tvj=25ºC),栅-射极漏电流 Iges (@VCE=0V,VGE=20V,Tvj=25ºC),具体条件来源于器件的数据表datasheet。需要说明的是,这里只测试了器件常温下的基本特性,一方面是用于判断器件的性能与好坏,另一方面用于老化后进行对比,常温下的数据即可满足要求。若测试过程中发现某个器件的某个参数超过datasheet里的规定值,则说明此器件是不良品,需要更换新的器件进行测试。进一步地,还可通过此数据来评估各器件间的一致性。第III步:SAM超声波扫描,通过专有设备如SAM301进行器件封装内部各层材料连接状态的检测和参照,将模块倒置于装有去离子水的设备中,超声波从器件的基板开始向下探测,可得到器件各层材料的二维平面图,如下图4所示。此模块没有系统焊接层,因此只展示了器件最薄弱的,也是可靠性测试最为关注和重要的芯片焊料层和芯片表面键合线连接状态,对于新器件而言,各层的连接状态良好。做完SAM后还有一个非常重要的一步,尤其是对于硅胶封装的模块,将模块拿出后必须倒置放置24小时以上,以充分晾干模块内的水分 。进一步地,还需要通过加热板或者恒温箱将器件放置在85ºC环境中至少半小时以上,更加充分的挥发模块内的残余水分以不影响模块的性能。对于TO封装的器件来说,尤其有环氧树脂的充分保护以及环氧树脂吸水性差等特点,加上放置时间很短以及没有高温作用等,可不进行此步骤,但做电学特性实验前必须保证器件表面己无明显水分。在进行热阻等测试前,还需要进行连线,最好通过焊锡连接,以确保连接的可靠性。图2 Si基IGBT器件功率循环测试基本流程 (a) 内部结构 (b) 等效电路图3 FS25R12W1T4模块的内部结构(a) 芯片焊料层 (b) 芯片表面键合线图4 FS25R12W1T4模块SAM超声波扫描结果第IV步:温度关系校准,对于功率器件而言,器件的结温是评估模块电学特性和热学特性最重要的参数,结温不仅可反映模块的散热能力,还可影响器件的电学特性,甚至是可靠性。现在方法中,只有电学参数法测量结温适用并广泛应用于器件可靠性测试中,如热阻测试、功率循环、高温反偏等测试。一般来说,对于低压器件,测量电流选择合适的话,温度校准曲线将呈现完美的线性关系,如下图5所示。可以看到4个器件的曲线均呈现很好地线性关系,虽然在截距上存在一定的差异,但斜率几乎一样,说明芯片的一致性好,此微小差异一般来源于热电源的位置或者加热源的差异,但这种小差异可忽略。图5 FS25R12W1T4的温度校准曲线@IM=100mA第V步:瞬态热阻抗Zth测试,在进行功率循环测试之前,一般为了获得模块内部芯片PN结到散热器甚至环境的热路径情况,以及用于与老化后的状态进行对比,以定位模块失效位置,需要进行瞬态热阻抗Zth测试。通过两次不同散热条件下Zth的测试,也称为瞬态双界面法,可直接获得模块结到壳的热阻值Rthjc,以评估模块的整体性能。将被测器件按功率循环测试的要求安装到测试设备的水冷散热器上,放置好热电偶以以测量相应位置的温度,如壳表面,散热器或环境温度。瞬态热阻抗测试其实相当于一次功率循环,通过给被测器件通过相应的测试电流以加热器件至热平衡状态,降温过程测量器件的结温变化。这里需要注意的是,测试电流越大,测量电路的信噪比越大,测试结果越好,但要保证器件的最大结温不能超过器件允许的最大结温。此器件测量得到的Zthjs如下图6所示,测试条件为升温时间ton=5s, 降温/测量时间toff=40s, 测试电流IL=25A, 水冷温度Tinlet=58ºC, 测量延时tMD=200µs。图6 FS25R12W1T4的瞬态热阻抗曲线,#40器件在功率循环前的结果第VI步:功率循环加速老化测试,做完Zth测试和所有准备工作后,即可进行功率循环的测试,本实验室的测试设备有3条测试支路,每条支路可串联4个器件,共计12个通道,实验过程可以用2条支路或者3条支路。本次测试的器件为4个,每条支路串联2个被测器件,先通过调节测试电流,使得所有器件的结温差在目标温度范围左右,然后再通过控制各个器件的栅极电压来达到精细化和逐点调节。进一步地,通过控制外部水冷的入口温度调整所有器件的最大结温在目标温度范围左右,然后再通过安装条件的修正来达到各个器件的精细化和逐点调节。最终得到的测试条件为升温时间ton=2s, 降温时间toff=2s, 测试电流IL=29.7A, 水冷温度Tinlet=58ºC, 最大结温Tjmax≈150ºC,结温差ΔTj≈90K,测量延时tMD=200µs。功率循环条件设置完成后,只需要在程序中设定相应的保护即可实现完全无人值守运行,保护变量一般应该包括电压Vce保护,电流IL保护,热阻Rth保护,结温Tj保护,水温Tc保护,电源输出保护等。设置完成后的程序运行界面如下图7所示,可看到4个器件的测试条件相应比较接近。值得注意的是,上述测试过程中设置了测量延时,这是由于在半导体器件电流关断时,载流子复合需要时间,尤其是双极性器件。在这个延时时间里,芯片的结温其实是持续下降的,这就导致我们在延时时间tMD后测量的结温并不是器件真正的最大结温,而存在一定的误差,需要通过一些方法进行修正,如根号t方法,具体这方面的内容需要参考相关论文。而此结温的误差将会导致器件的寿命数据存在一定的差异,需要通过现有的模型进行相应的修正。进一步地,我们也看到不可能使得所有器件的数据完全一致,达到我们的想要的测试条件,最终在进行寿命对比时,需将所有器件的条件均归一到同样的条件以保对比的公平性和数据的正确性,如下图8所示。图7 功率循环运行界面示意图图8 功率循环寿命数据第VII步:瞬态热阻抗Zth测试,当模块老化到一定程度或者达到失效判定条件后,需要停止功率循环测试,对其进行瞬态热阻抗测试,进一步准确定位老化位置。测试条件与功率循环前一致,下图8列举了#40器件在不同功率循环次数条件下的测试结果,可以看到,随着老化程度的增加,器件的热阻增加。进一步地,可以看到在模块功率循环前没有经过老化(No.68)时,整个曲线均较小,当老化到一定程度后(No.76888),热阻增加不是非常明显,可以理解为裂纹的形成过程。当功率循环加速老化持续进行(No.91522),这个过程为焊料裂纹生长过程,热阻增加非常明显。图9 #40器件功率循环前后Zthjs结果对比第VIII步:SAM超声波扫描,将功率循环测试后的器件,利用原有的参数设置进行SAM超声波扫描,通过对比可得到器件芯片焊料层和键合线的老化状态,利于器件的失效模式和失效机理研究。下图10展示的是#40功率循环老化后IGBT芯片焊料层和芯片表面键合线的连接状态,可以看到芯片焊料层出现了白点,有严重老化的迹象,这也与图9的结果相吻合。而键合线的状态由于焊料的老化,改变了超声波的路径,使得键合线的状态很难识别,从实验结果来看并没有发生严重的老化。(a) 芯片焊料层 (b) 芯片表面键合线图10 #40器件功率循环老化后的SAM结果值得说明的是,图中的S3和S6也出现了老化是因为之前做过不同ton的实验,但也可以看到S2和S6的老化程度和现象比较一致,更集中于中心区域,而S3则比较均匀,这是由于S3具有更大的散热面积,使得S3焊料的温度分布更均匀。这里想给大家展示的是如何通过SAM图来获得相应的老化信息,要有全局观念,要知道整个实验的计划、过程、细节和数据等,才能给出更为准确的结论。第IX步:器件特性参数测试,完成器件的SAM测试后,仍然要将器件放置干燥处理后才能进行相应的电气特性测试,采用相同的实验条件对上述参数进行测量。一般情况下,上述参数在功率循环老化后不会发生变化,SiC MOSFET由于栅极可靠性问题可能会存在一定程度的阈值电压偏移。同时,Si IGBT一般也会存在轻微的阈值电压偏移,而且是负偏移,但一般在5%以内,这也侧面说明利用阈值电压作为温敏参数可能存在的误差。一般器件的温敏关系约为-2mV/ºC,假定器件的初始阈值电压为5V,则电压偏移25mV,最终导致约12 ºC的误差。第X步:有限元仿真分析,没有仿真解释和验证的实验数据是不可信的,因为实验数据很大程度依据于测试人员、经验、测试方法、测试条件等各方面因素;而没有实验验证的仿真分析也是不可信的,能否解释实际现象很关键。因此,有限元仿真分析其实与实验是相辅相成的,仿真的第一步必然是建立仿真模型,并修正和验证仿真模型的有效性。对于功率循环来说,考核的主要是器件封装在往复周期性温度变化过程中的热应力,因此,模块的热流路径至关重要,可通过瞬态热阻抗来修正模型。下图11为仿真和实验获得的模块S2瞬态热阻抗曲线,仿真与实验结果有非常高的吻合度,最后的些许差异来源于不同的安装条件,从两个实验结果也可看到。图11 S2的瞬态热阻抗曲线对比实验验证后的有限元仿真模型就具备与真实器件相同的热流路径了,可以用来进行功率循环仿真分析。这里值得一提的是,对于功率循环的功率循环仿真分析,必须使用电-热耦合仿真,一方面是纯热仿真没有芯片的电热耦合作用,另一方面是纯热仿真没有键合线的自发热现象,这会导致仿真结果的偏差。这里以S2和S3的有限元仿真来进行说明,下图12为功率循环仿真的结温变化曲线,芯片的结温提取的是芯片表面平均温度,这是与VCE(T)方法获得的值最接近的表征。仿真所用的条件均来源于实验测量结果,仿真过程与实验测试过程一样,通过调整芯片的电导率来获得不同的功率最终达到相同的结温差,调整环境温度来达到相应最大结温。(a) S2在不同ton条件下仿真的结温曲线 (b) S3在不同Tjmax条件下仿真的结温曲线图12 仿真得到的结温曲线获得与实验相同的结温后就可以进行器件内部更为细致和全面的分析,下图13为S2和S3在相同的功率循环条件下芯片表面的温度分布,由于铜散热面积的差异,导致温度分布有所差异,最终导致失效位置发生了变化,如图10所示。因此,通过电气参数的测试可以知道器件的整体变化情况,但无法定位到具体位置,而通过SAM超声波扫描则可获得基本位置信息,但无法准确分析其原因以及产生的机理。最终通过有限元仿真可以得到器件内部更为细节的信息,实现对器件的失效机理研究和封装结构优化。但最为根本的是要把握器件的所有信息,结果能进行相互验证,缺一不可。(a) S2, ton=2s, ΔTj=89.5K和Tjmax=147.7˚C (b) S3, ton=2s, ΔTj=90.9K和Tjmax=152.1˚C图13 芯片表面温度分布4、总结上述以功率循环为例详细描述了需要进行的哪些实验、步骤和原理,严格按照上上述实验步骤再加上一些经验基本上就具备了全面分析功率器件老化失效的能力。但要达到更高水平,尤其是能在做实验过程中主动解决所有遇到的问题,还需要更为细致和深入的学习,其中最最最为核心的就是要把握每个测试的基本原理。只有把握了这些参数、测试的基本测试原理,逻辑思路和功率器件的基本物理过程,才能更深刻的理解一些问题,并解决实际中遇到的问题。主要参考文献[1] MIL-STD-883G, United State420_20220614.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% color: rgb(51, 51, 51) font-family: " hiragino="" sans="" microsoft="" helvetica="" text-align:="" text-indent:="" white-space:="" background-color:="" max-height:=""/
  • 长沙市东雅中学156.77万元采购仪器专用电源/高压电源
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 长沙市东雅中学长沙市东雅中学实验室采购项目项目第1次公开招标公告 湖南省-长沙市-芙蓉区 状态:公告 更新时间: 2022-07-12 招标文件: 附件1 长沙市东雅中学长沙市东雅中学实验室采购项目项目第1次公开招标公告 项目概况 长沙市东雅中学实验室采购项目招标项目的潜在投标人应在各投标人自行下载或查阅招标相关文件和资料获取招标文件,并于2022-08-02 14:00(北京时间)前递交投标文件。 一、项目基本情况称: 项目编号:CSCG-202206210089 项目名称:长沙市东雅中学实验室采购项目 采购方式:公开招标 总预算金额:1567739元。 最高限价:1567739元。 合同履行期限:8月20日 采购需求: 序号 品目分类 标的名称 规格型号 数量 计量单位 预算单价(元) 预算金额(元) 1 其他台、桌类 教师演示讲台 规格:≥2400*700*900mm;参数:1.柜体全钢结构;2.台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,四角倒R15圆角。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能;3.整体结构设计合理,预留电脑主机、键盘托、实物展台、教师电源位置。4.拉手:采用C型不锈钢拉手,用“强磁”测试拉手的不锈钢材质,造型独特美观;5.防撞胶垫:装于抽屉及门板内侧,减缓碰撞,保护柜体;6.门板及抽面:采用双层钢板;7.连接件:采用ABS专用连接组装件;8.合页:采用优质不锈钢模具一体成型,强度必须达到一个正常成年座在门上方合页不脱落;9.滑轨:三节重型滚珠滑轨,承重性强,滑动性能良好,无噪音;10.固定桌脚:采用柜体内置可调ABS调整脚,保证调整脚前后都可以调节高低。 1 张 9200 9200 2 其他电源设备 教师演示电源 规格:≥500*260mm;参数:1.教师演示台配备总漏电保护和分组保护,可分组控制学生的高低压电源,确保学生实验安全方便 ;2.显示智能控制按键同时显示电源电压; 3.教师交流电源通过智能控制按键直接选取0~24V电压,最小调节单元可达1V,额定电流3A,具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值);4.教师直流电源也是通过智能控制按键直接选取,调节范围为1.5~24V,分辨率可达0.1V,额定电流3A,亦具有过载保护智能检测功能; 5.低压大电流值为40A,自动关断;6.220V交流输出为带安全门的新国标插座,带有过载保护和电源指示 ,学生低压交流电源可通过智能控制按键直接选取0~24V电压,最小调节单元为1V,组输送至学生桌;低压直流电压教师能准确控制,最小调节单元为0.1V。 1 套 5500 5500 3 其他台、桌类 物理学生实验桌 规格:≥1200*600*780mm;参数:1.新型钢塑结构1.1台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,前面两角倒R30圆角,后面两角倒R15圆角。台面后方卡入学生桌铝型槽内,前方用预埋件与桌体固定。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能。1.2新型钢塑结构,学生位镂空式,符合人体工程学设计,美观大方。专用书包斗ABS工程塑料一次性注塑成型结合。镂空设计,底部设有排水孔,便于清理,不屯垃圾,中间设挂凳卡。1.3脚架:采用多材质组合结构,便于组装及拆卸,外观流线形设计,简洁美观,易碰撞处全部采用倒圆角,产品款式要求整体设计美观、合理、安全、牢固、耐用。金属表面经环氧树脂粉末喷涂高温固化处理。要做到承重性能强和耐酸碱、耐腐蚀。1.4后档水板承重性能强和耐酸碱、耐腐蚀。1.5、桌脚:采用一体注塑模具成型,结构美观牢固。 28 张 1450 40600 4 其他椅凳类 实验凳 1、Ф凳面直径≥310mm ×高450-500mm,2、凳面材质:采用聚丙烯共聚级注塑,厚6mm。表面细纹咬花,防滑不发光,凳面底部镶嵌4枚铜质螺纹,采用不锈钢螺丝与圆型托盘固定。3、脚垫材质:采用PP加耐磨纤维质塑料,实心倒勾式一体射出成型 凳面与凳脚留有一定的空间便于凳子挂在挂凳扣上。方便教室的打扫。 56 张 195 10920 5 其他电源设备 顶部多模块电源供应装置 采用ABS材质,模具一体成型。模块内预留高压、低压位置。 14 个 280 3920 6 其他电源设备 模块储藏装置 规格:≥373*373*130;参数:采用ABS材质,模具一体成型。 14 个 520 7280 7 其他电源设备 低压电源模块 1、教师主控型,学生低压电源都可接收主控电源发送的锁定信号,在锁定指示灯点亮后,学生接收老师输送的设定电源电压,教师锁定时,学生自己无法操作,这样可避免学生的误操作。可以分组或独立控制;2、学生电源采用耐磨、耐腐蚀、耐高温的PC亮光薄膜面板,学生电源的控制采用按钮式按键,可以随意设置电压,贴片元件生产技术,微电脑控制,采用1.54寸液晶显示电源学生交直流电压 ;3、学生交流电源通过上下键0~24V电压,最小调节单元可达1V,额定电流2A,具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值); 4、学生直流电源也是通过上下键选取,调节范围为1.5~24V,分辨率可达0.1V,额定电流2.5A,亦具有过载保护智能检测功能。 28 个 450 12600 8 其他电源设备 高压电源模块 采用220V,多功能安全插座 28 个 140 3920 9 其他电源设备 智能升降机构 规格:520*390*100;参数:采用自动升降系统,自带保护功能 14 个 3150 44100 10 其他安装 综合布线 2.5平方电线,用控制220V;6平方电线,给学生低压电源供电;1平方屏蔽电源线 1 项 1850 1850 11 固定架、密集架 安装支架 环氧树脂喷涂金属吊杆 1 个 1255 1255 12 其他安装 安装辅件 国标五金件 1 套 420 420 13 其他安装 系统调试 升降功能、高低压电源系统调试 1 项 3100 3100 14 其他安装 顶装安装 标准化安装 1 项 3445 3445 15 平板显示设备 交互智能平板 详见采购需求附件 1 台 27000 27000 16 教学专用仪器 推拉黑板 1、框尺寸:3800*1200mm(需根据教室实际大小与液晶触摸一体机定制大小,满足实际使用需求)2、交互式一体机与绿板组合安装。支持一体机自由装卸,即一体机与书写板可以分开安装,不需同步进行。3、交互式一体机置书写板一侧或中间,四块板材置于电视机的四周。4、移动书写板能完全覆盖交互式一体机,推开时不会遮挡一体机。书写板配置上锁装置,可保护一体机。锁隐藏安装于书写板边框内,锁具的任何零件都不与一体机接触,不刮伤一体机。5、书写板有滑动缓冲胶垫,缓解滑动可能发出的噪音以及强烈碰撞造成的损坏。6、面板:采用厚度≥0.4mm优质镀锌钢板,喷涂绿板专用面漆,经高温固化而成,颜色为绿色,表面细致光洁,书写流畅,抗撞击、磨损、刮擦、不褪色。7、背面:采用厚度≥0.2mm优质镀锌钢板,板面平整,镀层牢固、光滑而均匀。8、夹层:采用消音板做夹层,厚度≥13mm,面层平整,无折痕,不变形,吸音强且环保。9、绿板边框:采用壁厚≥1.2mm高档磨砂电泳铝型材。10、胶粘剂:采用防腐、防锈、防潮、环保的绿板专用胶漆,胶合牢固、经久耐用,永不脱壳,各项指标均达到国际环保要求。11、四角采用ABS工程防爆塑料,模具一次成型,抗冲击力强。 1 套 2200 2200 17 其他台、桌类 教师演示讲台 规格:≥2400*700*900mm;参数:1.柜体全钢结构;2.台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,四角倒R15圆角。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能;3.柜体:整体结构设计合理,预留电脑主机、键盘托、实物展台、教师电源位置。4.拉手:采用C型不锈钢拉手,用“强磁”测试拉手的不锈钢材质,造型独特美观;5.防撞胶垫:装于抽屉及门板内侧,减缓碰撞,保护柜体;6.门板及抽面:采用双层钢板;7.连接件:采用ABS专用连接组装件;8.合页:采用优质不锈钢模具一体成型,强度必须达到一个正常成年座在门上方合页不脱落;9.滑轨:三节重型滚珠滑轨,承重性强,滑动性能良好,无噪音;10.固定桌脚:采用柜体内置可调ABS调整脚,保证调整脚前后都可以调节高低。 1 张 9200 9200 18 其他台、桌类 物理学生实验桌 规格:≥1200*600*780mm;1.新型塑铝结构。2.台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,四角倒R15圆角。台面后方卡入学生桌铝型槽内,前方用预埋件与桌体固定。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能。3.结构:新型塑铝结构,整体1200*600*780。学生位镂空式,符合人体工程学设计,美观大方。专用书包斗ABS注塑一体,镂空设计,便于清理,不屯垃圾,中间设挂凳卡。4.侧脚采用三段式高强度铝合金结构,所有金属表面经环氧树脂粉末喷涂高温固化处理。要做到承重性能强和耐酸碱、耐腐蚀。5.背部档水板、前横梁、中间横梁承重性能强和耐酸碱、耐腐蚀。6.桌侧脚:桌侧脚设置专用孔位与地面固定,并配有跟台面同色ABS脚套装饰盖。 28 张 1890 52920 19 教学专用仪器 多功能柱 规格:350*230*730mm;参数:整体采用实验室专用PP材质,四脚圆弧处理,地脚线缩进30mm,前后二块拼接而成,可拆装,内部隐藏实验线管及通风管道,方便检修。开标现场提供实物样品。 28 套 290 8120 20 其他电源设备 学生安全电源 规格:≥92*152mm;1.ABS电源盒;2.所有学生电源低压可以独立自由分组,也可以教室总控台设置分组,不受电线束缚;3.学生电源采用耐磨、耐腐蚀、耐高温(≤140℃)的PC亮光薄膜面板,学生电源的控制采用“电容式”触摸数字键盘,贴片元件生产技术,微电脑控制,采用液晶显示电源学生交直流电压 ;4.学生交流电源通过数字键盘直接选取0~24V电压,最小调节单元可达1V,额定电流2A,具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值); 5.学生直流电源是通过数字键盘直接选取,调节范围为1.5~24V,分辨率可达0.1V,额定电流2A,亦具有过载保护智能检测功能; 6.学生低压电源都可接收老师发送的锁定信号;7. 220V交流输出为新国标五孔插座,带过载保护。 28 个 560 15680 21 其他电源设备 教师演示电源 规格:500mm*260mm;参数:1.教师演示台配备总漏电保护和分组保护,可分组控制学生的高低压电源,确保学生实验安全方便 ;2.教师电源总控采用液晶屏,显示智能控制按键同时显示电源电压; 3.教师交流电源通过智能控制按键直接选取0~24V电压,最小调节单元可达1V,额定电流3A,具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值) ;4.教师直流电源也是通过智能控制按键直接选取,调节范围为1.5~24V,分辨率可达0.1V,额定电流3A,亦具有过载保护智能检测功能; 5.低压大电流值为40A,自动关断;6.220V交流输出为带安全门的新国标插座,带有过载保护和电源指示 ,学生低压交流电源可通过智能控制按键直接选取0~24V电压,最小调节单元为1V,组输送至学生桌;低压直流电压教师能准确控制,最小调节单元为0.1V。 1 套 4000 4000 22 其他椅凳类 实验凳 规格:Φm≥310mm×高450-500mm;参数:1、凳脚材质:无缝钢管模具一次成型。Ф凳面直径≥310mm×高450-500mm,2、凳面材质:采用聚丙烯共聚级注塑,厚6mm。表面细纹咬花,防滑不发光,凳面底部镶嵌4枚铜质螺纹,采用不锈钢螺丝与圆型托盘固定。3、脚垫材质:采用PP加耐磨纤维质塑料,实心倒勾式一体射出成型 凳面与凳脚留有一定的空间便于凳子挂在挂凳扣上。方便教室的打扫。 56 张 195 10920 23 配电线路 电气布线(地面以上部分) 规格:DN25mm;参数:DN25阻燃线管;4、2.5平方国标线材,符合国家标准 1 套 380 380 24 平板显示设备 交互智能平板 详见采购需求附件 1 台 27000 27000 25 教学专用仪器 推拉黑板 1、框尺寸:3800*1200mm(需根据教室实际大小与液晶触摸一体机定制大小,满足实际使用需求)2、交互式一体机与绿板组合安装。支持一体机自由装卸,即一体机与书写板可以分开安装,不需同步进行。3、交互式一体机置书写板一侧或中间,四块板材置于电视机的四周。4、移动书写板能完全覆盖交互式一体机,推开时不会遮挡一体机。书写板配置上锁装置,可保护一体机。锁隐藏安装于书写板边框内,锁具的任何零件都不与一体机接触,不刮伤一体机。5、书写板有滑动缓冲胶垫,缓解滑动可能发出的噪音以及强烈碰撞造成的损坏。6、面板:采用厚度≥0.4mm优质镀锌钢板,喷涂绿板专用面漆,经高温固化而成,颜色为绿色,表面细致光洁,书写流畅,抗撞击、磨损、刮擦、不褪色。7、背面:采用厚度≥0.2mm优质镀锌钢板,板面平整,镀层牢固、光滑而均匀。8、夹层:采用消音板做夹层,厚度≥13mm,面层平整,无折痕,不变形,吸音强且环保。9、绿板边框:采用壁厚≥1.2mm高档磨砂电泳铝型材。10、胶粘剂:采用防腐、防锈、防潮、环保的绿板专用胶漆,胶合牢固、经久耐用,永不脱壳,各项指标均达到国际环保要求。11、四角采用ABS工程防爆塑料,模具一次成型,抗冲击力强。 1 套 2200 2200 26 其他台、桌类 教师演示讲台 规格:≥2400*700*900mm;参数:1.柜体全钢结构;2.台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,四角倒R15圆角。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能;3.整体结构设计合理,预留电脑主机、键盘托、实物展台、教师电源位置。4.拉手:采用C型不锈钢拉手,用“强磁”测试拉手的不锈钢材质,造型独特美观;5.防撞胶垫:装于抽屉及门板内侧,减缓碰撞,保护柜体;6.门板及抽面:采用双层钢板;7.连接件:采用ABS专用连接组装件;8.合页:采用优质不锈钢模具一体成型,强度必须达到一个正常成年座在门上方合页不脱落;9.滑轨:三节重型滚珠滑轨,承重性强,滑动性能良好,无噪音;10.固定桌脚:采用柜体内置可调ABS调整脚,保证调整脚前后都可以调节高低。 1 张 9200 9200 27 其他台、桌类 物理学生实验桌 规格:≥1200*600*780mm;参数:1.新型塑铝结构。2.台面:采用12.7mm厚双面膜耐腐蚀实芯理化板制作,四角倒R15圆角。台面后方卡入学生桌铝型槽内,前方用预埋件与桌体固定。耐酸、耐碱、耐高温,坚固耐用,防潮、无细孔、不膨胀、不龟裂、不变形、不导电、便于维护及具有良好的承重性能。3.结构:新型塑铝结构,整体1200*600*780。学生位镂空式,符合人体工程学设计,美观大方。专用书包斗ABS注塑一体注塑成型,镂空设计,便于清理,不屯垃圾,中间设挂凳卡。4.侧脚采用三段式高强度铝合金结构。所有金属表面经环氧树脂粉末喷涂高温固化处理。要做到承重性能强和耐酸碱、耐腐蚀。5.背部档水板、前横梁、中间横梁承重性能强和耐酸碱、耐腐蚀。6.桌侧脚:桌侧脚设置专用孔位与地面固定,并配有跟台面同色ABS脚套装饰盖。 28张 1890 52920 28 教学专用仪器 多功能柱 规格:350*230*730mm;整体采用实验室专用PP材质,四脚圆弧处理,地脚线缩进30mm,前后二块拼接而成,可拆装,内部隐藏实验线管及通风管道,方便检修。 28 套 290 8120 29 其他电源设备 豪华电学物理电源 1. 外箱体由两组工程ABS塑料模具一次成型,电源置于台面,面板与台面呈110°夹角,既便于读取参数又便于操作;2. 低压电源均配有实验所需的仪表(表头符合JY-0330教学仪器行业标准);3. 学生电源采用耐磨、耐腐蚀、耐高温(≤140℃)的PC磨砂薄膜面板,贴片元件生产技术,微电脑控制,数码显示电源电压;4. 学生交流电源由老师主控控制,学生不能自行调节电压,老师给学生最小调节单元可达1V,额定电流2A,具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值);5. 学生直流电源由老师主控控制,学生不能自行调节电压,老师给学生分辨率可达0.1V,额定电流2A,亦具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值);6. 学生低压电源都可接收老师发送的锁定信号;7. 220V交流输出为带安全门的多功能三孔插座,带过载保护;8. 面板左右各配有一组新颖、实用的指针式多量程大测量表,方便学生做其它升级实验,A表:0.2~0.6A/1~3A,V表:1~3V/5~15V,G表:-300uA~300uA,各表均配外置调零旋钮,便于随时调零;9. 220V交流输出为带安全门的多功能豪华六孔插座,带有过载保护和电源指示; 28 个 1100 30800 30 其他电源设备 教师演示电源 1、教师演示台配备总漏电保护和分组保护,可分组控制学生的高低压电源,确保教师及学生实验安全方便 2、本智能控制系统采用耐磨、耐腐蚀、耐高温(≤140℃)的PC薄膜面板,教师实验演示电源及对学生电源的控制都采用具有高响应度、高亮度、高对比度的TFT彩色电阻触摸屏控制,高精度贴片元件生产技术,微电脑控制,所有电源均在TFT液晶显示屏上操作,使操作更灵敏,更简便,更直观 3、 本智能控制系统内自带密码开机和定时关机系统,操作更安全,并附带使用说明 4、教师交流电源通过数字键盘直接选取1~24V电压,最小调节单元可达1V,额定电流3A(可做到6A),具有过载保护智能检测功能(电流高于过载点则自动保护,电流低于过载点则自动恢复至设定值)5、教师直流电源也是通过数字键盘直接选取,调节范围为1.5~24V,分辨率可达0.1V,额定电流3A(也可做到6A),具有过载保护智能检测功能6、低压大电流值为40A,自动关断;7、220V交流输出为带安全门的两个国标五孔插座,带有过载保护和电源指示8、学生低压交流电源通过数字键盘直接选取1~24V电压,确认后分组输送至学生桌电源并锁定(锁定后学生自己无法操作,只有在老师解除锁定后才能单独操作),最小调节单元为1V 9、学生低压直流电源通过数字键盘直接选取1.5~24V电压,确认后分组输送至学生桌电源并锁定(同上,略),最小调节单元为0.1V 10学生220V交流电源通过学生电源上的学生220V按键直接选取,确认后学生桌上即有电源输出 1 套 4000 4000 31 其他椅凳类 实验凳 规格:Φm≥310mm×高450-500mm;参数:1、凳脚材质:无缝钢管模具一次成型。Ф凳面直径≥310mm×高450-500mm,2、凳ckground: #FBFDFE ' 64 其他不另分类的物品 主架舱体防尘检修板 ≥1200×500×1mm;采用1.0mm优质镀锌钢板,表面硬度附着力、耐腐蚀性符合国家GB/T3668-200X标准;造型独特美观,检修方便。 28 组 160 4480 65 其他灯具 智能灯光照明装置 定制;接收智能化控制系统控制,功能面板采用1200×85mm,配置LED日光灯1根,灯罩采用ABS一次成型,设计安装磨砂透明均光板,不仅能使光线扩散均匀更能起到安全防护作用。 28 组 210 5880 66 其他电子工程安装 电源供应线路 定制;模块化设计,每组模块间采用活接式连接,方便安装、检修。采用2.5mm2电线进行系统布线(国标免检产品),不含网络布线 2 项 2200 4400 67 其他智能化安装工程 智能控制系统线路 定制;模块化设计,每组模块间采用活接式连接,方便安装、检修。采用1.mm2屏蔽电线进行系统布线(国标免检产品)。 2 项 1175 2350 68 工程排水施工 给水管路 定制;给水主管选用φ20-32mmPP-R给水管,模块化设计,每组模块间采用活接式连接,方便安装、检修。 2 项 2800 5600 69 工程排水施工 排水管路 定制;排水管选用加厚φ50-75mmPVC-U国标管(具有防酸、防碱、耐腐蚀功能),模块化设计,每组模块间采用活接式连接,方便安装、检修。 2 项 2000 4000 70 塑料制品 舱体末端封板 定制;采用ABS材质,模具一体成型。 8 个 500 4000 71 塑料制品 支架功能封板 能隐藏水电通风管道及电线,采用PVC材质,方便检修。 2 套 2520 5040 72 固定架、密集架 安装支架 采用碳钢丝杠及专业连接件、直角座、龙骨架连接件、吊装挂件、安装连接板等。 2 个 1750
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 西电周益春教授团队:在5d电子铪基铁电信息存储取得重要进展!
    存储器作为所有电子信息系统的核心与基石,其在现代信息技术中的重要作用不仅是大国竞争的焦点,更是制约国家安全的关键和核心技术。但是,我国存储器市场基本被美日韩企业所垄断,虽然市场规模约占全球的35%,但自给率不足5%。特别是随着人工智能、物联网和大数据等新信息技术的快速发展与普及,全球数据量呈现爆发式的增长,而市场主流存储器产品因存在物理极限、存储鸿沟和功耗高的问题,无法满足未来海量数据处理的要求。因此,发展新型非易失性存储器正成为世界强国竞争的制高点。铁电存储器是一种采用铁电材料的双稳态极化来存储信息的新型非易失性存储器,因具有极优异的抗辐照性能和长久的数据保存能力,近30年来备受国内外高度关注。然而,锆钛酸铅等传统铁电材料作为存储介质的最小薄膜厚度约为70 nm,不能突破物理极限,翻转速度约为100 ns,不能解决存储鸿沟,且面临组成元素污染集成电路工艺线的巨大难题。2011年意外发现具有铁电性的氧化铪,有望引领存储器同时突破物理极限、存储鸿沟和集成电路工艺兼容性问题。唤醒效应、疲劳失效、性能不均一是阻碍氧化铪基铁电存储器走向应用的瓶颈问题,根本原因在于对氧化铪的5d电子结构、畴结构、铁电相等反常铁电性科学本质认识不足。针对以上需求及挑战,西安电子科技大学先进材料与纳米科技学院周益春教授团队开展5d电子材料铁电性物理本质与存储器设计新理论研究,以构建电子、声子以及跨尺度畴变模型,揭示5d电子材料铁电性的物理本质及其介观响应规律,建立畴与场效应协同的复杂系统器件设计新理论,从而实现铁电相、薄膜、存储器的全链条研制。(1) 提出了场效应与畴结构耦合的器件设计理论,建立了源漏电流(存储窗口)与栅电压、极化、应变、应变梯度之间的关联,实现了铁电存储器的电路设计与仿真,首次研制出64 kbit 氧化铪基铁电存储器。图1. 64 kbit铁电存储器及其功能演示照片(2) 基于与主流集成电路工艺线兼容的原子层沉积工艺,提出硅衬底上制备氧化铪基铁电薄膜的化-力-电多场调控原理和晶态high-k层降低铁电相形成能的策略,实现了杂相(化)、界面(力)、畴(电、力)的协同调控,在国际上首次实现了氧化铪基铁电存储器的后栅极制备工艺和后端集成工艺,并通过了标准工艺线的验证。图2 (a)8英寸氧化铪基铁电薄膜照片 (b) 后栅极工艺制备的铁电存储单元照片(3) 基于贝利相位和能带理论,揭示出氧化铪的铁电相是极不稳定的亚稳相,并阐明掺杂离子-氧空位复合缺陷、应变和电场的协同作用能有效稳定亚稳相;构建了氧化铪基铁电薄膜带电畴壁-内建电场相场模型,从理论上预测了氧化铪尾对尾90°电畴结构的存在及其对氧化铪基铁电薄膜“唤醒”效应与疲劳失效的影响规律,并通过像差校正扫描透射电子显微镜(Cs-STEM)证实90°电畴结构是导致氧化铪基铁电薄膜出现“唤醒”效应的重要原因。图3 氧化铪薄膜在(a)唤醒前和(b)唤醒后的晶相、电畴结构
  • 国产不达标 杭州质监院1400万采购进口设备
    为了使即将建成的国家半导体照明产品质检中心的检测水平达到国内领先、国际先进水平,并保证国内外同行间的比对验证测试,近日,杭州质监院&ldquo 工业和科技重大创新一事一议项目&mdash &mdash 检测平台建设&rdquo 项目开始招标。   在本次项目过程中,采购方考虑到&ldquo 目前的国产设备尚不能达到要求&rdquo ,于是申请申请采购进口产品,包括高精度光谱分析系统、热阻测量系统、大型立式分布式光度计等仪器设备,预算总金额1400万元。   原文如下所示: 关于杭州市质量技术监督检测院安规测量系统等采购进口产品的公示   一.采购单位名称:杭州市质量技术监督检测院   二.采购项目名称:工业和科技重大创新一事一议项目&mdash &mdash 检测平台建设   三.采购项目概况:杭州市质量技术监督检测院拟建成国家半导体照明产品质量监督检验中心,检测水平应达到国内领先国际先进水平,满足产品质量检测的需要,并保证国内外同行间的比对验证测试。   拟购的安规测量系统检测要求设计合理、精度高、功能完善、技术成熟、长期性能稳定可靠、重现性好,目前的国产设备尚不能达到要求,如国产漏电起痕试验仪液滴大小不均匀,国产灯具热试验系统、高精度功率分析仪、高频示波器等设备的精度和功能都不能满足采购需求。   拟购的电磁兼容测试设备是对原有进口设备的升级,要求新购设备与原有设备技术上兼容并且指标的表述形式一致。   拟购的高精度光谱分析系统要求精度高、重复性、光谱响应性高,稳定性好;且可以实现绝对光谱值的测量及支持用户对系统的绝对光谱的校准;灵敏度高,同等条件下可以实现更低信号的检测;针对不同色温的灯具,其测试精度及准确度高,而国产仪器,在测量高色温的灯具时,测试误差大、重复性差。   拟购的热阻测量系统在功能方面,国产设备只能测试整个样品的热阻,而进口设备不仅可以测试整个样品的热阻,还可以测试样品每一层封装结构的热容和热阻,并且可以给出整个芯片结构函数曲线,还可以给出精确分层结构函数曲线,方便测试人员根据测试结果的结构函数划分出不同分层结构的热阻和热容;在测量精度方面,国产设备在加热电流断开较长时间之后才开始测试,而在加热电流刚断开的时候电压的变化非常快,这个时候的数据比较关键,测试延时时间过长会丢失较多数据,导致测试结果的偏差;进口设备加热状态到测试状态切换时间只需要1&mu s。另外,进口设备电压信号采样时间间隔同样只有1&mu s,大大提高了测量准确度,这些都是国产设备无法达到的。   拟购的大型立式分布式光度计要求机械结构制造精密,光度测量传感器V(&lambda )匹配精度优于1%,国内产品无法满足要求。因此我院申请采购进口产品,预算总金额1400万元。   四.拟采用的采购方式:公开招标。   五.专家论证意见:   1、由于采购单位是专业质量检测部门,拟购检测设备应保证检测水平达到国内领先国际先进水平,满足产品质量检测发展的需要,要求拟购检测设备具有高可靠性、高准确度和长期稳定性,品牌具有国际影响力,在业内获得广泛应用。以提升检测数据的可比性,保证国内外同行间的比对验证测试。   2、关于拟购安规测量系统、高精度光谱分析系统、热阻测量系统和大型立式分布式光度计,国内产品在产品设计、功能组合、工艺材料和质量指标的长期稳定性、测试精度及准确度等方面与进口产品相比尚存明显差异。基于附件《关于安规测量系统等采购进口产品的论证意见》所阐述的理由,建议采购进口产品以满足采购需求。   3、拟购仪器设备不属国家限制进口产品。经论证一致同意采购进口产品。   六.其它事项:   根据浙江省财政厅的浙财采监[2010]51号文件《关于进一步加强政府采购进口产品管理的通知》第三条,供应商对该项目的专家论证意见及其理由等有异议的,应在本公示发出之日起三个工作日内,将加盖公章的书面意见送达杭州市财政局政府采购监管处。   七.杭州市政府采购监管部门联系方式:   部门:杭州市财政局政府采购监管处   地点:杭州市新业路311号钱江新城市民之家301室   联系人:陈铖   电话:0571-87008198   传真:0571-85085403
  • ​斯坦福大学Nature,电压成像技术揭示多巴胺如何重塑记忆!
    【科学背景】感官线索的固有效价和学习效价是动物在不断变化环境中评估和决策的关键。固有效价代表了对威胁或食物等生存相关预测的内在反应,而学习效价则是基于经验对这些预测的更新。许多物种通过不同的神经通路处理这些效价,这有助于提高行为的可靠性和灵活性。然而,固有效价如何影响学习效价信息的获取,以及这种相互作用可能带来的功能性益处,仍然不清楚。多巴胺被认为在调节学习和记忆过程中起着关键作用,尤其是在处理固有和学习效价信息方面。哺乳动物的多巴胺神经元(DANs)能编码奖励预测、预测误差以及动机价值,并对不熟悉的刺激做出反应。果蝇的DANs也参与了固有和学习效价的处理。PPL1和前脑前内侧(PAM)群体的DANs向果蝇的蘑菇体(MB)提供正向和负向的强化信号,从而驱动突触可塑性和学习。然而,尽管DANs对气味的固有反应是已知的,但其如何整合固有效价和学习效价信息,以及这种整合如何影响记忆动态,尚未得到全面理解。为了探索这些问题,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan在“Nature”期刊上发表了题为“Dopamine-mediated interactions between short- and long-term memory dynamics”的最新论文。作者进行了大规模的电压成像研究,涉及超过500只果蝇,揭示了PPL1-DANs和MBONs在调节短期和长期记忆形成中的复杂作用。研究表明,多巴胺基的效价整合调节了蘑菇体的记忆动态,能够保留能量消耗较大的持久记忆,特别是对于频繁遇到的关联。通过将脉冲率数据和连接组数据结合,作者的模型预测了这一过程,并验证了这些预测的有效性。【科学亮点】(1)实验首次揭示了果蝇大脑中固有效价和学习效价的多巴胺信号如何共同调控记忆动态。通过对500多只果蝇进行长期电压成像研究,作者获得了关键数据,说明多巴胺信号在调节短期和长期记忆之间的交互作用中起到了重要作用。(2)实验通过电压成像技术观察到PPL1-DANs在嗅觉联想条件反射中异质性和双向地编码了惩罚、奖励和气味线索的固有与学习效价。结果显示,PPL1-DANs的信号调节了蘑菇体(MB)输出神经元(MBONs)的记忆存储和消退。在初步条件反射阶段,PPL1-γ1pedc和PPL1-γ2α’1神经元控制了短期记忆的形成,并减弱了来自MBON-γ1pedcα/β对PPL1-α’2α2和PPL1-α3的抑制反馈。(3进一步的条件反射过程中,这种减弱的反馈使PPL1-DANs能够编码条件气味线索的固有加学习效价,从而调节长期记忆的形成。此外,基于果蝇连接组和电活动数据的计算模型解释了多巴胺信号如何介导短期和长期记忆痕迹之间的电路交互,并且实验验证了这一模型的预测。【科学图文】图1 | PPL1-DANs 和 MBONs 的电压成像。图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。图3 | 学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。图4 | 固有和学习效价都影响持久的可塑性和行为。图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测。【科学启迪】本文揭示了多巴胺在果蝇蘑菇体(MB)中的作用,如何通过整合固有和学习效价来调节记忆动态。首先,研究表明,多巴胺不仅参与编码奖励和惩罚,还通过编码感官线索的固有效价和学习效价来调节记忆。这种基于多巴胺的效价整合机制,使得短期记忆和长期记忆能够在神经电路中进行复杂的交互和调整。这种机制的实现,可能在能量消耗方面具有优势,因为它有助于更高效地处理频繁遇到的关联,避免了不必要的资源浪费。其次,电压成像技术的应用提供了高时间分辨率的神经脉冲数据,克服了钙离子成像在捕捉神经活动细节方面的局限。这种技术使作者能够更准确地观察到多巴胺信号在调节记忆中的具体作用,从而为记忆和学习的研究提供了新的视角。最后,基于果蝇的电压成像数据建立的计算模型,结合了脉冲率数据和连接组数据,验证了多巴胺信号在记忆存储和调节中的关键作用。这种模型不仅解释了神经回路中的互动机制,还为未来的实验提供了可测试的预测,有助于进一步探讨类似机制在其他物种和脑结构中的普遍性。文献详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 荷电的应对技巧——安徽大学林中清33载经验谈(13)
    p style=" text-align: justify text-indent: 2em " 为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。 /p p style=" text-align: justify text-indent: 2em " strong 专家约稿招募: /strong 若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。 /p p style=" text-align: justify text-indent: 2em " 本期将分享林中清老师为大家整理的33载扫描电镜经验谈之荷电的应对技巧,以飨读者。 span style=" color: rgb(127, 127, 127) " (本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点) /span /p p style=" text-align: center margin-top: 15px margin-bottom: 15px " span style=" font-size: 18px color: rgb(0, 0, 0) " strong 荷电的应对技巧——安徽大学林中清33载经验谈(13) /strong /span /p p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 任何事件的发生都存在着内、外两方面因素。就样品的荷电现象来说,内在因素在上一篇《扫描电镜样品荷电现象成因新解》中有详细的介绍,而加速电压和束流的影响则是最重要和最直接的外部因素。改变加速电压和束流会对样品的荷电现象产生怎样的影响?我们又该如何应对样品荷电的影响?这种种问题都将在本文给出明确的解答。& nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " span style=" color: rgb(151, 72, 6) font-size: 18px " strong 一、& nbsp 加速电压和束流对样品荷电的影响 /strong /span /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 充分的事例说明,加速电压和束流的改变会对样品荷电的形态及强弱产生重大影响。提升加速电压,将会增加进入样品的电子总量,也能使荷电场在样品中的位置下沉,这些变化是使样品荷电形态出现改变的源泉。提升束流强度会增加击入样品电子数,加重荷电现象。下面将就此做详细的探讨。 /span /p p style=" text-align: center " span style=" font-size: 18px " strong 1.1加速电压的改变对样品荷电的影响 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 改变加速电压会使得由电子枪发射出来的电子束能量和亮度(发射亮度)产生同步改变。带来的结果是:电子束的发射亮度和电子能量产生同步的增加或减弱。 /p p style=" text-align: justify text-indent: 2em " strong 电子束的发射亮度定义为: img style=" max-width: 100% max-height: 100% width: 74px height: 43px " src=" https://img1.17img.cn/17img/images/202010/uepic/8724f64f-0bc7-41c6-b3bc-e60bee9c5ed0.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" width=" 74" height=" 43" / /strong ,因此提升发射亮度的结果:电子束束流密度的增加和立体角的减小。增加束流密度意味着,相同面积内电子束注入样品的电子数增加,立体角的减小会使得进入样品的电子更为集中。故提升加速电压将增加注入样品单位面积的电子数,在一定程度上会加强荷电场强度,不利于降低荷电场对测试结果的影响。 /p p style=" text-align: justify text-indent: 2em " strong 改变任何因素对最终结果的影响都遵循着辩证法的规律,存在正、负两个方面结果的竞争。结局如何?取决于各自量变的积累是否使其成为结局的主导,所谓:量变到质变。 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 加速电压的增加从电荷量的改变这个方面来说,不利于样品荷电场的减弱。但是加速电压的增加也会带来以下有利于减少荷电场影响的变化:1.& nbsp 电子能量的提升,大量电子深入样品内部形成堆积,造成样品中荷电场位置的下移,当该位置深入到一定值时会失去对表面电子溢出的影响。& nbsp 2. 入射电子能量的提升引发背散射电子能量提升,当探头获取的信息主体是背散射电子时,将有利于削弱荷电场对结果的影响。 /p p style=" text-align: justify text-indent: 2em " 下面将依据实例来探究改变加速电压对荷电现象的影响。 /p p style=" text-align: justify text-indent: 2em " strong A) 加速电压越高,荷电越强 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/1eea1347-275c-4c03-8646-074eae49ef0c.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上三张照片展现的是一种特种布料的截面。照片从下到上可见,布纤维层上涂敷了漆料,漆料上做了多层膜。 /p p style=" text-align: justify text-indent: 2em " 测试条件:分别用1KV、2KV、6KV加速电压对其进行观察。 /p p style=" text-align: justify text-indent: 2em " 样品特性:截面观察,无论是布纤维、油漆层还是薄膜层相对电子束来说都是无穷厚,电子束能量再高也无法击穿。 /p p style=" text-align: justify text-indent: 2em " 漏电能力:1.& nbsp 处于中间的油漆层是 strong 密度较大的非晶态固体 /strong ,漏电能力极差且 strong 荷电场的位置 /strong 在样品中较难移动;2.& nbsp 布纤维密度较大,漏电能力较强,形成的荷电场强度较小;3. 薄膜层是紧密的晶体结构,漏电能力最强,不易形成荷电场。 /p p style=" text-align: justify text-indent: 2em " 结果:提升加速电压,随着注入样品的电子增多,三个部位分别表现为:1.油漆层 1KV注入的电子少,无荷电现象;2KV荷电现象的强度和区域都明显增加,6KV整个油漆区域都存在严重的荷电现象;2.& nbsp 布纤维 1KV无荷电现象,2KV出现轻微的荷电,6KV荷电现象加重;3.& nbsp 薄膜层始终无荷电现象。 /p p style=" text-align: justify text-indent: 2em " strong B)加速电压升高荷电现象减轻 /strong strong /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/306aa525-67a8-4be0-a866-3b5590b121c5.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " strong 枝晶MOF /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 样品介绍:枝晶MOF,松散的晶体材料(见最后一张)。 /p p style=" text-align: justify text-indent: 2em " 测试条件(AV):100V、200V、300V、400V、600V、700V /p p style=" text-align: justify text-indent: 2em " 样品特性:样品松软、凹陷,漏电能力较差而电场容易沉降。 /p p style=" text-align: justify text-indent: 2em " 结果:加速电压100V,电子累积于凹陷的上表层。荷电场位置极高,抑制凹陷处二次电子溢出,图像呈异常暗。二次电子产额的不足,造成荷电场对结果影响极大,图像变形严重。 /p p style=" text-align: justify text-indent: 2em " 200V、300V、400V,随着加速电压的提升,荷电场从样品表面下沉,电子信息开始溢出样品。只是此时表面信息还是受荷电场影响,出现磨平或异常亮的现象,但随荷电场的下沉而逐步减弱。 /p p style=" text-align: justify text-indent: 2em " 这是一个晶体材料,加速电压的增加很容易在晶体结构上形成电荷通路,使得样品漏电能力增强而进一步加速荷电场的下降。因此我们可以看到随着加速电压从200V增加到400V荷电现象快速的减弱。 /p p style=" text-align: justify text-indent: 2em " 加速电压增加到600V以后,形成的荷电场更深,至此对样品电子信息的溢出也无法形成影响。荷电现象消失。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压有利于荷电场的下沉减少样品的荷电现象,但缺点是,过高的加速电压会使得样品表面信息出现缺失。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5b33187f-2953-4615-8e37-654fad2e2829.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上实例充分展示,加速电压对样品荷电的影响并不单调,同样遵循辩证法的规律。样品漏电能力是形成荷电场的内因,是根基。改变加速电压会对荷电场在样品中所处的位置及强度产生影响,是形成荷电场最重要的外部因素。实际操作中,选取不同加速电压,依据结果的变化趋势来修正测试参数,是最有效抑制样品荷电场影响的方法之一。 /p p style=" text-align: justify text-indent: 2em " strong C)增加加速电压对荷电场强度和位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 以下测试结果组合,将向我们充分展示:随着加速电压增加所带来的荷电场强度增加和荷电场位置下移,这两个增加和减弱样品荷电现象的因素,它们之间各自量变的竞争,将会给测试结果在荷电现象的呈现上,带来怎样的质变。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/8f694a6a-9018-4704-b2db-30bdb0a881dc.jpg" title=" 4.PNG" alt=" 4.PNG" / /p p style=" text-align: justify text-indent: 2em " 样品名称:真菌和锑纳米颗粒 /p p style=" text-align: justify text-indent: 2em " 测试条件(AV):1KV、2KV、3KV、5KV、10KV、20KV /p p style=" text-align: justify text-indent: 2em " 测试结果:1KV,注入样品的电子数较少,荷电场强度弱,对溢出样品表面的电子信息影响不大,测试结果无荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2KV、3KV,注入样品的电子数增多,荷电场强度逐渐加强,而荷电场的位置却处于能充分影响样品电子信息溢出的区间,因此随着加速电压的增加荷电现象加重。 /p p style=" text-align: justify text-indent: 2em " 5KV,10KV、20KV虽然注入样品的电子数进一步增加,但荷电场在样品中的位置同步加深,逐渐失去对溢出样品表面电子信息的影响。荷电现象减弱直至在10KV后再次消失。 /p p style=" text-align: justify text-indent: 2em " strong D)减速模式与样品的荷电现象 /strong /p p style=" text-align: justify text-indent: 2em " 主流观点认为:在样品台上附加一个减速场将有效的减弱样品荷电的影响。至于具体原因交代的并不清晰。 /p p style=" text-align: justify text-indent: 2em " 实际测试过程中发现,减速场并不存在消除荷电的效果,但会对荷电现象的表现形式产生影响,结果也较为复杂。有可能消除也可能加重荷电现象,或从异常暗转变为异常亮。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/e1cefc7e-789c-4dde-bfb9-f5500d96f208.jpg" title=" 5.PNG" alt=" 5.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上都是介孔KIT-6。该样品具有一定的晶体特性,因此拥有一定的漏电能力。而晶体结构和块体形态的差异,使得不同块体以及块体的不同部位,漏电能力都存在些微差异。 /p p style=" text-align: justify text-indent: 2em " 样品下方添加一个负电场(减速场),这个电场也会对样品各部位产生影响。样品各部位的特性及漏电能力不同,受减速场的影响也不同,出现的荷电现象更不相同。虽无法精确定量减速场对最终结果的影响,但因其出现在下方,故该影响以信息增加为主,荷电形态的变化也以由暗到亮为主。 /p p style=" text-align: center " span style=" font-size: 18px " strong 1.2 改变束流对样品荷电的影响 /strong /span /p p style=" text-align: justify text-indent: 2em " 降低束流将会减少电子束注入样品的电子数,故束流降低荷电现象必然是减弱。但降低束流会使得电子束激发的样品信息总量下降,溢出样品表面的电子总量也会下降,探头获取样品的表面信息不足,使得样品表面形貌像的质量较差。 /p p style=" text-align: justify text-indent: 2em " 易形成荷电的样品,绝大部分都是由轻元素所组成的非晶态结构,表面信息都不充足。因此降低束流达成减少荷电影响的手段,除非万不得已,很少被使用。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/73c23666-7a1b-453f-a5f3-dfffba92be0e.jpg" title=" 6.PNG" alt=" 6.PNG" / & nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " strong span style=" color: rgb(151, 72, 6) font-size: 18px " 二、& nbsp 样品荷电的应对 /span /strong /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 不同形态和特性的样品,其荷电现象的成因及形成荷电场的强度和位置都不相同。选用不同能量的电子信息(SE/BSE)形成表面形貌像时受荷电场的影响程度也不同。依据这种种不同来选择合适的测试条件,将有效的克服样品荷电影响。 /p p style=" text-align: justify text-indent: 2em " 应对样品荷电影响的思路递进路线图: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 在保证样品信息不受影响的情况下,尽量选择漏电能力强的部位来测试并增加探头接收背散射电子信息的含量。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 如果采用以上方法无效,应尽量选择形成荷电场强度小的测试条件。比如:合适的加速电压、束流及快速拍照等。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 再无效,可给样品覆盖漏电能力强的物质(蒸金)来降低荷电场的影响。该方法容易形成细节假象,要把握住量。 /p p style=" text-align: justify text-indent: 2em " 以上应对样品荷电现象的思路递进只是一个建议。实际操作可不按这个路径,即可单独运用,也可以组合起来使用。因时而变、因势而取,只要适合就是最好的。 /p p style=" text-align: justify text-indent: 2em " 最高目标:充分克服样品荷电的影响,充分获取真实的样品信息,充分获得样品的高质量表面形貌像。 /p p style=" text-align: center " span style=" font-size: 18px " strong 2.1受荷电影响小的样品结构及电子信息 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " strong 2.1.1受荷电影响小的样品结构 /strong /p p style=" text-align: justify text-indent: 2em " 小颗粒以及连续、紧密的晶体结构漏电能力都很强,在该结构中无法形成荷电场或形成的荷电场强度不大,无需进行特殊处理即可直接观察。该类样品分以下五种情况。 /p p style=" text-align: justify text-indent: 2em " strong A)& nbsp & nbsp 纳米颗粒,直径小于几百纳米的样品 /strong /p p style=" text-align: justify text-indent: 2em " 酒精分散滴在硅片上烘干。直径几百纳米的小颗粒表面能很强、吸附力大,不用考虑固定问题。颗粒越小吸附力越好。 /p p style=" text-align: justify text-indent: 2em " 采用硅片的原因:1.& nbsp 硅片是半导体,虽导电性不好,但其本身是结构紧密的晶体,电子迁移效果好,漏电能力强,不会形成荷电现象;2.& nbsp 硅片本身电子信息极弱,抛光好的硅片表面平整,不会形成背底信息;3.& nbsp 硬度大,有利于样品在其表面充分的站立,获取的样品表面形貌像立体感强。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/48c68779-a0ec-4532-a96d-99daf8bdbf63.jpg" title=" 7.PNG" alt=" 7.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/f774d24c-ada8-4f23-8b2a-1f025e1cf718.jpg" title=" 9.PNG" alt=" 9.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B)连续、紧密的晶体结构 /strong /p p style=" text-align: justify text-indent: 2em " 紧密、连续的晶体结构漏电能力较强,自由电子在样品上的迁移也十分容易。这类样品只要做到充分的接地,样品中形成的电荷累积就很少,不存在荷电现象或荷电极其轻微。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/7bc8fc68-2862-476d-b2db-fc94808f7a6a.jpg" title=" 10.PNG" alt=" 10.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ceec775c-414c-401f-af53-d2361e58d006.jpg" title=" 11.PNG" alt=" 11.PNG" / /p p style=" text-align: justify text-indent: 2em " strong C)漏电能力差异大的样品 /strong /p p style=" text-align: justify text-indent: 2em " 一个样品,如果不同部位的漏电能力有很大差异,样品的荷电只会在漏电能力差的部位聚集出现。测试时只需要避开漏电能力较差的部位,结果就不会受到荷电影响。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/8d950643-1090-4f87-8139-4f30594caab4.jpg" title=" 12.PNG" alt=" 12.PNG" / /p p style=" text-align: justify text-indent: 2em " 同一个样品,不同部位漏电能力的差异来自两方面原因:1.材料特性上的些微差异,上面已有充分展示;2. 颗粒堆积体的堆积形态,凹陷部位容易积累电子,降低样品整体的漏电能力,该处极易形成荷电现象。 /p p style=" text-align: justify text-indent: 2em " 易形成荷电现象的部位,在测试时需要加以规避。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/fe5a942c-0912-44a2-84f7-4974245817d5.jpg" title=" 13.PNG" alt=" 13.PNG" / /p p style=" text-align: justify text-indent: 2em " strong D)低倍有荷电现象不代表高倍率也会有荷电现象 /strong strong /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/56a3afdc-fd4e-4898-b8c3-f51b7944099a.jpg" title=" 14.PNG" alt=" 14.PNG" / /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: justify text-indent: 2em " strong E)高倍率有荷电不代表低倍率也会出现荷电现象 /strong /p p style=" text-indent: 0em text-align: center " strong /strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/1e1dfda1-fd2a-41fa-abf3-6a9c3761ce8a.jpg" title=" 15.PNG" alt=" 15.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.1.2 选择受荷电影响小的电子信息(BSE) /strong /p p style=" text-align: justify text-indent: 2em " strong A)背散射电子能量比较大 /strong ,其溢出量不容易受到样品荷电场的影响。遇到样品有荷电现象时,选择背散射电子常常可以解决90%的荷电影响。样品仓探头接收的样品信息是以背散射电子为主,是应对样品荷电现象的最有效手段。提升背散射电子能量,也是进一步减少荷电影响的有力方式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/95c96f8e-7433-444d-9dd7-c09e566d3408.jpg" title=" 16.PNG" alt=" 16.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d94b56cd-bccf-480f-a623-d8b973744eb1.jpg" title=" 17.PNG" alt=" 17.PNG" / /p p style=" text-align: justify text-indent: 2em " 改变工作距离,降低上、下探头接收到的样品电子信息中总的二次电子含量,能起到减少样品荷电影响的效果。 strong /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/031ef60e-af40-4d9c-84df-4550dd5efc96.jpg" title=" 18.PNG" alt=" 18.PNG" / /p p style=" text-align: justify text-indent: 2em " 用样品仓探头观察200纳米以上的细节,清晰度和辨析度(细节分辨能力)都好;观察200纳米到20纳米细节,清晰度随细节变小而逐渐变差但辨析度具有优势;观察10纳米以下细节,清晰度和辨析度都很差。故除非观察10纳米以下的细节,对其它信息合理采用样品仓探头往往更有利。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/af2b57e0-acd1-4670-824a-48c58f3646d0.jpg" title=" 19.PNG" alt=" 19.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B)选择不同角度的二次电子也会对图像荷电现象形成影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品表面二次电子溢出的分布并不均匀。与样品表面夹角大的高角度二次电子,溢出方向与荷电场法线方向基本重合,故比低角度二次电子更容易受荷电场的影响。探头接收的样品电子信息中高角度信息越多,荷电对结果的影响就越大。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c3ca2fb8-96bb-4393-9a5c-574de4b98c9d.jpg" title=" 20.PNG" alt=" 20.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上事例充分说明,利用样品本身的漏电能力以及选用受荷电影响小的电子信息(背散射电子,低角度电子信息)都对减少样品荷电对结果的影响有明显效果。如果采用以上方式无法消除荷电场对测试结果的影响,那又该如何处理? /p p style=" text-align: center " span style=" font-size: 18px " strong 2.2选择形成荷电场强度小的测试条件 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 除了加速电压与束流对样品荷电场的形成有直接影响外,电子束的扫描速度也会影响样品中荷电场的形成。用快速的扫描方式成像,对降低样品的荷电影响同样效果显著,只是成像质量较差。这就是CSS和TV成像模式。 /p p style=" text-align: justify text-indent: 2em " strong 2.2.1采用电子束快速扫描方式获取图像 /strong /p p style=" text-align: justify text-indent: 2em " 快速移动的电子束会减少每次扫描时电子在样品中的注入量,并有助于电子在样品中迁移,这都会使样品中的荷电场强度大大减弱。以快速的电子束扫描模式来获取样品表面形貌像,有利于减少样品荷电对测试结果的影响。 /p p style=" text-align: justify text-indent: 2em " 快速扫描获取样品表面形貌像的方式有:CSS和TV模式。 /p p style=" text-align: justify text-indent: 2em " CSS模式是以快速、多次线扫,然后取几次线扫的平均值做为图像每条线的衬度信息。整幅图像就是由这些以线扫方式所获取的样品表面形貌衬度信息所组成。 /p p style=" text-align: justify text-indent: 2em " TV模式是以更快速的面扫描方式获取样品表面形貌像,将十几或几十幅图片叠加在一起形成最终的表面形貌像。 /p p style=" text-align: justify text-indent: 2em " 以电子束的快速扫描方式获取样品信息,在降低荷电的影响时,也大大削弱了样品信息的溢出量,使图像质量较差。电子束移动速度越快图像质量越差。TV模式图像质量最差。 /p p style=" text-align: justify text-indent: 2em " 图像漂移是快速扫描成像模式所面对的最大问题。图像漂移越严重,清晰度就越差,严重的漂移会引起图像变形。虽然有些厂家设计了图像漂移校正软件,但都有限度,与慢扫描模式所获取的图像质量还是有一定差距。 /p p style=" text-align: justify text-indent: 2em " 改变测试条件解决样品荷电影响,常常会给扫描电镜的图像带来正、反二方面的结果。用辨证的观念,坚持适度性原则,是选择最佳测试条件的更本保障。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/93c65b6d-7ef6-4019-bb09-087b799012ae.jpg" title=" 21.PNG" alt=" 21.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/639d9ab7-f211-419a-88a5-ace79ff57379.jpg" title=" 22.PNG" alt=" 22.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.2.2样品表面蒸镀漏电能力强的物质(蒸金) /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 给样品表面“蒸金”,让漏电能力强的金膜与电子束接触,既可增加样品表面的漏电能力,减少荷电场对结果的影响,还能提升样品电子信息的溢出量,改善表面形貌像的质量。但该方法带来的严重后果是对表面形貌细节的掩盖和改变。 /p p style=" text-align: justify text-indent: 2em " 既要保证获取优质的表面形貌像又要对表面形貌像没有结构性的改变,把握好蒸金的量就极为关键。 strong 多次、多角度的微量蒸金 /strong ,是用蒸金的方式获取最佳结果的最有效方法。采用这种方法,可以避免蒸金的死角也容易掌控蒸金的量。如同炒菜时的调味,味不足可以弥补,味太过只能倒掉。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/173a8c15-f847-4f79-bfce-cf8d17a6ca8e.jpg" title=" 23.PNG" alt=" 23.PNG" / & nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " span style=" font-size: 18px " strong span style=" color: rgb(151, 72, 6) " 三、 结束语 /span /strong /span /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 样品的荷电现象源于电子束轰击样品时,注入样品的电子数和溢出样品表面的电子数之间出现差异。由于溢出样品表面的各种电子总数,只占电子束激发的样品电子信息中,极少的一部分,因此注入的电子数一定会远多于溢出样品表面的电子数。多余出来的电子就在样品中形成自由电子。 /p p style=" text-align: justify text-indent: 2em " 如果样品形态是: /p p style=" text-align: justify text-indent: 2em " 1. 颗粒较小(几百纳米以下)或连续、紧密的晶态结构。这类样品本身的漏电能力很强,自由电子在样品中迁移十分容易。当样品接地良好,则多余的电子就会从样品中漏除。 /p p style=" text-align: justify text-indent: 2em " 2. 样品颗粒很大且是断续、松散的非晶态结构或小颗粒的松散堆积体。这类样品的漏电能力较差,自由电子会在样品中形成堆积。这些堆积的电子将在堆积处形成静电场,从而影响样品中各种电子信息的正常溢出,在样品的表面形貌像上叠加异常暗、异常亮或者磨平这三种形态的荷电现象。静电场由样品的荷电所形成,因此也称为“荷电场”。 /p p style=" text-align: justify text-indent: 2em " 二次电子能量较弱,由其为主形成的图像最容易受荷电场影响而酿成荷电现象。背散射电子能量较大,溢出量不易受荷电场影响,由其为主形成的图像很少出现荷电现象,且加速电压越大,图像出现荷电现象的几率越低。 /p p style=" text-align: justify text-indent: 2em " 荷电现象只影响图像的形态而对样品形态不产生影响。 /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象有三种形态:异常亮、异常暗、磨平 /p p style=" text-align: justify text-indent: 2em " 异常亮:当样品表面有大量二次电子产生,而荷电场产生在样品信息溢出区的下部。此时荷电场会将位于其上方的二次电子大量推出,荷电场及周边的信息正常溢出得到异常的增加,出现异常亮。该现象往往出现在使用较高加速电压观察堆积体和密度较大但漏电能力较差的样品中。 /p p style=" text-align: justify text-indent: 2em " 异常暗:当荷电场位于样品信息溢出区的上部。此时样品的信息溢出受到荷电场的抑制,从而形成异常暗的现象。这类现象常常出现在采用低加速电压观察较松散样品的凹陷部位。增加加速电压会使得荷电场的位置下降,这种荷电形态容易转变成磨平或异常亮直至消失。 /p p style=" text-align: justify text-indent: 2em " 磨平:样品浅表层有足够的信息产生,而荷电场位置较高,和信号溢出区混杂,荷电场会使得溢出样品的电子异常减少而影响细节分辨。这类现象较易出现在较低加速电压观察松散的样品。增加加速电压,荷电现象也会变为异常亮或消失。& nbsp /p p style=" text-align: justify text-indent: 2em " 应对样品荷电影响的方式有很多。各种应对方式所适合的样品类型及所获取的样品信息也各不相同。 /p p style=" text-align: justify text-indent: 2em " 充分分散样品,使得样品各点充分接地将极为关键。它能消除很多因样品堆积而产生的附加荷电场。 /p p style=" text-align: justify text-indent: 2em " 应对样品荷电应遵循尽量提升样品本身的漏电能力,减少样品上自由电子堆积的原则。充分分散和固定好样品,准确找到样品上漏电能力强的部位进行观察,是十分有效的手段。 /p p style=" text-align: justify text-indent: 2em " 接收受荷电影响小的电子信息(背散射电子、低角度电子信息等)。在保证图像分辨力的基础上,选择形成荷电场小的加速电压和束流,采用快速扫描(CSS\TV模式)获取表面形貌像,这些都是削弱样品荷电影响的有效方式。 /p p style=" text-align: justify text-indent: 2em " 如果以上方式都不奏效,在样品表面形成漏电层(蒸金& nbsp )将成为很关键的方法。蒸金应当遵循多次、多角度、微量蒸镀的原则,保证金膜均匀、适量。最佳的效果是即消除荷电影响,又提升图像质量,还对原有的图像细节影响小。 /p p style=" text-align: justify text-indent: 2em " 实际操作过程中往往会发现,应对样品荷电,采用单一的方法并不能给我们带来完美的结果。表现为荷电不能被完全消除,图像质量受到影响。将几种消除荷电的方式复合使用常常能带来更好的效果,是应对样品荷电最有效的手段。 /p p style=" text-align: justify text-indent: 2em " 荷电现象是进行扫描电镜测试时,经常遇到并让测试者十分头痛的问题。正确认识荷电形成的原因,才能找到可行的应对方式。希望本文能给大家提供一定的参考。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》 张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等& nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 恩格斯 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 章效峰 2015年10月& nbsp 清华大学出版社 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong style=" margin: 0px padding: 0px " 作者简介 /strong /span strong style=" margin: 0px padding: 0px " : /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em " span style=" margin: 0px padding: 0px text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 82px height: 128px float: left " src=" https://img1.17img.cn/17img/images/202010/uepic/97fabfc9-e32f-4731-9623-40143ec93450.jpg" title=" 林.jpg" alt=" 林.jpg" width=" 82" height=" 128" / /span span style=" text-indent: 2em " 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zt/LZQ" target=" _self" style=" text-indent: 2em text-decoration: underline " strong style=" color: rgb(0, 176, 240) " 【系列专题:安徽大学林中清33载扫描电镜经验谈】 /strong strong style=" color: rgb(0, 176, 240) " /strong /a /p p style=" text-indent: 2em " strong 林中清系列约稿互动贴链接 /strong (点击留言,与林老师留言互动): /p p style=" text-indent: 2em " a href=" https://bbs.instrument.com.cn/topic/7656289_1" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " https://bbs.instrument.com.cn/topic/7656289_1 /span /strong strong span style=" color: rgb(0, 176, 240) " /span /strong /a /p
  • 河南食药监局1378万元仪器采购大单公布
    近日,中国政府采购网公布了河南省食品药品监督管理局省医疗器械检验所2010年中央补助地方医疗器械检验机构装备的采购中标公告,采购总额高达1378.57万元。现就本次招标的中标结果公布如下:   一、项目名称:河南省食品药品监督管理局省医疗器械检验所2010年中央补助地方医疗器械检验机构装备采购   二、项目编号:豫财招标采购【2011】26号   三、招标项目简要说明:   3.1 资金来源:财政拨款   3.2 总投资:1378.57万元   3.3 标段划分:共分24个包   四、招标信息:   发布媒体:河南省政府采购网   发告日期:2011年1月16日   开标日期:2011年2月16日   开标地点: 河南省机电设备招标股份有限公司四楼第一会议室   评委会成员:王小利、刘志霞、周金友、王兴国、马志军   五、中标信息:   第1包:全自动生化分析仪   中标供应商:河南泰富科技有限公司   中标商地址(住所):郑州市郑东新区CBD外环与商务东四街交叉口联合中心1幢2101号   中标金额:69.9000万元   第2包:纯水、超纯水一体机、双人生物安全柜、大鼠层流柜(IVC)等设备   中标供应商:河南致达电子有限公司   中标商地址(住所):郑州市金水区经三路西、东风路南7栋1单元7层702   中标金额:29.7600 万元   第3包:显微镜及图像处理系统   中标供应商:郑州三和安驰科贸有限公司   中标商地址(住所):郑州市中原区桐柏南路238号3号楼11层1106号   中标金额:78.6000万元   第4包:全自动菌落分析系统、小型台式离心机、高温老化箱等设备   中标供应商:河南环球仪器设备有限公司   中标商地址(住所):郑州市金水区经三路32号财富广场3号楼7层   中标金额:30.9612万元   第5包:全波长扫描多功能读数仪   中标供应商:郑州树仁科技发展有限公司   中标商地址(住所):郑州市高新区长椿路11号2号厂房A单元1层A1号   中标金额:59.8000万元   第6包:注射器滑动性能测试仪、医用针管(针)韧性测试仪等设备   中标供应商:河南德兴电子科技有限公司   中标商地址(住所):郑州市郑东新区商务外环路3号25层08号   中标金额:28.8000万元   第7包:微粒分析仪   投标人不足三家,流标   第8包:输注泵流量参数测试仪、工具测量立式投影仪等设备   中标供应商:河南德兴电子科技有限公司   中标商地址(住所):郑州市郑东新区商务外环路3号25层08号   中标金额:26.9000万元   第9包:扭曲测试仪(干态落絮性能测试仪)   投标人不足三家,流标   第10包:自动滤料测试仪、无油静音空气压缩机系统   中标供应商:河南致达电子有限公司   中标商地址(住所):郑州市金水区经三路西、东风路南7栋1单元7层702   中标金额:67.76万元   第11包:全自动透气性测试仪   中标供应商:理宝商贸(上海)有限公司   中标商地址(住所):上海市沪太路315弄2号8E室   中标金额:29.8000万元   第12包:傅立叶红外光谱仪   中标供应商:郑州三和安驰科贸有限公司   中标商地址(住所):郑州市中原区桐柏南路238号3号楼11层1106号   中标金额:46.2000万元   第13包:ICP-OES、ICP-MS(电感耦合等离子体质谱仪)   中标供应商:河南贝尔伟业仪器有限公司   中标商地址(住所):郑州市东风路18号金成国际广场7幢2单元803号   中标金额:184.5000万元   第14包:高效液相色谱仪   中标供应商:河南粮油食品进出口集团裕德科贸有限公司   中标商地址(住所):郑州市金水区经七路二十三号   中标金额:56.8000万元   第15包:电化学测量系统、电位滴定仪等设备   中标供应商:河南致达电子有限公司   中标商地址(住所):郑州市金水区经三路西、东风路南7栋1单元7层702   中标金额:26.2200万元   第16包:齿科检测设备   有效投标人不足三家,流标   第17包:阿贝折射仪、测量望远镜、视度计等设备   中标供应商:河南致达电子有限公司   中标商地址(住所):郑州市金水区经三路西、东风路南7栋1单元7层702   中标金额:80.8600万元   第18包:尘埃粒子计数器、浮游菌采样器等设备   中标供应商:河南昊成科技有限公司   中标商地址(住所):郑州市金水区黄河路1号裕博商务大厦1层6119号   中标金额:12.7200万元   第19包:电磁兼容测试系统   中标供应商:郑州德诚科技有限公司   中标商地址(住所):郑州市中原区伏牛路东淮河路南18号楼1单元2层东   中标金额:84.9000万元   第20包:X射线辐射多功能测试仪、DSA测量模体   中标供应商:北京华瑞奥利科电子技术有限公司   中标商地址(住所):北京市朝阳区东三环北路辛2号2号楼701、710室   中标金额:71.2500万元   第21包:便携式磁场强度计、核磁共振性能检测模体模体等设备   中标供应商:北京华瑞奥利科电子技术有限公司   中标商地址(住所):北京市朝阳区东三环北路辛2号2号楼701、710室   中标金额:27.0000万元   第22包:信号发生器、除颤效应测试仪、剩余电压测试仪等设备   中标供应商:河南昊成科技有限公司   中标商地址(住所):郑州市金水区黄河路1号裕博商务大厦1层6119号   中标金额:56.5250万元   第23包:漏电起痕测试仪、脉冲试验仪、稳定性试验台等设备   中标供应商:河南中豫电子有限公司   中标商地址(住所):郑州市东风路东段11号百脑汇科技大厦1512室   中标金额:46.8620万元   第24包:麻醉气体分析器、臭氧检测仪、顺应性可调模拟肺等设备   中标供应商:河南德兴电子科技有限公司   中标商地址(住所):郑州市郑东新区商务外环路3号25层08号   中标金额:43.8600万元   六、本次招标联系事项:   联 系 人:杨先生 王女士   联系电话:0371- 65928003 65954250   传真电话:0371- 65954250   联系地址:郑州市纬二路四号   邮政编码:450003   网 址:www.henanbidding.com   各有关当事人对中标结果有异议的,可以在中标公告发布之日起七个工作日内,以书面形式向河南省烟草公司郑州市公司和河南省机电设备招标股份有限公司提出质疑,逾期将不再受理。 河南省机电设备招标股份有限公司 2011年2月18日
  • 环境试验箱长时间停机后开机注意事项
    近期,各地疫情得到控制,陆续解封,正在逐步复工复产。若环境试验箱因此经过了长时间的停机,在开机前需要做如下检查:1. 加湿水:带湿度的设备要检查水箱内的加湿水,若水箱水在停机前已经放空,则需要加至水箱三分之二高度;若水箱水之前没有排空,则需要更换加湿水,因为水箱内的水长时间静置后会滋生细菌及微生物等造成水系统堵塞。2. 冷却水:设备运行前请检查冷却水的阀门是否开启,水温水压等是否满足设备需求,建议水压2.5~6bar,水温12~28℃。3. 电:设备运行前请检查供电电压是否满足3/N/PE AC 380V±10% 50Hz,且无漏电现象。4. 气:部分设备会使用到压缩空气,建议在通气前拔出供气管道放入一个收集装置,少量开启阀门检查是否有积水,避免积水喷入设备或者喷入干燥装置的滤芯造成损失。检查完毕后建议先对设备进行常温25℃运行30分钟,这样可以充分润滑压缩机,延长使用寿命。如果是带湿度的设备则建议再做一个60℃~80℃运行两小时烘干一下设备(烘干时需要拔出采样口的塞子),然后回常温投入使用,这样可以避免投入使用后可能会在样品表面产生冷凝水。
  • 1711万元!深圳大学欲采购NMR、AFM等仪器
    近日,2021年度深圳大学政府采购意向公开,其中包含多种分析仪器,如核磁共振成像分析仪、原子力显微镜、激光扫描共聚焦显微镜、共焦显微拉曼光谱仪等,预算金额1711万元。仪器名称采购需求概况预算金额(万元)氦综合物性测量仪超低温和强磁场对于极端条件下的材料研究和基于量子特性的下一代微电子元器件开发至关重要。我们实验室购置该设备的主要目的是探索新型拓扑材料的热电性能。这些材料的量子特性只能在低于10K以下的温度同时施加5特斯拉以上的磁场才能揭示出来。此外,它还可以用来测量热电材料在超低温和强磁场下的性能,这对空间应用和自旋电子学都具有非常重要的意义。所有这些测量只能在超低温和强磁场相结合的环境中进行。此外,购置的设备必须能够在整个温度和磁场范围内进行标准的热电性能测量,测量精度必须满足实验数据具备在国际高质量科学期刊上发表论文的要求。该设备可以满足我院(物理与光电工程学院)众多科研人员的需要。Ramiere老师发起采购这台设备,并将其用于测量新拓扑材料的传输特性和纳米结构的热特性。先进薄膜与应用重点实验室的诸位老师也希望共享这台设备进行热电性能测量。并且该设备将作为学校公共资源,为深大其他院系的科研人员开放使用。341共焦显微拉曼光谱仪共焦显微拉曼光谱仪一台;与联合国教科文组织合作开展生态堆肥项目,需借助拉曼光谱仪对堆肥物料在反应过程中结构的变化进行监测分析;同时,对堆肥中微生物的数量和核酸结构进行初步了解。115射频器件参数测试探针系统提供完整的RF参数测试功能,频率可到110GHz,进行半导体器件,材料的高频下高精度相关特性分析,可对现有的器件、材料等方向的研究提供强有力的支持120核磁共振成像分析仪微观孔隙结构成像分析仪采用低场核磁共振技术,可用于土木领域微观结构及水分分析,可以检测多孔介质材料样品的微观孔隙结构、含水率、水分迁移规律、水分相态分布以及孔裂隙成像。设备主要材料为永磁体,场强0.3±0.05T,磁体均匀度好,是30ppm(Ø50mm*H100mm)。匹配1英寸、2英寸不同型号探头线圈,实现不同尺寸样品大小测试需求,满足工程试样(Ø50mm*H100mm圆柱体)测试要求,测试结果具有代表性。设备需配有分析软件、成像软件、图像处理软件,软件操作简单、使用便利、参数自动优化、三步完成成像。磁体本身自屏蔽,无需建造屏蔽房,控制柜有配有滑轮,移动方便。130原子力显微镜因本课题组科研方向涉及到二维材料、钙钛矿薄膜、异质结材料与相关的光电流方面的测试等,需要自动化功能强、稳定性高、扩展性强的原子力显微镜进行高精度的表征与测试。本实验室对原子力显微镜的用量较大,需要采购符合科研需求的具备瞬态光电流成像功能的原子力显微镜。155激光扫描共聚焦显微镜该项目拟采购一套显微镜系统用于科研。该显微镜系统预期包括倒置、共聚焦、多光子和超分辨率显微模块,具有用于精确成像的光学性能。配备适用于荧光、明场、相衬、偏振以及更多观察方法的物镜,高性能相机可实现实时共聚焦成像、荧光活细胞成像、基因表达生物发光成像等诸多功能。190网络分析仪网络分析仪器作为业界最广泛使用的设备,覆盖不同频率范围的波长,从而可以灵活的使用不同的频段来激励材料,确认其性能。可以根据材料的形状,例如液体,粉状,固体来进行分析。还可以评估材料的电磁波的穿透性能,找到高效稳定的电磁场应用的器件。特别是目前5G产业的持续增长,业界对于5G频段的器件有强烈的需求。从科研出发,紧密结合产业需求,购置的设备的用途需要实现下面的功能主要用途:1) 实现各种材料的电性能的测试。用于各种基础的半导体材料选型。2) 提供必要的参数,评估材料关键制备工艺与制成品结构的关系。可以提供粉体、成形、宏微观结构对于介电常数的影响。3) 实现器件的测试:主要应用场合1:无源器件测试功能可以对各种材料制成的天线,开关等的S 参数测试。评估器件的输入,发射,传输效率。2:功率放大器测试功能可以实现端口驻波,增益及相位测试参数。测试器件的输入及输出1dB压缩点,能对被测件输出谐波抑制性能进行扫频状态测试。评估5G 的通信产业覆盖的功率放大器的性能。3;薄膜性能分析。实现各种高分子材料的电磁波穿透能力评估。寻找合适的性价比的产业材料和特殊行业的高性能材料。注:(*)为关键指标。1. 材料测试需要测试MUT的传输或反射特性,来推算介电常数和磁导率,该仪表可以测试被测件的传输和反射特性,S参数,绝对功率,Smith圆图。2. *需要测试不同频率处的材料特性,该仪表的频率测试范围:10MHz-67GHz,实际工作频率10MHz-70GHz,频率变化步径1Hz。3. 传输特性的测试需要激励信号和接收信号端,该仪表具有2个测试端口。4. 稳定的频率精度能提高测试的可靠性,该仪表测试端口信号频率精度:具体配置如下:1、此测试系统需在终端开放状态下的脉冲电压:最大±2000V,步进电压为0.2V,电压及电压的极性选择由软件操作完成。2、此测试系统需在终端50Ω电阻负载时的脉冲电压:最大±1000V,步进电压为0.1V,电压及电压极性选择由软件操作完成。3、脉冲电流:终端短路时最大40A,终端50Ω电阻负载时最大20A。4、脉冲宽度:100ns。5、脉冲上升时间选项需:200ps/2ns/10ns/20ns/50ns共五组,且可以通过软件来选择。6、漏电流测试电压要求:最大±200V,可最大同时对100个单点进行漏电流测试。120材料多尺度体素成像系统材料多尺度体素成像系统主要用于用于混凝土、岩石等材料内部结构微观尺度上的三维空间表征。结合定性定量的分析软件,实现对内部结构的三维高分辨成像,应用于样品试件的结构立体成像、孔隙裂缝特征表征,为学科的基础规律研究提供科研数据。为保障材料成像效果及设备使用安全,要求采购设备价格合理、品牌知名度及市场覆盖率高、维保及时,做到性价双优且最大限度满足多样化试验需求。380
  • 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 【作者按】 /span /strong span style=" text-indent: 2em " 扫描电镜测试条件的选择主要包括以下四个方面:加速电压、束流与工作距离、探头。前两个主要影响样品信息的溢出,后两者影响着信息的接收。测试条件选择的是否合适,决定了您能获得怎样的测试结果。 /span br/ /p p style=" text-align: justify text-indent: 2em " 本人在第一篇32载经验谈《扫描电镜加速电压与分辨力的辩证关系》一文中,就加速电压与图像分辨力的辨证关系进行了深入的探讨。充分分析了改变加速电压会给表面形貌像的分辨力带来怎样的变化;解答了为什么获取高分辨像,钨灯丝扫描电镜要选择较高的加速电压(10KV以上),而场发射扫描电镜需要选择较低的加速电压;阐述了场发射电镜为什么会比钨灯丝电镜有着更高的分辨能力。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 除了对图像分辨力的影响,加速电压的改变还会在样品的信息特性、荷电的产生及应对等方面对测试结果产生较大的影响。一直以来,许多专业人员对此,普遍存在一种单调的思维模式及处理方法,这将给最终的测试结果带来偏差。 /p p style=" text-align: justify text-indent: 2em " 这种认识上的偏差也存在于束流的选择上,对最终测试结果同样会形成很大的影响。错误的束流选择,你将无法获得完美的测试结果,还会给仪器的调整带来麻烦。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文将通过大量的实际测试事例,为大家充分展示,选择不同的加速电压及束流究竟能给测试结果带来怎样的影响。分析形成这种结果的原因,以及传统观念在加速电压和束流选择上存在怎样的认识偏离。为今后大家在进行扫描电镜测试时,合理的选择加速电压和束流提供一些参考。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 一、& nbsp 加速电压的选择 /strong /span & nbsp & nbsp /h1 p style=" text-align: justify text-indent: 2em " 加速电压的选择除了对表面形貌像的细节分辨力存在极大影响,还在以下几个方面影响着测试结果:1. 获取的样品信息在样品中所处的位置,表层还是内层;2. 荷电场形成的位置及强度。而无论在那一方面,改变加速电压所带来的变化都充满了辨证法的规律。下面将以充分的事例来加以展示。 /p p style=" text-align: justify text-indent: 2em " strong 1.1& nbsp 加速电压与图像分辨力的关系 /strong /p p style=" text-align: justify text-indent: 2em " 加速电压与图像分辨力的辨证关系,前文有充分的探讨,在此将只做简单的描述。本节主要是以充分及清晰的事例来展示,改变加速电压将带来怎样的图像分辨力变化。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压对图像分辨力会产生两种相互对立的影响: /p p style=" text-align: justify text-indent: 2em " 1. 从信息扩散来说,不利于获取高分辨形貌像。 /p p style=" text-align: justify text-indent: 2em " 2. 对电子束发射亮度的提升,有利于高分辨图像的获取。 /p p style=" text-align: justify text-indent: 2em " 这两方面的共同结果必然是存在一个最佳值或最佳范围。这个值与样品特性和其它测试条件的选择都有关联。 /p p style=" text-align: justify text-indent: 2em " 实际测试中,应先对图像所显示的样品信息特征作出正确研判,然后再做出正确的调整来找到这个最佳值。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fa2635bd-6b96-4bce-9171-265cc0bb3c82.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 想获取更好的介孔形态必须降低加速电压。改用小工作距离测试,可缩少电子束裙散和透镜球差形成的弥散并增加探头对信号的接收效果,使得对电子束发射亮度的要求降低。此时选择1KV加速电压即可获取更佳的图像效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/9d154d57-9819-4674-bf25-23c1d0da39ff.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 0em " strong 实例二、小工作距离、减速模式的加速电压选择(kit-6介孔) /strong /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/23ccfeb0-85bf-47d4-b1ee-9189f64bb660.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 0em " br/ /p p style=" text-align: justify text-indent: 2em " strong 1.2 加速电压与样品中的信息分布 /strong /p p style=" text-align: justify text-indent: 2em " 样品中的信息分布:指样品信息所处位置,表层?内部? /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,电子束在样品表层激发的信息将减少,内部信息的激发会增多。选取不同加速电压对样品进行分析,有助于获取更全面、更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、二氧化钛与银的复合膜& nbsp /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 该样品是将二氧化钛与银颗粒分层蒸镀在玻璃表面,银颗粒起先分布在极表层。高温烧结后观察薄膜表面形貌的变化及银颗粒存在的位置。先采用XRD与XPS检测银含量的变化,均未检测到银的存在。扫描电镜检测的结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/71cf90d7-a4fc-4797-bc79-d5f88a725f06.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 上例我们可以看到,任何测试条件的选择都有其局限性,很难单独给出全面的样品信息。需要不停的改变测试条件,综合分析才能够获取更全面且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例二,含有钴颗粒的核壳结构碳球 /strong /p p style=" text-align: justify text-indent: 2em " 内部为结构紧密的碳球,包裹一个球形的碳壳层,中间有钴纳米量子点存在。以下组图将给我们提供完整信息: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b149b0cd-9014-4a7f-b45d-0f5e58750392.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 这组照片,合在一起才能提供样品的完整信息:一个核壳结构的碳球,内部是高密度球体,中间为絮状夹层,钴颗粒镶嵌于絮状夹层中,极表层较为平实。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/87b50fb1-9fcb-41ae-9720-81e2eb095201.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例三、石墨烯的观察 /strong /p p style=" text-align: justify text-indent: 2em " 单层石墨烯厚度仅不到一个纳米,个人观点:较难形成可被扫描电镜观察到的衬度。一般说,十来层左右的碳层被观察到的可能性更高,加速电压较低可观察到的碳层也较薄。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/652f21c2-13d1-45a3-ac00-f2be0b08c4c5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 对簿膜样品加速电压选择低一些,效果较好,但有个度。 /p p style=" text-align: justify text-indent: 2em " strong 1.3改变加速电压对样品荷电场强度与位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象:高能电子束轰击足够厚的样品,如有电子驻留在样品中漏电性较差的部位,将形成静电场影响该部位及附近电信号的正常溢出。出现异常亮、异常暗或磨平的现象,这就是样品的荷电现象,该静电场也称“荷电场”。(关于样品的荷电现象,后期将有专文加以深入探讨)。 /p p style=" text-align: justify text-indent: 2em " 影响样品荷电场形成的因素有许多,加速电压正是其中最为重要的一个方面。 /p p style=" text-align: justify text-indent: 2em " 加速电压对样品荷电场的影响主要表现在以下几点: /p p style=" text-align: justify text-indent: 2em " 1.加速电压的升高,发射亮度增加,使得注入样品的电子数增加,荷电场强度得以加强,将加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2.加速电压的升高,电子击入样品的深度增加,形成荷电场的位置下移,达一定值时,对样品电信号溢出的影响将会减弱直至消除。但SE2的增加,会影响表面细节的分辨。 /p p style=" text-align: justify text-indent: 2em " 3.加速电压的升高,使得背散射电子能量增加,背散射电子能量越大,其溢出量受荷电场的影响也就越小。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、介孔材料KIT - 6不同加速电压下的荷电现象 & nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f1a4138c-34fa-47e0-9b73-51fa3f0e6e15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/e691f38e-c9b1-4ea9-9cd5-c67cf0df65d4.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例二、二氧化硅小球,减速模式的加速电压与荷电 /strong /p p style=" text-align: justify text-indent: 2em " 二氧化硅小球。形态松软,容易形成样品的荷电现象。主流观点:减速、低电压是解决样品荷电问题的最佳方案,且加速电压越低,荷电现象越弱。真实情况却未必如此。 /p p style=" text-align: justify text-indent: 2em " 用减速模式500V、1KV,观察得出的是如下结果: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/764fd804-f00b-4e93-bed6-03b652d70f53.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " strong 实例三、钼化铬纳米颗粒 /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f222ae41-0b71-45ac-9969-ca0e2806ff94.jpg" title=" 11.png" alt=" 11.png" / /strong /p p style=" text-align: justify text-indent: 2em " 以上三例可见,无论采用何种模式,加速电压与样品的荷电现象之间都存在一个辩证的关系。 /p p style=" text-align: justify text-indent: 2em " 加速电压升高,会增加注入到样品中的电荷总量,提升样品中的荷电场强度,加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压,电子注入样品的深度增加,自由电子在样品中形成堆积的位置下移至更深处,荷电场位置也将下沉。荷电场的下沉会逐步减弱其对样品表面电子溢出量的干扰,荷电现象也将逐步减弱,但这是一个量变到质变的过程。当加速电压达到一定值,荷电场接地形成电荷通道,此时样品中多余的自由电子完全消失,样品中也就不存在荷电场。 /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,可以增加背散射电子的能量,达到一定值,背散射电子信息将克服荷电场对其正常溢出的影响,减弱并消除形貌像所显现出的样品荷电现象。 /p p style=" text-align: justify text-indent: 2em " 因此不能简单的认为:低加速电压是不蒸金解决样品荷电的唯一有效途径。以辩证的思维方式来综合评估各方面的影响,合理选择加速电压才是应对样品荷电的有效方式。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 二、束流大小的选择 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 目前主流的观点认为:束流越大,电子束斑的直径越大,束斑直径越大,图像的分辨率越差。各电镜厂家的工程师在进行分辨率测试时,都会选用小束流,但观察的都是信号量充足的标准样品(金颗粒)。 /p p style=" text-align: justify text-indent: 2em " 实际测试时,常发现小束流下样品的整体信息量较差& nbsp ,很难形成高质量表面形貌像。那么该怎样选择合适的束流? /p p style=" text-align: justify text-indent: 2em " 依辩证法的观点,降低束流强度将得到以下两个矛盾的结果: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 束斑直径降低,信号溢出区面积减小对图像清晰度有利且能降低荷电场强度,削弱样品荷电的影响。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 减少注入样品的电子量,信号量将减弱,不利图像分辨。 /p p style=" text-align: justify text-indent: 2em " 而现实的操作中,在主流观点的影响下,往往把眼光只放在第一点上,夸大束斑直径的影响,忽视束流强度不足所引起的信号量缺乏,故常常无法获得高质量的高分辨图像。 /p p style=" text-align: justify text-indent: 2em " 特别在面对氧化物、高分子等本身信号较弱的材料时,信号量常常是关键点,小束流的模式很难获得满意的结果。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong style=" font-size: 14px text-align: center text-indent: 2em " 实例一、钴纳米颗粒和碳材料,不同束流下图像质量的比较 /strong strong style=" font-size: 14px text-align: center text-indent: 2em " /strong /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/29ecf822-c796-4da0-a394-fa93a248c2d0.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/858092ec-e7c9-4e0e-a8e3-a1564d3b4800.jpg" title=" 13.png" alt=" 13.png" / & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f8de383e-1046-4e7d-a4d1-540843a72d14.jpg" title=" 14.png" alt=" 14.png" / span style=" text-indent: 0em " & nbsp & nbsp /span /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/34a0c424-2f08-44fe-8f0c-cd31c149f9ab.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 以上四例说明:束流的选择同样也遵循辩证法的规律,束流改变带来的往往是正、反两方面影响。如何平衡这些影响获取最佳的结果,还与样品的特性有关,必须全面考虑。 /p p style=" text-align: justify text-indent: 2em " 样品本身信号量充足且漏电能力较差,束流适当选择较低一些,可以减少荷电的影响,提升图像的清晰度,但图像信噪比就是牺牲的对象。反之,束流应当选择稍高一些,可以获得的样品信号量更为充分,图像的质量更佳。 /p p style=" text-align: justify text-indent: 2em " 依据个人的测试经验,起始条件选择的束流大一些,综合效果会更好。选择小束流,常常会使得图像的信息量不足,分辨力减弱过多,很多细节反而分辨不清。欲对仪器做出适当的调整,看清信息是基础,信息太弱会失去调整的方向。 /p p style=" text-align: justify text-indent: 2em " 任何测试条件的选择都应当坚持适度性原则。具体问题、具体分析,摒弃单调的思维模式,才能找到最佳的测试条件,获得满意的测试结果。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " strong 三、结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文通过大量的实例给大家展示,不同加速电压及束流的选择,究竟能带给我们怎样的测试结果。 /p p style=" text-align: justify text-indent: 2em " 辨证的观点要求我们能够做到具体问题、具体分析。 /p p style=" text-align: justify text-indent: 2em " 摒弃单调的思维模式,有助于我们选择正确的测试条件,获得满意的测试结果。 /p p style=" text-align: justify text-indent: 2em " 同样的样品、不同的测试条件获取的样品信息不同。单一的测试条件往往很难带给我们完整且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " 要获取充分的样品信息,需要测试者能准确预判出测试条件的改变对测试结果会产生怎样的影响。做到这一点,测试者的经验积累十分重要。希望本文的各种实例,能对大家在加速电压和束流选择方面的经验累积提供一些帮助。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /p p style=" text-align: justify text-indent: 2em " 华南理工出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /p p style=" text-align: justify text-indent: 2em " 中科大出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /p p style=" text-align: justify text-indent: 2em " 人民出版社 & nbsp /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月 /p p style=" text-align: justify text-indent: 2em " & nbsp 清华大学出版社 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 80px height: 123px float: left " src=" https://img1.17img.cn/17img/images/202005/uepic/6dc1a11e-8c90-4ad2-be79-65574928318f.jpg" title=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" alt=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" width=" 80" height=" 123" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /p p style=" text-indent: 2em " strong 延伸阅读:& nbsp /strong /p p style=" text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-indent: 2em " a href=" http://电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 市场监管总局关于2018年“双11”玩具等7种电子商务产品质量国家监督
    p style=" text-indent: 2em "  近期,为加强电子商务产品质量安全监管,营造安全放心的网络消费环境,市场监管总局组织开展了2018年“双11”电子商务产品质量国家监督专项抽查。详细情况通报如下: /p p   一、基本情况 /p p   (一)本次抽查以儿童产品安全和电器产品安全为重点,对玩具、婴幼儿服装、家用和类似用途插头插座、自动电饭锅、室内加热器、电压力锅、电热水壶等7类电子商务产品质量开展了国家监督专项抽查。其中,玩具、家用和类似用途插头插座、自动电饭锅、室内加热器、电压力锅、电热水壶等6类产品是国家实施强制性产品认证管理的产品。 /p p   共抽取564批次产品。其中,玩具257批次,家用和类似用途插头插座66批次,婴幼儿服装63批次,自动电饭锅58批次,室内加热器47批次,电压力锅41批次,电热水壶32批次。 /p p   (二)本次抽查涉及天猫、京东商城、1号店、凡客诚品、唯品会、国美电器、拼多多、网易严选、苏宁易购、当当网、贝贝网等11家电子商务平台。 /p p   (三)本次抽查,共有81批次产品没有标明生产厂厂名和厂址,违反《产品质量法》要求。其中,玩具56批次,婴幼儿服装9批次,家用和类似用途插头插座9批次,室内加热器4批次,自动电饭锅3批次。 /p p   37批次产品涉嫌未经3C认证,违反《认证认可条例》相关要求。其中,玩具20批次,家用和类似用途插头插座10批次,室内加热器3批次,自动电饭锅2批次,电压力锅1批次,电热水壶1批次。 /p p   对标明生产厂厂名厂址和经过3C认证的446批次产品进行检验,有44批次产品质量不符合强制性国家标准要求。其中,玩具12批次,婴幼儿服装10批次,家用和类似用途插头插座8批次,自动电饭锅8批次,电压力锅3批次,室内加热器2批次,电热水壶1批次。 /p p   二、抽查结果分析 /p p   (一)玩具。共抽取257批次,有56批次没有标明生产厂厂名和厂址,违反《产品质量法》的要求,有20批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的181批次产品进行检验,重点检验了机械与物理性能、燃烧性能、特定元素的迁移、增塑剂等四大类项目。经检验,有12批次不合格,不合格项目涉及小零件、小球、突出物、塑料袋或塑料薄膜、绳索和弹性绳、刚性材料上的圆孔、磁体和磁性部件、增塑剂等。 /p p   (二)婴幼儿服装。共抽取63批次,有9批次没有标明生产厂厂名和厂址,违反《产品质量法》的要求。对标明生产厂厂名厂址的54批次产品进行检验,重点检验了甲醛含量、pH值、可分解致癌芳香胺染料、耐水色牢度、耐酸汗渍色牢度、耐碱汗渍色牢度、耐干摩擦色牢度、耐湿摩擦色牢度、耐唾液色牢度、重金属、邻苯二甲酸酯、附件抗拉强力、绳带要求、附件锐利性等14个项目。经检验,有10批次不合格,不合格项目涉及可分解致癌芳香胺染料、pH值、绳带要求、附件抗拉强力、耐唾液色牢度等。 /p p   (三)家用和类似用途插头插座。共抽取66批次,有9批次没有标明生产厂厂名和厂址,违反《产品质量法》的要求,有10批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的47批次产品进行检验,重点检验了7个项目,包括:尺寸检查,防触电保护,固定式插座的结构,延长线插座的结构,耐热,爬电距离、电气间隙和通过密封胶的距离,绝缘材料的耐非正常热、耐燃和耐电痕化。经检验,有8批次不合格,不合格项目涉及:尺寸检查,防触电保护,延长线插座的结构,耐热,绝缘材料的耐非正常热、耐燃和耐电痕化。 /p p   (四)自动电饭锅。共抽取58批次,有3批次没有标明生产厂厂名和厂址,违反《产品质量法》的要求,有2批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的53批次产品进行检验,重点检验了16个项目,包括:对触及带电部件的防护,输入功率和电流,发热,工作温度下的泄漏电流和电气强度,耐潮湿,泄漏电流和电气强度,非正常工作(不包括第19.11.4条的试验),稳定性和机械危险,机械强度,结构(不包括第22.46条的试验),内部布线,电源连接及外部软线,外部导线用接线端子,接地措施,螺钉和连接,电气间隙、爬电距离和固体绝缘。经检验,有8批次不合格,不合格项目涉及对触及带电部件的防护、非正常工作、结构和接地措施等。 /p p   (五)室内加热器。共抽取47批次,有4批次没有标明生产厂厂名和厂址,违反《产品质量法》的要求,有3批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的40批次产品进行检验,重点检验了16个项目,包括:对触及带电部件的防护,输入功率和电流,发热,工作温度下的泄漏电流和电气强度,耐潮湿,泄漏电流和电气强度,非正常工作(不包括第19.11.4条的试验),稳定性和机械危险,机械强度,结构(不包括第22.46条的试验),内部布线,电源连接和外部软线,外部导线用接线端子,接地措施,螺钉和连接,电气间隙、爬电距离和固体绝缘。经检验,有2批次不合格,不合格项目涉及输入功率和电流、接地措施等。 /p p   (六)电压力锅。共抽取41批次,有1批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的40批次产品进行检验,重点检验了16个项目,包括:对触及带电部件的防护,输入功率和电流,发热,工作温度下的泄漏电流和电气强度,耐潮湿,泄漏电流和电气强度,非正常工作(不包括第19.11.4条的试验),稳定性和机械危险,机械强度,结构(不包括第22.46条的试验),内部布线,电源连接和外部软线,外部导线用接线端子,接地措施,螺钉和连接,电气间隙、爬电距离和固体绝缘。经检验,有3批次不合格,不合格项目涉及产品的非正常工作、内部布线、接地措施等。 /p p   (七)电热水壶。共抽取32批次,有1批次涉嫌未经3C认证。对标明生产厂厂名厂址和经过3C认证的31批次产品进行检验,重点检验了16个项目,包括:对触及带电部件的防护,输入功率和电流,发热,工作温度下的泄漏电流和电气强度,耐潮湿,泄漏电流和电气强度,非正常工作(不包括第19.11.4条的试验),稳定性和机械危险,机械强度,结构(不包括第22.46条的试验),内部布线,电源连接和外部软线,外部导线用接线端子,接地措施,螺钉和连接,电气间隙、爬电距离和固体绝缘。经检验,有1批次不合格,不合格项目涉及输入功率和电流。 /p p   三、工作要求 /p p   针对本次电子商务产品质量国家监督专项抽查中发现的问题,各省(区、市)工商行政管理局、质量技术监督局(市场监督管理部门)要按照《产品质量法》《产品质量监督抽查管理办法》等规定,认真做好后处理工作。 /p p   (一)对于本次抽查中质量不符合强制性国家标准要求的产品,应依法责令企业停止生产销售,按照有关规定监督销毁或者作必要的技术处理。 /p p   (二)将本次抽查质量不符合强制性国家标准要求的产品情况通报地方政府及相关部门,共同督促企业依法落实产品质量安全主体责任,引导企业严格按照标准组织生产,切实维护产品质量安全。 /p p   (三)要求电子商务平台企业对违反《产品质量法》、不符合强制性国家标准要求,以及经过核查违反《认证认可条例》的产品,采取产品下架等有效措施,以保障消费安全和消费者权益。 /p p   附件: span id=" _baidu_bookmark_start_10" style=" line-height: 0px display: none " ? /span /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a title=" 附件1 2018年”双11“电子商务玩具产品质量国家监督专项抽查产品及其企业名单.xls" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/f00849bd-f289-42a2-a9fc-0bb66917a030.xls" 附件1 2018年”双11“电子商务玩具产品质量国家监督专项抽查产品及其企业名单.xls /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_txt.gif" / a title=" 附件3 2018年”双11“电子商务家用和类似用途插头插座产品质量国家监督专项抽查产品及其企业名单.xlsx" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/6e3b4437-c311-4b47-9fdb-7b67e14d8c14.xlsx" 附件3 2018年”双11“电子商务家用和类似用途插头插座产品质量国家监督专项抽查产品及其企业名单.xlsx /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a title=" 附件2 2018年”双11“电子商务婴幼儿服装产品质量国家监督专项抽查产品及其企业名单.xls" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/420267b8-129b-4e8c-8553-c77c7d18ac56.xls" 附件2 2018年”双11“电子商务婴幼儿服装产品质量国家监督专项抽查产品及其企业名单.xls /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a title=" 附件4 2018年”双11“电子商务自动电饭锅产品质量国家监督专项抽查产品及其企业名单.xls" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/fa91ef31-fdc2-4c6c-8b9f-73f87561b0ab.xls" 附件4 2018年”双11“电子商务自动电饭锅产品质量国家监督专项抽查产品及其企业名单.xls /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a title=" 附件5 2018年“双11”电子商务室内加热器产品质量国家监督专项抽查产品及其企业名单.xls" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/070d639b-f4e3-4d37-a27f-377f822e3e3e.xls" 附件5 2018年“双11”电子商务室内加热器产品质量国家监督专项抽查产品及其企业名单.xls /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a title=" 附件6 2018年“双11”电子商务电压力锅产品质量国家监督专项抽查产品及其企业名单.xls" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/b31b9260-0566-4499-b67f-c0b392177f61.xls" 附件6 2018年“双11”电子商务电压力锅产品质量国家监督专项抽查产品及其企业名单.xls /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_txt.gif" / a title=" 附件7 2018年“双11”电子商务电热水壶产品质量国家监督专项抽查产品及其企业名单.xlsx" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201811/attachment/7fb0bff9-2da5-41de-8865-52f8d7ebe7ab.xlsx" 附件7 2018年“双11”电子商务电热水壶产品质量国家监督专项抽查产品及其企业名单.xlsx /a /p p & nbsp /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制