当前位置: 仪器信息网 > 行业主题 > >

干加热式透皮测试系统

仪器信息网干加热式透皮测试系统专题为您提供2024年最新干加热式透皮测试系统价格报价、厂家品牌的相关信息, 包括干加热式透皮测试系统参数、型号等,不管是国产,还是进口品牌的干加热式透皮测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干加热式透皮测试系统相关的耗材配件、试剂标物,还有干加热式透皮测试系统相关的最新资讯、资料,以及干加热式透皮测试系统相关的解决方案。

干加热式透皮测试系统相关的论坛

  • 透皮给药系统的生产技术

    透皮给药系统的生产技术前已介绍多层聚合物膜固态贮库透皮给药系统的基本结构,即第四种类型中的a、b等类型,由一些高分子材料如聚乙烯醇、乙烯-蜡酸乙烯共聚物、聚氨酯、聚丙烯酸脂、硅橡胶及一些其它天然和合成的凝胶类等物质构成的骨架膜贮库系统,1993年,Cygnus公司设计的新型的7天一贴的雌二醇系统,一改早期Ciba-Geigy药厂推出的3天半的释放的系统醇液体填充密封系统,而采用第四型的结构,过去,Ciba-Geigy生产的3天半释放的系统中含的挥发性乙醇、控释膜和坚硬的背衬材料,所有这些在当时的技术条件下必须采用“液态填充密封”包装生产。在目前产品设计中第四型结构是很引人注目的技术,近些年来,市售产品中,越来越多采用第四型的固体设计,把药物溶解在压敏胶中,使压敏胶既起贮库作用,又起到粘贴皮肤的作用,这种系统称之为压敏胶膜贮库的透皮吸收系统(adhesive transdermal drug delivery,a-TDD)。它是第四型结构中很重要的一类。很多市售的医用级硅酮压敏胶、丙烯酸酯压敏胶及聚异丁烯压敏胶,都很适宜作为这一系统的材料,市售的产品如日本山之药厂生产的硝酸异山梨醇酯透皮贴剂是国外早期就开发应用的a-TDD系统;Toddywala RD报道(1991)的三种激素药物的硅橡胶压敏胶透皮给药系统也是这类系统。这些系统的生产工艺,几乎都离不开涂布工艺,本章以聚合物或压敏胶为贮库模型分别介绍其生产工艺。这种工艺基本来源于绊创膏的生产和涂布工艺,其工艺流程如下: 一、 基质溶液(matrix solution)的制备 贮库有多层的或单层的,用作多层的系统的贮库材料最好由相同的基本成分组成,其中可能包括聚合物、软化物、增粘剂、填料。而药物一般是分别加入各层的贮库基质溶液,因为多层系统的多个层中的药物浓度和饱和度是不同的,其不同之处在于从表层和主体贮库层药物的含量是增加的。设备:混料机,贮料罐及管道输送系统。基质聚合物的预处理:每种基质液都有本身特殊的处方组成,这与多层贮库系统的设计方案有关。按照设计的处方,基质液由不同数量的聚合物原料液、增粘树脂、软化剂、防老剂、填充剂等组成。活性成分通常以溶液或晶体或如同硝酸甘油吸附在惰性的固体上的形式加入基质液中。基质液或混悬液的批量大小,视所需涂布的厚度、固体材料的含量以及生产中用于涂布的胶层的面积而定。按照目前应用最广,具有代表性的橡胶系,丙烯酸系和硅系压敏胶的不同,如果原材料为固体,则选用双S型搅拌桨混合机,放入已切割或磨碎的聚合物薄片,加入有机溶媒遮盖,使其在混合前胶化,然后揉合,直到获得一均匀、无色、洁净的聚合物溶液,再将该溶液经一滤器抽入贮罐,所有这些过程必须在有效的工艺规程的控制下进行,以保证聚合物分子的完整性。基质液的终产品在进入下一生产工序之前,应检查其活性成分的含量、固体含量及粘性。要制备多层系统就需要多种不同的基质液,每一种基质液应使用单独的容器来贮藏。同样,混料机、管道系统仅仅适用于单一原辅料或原料液。一种原料液最好使用两个贮罐,当一个贮罐的原料液经化验室化验后进入生产,另一贮罐则处于贮备待检状态。要制二层系统(贮库层、表面控释层)时,就需要两种不同的基质液。(二)涂布工艺 涂布工序是在特殊设计的涂布机中完成的,涂布机基本上由三个单元组成:涂布装置、干燥隧道和成层设备,此外,还辅助有卷绕机等辅助单元。基底材料送入涂布车间前,先用压缩空气除灰尘,有的产品要涂一层背单面底胶以增加胶液在基材上的粘基力,如果是卷筒型压敏胶产品,则在压敏胶面的基材另一面上涂布防粘剂。在涂布过程中,硅纸或类似有防粘剂处理的基材,被均匀的涂布上基质液或混悬液,在加热段,有机溶媒蒸发并用强力的引风机除去。在多层涂布时,一般以接触皮肤那层开始,随后的多层依次涂布在它上面。涂布装置由精确运行的反向滚筒构成,滚筒表面抛光,两个滚筒的直径不同,其中较大的主要滚筒包绕着粘性的基材,较小的滚筒上装有刮刀,两个滚筒形成一个贮槽,槽底部具有一个可精确调节到0.01mm的开口,槽内盛基质溶液。主滚筒联轴与电机的传动同步,反向滚筒以同向但不同速的方式进行旋转,通过槽下方开口处把定量的基质溶液涂布在基底层上,基质液由于具有粘性,不会形成液滴,这样就可以得到一个均匀的薄层。如果涂布上从接触皮肤的那一层开始的话,其基底层就起到覆盖层作用,此时必须采用不粘性的硅纸或类似材料。在实践中,对于具有基底层为300g/m2的多层系统而言,其涂布误差应保持±5 g/m2.一般生产中每个涂层的重量从20 g/m2到200 g/m2不等,制备不同的涂层,都必须重新调整涂布的槽液出口。在涂布时因有机溶剂蒸发,甚至有些药物具有挥发性,因此涂布基质液应适当封闭,涂布后的胶带在密闭环境下进入干燥单元。骨架型的多层膜系统的生产过程不存在涂布基质溶液的生产过程,一般是预先制好多层胶带(其包含周边的压敏胶及防粘层),把药物骨架用适当材料(如PAV、甘油、水或硅橡胶)预先制成,当背衬层放卷进入生产线,切割机将骨架切割后放在多层胶带的适当位置,另一层覆盖层放卷,复合上成型。(三)干燥工艺 多个基质层经涂布后,要除去基质溶液中的有机溶剂,让已涂布基质的硅纸或基材通过干燥通道,经历一定长度的干燥隧道,就可能得到干燥。实际应用的有多种不同的干燥隧道,最常见的是一种高效空气喷口干燥系统其工作原理如下:经空调机净化的空气通过空气喷口吹到刚制备的涂布均匀的基质表面,夹带有机溶媒污染环境,出口的空气用燃烧的方式净化。要使基质层的最理想的干燥效果,使其粘性适合并含量准确,干燥隧道应分成几段以便能方便控制温度,干燥隧道应采用拱形结构,避免转运时涂布与机架接触。已被涂布的基材通过调整皮带轮使其拉紧,在此情况下转动通过干燥隧道。为了符合GMP的要求,隧道内部完全用不锈钢构成并易于一片片拆下清洗。在干燥隧道的每一部分,最好用自动控制和记录装置系统进行监视。应记录的参数有:温度、气流速度,有机溶剂在空气中的百分比,转轮的速率,基材的张力。干燥过程中,室内空气的有机溶剂的含量不得超过爆炸极值的50%,且干燥隧道的温度要根据药物稳定性而定,如硝酸甘油贴剂一定不能超过54℃,因其受热易挥发。(四)收卷工艺 基材先在一对辊筒间放卷,经涂布和干燥隧道到达位于干燥隧道末端的卷绕架,然后被卷紧。因为基质是粘性的,所以必须特别小心收卷以避免对基质的损害。有两种卷绕、涂布好基质的胶带的方法:(1)直接卷绕法:在基材的两个表面局长须具有不同剥离力的防粘性,以防止基材反面粘上胶粘性物质。(2)间接卷绕法:在干燥的基材上覆盖一居间防护性箔片,再进行卷绕。这种方法成本高,但防粘效果更为可靠。

  • API4000加热头陶瓷珠掉落

    API4000加热头陶瓷珠掉落,离子源温度400℃时加热棒一红一暗,第一次重复性6%,第二次5%,不太稳定。只能换加热头吗?还是可以维修加热头的网罩?换新加热头两个3万左右。[img]https://ng1.17img.cn/bbsfiles/images/2023/01/202301291658124103_2372_5901909_3.png[/img]

  • 【求助】透镜组上的加热杆?

    请问岛津qp2010plus透镜组上的白色的加热杆是干什么的?是用来给整个离子源腔体加热的吗?http://simg.instrument.com.cn/bbs/images/brow/em09506.gif

  • 【国产好仪器讨论】之北京博医康实验仪器有限公司的中试型冻干机Pilot2-4M(Pilot2-4M(硅油))

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C222891%2Ejpg&iwidth=200&iHeight=200 北京博医康实验仪器有限公司 的 中试型冻干机Pilot2-4M(Pilot2-4M(硅油))已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: Pilot1-2/Pilot2-4标准型真空冷冻干燥机主要特点:u干燥仓透明门采用特殊工艺制作(市场同类产品区别:真空密封性优良,使用寿命提高1倍)。u隔板预冻功能。u国际名牌压缩机,高效稳定、噪音低。u国际名牌真空泵,抽速大、噪音低。u可充氮气或者惰性气体进行干燥后的保存。u冻干自动控制系统:可程序化编程,从冻干到除霜均程序化控制。u板层加温控制系统:每层独立控温,热循环监视保护,特殊加热材料,模糊PID控制算法。u冷阱除霜系统:非电加热除霜方式,安全性能高;除霜速度快,解决了传统采用浸泡除霜带来的不便。u冻干终点测试系统:可在解析干燥阶段结束后自动进行冻干终点测试,确保物质含水率到达标准要求(选配)。u真空调节系统:升华及解析干燥过程进行真空度调节,避免特殊物质起泡、吹瓶及加快冻干效率的问题。u脉冲回填系统:可慢速、中速、快速三种回填模式选择,避免了对于冻干结束后颗粒状及絮状物质充气产生有效物质被吹跑流失的问题。u自动排水系统:排水结束后与真空系统互锁,避免再次使用忘记关闭排水阀产生的真空系统故障(选配)。u采用工业触摸屏,人机互动型好,简单易懂,不需说明书也可进行简易操作。u手自动模式选择:手动模式用于摸索工艺参数(人为干预性强),自动模式用于工艺成熟阶段,一键操作,简单便捷。u数据记录系统:数据记录系统多项选择。1.本机内存存储,最多可存储3个月。2.外存存储(U盘),存储数据量与U盘的容量有关系(选配)。3.PC数据库存储,存储数据量与电脑硬盘可使用容量有关系(选配)。u监视系统:实时监视系统温度,真空度,采集频率50ms/次。u冻干工艺配方存储功能:可存储500组固定或者用户自定义冻干工艺配方。uPC远程监控系统:可远程监控设备运行状况,最远监控距离1.5KM(选配)。u共晶点测试功能(选配)。u校准功能:可进行温度及真空度校准,确保长期使用测量值的精确性。u冻干曲线查询功能(可查询温度及真空度曲线,方便工艺优化及冻干效果验证)。选型指南:Pilot1-2/Pilot2-4标准型装载:适合装载散装物料、需压塞瓶装物料及外挂瓶装物料。可冻干样品类型:适合干燥水溶性溶液、悬浊液或糊状物质,其共晶点温度高于-40℃。选配:★共晶点测试仪★U盘数据记录系统★PC数据库存储系统★远程监控系统★冻干终点测试系统★有机溶剂捕集器★油雾过滤器★自动排水系统★真空泵防返油....【了解更多此仪器设备的信息】

  • 透湿仪单腔独立透过率测试仪

    透湿仪单腔独立透过率测试仪

    称重原理,渗透测试环境与称重环境一致,排除操作误差 全球顶级高精度传感器(M-T/梅特勒-托利多),测试数据精确,测试时间短 高精度测试环境控制系统:恒温控制和湿度调节,专利加湿除雾部件 独有的软性加热器设计,杜绝普通加热器产生的振动干扰,测量更精确 多腔集成测试,保证测试环境的一致性; 嵌入系统控制,PC机全程监控,测试过程智能化; 专业软件支持,具有历史数据查询、比对、打印、绘图、原始数据分析功能 试验数据动态显示,形象直观,界面美观,操作简便 http://ng1.17img.cn/bbsfiles/images/2012/07/201207111651_377010_2557742_3.jpg

  • 氮吹仪湿式加热与干式加热有哪些不同?

    氮吹仪通常采用水浴加热与干式加热:1 直接加热与间接加热: 水浴加热通常是把需要加热的试管放置于盛水的烧杯中,热源对水加热,水再把热量传至试管,可以看做是一个间接加热过程,不同于干式的直接接触热源加热;2 温度控制: 由于水浴加热过程中,可以在烧杯的水中插入一根温度计,用以实时观察水温从而可以很好的控制水的温度,干式加热法则很难实现温度的实时控制。3 .样品受热: 水浴加热过程中试管浸入烧杯水中,各部位受热比较均匀;而干式加热法过通常是试管底部比中上部受热多。4. 加热速度:水浴加热升温慢降温也慢,而且加热温度不超过100℃,是一种“温和”的加热方式;干式加热法升温快降温快,加热温度可以高达160℃左右,可以认为是一种“急火”加热,两种加热方式适用于不同的物质样品。5.样品适用: 一些有机物质不易接触明火,因此加热过程必须要用水浴方式;而有一些有机金属试剂不易接触水分,因此不能使用水浴加热方式(因为水浴加热会产生大量的水蒸气)。

  • 织物透湿性测试新方法

    新型织物透湿性测试装置用防水透湿FE薄膜包覆透湿圆柱筒的底部,形成饱和水蒸气,使用干燥氮气流作为载体,将透过织物的水蒸气带走,通过测量出口氮气流的相对湿度来确定织物的透湿量。实验结果表明,这种测试方法能在5min内准确地评价织物透湿性,试样透湿量的变异系数小于1%。该方法具有测试时间短,重复性好,灵敏度高和成本低的特点,可用于纺织生产厂家对产品透湿性的日常质量控制。 织物透湿性是评价服装热湿舒适性的一个重要指标。在人体、服装、环境这一复杂系统中,人体的热湿舒适性取决于自身产生的热量和向环境散失的热量之间的平衡。人体除了通过传导、对流、辐射等方式向周围环境散热外,还通过人体皮肤表面汗液的蒸发散失热量。如果水蒸气能通过服装系统及时扩散到周围环境,人体才能感到舒适,如果服装阻碍水蒸气的通过,使人体皮肤与服装之间微气候中的湿度增大,水蒸气将积累到一定程度而冷凝成水,使人感到黏湿、发闷等。当人体进行剧烈活动或处于炎热环境中,汗液的蒸发成为人体散失热量的重要途径,此时更要求衣服具有足够的水蒸气传递能。

  • 干式加热器的用途

    干式加热器的用途

    http://ng1.17img.cn/bbsfiles/images/2012/10/201210291624_400062_2347661_3.jpg我发现。我这里加热板倒是出得比较多。但是图示的干式加热器,出得很少。 是不是大家都不用这仪器?有老师知道加热板和干式加热器的不同用途吗? 还是加热板就可以代替干式加热器了。

  • 织物透湿性测试方法的比较

    摘要:测量织物透湿性的方法有多种,它们在测量原理、测试条件和测量参数方面不一样。为比较各方法的特点,采用5种测试方法用于评价6种不同织物的透湿性能。试验结果表明,采用干燥剂倒杯法测得的透湿量最高,其次分别为新测试方法、倒杯法、正杯法。另外,新测试方法和出汗防护热板仪、倒杯法及干燥剂倒杯法有很好的相关性,由于该方法具有测试时间短、重复性好、灵敏度高、所需试样小的特点,可用于对织物透湿性的日常质量控制。织物的透湿性是服装热舒适性评价的重要内容。人们较为熟悉的评价织物透湿性的测试方法是透湿杯法。透湿杯法可分为蒸发法和吸湿法。蒸发法和吸湿法又可分为正杯法和倒杯法。织物和服装生产厂家倾向于用透湿量来评价织物的透湿性,而研究人员和生理学家更喜欢用织物对蒸发传热的阻力评价水蒸气通过织物向环境转移的能力。织物的蒸发阻抗可用出汗防护热板仪来测定。为了测试蒸发阻抗,多孑L测试板和周围热护板被防水透湿薄膜所覆盖,蒸馏水从热板底部喂入,然后将试样放置在薄膜上,将热板加热到35℃,织物的蒸发阻抗通过保持热板在这一温度所需要的功率来表征一。上述各种测试方法由于测量原理不同,采用的测试条件(温度、湿度和风速)和测量参数不同,测得的结果也不一样。为此,本文对这些测试方法的测试结果进行比较,研究它们之间的相互关系。

  • 热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    在热膨胀系数测试过程中,加热速率是一个重要试验设置参数,加热速率的设置直接影响热膨胀系数测量的准确性。一般来说,加热速率越小,热膨胀系数测量的准确性越高,但相应的整个测试过程时间就会很长。因此,在实际热膨胀系数测试过程中,针对不同被测材料样品,选择合理的加热速率则显着非常重要,从而实现既能保证测量的准确性,又能缩短整个测试过程时间。 一直以来,加热速率对热膨胀系数测试结果的影响只是一个公认的常识,很少看到有专项研究对这种影响进行系统性考核试验和报道。如Jankula等人的研究中[1],仅展示了不同加热速率会使相对热膨胀曲线之间产生偏移,如图1所示。即在较高加热速率下,温度在整个样品中的分布并不均匀,因此可以观察到相对膨胀的一些延迟。这种不同加热速率所带来的延迟效应在热分析测试中非常典型,可以在差热分析、热重分析和其他热分析技术中找到,但这种延迟性描述和表征并不直观,特别是在热膨胀系数测试中并不能直观描述加热速率的影响。[align=center] [img=,690,378]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081406107187_3969_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#990000]图1 不同升温速率下砖坯样品的相对热膨胀变化曲线:2.5℃/分钟(灰色)和10℃/分钟(黑色)[/color][/align] 为了更直接和直观的描述加热速率对热膨胀系数测量的影响,Dulucheanu等人开展了这方面的专项研究[2],具体的实验条件如下: (1)热膨胀仪:德国NETZSCH公司Expedis DIL 402-SUPREME膨胀仪; (2)样品材料:铁素体-马氏体结构双相钢; (3)样品尺寸:圆柱形样品,直径5mm,高度25mm; (4)加热温度范围:30~980℃; (5)测试温度范围:30~700℃; (6)加热速率:1、3、5、10和30℃/min; (7)试验气氛:氮气,流速100ml/min; (8)样品负载:200mN。 在加热速率为3℃/min时,得到如图2所示的相对热膨胀曲线,并由此可计算得到30~100℃、30~200℃、30~300℃、30~400℃、30~500℃、30~600℃和30~700℃的平均线膨胀系数。[align=center][color=#990000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081407341483_4829_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#990000]图2 膨胀曲线和线性热膨胀系数(CTE),温度范围为30~700℃,加热速率为3℃/分钟[/color][/align] 分别采用不同加热速率进行测试,得到相应的平均线膨胀系数测试结果,数值形式如表1所示,曲线形式如图3所示。[align=center][color=#990000]表1 不同加热速率下的平均线膨胀系数测试结果[/color][/align][align=center][color=#990000][img=,690,139]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408072713_661_3384_3.png!w690x139.jpg[/img][/color][/align][align=center][color=#990000][img=,690,504]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408542587_2405_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 平均线性热膨胀系数(CTE)随加热速率和温度范围的变化[/color][/align] 从这个直观的系列性验证试验可以看出,由于被测样品材料的内部结构和热物理性能,加热速率会对热膨胀系数测试结果产生明显影响,加热速率这一试验参数的选择不当会造成热膨胀系数测量误差极大。因此,在实际测试过程中,要根据被测材料结构和热物理性能,选择合理的加热速率。[b][color=#990000]参考文献[/color][/b] [1] Jankula M, Š íN P, PODOBA R, et al. Typical problems in push-rod dilatometry analysis[J]. Epitoanyag-Journal of Silicate Based & Composite Materials, 2013, 65(1) [2] C. Dulucheanu, T. Severin, M. Bă eș u, The Influence of Heating Rate on the Coefficient of Linear Thermal Expansion of a 0.087% C and 0.511% Mn Steel, TEHNOMUS.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 织物接触冷暖感测试评价技术研究现状

    织物接触冷暖感测试评价技术研究现状

    [color=#cc0000]摘要:本文对目前织物冷暖感测试方法的研究现状进行综述,介绍了最大热流和吸热系数测试方法和仪器,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。  [/color][color=#cc0000]关键词:冷暖感、导热系数、吸热系数、织物、蓄热系数、热逸散系数[/color][align=center][img=织物接触冷暖感测试评价技术,690,325]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162131221607_2636_3384_3.png!w690x325.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  织物冷暖感(或热舒适)是织物与人体皮肤接触后织物给皮肤的温度刺激在人大脑中形成的关于冷和暖的判断。当织物与皮肤接触瞬间,由于存在温差,织物与皮肤之间会发生热交换,使皮肤的温度升高或降低。织物与皮肤之间的热交换形式主要为热传导,织物内部的热辐射和自然对流影响很小,可忽略不计。通常情况下(除环境温度高于皮肤温度外),皮肤温度高于环境温度,因此织物与皮肤接触后往往使皮肤温度下降,如果温度下降(或上升)的量超过一定限度,就会使人产生不舒适感。从物理意义而言,冷暖感的强弱,取决于织物和人体接触过程中织物导走或保有人体热量的多少。  织物与皮肤接触瞬间,二者之间存在温差,有明显的传热传质变化。影响皮肤温度及其变化的物理参数主要有:皮肤温度、温度变化速率、温度变化量、环境温度和时间等。织物的冷暖感可以用不同的物理参数进行描述,常用的有导热系数、吸热系数、人体与织物接触时由人体通过织物流向环境的最大瞬态热流。  本文对目前织物冷暖感测试技术的研究现状进行综述,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。[b][color=#cc0000]2. 测试方法[/color][/b]  织物的冷暖感常用最大瞬态热流法、吸热系数法和导热系数法来进行评价,但最大瞬态热流和吸热系数测试中都包含了导热系数这个参数。因此目前冷暖感的各种测试评价方法主要集中在最大瞬态热流和吸热系数的测试方面。[color=#cc0000]2.1. 最大热流法(Q-max Method)[/color]  最大热流法是日本学者Kawabata根据瞬态热传导理论提出的一种织物接触冷暖感测试评价方法,最大热流法的基本原理是在模拟人体皮肤接触织物的瞬态传热过程中对热流变化曲线进行实时测量。如图2-1所示,在测量之前,首先将样品放在温度保持恒定的样品座上,并将由良导热体制成的热板温度升高到比样品高约5~10℃。测量时将热板放置在样品的上表面,热量从温度高的热板流向样品,记录和测量热板温度和接触面上热流密度随时间的变化曲线。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162132495694_4159_3384_3.png!w690x230.jpg[/img][/color][/align][align=center][color=#cc0000]图2-1 最大热流法测量原理和测试模型[/color][/align]  目前国内外普遍用来测量织物热性能的仪器是日本KATO TEKKO公司生产的KES-F7 Thermo LABO型热性能测试仪器,如图2-2所示。对于织物接触冷暖感的测试,此仪器所采用的方法就是上述最大热流法。由于KES-F7型测试仪只考虑热板初始温度比样品表面温度高的情况,因此测出的最大热流密度实际上是相对冷暖感,大的热流密度值对应冷感,小的热流密度值对应暖感。[align=center][color=#cc0000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162135395707_2074_3384_3.jpg!w690x466.jpg[/img][/color][/align][align=center][color=#cc0000]图2-2 KES-F7型热物理性能测试仪[/color][/align]  如图2-3所示,KES-F7型冷暖感测试仪由以下三个基本部分及其控制系统构成:  (1)T. Box(Temperature Detecting Box, 温度测试以及蓄热板)  (2)B. T. Box(Bottom Temperature Box, 热源台)  (3)Thermo Cool(恒温台)[align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136193576_9190_3384_3.png!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图2-3 KES-F7 Thermo LABO接触冷暖感测试仪[/color][/align]  KES-F7型热性能测试仪具有以下三种测试能力:[color=#cc0000]2.1.1. Q-max测试(冷暖感测试)[/color]  如图2-4(a)所示,将样品放置在恒温台上,并将蓄热板放置在热源台上进行蓄热,然后将蓄热板快速放置在样品表面上。蓄积的热量立即移动至低温侧的样品上,此时测试出的热流峰值为Q-max值,测试过程可在1分以内完成。[align=center][color=#cc0000][img=,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136380354_6647_3384_3.png!w690x473.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 冷暖感测试仪操作示意图[/color][/align][color=#cc0000]2.1.2. 稳态导热系数和热扩散系数测试[/color]  如图2-4(b)所示,首先将恒温台设置为室温,将50 mm×50 mm的样品放置在上面,再将热源台的热板紧贴试样放置在上面。在热源台以及护环的温度达到稳定后,通过测量稳态热流既可得到稳态导热系数,测试过程可在2~3分以内完成。  通过达到稳定前的动态热流和温度变化曲线,并结合特定边界条件,还可以实现对热扩散系数的测量。  通过上述测量的导热系数和热扩散系数,如果知道样品的密度,则可以计算得到样品的比热容。  由此可见,KES-F7型热性能测试仪是一个非常经典的瞬态热物理性能测试仪器,通过测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量,即KES-F7型热性能测试仪的热性能测试带有明确的方向性。[color=#cc0000]2.1.3. 保温性能测试[/color]  将上述冷暖感测试仪结合风洞来进行织物的保温性能测试,如图2-5所示。  将样品(100 mm×100 mm以上、最大200 mm×20 mm)和样品安装框一起固定至100 mm×100 mm热源台上进行测试。通常风洞内的空气温度与室温相同,热源台温度为比室温高10℃。当热源台温度以及热流值稳定时,测量热流值就可计算得到保温性能,测试通常在2~5分钟内完成。在具体测试中,还可使用各种测试方法,例如Wet法、Space法和Wet Space法等。[align=center][img=,643,800]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136585934_7979_3384_3.png!w643x800.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-5 织物保温性能测试仪[/color][/align][color=#cc0000]2.1.4. 测试标准[/color]  尽管最大热流法测试技术已经开发了近30年,但一直没有形成国际化的标准测试方法,具体原因将在后续进行分析。基于最大热流法,目前已经建立了相应标准测试方法的国家和地区只有大陆和台湾,如国家标准GB/T 35263-2017《纺织品接触瞬间凉感性能的检测和评价》,以及台湾纺织产业综合研究所制定的《织物瞬间凉感验证规范》(FTTS-FA-019)产业标准。[color=#cc0000]2.2. 吸热系数法(Thermal Absorptivity Method)[/color]  由于人体皮肤在接触织物时的瞬态传热过程中,动态热传递会受到织物的导热系数、比热容和密度的影响。类似上述最大热流法原理和基于瞬态热传递,捷克学者Hes提出了另外一种表征织物冷暖感的参数——吸热系数。吸热系数的定义为:[align=center]b=( [i]λ ρ c[/i] )^0.5   [/align]  式中:[i]λ [/i]代表织物的导热系数;[i]ρ[/i] 代表织物的密度;[i]c[/i] 代表织物的比热容。由此可知,织物的热吸收能力与其导热系数、密度和比热容有关,反映织物和人体接触时织物从人体吸收热量的能力。  为了测试织物的吸热系数,Hes基于瞬态热传导理论开发了相应的测试仪器Alambeta,Alambeta仪器可快速测量瞬态和稳态热物理特性(隔热和热接触特性),也能测量样品厚度。该仪器由两个测量头组成,测试样品放置在两个测量头之间,如图2-6所示,两个测量头都配有热电偶和热流传感器。通过合适的冷却装置将底部测量头调节到环境温度,将顶部测量头调节到受控的恒定温差,热流传感器作用在两个测量头的接触面上。当顶部测量头下降接触被测样品时,可以测量流经样品的上下表面热流。Alambeta仪器可测量多个参数,主要包括导热系数、热扩散系数、吸热系数、热阻、最大热流与静态热流密度之比以及接触点处的静态热流密度,该仪器还可以用来测定织物的厚度。[align=center][color=#cc0000][img=,687,632]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137266204_8528_3384_3.png!w687x632.jpg[/img][/color][/align][align=center][color=#cc0000]图2-6 Alambeta测试仪结构示意图[/color][/align]  吸热系数(thermal absorptivity)也常称之为蓄热系数或热逸散系数(thermal effusivity),针对织物的吸热系数等热物理性能参数,2016年美国推出了ASTM D7984“采用改进型瞬态平面热源(MTPS)仪器测量织物吸热系数的标准试验方法”。  ASTM D7984改进型瞬态平面热源法是基于经典的瞬态平面热源法,将瞬态平面热源法中双样品夹持薄膜探头的测试结构改变为单样品测试形式,将另外一个样品用已知热物理性能的材料代替,并与薄膜探头集成为一个测试探头,同样可以实现瞬态平面热源法的大部分测试功能,可以实现对吸热系数和导热系数的测量,但无法直接测量最大热流密度。  执行ASTM D7984标准的典型测试仪器为加拿大C-Therm公司的TCi仪器,如图2-7所示。与瞬态平面热源法一样,TCi仪器测试过程中是给探头中的加热元件施加固定量的热能(已知电流),给被测样品提供少量热量。该热量导致样品表面温度升高1~1.5℃,接触面处的温度升高引起传感器元件的电压变化,根据温度升高的多少和快慢来测量吸热系数和导热系数。[align=center][img=,690,436]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137462214_3758_3384_3.png!w690x436.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-7 改进型瞬态平面热源仪器。(A)TCi仪器和测量探头,(B压缩测试附件[/color][/align][color=#cc0000][b]3. 分析和结论[/b][/color]  综上所述,上述各种测试方法具有以下特点:  (1)KES-F7和Alambeta仪器中的最大热流法测量实际上都是非常主观的相对测试仪器,织物冷暖感的最大热流取决于测试仪器和设定参数,最典型的如蓄热板的材质和尺寸,不同材质和尺寸的蓄热板代表不同的蓄热量,相应的就会得出不同的最大热流值。另外,热源台和恒温台的不同温度设定也会得到不同的测量结果。这也就是说最大热流值并不能代表织物自身的热物理性能,这也是造成三十多年来最大热流法一直无法形成标准测试方法的主要原因。  (2)KES-F7和Alambeta仪器都是瞬态热物理性能测试方法的典型应用,其最大特点就是通过一维传热测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量。改进型瞬态平面热源法是基于三维传热模型,测试的是样品整体的热物理性能,因此无法进行方向性的测试评价,而织物的各向异性特征非常明显。  (3)KES-F7和Alambeta仪器的测试模型都是基于等温或绝热边界条件,这与同样基于瞬态传热理论的闪光法非常相似,不同之处只是加载到样品前表面的热信号形状不同。在闪光法中,样品绝热边界条件通过空气或真空环境来实现,而在KES-F7和Alambeta仪器对织物的测试则只能采用低导热隔热材料,由此给导热系数和热扩散系数测量带来了较大测量误差(10%),而闪光法测量误差一般小于3%。这种较大的测量误差很容易将织物结构和纤维等的变化所带来的影响掩盖掉,不利于织物的研究、生产和评价。因此,如何使得测量装置更准确的符合测试模型边界条件要求,提供更准确的测试评价,将是下一步研究工作的重点。  (4)与其他测试方法一样,ASTM D7984标准方法也对边界条件有严格的要求,其中一个重要边界条件是加载到样品上的热量只能在样品内部传递,即瞬态平面热源法(包括改进型)测试模型中相对于加热量和加热时间而言要求样品是半无限大。对于很多较薄的织物则不能满足这种边界条件,由此使得测量结果的误差往往会非常巨大。因为这个原因,ASTM D7984标准方法比较适合最大热流密度比较小的保暖性织物的测试评价,而对于最大热流密度较大的轻薄凉爽型织物的测量则会误差较大。为了尝试解决使用ASTM D7984标准方法中存在的这个问题,TCi仪器采用将样品放置在探头之上,依靠样品另一侧的空气作为绝热边界条件,但这又带来了织物样品与探头表面接触不良的问题,测试结果中会包含很大的接触热阻。总之,对于织物这类较薄的材料,采用改进型的瞬态平面热源法进行测试非常勉强,这与经典的瞬态平面热源法一样,对薄膜热物性测试的可靠性很低。正因为如此,瞬态平面热源法测试仪器厂家HOT DISK公司为了解决较薄材料的测试,专门又开发了新的测试方法。  (5)ASTM D7984标准方法的最大问题是无法直接测量最大热流,需要测量一系列其他热性能参数并进行复杂的计算才能得到最大热流。但无论是瞬态平面热源法还是改进型的瞬态平面热源法,在热扩散系数和比热容测试中都存在较大的系统误差,这势必会对最大热流的计算结果带来较大的误差积累。  (6)对于织物热性能的上述测试方法,都存在的一个问题就是测量准确性的考核评价,缺乏稳定可靠的标准材料。在这方面美国ASTM已经开始着手开始进行相应的工作,并组织进行多个实验室的对比测试。  通过对上述两种织物接触冷暖感测试评价方法的介绍和分析,可以看出这两种测试方法都是基于人体皮肤接触织物时的瞬态传热进行测量。尽管两种方法测试的参数和物理意义都不同,但基于瞬态传热方式,最大热流密度和吸热系数这两个参数具有内在的关联性。后续我们将对这种内在关联性进行分析研究,并研究相应的测试方法和仪器,来同时满足上述两种测试方法。  下一步的研究重点还包括以下两方面内容:  (1)测试边界条件的保证:在最大热流法和吸热系数法测试中,边界条件包括等温边界条件和绝热边界条件两种。下一步工作重点是在硬件上如何更完美的实现这些边界条件要求,从而保证测量准确性和可靠性。  (2)仪器测量准确性考核:测量准确性考核从三方面进行,首先是采用数值模拟计算的方法对最大热流法测量准确性进行检验考核,第二是与其他热物性测试方法进行对比来考核导热系数、热扩散系数和吸热系数测量的准确性,第三是采用已知热性能的固体薄片材料(或标准材料)来进行考核。[color=#cc0000][b]4. 参考文献[/b][/color]  略[align=center]=======================================================================[/align]

  • 【分享】反应釜加热冷却控温系统

    反应釜加热冷却控温系统传统串通开槽控温装置的主要缺点是: 1 、油浴槽体积大   油浴槽主要作用有两个:   A.盛放导热介质   B.导热介质有热胀冷缩的物理特性,槽体相当于膨胀容器。   反应釜加热冷却控温系统开槽的系统控制外循环比如夹套反应的时候,反应釜的体积越大夹套的体积越大,整个系统的导热介质越多,加热和降温过程中浓缩变化越大,油浴,水浴槽体积要求越大。 整个系统的温度变化过程中的热量负载为整个系统导热油总量(主要)+反应釜体内的反应物,水浴,油浴槽的体积越大用于釜体内的有效功率越小,釜体内反应物升温和降温的速度响应及速率越慢。 反应釜的控温,是靠反应釜夹套的导热油的温度变化来控制釜体内的温度,系统导热介质越多,有效的功率用于釜体内的越少,控温的速度越慢。 2、 水汽的吸收   当低温反应时,开槽油浴的表面温度很低,很容易吸收空气中的水汽在压缩机的蒸发器表面结冰,冰是很好的绝热器,压缩机的蒸发器被绝热而无法导热,这样压缩机无法冷却导热介质从而无法降低釜体内的温度。 3、 油雾   当高温反应时,导热油会挥发到实验室的空气中而冷凝在家具的表面,堵塞通风橱的过滤器,由于导热油的闪点不同,有些可以引起燃烧和爆炸,导热油只能在闪点以下5度使用,所以导热油的使用温度范围比较有限,所以高温时需要一种介质,低温是需要更换另一种介质,另外高温时导热油很容易褐化和氧化。所以需要定期更换导热油,使用成本比较高。4、加热和冷却需要人工进行切换,容易出现误操作,出现事故。快速升降温系统产品实现了精确控制反应的温度:特点如下 1、配备加热冷却一体容器,换热面积大, 升温和降温的速率很快,导热油的需求量也比较小。2、可实现连续升降温,采用高温高压下运行压缩机技术,可从200度直接开启压缩机制冷,提高能效比。 3、整个循环是密闭的,高温时没有油雾挥发,导热油不会被氧化和褐化;低温时不会吸收空气中的水汽;延长了导热油的寿命。 4、具有自我诊断功能、冷冻机过载保护、高压压力开关、过载继电器、热保护装置等多种安全保障机能,充分保证使用安全;5、温度自适应控制   适应控制系统在控制工艺(如化学反应工艺)的过程中,持续不断的调节PID参数来给予工艺最好的控制温度和响应时间,这种过程是通过有效的多方位的测定温度,温度变化和温度变化的速率来实现的。 6、带有矫正外循环和内循环温度探头PT100的功能。 7、采用无CFC和HCFE制冷剂。8、 精确控制化学反应的速度。● 反应釜加热冷却控温系统整个系统的液体循环是密闭的,系统带有膨胀容器,膨胀容器和液体循环是绝热的,并不参与液体循环,只是机械的连接,不管液体循环的温度是高温还是低温膨胀容器中的介质低于60度 。 ● 反应釜加热冷却控温系统整个液体循环是密闭的系统,低温时没有水汽的吸收,高温时没有油雾的产生,导热油可以很广的工作温度;同一台机器,同一种导热介质可以实现-100度到200度的控温。 制冷量1KW~80KW 范围 ● 反应釜加热冷却控温系统整个循环系统中没有使用机械的和电子的阀。

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电机测试系统

    ATF油冷电机高低温交变冲击试验系统EVTP-30本测试系统通过模拟新能源汽车ATF油冷电机在运行过程中自身极限发热以及超冷运行多循环后的电机绝缘性能评估,为新能源汽车电机寿命提供最直接的依据工作原理及操作步骤●通过自动吊装系统将三相电机定子置于高压密封罐中并固定●将定子三相接线端与高频电源相连接●在密封罐中注入ATF 油●设置试验要求的温度曲线●启动系统工作按钮,加热系统将按温度曲线要求将工件加热至设定的高温●当系统温度达到设定的高温时,加热系统关闭 ,系统切入冷却模式。●然后通过高效的制冷系统将工件按降至设定的低温●根据温度曲线要求系统反复自动循环高低温冲击测试●循环测试周期结束后对工件进行绝缘耐压和绝缘电阻测试评估系统基本结构●耐高压密封油罐●高频涡流加热系统●油泵循环单元●制冷系统●智能自动化控制系统●自动吊装系统●系统集成保护箱体●可选件:电机定子电性能测试系统 EVT-531系统参数:●Tmin = -20°C[img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155314000_4274_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155313106_3792_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155314185_761_1602049_3.png[/img]

  • MPI-B型多参数化学发光分析测试系统

    技术参数 1.MPI-B型多参数化学发光分析测试系统—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度: SP1000A/Lm 上述两项构成了基本化学发光分析系统 3.MPI-B型多参数化学发光分析测试系统—电化学分析仪: * 电位范围:-10V—10V * 电流范围:±250 mA * 参比电极输入阻抗:10E12Ω * 灵敏度:1x10E-12—0.1A 共16个量程 * 输入偏置电流:50pA * 电位增量:1mV * 扫描速率:0.0001—200V/S * 测试方法:循环伏安法(CV),线性扫描伏安法(LSV),计时电流法(CA),计时电量法(CC),控制电位电解库伦法(BE),开路电压—时间曲线(OCPT) 4.MPI-BH/BU型多参数化学发光分析测试系统—毛细管电泳高压电源: * 输出电压:0—20KV * 输出电流:0—300uA 5.MPI-BF/BE型多参数化学发光分析测试系统—微流控芯片多路高压电源: * 输出路数:4路(BF型),8路(BE型) * 输出电压:0—2000V/路 * 输出电流:0—2mA/路 * 高压接出方式:输出、断开、接地 * 输出电流保护控制:0—2mA * 设置程序步:10步 6.MPI-B型多参数化学发光分析测试系统—数控流动注射进样器: * 高精度蠕动泵宽范围数字调速系统:调速范围 0—99 转/分。 * 可实现多达12路管道进样(6道/泵)。 * 两独立16通道自动/手动阀,换向时间≤0.3S 技术文章 此仪器没有任何技术文章 主要特点 1.用于化学发光机理与方法研究。 2.用于化学发光应用研究。 仪器介绍 MPI-B型多参数化学发光测试系统是西安瑞迈分析仪器有限公司最新研制开发的,基于WINDOWS 系统操作平台的高性能分析测试装置。依托于系统所拥有的多通道化学分析数据采集与分析测试部件及多功能化学发光检测器(基本系统)和众多的专用分析控制部件,本仪器可应用于各种化学发光分析,如静态注射化学发光、流动注射化学发光、电化学发光、毛细管电泳化学发光、微流控芯片化学发光及多方法连用化学发光分析等。本系统采用的组合式结构,允许用户采用不同的部件组合构成各种化学发光测试系统。

  • waters TQS加热头的问题

    WATERS 的TQS,做完样品待机时忘记关高压了,没有API气的状态下高压貌似开了一晚上,今早来就显示Desolvation heater disconnected,欲哭无泪呀,放真空,关机,再开机抽真空,还是这样,API气能进去,但是开高压不加热,有没有哪位兄弟姐妹碰到过这样的问题??是不是加热头烧了?怎么解决的呀?

  • 太阳能热水器测试系统实时显示检测数值

    太阳能热水器测试系统实时显示检测数值

    太阳能热水器测试系统实时显示检测数值太阳能作为清洁能源备受大家欢迎,阳台壁挂系统的成熟已然走进了千家万户,本着无动力自然循环,可靠、稳定、节能的优势,以及分户独立、方便管理的优点,加上无过热技术、安全防护技术、智能控制技术,让用户使用做到舒适、安全、节能。太阳能热水器测试系统及测量过程:平板集热器方向正南,累计辐照量大于16mJ/m2;白天试验期间的平均环境温度应大于15℃,小于30℃;温度传感器安装在水箱中部;总日射表传感器应安装在平板集热器高度的中间位置,并与平板集热器采光平面平行,两平行面的平行度相差应小于1°。太阳能热水器测试系统安装位置应避免太阳集热器的反射对其测量结果产生影响。在整个测试期间,总日射表不应遮挡太阳集热器采光,并不被其它物体遮挡。[img=太阳能热水器测试系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204150909587972_5007_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器测试系统组成及型号:相同的平板集热器2块(尺寸L×W×H为2400×800×80mm,采光面积1.76m2);夹套式100L水箱2台;集热器循环管道采用不锈钢波纹管Φ16-22,单路循环管道长度小于1.5米。混水循环水泵2台;太阳能测试系统一套;安装工具一套。测试系统1:平板集热器的安装倾角与建筑南立面夹角∠28°(与地面夹角62°);测试系统2:平板集热器的安装倾角与建筑南立面夹角∠0°(与地面夹角90°);试验开始,需测储水箱的试验水量,测量如下:打开上水阀门给储水箱上水,当水箱热水出水口流量稳定后,说明水箱已注满水,关闭上水阀门。随后进行储水箱放水试验,测量水箱能放出水的容量,测试结果:系统1储热水箱放水量97.5升;系统2储热水箱放水量97.4升。接下来按照规范要求进行测试仪器安装。[img=太阳能热水器测试系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204150910249656_2650_4136176_3.jpg!w690x690.jpg[/img]阳台壁挂太阳能系统作为高层住宅的一种清洁能源解决方案得到了普及,现有的阳台壁挂式太阳能热水系统在安装时为保证系统的效率要求集热器必须与建筑立面有15~30°的倾角,而集热器在建筑立面上倾斜安装,会影响到整个建筑的外观,并且会对下层住户的采光造成一定影响,降低住宅使用功能的舒适性。现在楼盘对建筑立面的效果要求越来越高,亟需解决壁挂太阳能与建筑完美结合的问题。而集热器垂直安装、嵌入建筑的南立面是一种有效的解决方案。我们对垂直安装与倾斜安装的太阳能热水系统热效率、日有用的热量、水箱温升等进行了研究。平板太阳能集热器是指吸热体结构基本为平板形状的太阳能集热器。它具有结构简单,维护方便,集热效率高,使用寿命长,可利用直射和散射太阳光等优点。它可用于产生40~80℃中等温度的热水,也可用于空气加热。平板集热器的基本结构主要由透明盖板、吸热体、保温层、边框外壳组成。其工作原理为:当太阳光透过透明玻璃盖板射到表面涂有太阳能吸收涂层的吸热体板上时,吸热体吸收太阳辐射能,并将吸收的太阳辐射能转换成热能。

  • 直读光谱仪的透镜需要加热吗?

    ARL、OBLF的直读光谱仪都有透镜加热装置,而斯派克的仪器貌似就没有,国产的直读光谱仪大多也没有透镜加热装置的版面中对直读光谱仪透镜清理的讨论比较多,很少有版友讨论透镜加热的问题,我想请大家讨论的是:1、直读光谱仪的透镜加热装置是必须的吗?2、使用透镜加热装置的仪器,其透镜加热的温度大概是多少摄氏度?3、使用透镜加热装置主要是为了解决什么问题?透镜如果不加热的话,会有什么样的问题?4、斯派克的仪器没有透镜加热装置,他是如何避免这一问题的呢?5、除了将透镜加热之外,是否还有其他的方式来解决这个问题?欢迎各位高手踊跃讨论啊

  • 如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    透射系统拍高分辨,或者进行EELS等高端分析工作经常会遇到很麻烦的污染物,这些一部分是样品本身带有的可通过外置的等离子清洗机处理,另一部分也是现在比较难处理的就是透射系统样品腔内本身长期的碳氢化合物。等离子透射样品杆可以达到清洗效果,同时对样品以及透射系统本身没有任何的影响。 而非传统意义上等离子清洗用的是高能量的离子对样品特别是脆弱样品的破坏损伤,加热损伤等。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062250_303575_1757238_3.jpg而透射使用的外置式等离子清洗机不但可以对市场上不同透射样品杆进行清洁外,还可以进行特殊样品的真空储存。这样怕氧化的样品或特殊样品不但可以进行等离子清洁外还可以进行真空保存。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062257_303576_1757238_3.jpg

  • 激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    [color=#cc0000]摘要:本文介绍了一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000]1.问题的提出[/color] 在采用闪光法测量材料热扩散系数过程中,诸如样品厚度和闪光脉冲加热能量这些试验参数的选择,使得测试人员最常面临的困惑就是试验参数选择合理性和测试结果的准确性,这种现象在实际测试中主要表现在以下几个方面: (1)对于相同材料和厚度的样品,设置不同闪光脉冲加热能量,往往会得到不同测试结果,无法判断加热能量参数选择的合理性和测试结果的准确性。 (2)对于未知材料,无法确定合理的样品厚度,往往造成不同样品厚度测试的热扩散系数有明显偏差。 (3)对于相同材料和厚度的样品,不同实验室采用不同型号闪光法仪器,经常会得出不同的测试结果,有时相互之间的偏差还很大。 (4)对于相同材料和厚度的样品,不同实验室采用相同型号闪光法仪器,也常会得出不同的测试结果。 总之,由于存在以上困惑,这就需要开发出一种闪光法测试规范来准确测量热扩散系数,而最终得到的热扩散系数与闪光法仪器的试验参数无关。也就是说,希望采用任何正常的闪光法设备和任意试验参数,都可以测量得到准确的热扩散系数。 本文将介绍一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[color=#cc0000]2.外推法的基本原理[/color] 众所周知,闪光法测试中,根据温升曲线计算得到的热扩散系数取决于测试条件,如脉冲加热能量和样品厚度。图 2-1显示了温升曲线和热扩散系数随温度的变化曲线。[align=center][img=,690,341]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201616538529_4916_3384_3.png!w690x341.jpg[/img][/align][align=center][color=#cc0000]图 2-1 (a)温升曲线和(b)在Tbase附近温度对热扩散系数的依赖关系[/color][/align] 当在规定温度Tbase(脉冲加热前保持恒定)下进行激光测量时,样品温度会升高Tmax。热扩散系数是一种依赖于温度的物理性能,因此,样品背面温升曲线反映了测量过程中起始温度Tbase和最高温度Tmax之间热扩散系数的温度相关性,即闪光法热扩散系数测量结果是样品温度升高后的等效热扩散系数,而不是起始温度Tbase时样品的固有热扩散系数,由此所带来的误差就是等效热扩散系数与固有热扩散系数之间的差值,此差值就是常见闪光法热扩散系数测量误差的主要来源。 从图 2-1可以看出,当样品背面温升ΔT较大时,如果材料样品的热扩散系数对温度非常敏感,则等效热扩散系数与固有热扩散系数之间的差值将会较大。另外,较大ΔT可能会样品背温红外辐射器信号带来非线性影响,也会增大测量值偏差。 由此可见,由于背面温升ΔT的存在,对于某一样品厚度和加热能量下测试得到是等效热扩散系数,此等效热扩散系数取决于样品厚度、脉冲加热能量、脉冲光吸收率和样品体积热容。从理论上讲,背面温升ΔT越小,所测试的等效热扩散系数就越接近于固有热扩散系数。但在实际测试过程中,往往会选择较大的脉冲加热能量来获得漂亮的背面温升曲线,以提高背温信号的信噪比。由此可见,脉冲加热能量的大小与热扩散系数准确测量是一对矛盾。 为了解决上述试验参数对测量结果带来的影响,日本国家计量研究所(NMIJ)的Akoshima等人开发了一种外推法热扩散系数测试规范[1]。外推法的基本原理是在恒定温度Tbase下,假设样品厚度、脉冲光吸收率和样品体积热容不随温度发生改变,通过改变脉冲加热能量(即改变背面温升ΔT大小)测试得到一系列相应的等效热扩散系数。如图 2-2所示,以背面温升ΔT为横坐标、等效热扩散系数测量值为纵坐标,建立起等效热扩散系数与背面温升的线性函数关系,最终用此线性函数外推得到脉冲加热能量为零时的等效热扩散系数,由此认为此外推得到的热扩散系数即为样品材料在温度Tbase时的固有热扩散系数。[align=center][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617142109_5211_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#cc0000]图 2-2 不同加热能量时的等效热扩散系数测量结果和外推法示意图[/color][/align] 由此可见,通过外推法可以得到样品材料固有的热扩散系数,而且所得到的热扩散系数与样品厚度和脉冲加热能量无关,这样就可以在实际测试中消除了测试参数对热扩散系数测量结果的影响。[color=#cc0000]3.外推法的验证[/color] 为了全面验证外推法在闪光法热扩散系数测试中的有效性,日本国家计量研究所(NMIJ)和法国国家计量和测试实验室(LNE)开展了专门的比对测试研究[2],并计划将外推法补充到闪光法热扩散系数标准测试方法中。 对比测试选择了四种材料,分别是IG-110各项同性石墨、Armco铁、YSZ陶瓷和氮化硅,如图 3-1所示。这四种材料基本覆盖了10E-4~10E-6㎡/s范围的热扩散系数,并在脉冲光和探测光的透过性上非常有代表性,从而也代表了不同样品表面吸热涂层和遮光涂层的处理方式。[align=center][img=,690,161]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617320094_8341_3384_3.png!w690x161.jpg[/img][/align][align=center][color=#cc0000]图 3-1 外推法对比测试样品:从左到右的IG-110石墨、Armco铁、3YSZ和氮化硅 [/color][/align] 两个实验室分别在室温下分别对不同样品厚度的上述四种材料进行了测试,每种厚度样品采用不同脉冲加热能量测试表观热扩散系数,结果如图 3-2~图 3-5所示。然后针对每种厚度样品的表观热扩散系数测试结果计算获得零脉冲能量外推值。每个样品的外推值以及每个实验室的平均值和标准偏差如表 3-1所示。[align=center][color=#cc0000][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617457894_7515_3384_3.png!w690x255.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-2 两实验室分别在室温下对不同厚度IG-110石墨样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,256]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618077493_2590_3384_3.png!w690x256.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-3 两实验室分别在室温下对不同厚度Armco铁样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,253]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618183304_8193_3384_3.png!w690x253.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-4 两实验室分别在室温下对不同厚度3YSZ样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层[/color][/align][align=center][color=#cc0000][img=,690,260]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618287874_3031_3384_3.png!w690x260.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-5 两实验室分别在室温下对不同厚度Si3N4样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层 [/color][/align][align=center][color=#cc0000]表 3-1 两实验室对比测试四种材料的固有热扩散系数,根据室温下不同厚度样品测量的表观热扩散系数值的平均值进行估算(LNE 296K,NMIJ 298K)[/color][/align][align=center][img=,690,793]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618432974_4190_3384_3.png!w690x793.jpg[/img][/align] 在各向同性石墨的情况下(其显示出室温附近热扩散系数的强温度依赖性),从具有最大温升的温升曲线计算的表观热扩散系数比使用外推法估计的固有值小3%。由于NMIJ和LNE估计热扩散系数测量的典型不确定度约为2~3%,因此这种误差就非常明显。结果表明,外推法有助于获得固有热扩散系数,同时避免测量过程中由于样品温度变化造成的偏差。通过对两种半透明性材料(3YSZ和Si3N4)的测试对比,也证明了外推法有助于检测热扩散系数的估计值是否正确,并具有识别材料任何潜在半透明效应的功能。 通过上述NMIJ和LNE这两个国家计量机构对四种固体材料进行的热扩散系数测量,验证了外推法测试技术的有效性和准确性。尽管两实验室使用了不同的测试设备和不同的温升曲线分析方法,但两实验室测量的热扩散系数依然显示出很好的一致性。由此可以确认,结合了外推法的闪光法热扩散系数测量,在10E-4~10E-6㎡/s范围内的热扩散系数测试可以不受测量条件、仪器、分析方法和实验室的影响。[color=#cc0000]4.总结[/color] 热扩散系数是材料固有的特性,据此,热扩散率不取决于测量条件、形状和尺寸。然而众所周知,闪光法热扩散系数测试经常受到这些因素的影响,因此外推法的出现为解决上述问题提出了一个很好的解决方案。 自2005年外推法提出以来,在国际度量衡委员会(CIPM)温度测量咨询委员会第9工作组(CCT-WG9)组织的实验室间热扩散系数对比框架内,一直采用外推法这一试验规程进行所有的对比测试[3]。经过多年的验证试验和实际测试,证明了外推法主要有以下特点和优势: (1)外推法是一种通用性方法。在采用外推法测试材料热扩散系数过程中,尽管不同实验室和不同测试设备采用不同脉冲加热能量和不同数据处理方法会得到不同的外推斜率,反映了与测量仪器和所用评估方法相关的测量条件,但对应于固有热扩散系数的截距值与斜率无关。 (2)外推法对热扩散系数随温度变化敏感的材料更有效。从上述石墨与金属材料的对比测试可以看出,Armco铁的外推斜率要小于IG-110石墨外推斜率,石墨材料热扩散系数在对温度变化敏感的范围内,外推法对于更能显著提高测量的准确性。 (3)有助于识别潜在的材料半透明效应。采用外推法测量时,如果材料完全不透明则会得到与样品厚度无关的相同的外推值,反之则会看出明显的厚度变化所带来的半透明效应。这种功能在识别未知材料的潜在半透明性中非常有用。 (4)由于使用外推法只需在不同脉冲加热能量下进行测量,与样品厚度和数据处理方法无关,加上目前闪光法测试设备自动化程度很高,可以自动按照设定程序改变脉冲加热能量进行连续测量,因此只需选定一种厚度样品就可以快速准确的测定热扩散系数,既能保证测量准确性又能提高测试效率。另外,通过外推法还可以在大的信噪比下进行测量,解决了信噪比与测量精度的矛盾。[color=#cc0000]5.参考文献[/color][align=left](1) M. Akoshima, T. Baba, in Proceedings of Thermal Conductivity 28/Thermal Expansion 16, ed. by R.B. Dinwiddie, M.A. White, L. McElroy (DEStech Publications, Lancaster, 2006), p. 497–506[/align][align=left](2)Akoshima M, Hay B, Neda M, et al. Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method[J]. International Journal of Thermophysics, 2013, 34(5): 778-791.[/align][align=left](3)Akoshima M, Hay B, Zhang J, et al. International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9[J]. International Journal of Thermophysics, 2013, 34(5): 763-777.[/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 制冷加热系统运行方式与原理说明

    制冷加热系统是利用电能转化为热能的设备,工作范围比较广,为制药、化工、生物等行业的设备提供恒温的冷源和热源,那么无锡冠亚制冷加热系统怎么运行的呢?  制冷加热系统在被加热物体内部直接生热,因而热效率高,升温速度快,并可根据加热的工艺要求,实现整体均匀加热或局部加(包括表面加热),容易实现真空加热和控制气氛加热。在制冷加热过程中,产生的废气、残余物和烟尘少,可保持被加热物体的洁净,不污染环境。因此,制冷加热广泛用于生产、科研和试验等领域中。制冷加热系统装置是对金属材料加热效率较高、速度较快,低耗节能环保型的感应加热设备。  制冷加热系统能够提供冷源和热源的循环装置,工作范围宽广,制冷加热系统用于制药、化工、生物等行业,为反应釜、槽等提供热源和冷源,也可用于其他设备的加热和冷却,温度控制范围宽,全程不需更换导热介质,导热介质消耗少。全封闭循环系统,高温时导热流体不易挥发和氧化,低温下不易吸入空气中的水分,可延长导热流体的使用寿命,高温冷却、制冷功能,可以从高温直接降温。  制冷加热系统采用多功能报警系统和安全功能、板式换热器、管道式加热器提高加热和制冷速率,这样一来,运行更加平稳安全。

  • 透皮吸收试验

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39505.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][size=29px][color=#353535][/color][/size]透皮试验属于化妆品、药物安全风险评估中暴露评估的重要项目,根据毒代动力学的相关解释:在研究具有一定毒性剂量下的原料和/或风险物质在动物体内的吸收、分布、代谢、排泄过程和特点过程中,需要我们了解其在动物体内的分布及其靶器官情况,进而探讨其毒性的发生和发展的规律。原料和/或风险物质经过皮肤吸收后,其代谢转化可能会对其潜在毒性、体内分布和排泄造成重要影响。因此,在特定情况下,需要实施体内或体外生物转化研究,以证明或排除某些不良反应。[color=#222222]如果你是化妆品或药品研发企业,在产品备案或注册过程中,毒理学相关试验是必须提交的资料之一。但是哪些产品应该做透皮吸收试验?如何做?依据标准有哪些?相信都是很多企业疑惑的地方。透皮吸收试验有两大类一类是体外试验,一类体内试验,在官方资料不完善的情况下,如何选择官方认可的透皮吸收试验就成为企业急需了解的问题。[/color][color=#353535] [/color][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]服务产品[/td][td]乳膏、人工膜、乳液、药膏、贴膏、药品(甲硝唑)、凝胶、防晒霜、风湿贴、止痛贴、胰岛素[/td][td] [/td][td] [/td][td] [/td][/tr][tr][td]试验种类[/td][td=4,1]皮肤头皮吸收试验,体外透皮吸收试验,药物释放头皮吸收试验,乳膏透皮吸收试验,化妆品头皮吸收试验,水杨酸头皮吸收试验等。[/td][/tr][tr][td]试验项目[/td][td=4,1]动物实验,实验代做,方法学验证,上门实验,现场实验等[/td][/tr][tr][td=1,5]试验方法[/td][td=1,2] [/td][td=1,2] [/td][td] [/td][td] [/td][/tr][tr][td]动态扩散池法[/td][td]动态扩散池法主要是扩散介质的不断更换,可以更能模拟真实的生理条件。常用的离体皮肤有人体皮肤、动物皮肤、重组皮肤模型。目前来讲,体外扩散池法以其诸多优点仍是目前最常用的获得化妆品功效成分经皮释放曲线,及其在不同皮肤结构中分布情况的检测方法[/td][/tr][tr][td=1,3]体内试验方法[/td][td]胶带剥离技术(Tape Stripping,TS)[/td][td=2,1]胶带剥离技术(Tape Stripping,TS)主要将化学物质在皮肤的特定区域暴露一定时间后,用胶带粘贴获取角质层(SC),再用适当的分析技术确定胶带中特定物质的含量。优点是可以同时研究同一个志愿者的多个取样点,是一种用于测定人体化学物质在体透皮吸收非常有价值的工具。缺点是TS技术不适用于测定挥发性和快速穿透性的化学物质,且容易受到胶带粘贴性能、粘贴时施加的压力、溶解受试物的介质等方面的影响,对志愿者的皮肤屏障有损伤作用。[/td][/tr][tr][td]光谱法[/td][td=2,1]光谱法分为傅里叶变换衰减全反射红外光谱法、共聚焦拉曼光谱法、荧光寿命显微成像法。优点是快速、无创、实现皮肤精准深度测量甚至实时动态了解。缺点主要是这些检测设备通常较为昂贵,而且这些光谱测试方法对实验者要求较高,实验时一般要求测试部位长时间保持不能移动,具有一定挑战性。具有局限性,主要在于,一种化学物质必须有一个特定的吸收光谱,与SC 的化学物质截然不同。此外体内试验方法还有化学测试法、组织检查法、同位素示踪法、生理反应法等[/td][/tr][tr][td]其他方法[/td][td=2,1]化学测试法、组织检查法、同位素示踪法、生理反应法等[/td][/tr][tr][td]试验标准[/td][td=4,1]GB/T 27818-2011 化学品 皮肤吸收 体外试验方法GB/T 27825-201 化学品 皮肤吸收 体内试验方法[/td][/tr][/table]哪些化妆品需要或可以不做透皮吸收试验?1.无原料和/或风险物质的透皮吸收试验,可采用国际通用的透皮吸收试验方法获取相应的数据。在提供透皮吸收数据时,吸收率以100%计;2.若满足以下部分条件:分子量﹥500道尔顿,高度电离,脂水分配系数Log Pow≤-1或≥4,拓扑极性表面积120?2,熔点200℃,吸收率以10%计;3.若化学合成的由一种或一种以上结构单元,通过共价键链接,平均相对分子质量大于1000道尔顿,且相对分子质量小于1000道尔顿的低聚体含量少于10%,结构和性质稳定的聚合物(具有较高生物活性的原料除外),可不考虑透皮吸收。4.吸收率不以100%计时,需提供有关情况说明。总结来讲,功效宣称有保湿、美白、延缓衰老等的化妆品,需要建立在透皮吸收试验的基础上开展安全性评价程序。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]化学品[/td][td]皮肤吸收体外试验[/td][td]GB/T 27818-2011[/td][/tr][tr][td]化学品[/td][td]皮肤吸收体内试验[/td][td]GB/T 27825-2011[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font][color=#222222]德检科技针对透皮吸收给药试验不断进行多方面的研究和改进,完善了许多有效评价药物透皮吸收试验的方法,可为企业提供各种产品的透皮吸收试验及研究。[/color][color=#222222][/color]

  • 高低温测试箱系统介绍

    高低温测试箱系统介绍

    高低温测试箱相对其他的环试设备而言市场购买量较多,很多的行业都开始运用高低温测试箱来给产品检测或进行改进,下面是小编简单归类的高低温测试箱系统介绍。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/02/202102191446342789_7703_1037_3.jpg!w348x348.jpg[/img][/align]  制冷体系:单级制冷难以满足请求因而其制冷方法通常选用复叠式制冷。  温度体系:温度体系分为加湿和除湿两个子体系。  空气循环体系:空气循环体系通常有离心式电扇和驱动其工作的电组织成。  加热体系:测试箱的加热体系相对制冷体系而言比较简单,因设备请求升温速率大所以加热体系功率也较大且底板设有加热器。  传感器体系:高低温测试箱的传感器主要是温度和湿度传感器。温度传感器使用较多的,是铂电组和热电偶。  湿度的丈量方法有两种:干湿球温度计法和固态电子式传感器直接丈量法。因干湿球法丈量精度不高所以现今正逐渐的以固态传感器替代干湿球来进行湿度的丈量。  操控体系:操控体系是归纳实验箱的中心决定升温速率精度等重要目标。如今操控器大都选用PID操控,但因操控体系基本上归于软件的领域且在使用中通常不会出现问题因而本文不对操控体系做太多的介绍。  高低温测试箱在使用时要注意其使用条件及事项不可在不经过了解的情况下,盲目使用高低温测试箱,这样会导致设备发生故障及损坏严重还可能危害人身安全。

  • 皮肤渗透剂研究进展

    化妆品功效性原料物经皮吸收,主要是通过角质层和活性表皮浸润真皮,直接作用于靶细胞。皮肤对大多数功效性原料物是经皮给药的屏障,许多化妆品功效性原料物透皮给药后,渗透速率达不到治疗要求,所以,寻找促进化妆品功效性原料物透皮吸收的方法,是开发透皮给原科物系统的关键。它包括物理方法和化学方法。研究得最多的是化学方法是使用渗透促进剂,此外,化学方法,还有化学结构改造,如合成具有较大透皮速率的前体药物,使用微乳、脂质体等技术,对蛋白质等水溶性大分子原洲物,离子导入和超声波等物理方法应用较多。化妆品渗透促进剂常用的可分为以下几类,见表1。 【这个表格 导不进来 大家可以看看下面 23 4楼】表1 渗透促进剂一览表 类型 举例 药物 作用机制亚砜类 二甲基亚砜(DMSO)、癸基甲基亚砜(DCMS) 氢化可的松、水杨酸、溴乙啡啶、茶碱、氟灭酸、丙炎松等 角质层细胞内蛋白质变性;破坏角质层细胞间脂质的有序排列;脱去角质层脂质,脂蛋白吡咯烷酮类 2-吡咯酮、5-甲基-2-吡咯酮、1,5-二甲基-2-吡咯酮 ******、正辛醇、苯甲酸、倍他米松、甲灭酸 低浓度分配进入角蛋白,高浓度影响角质层脂质流动性并促进药物在角质层的分配;增加角质层的含水量Azone及其类似物 Azone 氯林可霉素磷酸酯、褐霉素钠、氟尿嘧啶、丙缩羟强龙、地塞米松、醋酸环戊酮缩去炎松 渗入皮肤角质层,降低细胞间脂质排列的有序性;脱去细胞间脂质形成孔道;增加角质层含水量;降低角质层脂质的相转变温度脂肪酸及其酯 油酸、肉豆蔻酸异丙酯、丙二醇二壬酸酯、癸二酸二乙酯 水杨酸、雌二醇、芬太尼、********、肝素、吲哚美辛 渗入角质层脂质,影响其有序排列;降低角质层脂质双分子层的相转变温度;引起角质层脂质固–液相分离和晶型转变;增加药物在角质层的分配表面活性剂 月桂醇硫酸钠、泊洛沙姆 氟灭酸、水杨酸 使角质层脂质排列无序化;乳化皮肤表面脂质,改善药物在角质层的分配醇类 乙醇、异丙醇、正十二醇、正辛醇 水杨酸、雌二醇、纳洛酮、左旋-18-甲基炔诺酮 作为溶剂增加药物在角质层的溶解度;脱去角质层脂质;渗入角质层脂质,影响其排列有序性多元醇类 丙二醇、丙三醇 水杨酸、5-氟尿嘧啶 使角蛋白溶剂化,占据蛋白质的氢键结合部位,减少药物-组织间的结合;增加并用的其他渗透促进剂在角质层的分配萜烯类 桉树脑、d-苎烯、橙花叔醇 普鲁卡因、吲哚美辛、5-氟尿嘧啶、肝素 促进药物在角质层的扩散;破坏角质层细胞间脂质屏障;提高组织电导率,打开角质层极性孔道;增加药物从基质向角质层的分配胺类 尿素、十二烷基-N,N-二甲基氨基乙酯 5-氟尿嘧啶 促进角质层水化,在角质层形成亲水性孔道;破坏角质层脂质结构酰胺类 二甲基甲酰胺、二甲基乙酰胺 ******、正辛醇、氢化可的松 低浓度时分配进入角蛋白区,高浓度时影响角质层脂质的流动性环糊精类 环糊精、2-羟丙基-环糊精 Liavozolel 将药物形成包合物,提高溶解度,并可把药物分子传递到皮肤表面氨基酸及其酯 L-异亮氨酸、十二烷基焦谷氨酸酯 雌二醇、左旋-18-甲基炔诺酮、茶碱 松弛皮肤的角蛋白,影响角质层脂质排列的有序性大环化合物 十五烷酮 氢化可的松 增加药物在角质层中的溶解度有机溶剂类 醋酸乙酯 水杨酸 破坏角质层脂质排列的密实性磷脂类 卵磷脂、豆磷脂、磷脂酰甘油、磷脂酰乙醇胺 二氢麦角胺、异三梨醇硝酸酯、茶碱、吲哚美辛 促进药物从基质中释放,增加药物在皮肤中的扩散;作用于角质层细胞膜脂质,改善其渗透性

  • Talboys 干式加热器的介绍及一些使用方法

    Talboys 干式加热器的介绍及一些使用方法

    http://ng1.17img.cn/bbsfiles/images/2012/03/201203161346_355132_2347661_3.jpg大家有用这种干式加热器的吗。如图示的试验。样品需要控温。这时应把外部温度探针放到那里,才能测量得准确呢。大家帮忙出出主意啊

  • “国家智能电网量测系统产业计量测试中心” 获批成立

    [align=center][font=&][size=16px][color=#444444][b]“国家智能电网量测系统产业计量测试中心” 获批成立[/b][/color][/size][/font][/align][color=#444444][font=Tahoma, &][color=#444444] 近日,市场监管总局正式复函国家电网公司,同意依托国网计量中心成立国家智能电网量测系统产业计量测试中心。[/color][/font][/color][color=#444444][font=Tahoma, &][color=#444444][img]http://www.gfjl.org/forum.php?mod=attachment&aid=MTUzMTYyfDkyYjdmNDRjfDE2MTUyNzcwODR8MzMzMzd8MjIxODQy&noupdate=yes[/img][/color][/font][/color][color=#444444][font=Tahoma, &][color=#444444] 国网计量中心是国家电网公司最高计量技术机构,承担着提升国家电网公司计量技术能力和管理水平,维护电力市场主体合法权益的重任。在量值溯源方面,拥有国家计量基准、社会公用计量标准以及电力行业最高计量标准,年均受理电力、铁路、石油、化工、航天等近10个行业900余家企事业单位的检定、校准业务委托。 国家智能电网量测系统产业计量测试中心于2017年11月14日获批筹建。自获批筹建以来,国家智能电网量测系统产业计量测试中心新建电动汽车交流充电桩、石英晶体频率标准等关键参数测量能力,攻克工频高电压标准、计量自动检定等7项关键核心技术,连续3年获得国家科技进步奖,授权专利190余项;建立智能量测设备质量(NQI)一站式服务平台,打造涵盖设备制造、设备使用、质量监管与公共服务的全场景服务生态;发起成立中国智能量测产业技术创新战略联盟,搭建覆盖产业链上中下游的产学研用公共服务平台,建立“高严寒、高干热、高海拔、高盐雾、高湿热”典型环境实验室,为200余家产业单位开展全方位的计量测试服务。 国家智能电网量测系统产业计量测试中心将进一步加强具有产业特点的测量测试技术、方法和设备的研究应用,为国家智能电网量测系统产业发展提供“全溯源链、全产业链、全寿命周期”并具有前瞻性的计量测试技术服务,促进国家智能电网量测系统产业创新发展。[/color][/font][/color]

  • 电加热导热油系统使用问题分析

    用户在购买无锡冠亚电加热导热油系统的时候,需要注意电加热导热油系统的使用常识,如果遇到一些使用常识的话,及时有效的解决。  电加热导热油系统使用时要注意控温的设备里面是否有水分,因为有许多客户试压和试漏会采用水,使用前一定要清除干净。  电加热导热油系统开机前的准备工作,检查阀门的开、闭状态,其中应开启的阀门有:主循环油泵的进 出口阀门、主循环管路系统阀门。应关闭的阀门有:主回油管路上的放尽阀门、膨胀油箱上的放尽阀、反应釜夹套及内置盘管的导热油进出阀门、放空阀 。 检查电路方面,电控柜的电源是否接通;观察测温仪表是否显示 并记录显示温度。检查各联接件间的密封情况。如泵进出口阀门、法兰的密封;加法兰密封情况;循环油泵的密封情况等是否完好。以及各紧固件是否松动,如循环油泵的地脚联接情况等。  注油前检查导热管路循环系统上所有阀门开、闭状态,确保在正确的位置,方可注油,加满油后开启循环泵,注意要把温度表温度调到较低,冷油循环,先不能加热。在循环过程如果报警缺油可以继续加油,在观察压力表,在压力表指针稳定,而且在一个比较合适的数值,这说明加热设备的空气已经排清,导热油已经加满。  电加热导热油系统停机时要注意不要在高温状态直接关掉循环泵,要把温度表温度调到常温,有冷却功能的需要开冷却水,没有的可以自然冷却,建议停机状态温度在100℃以下比较合适。  电加热导热油系统的使用问题如上所示,如果还有其他有关电加热导热油系统的问题不能及时解决的话,建议联系电加热导热油系统专业技术人员获取技术支持。

  • 瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    [size=16px][color=#cc0000][b]摘要:为准确测量航天复合材料快速加热过程中的热膨胀系数,本文介绍了热膨胀系数测试过程中加热速率、加热形式和位移测量形式对被测样品内外温度和热膨胀测量方向上温度梯度的影响,以及这些温度梯度与热膨胀系数测试结果之间的变化规律。在这些初步研究基础上,本文提出了高速加热过程中热膨胀系数测量装置的初步设计方案,即采用聚光辐射或电磁感应技术进行非接触快速高温加热,采用激光扫描或光学投影技术进行非接触应变测量。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#cc0000]1. 问题的提出[/color][/size][/b][size=16px] 比较典型的航天复合材料如碳碳和石墨复合材料、各种酚醛树脂基复合材料等,其热膨胀系数普遍还是采用加热速率较慢的各种热膨胀仪进行测试,而这种常规测试过程中的较低加热速率与航天复合材料的实际使用环境下的快速升温速率严重不符,低速加热时的热膨胀系数测试结果几乎对复合材料结构的热设计毫无用途,从而造成现有的热结构设计太过保守。为此,本文针对快速加热条件下的航天复合材料热膨胀系数测试,开展初步的测试技术研究,通过典型材料重点了解快速加热条件下的以下两方面的问题:[/size][size=16px] (1)快速加热条件下,样品或材料的内外内外温差对热膨胀系数的影响。[/size][size=16px] (2)快速加热条件下,样品或材料热膨胀测试方向上的温度均匀性影响。[/size][size=18px][color=#cc0000][b]2. 样品内外温差影响[/b][/color][/size][size=16px] 对于航天复合材料而言,由于其结构和热物理性能的不同,特别是热导率有着数量级上的差别,由此会在实际应用和取样测试过程中有时会存在严重的内外温差。热膨胀测试中,加热速率的不同会对测量结果产生明显的影响。[/size][size=16px] 为了直观了解这种内外温差对热膨胀系数测量的影响,我们选择了具有中等热导率(常温时约14W/mK)的不锈钢材料进行取样测试,测量温度范围为室温30~700℃,测试得到的平均热膨胀系数结果如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=不锈钢样品不同加速速率下的平均线性热膨胀系数测试结果,660,482]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111012258135_6561_3221506_3.jpg!w690x504.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 不同加速速率下的不锈钢样品热膨胀系数测试结果[/b][/color][/size][/align][size=16px] 从图1所示的测量结果可以看出,在较低加热速率(5℃/min)下的热膨胀系数测试结果相差不大,只是随加热速率的升高热膨胀系数整体有很小的降低。而在加热速率超过10℃/min时,测试结果发生明显的偏差,热膨胀系数明显的偏低,特别是在低温范围内这种现象更为明显。[/size][size=16px] 由此可见,对于热导率较低的材料,较快的加热速率会在样品内外产生明显的温差,从而对热膨胀系数产生严重的影响,使得热膨胀系数测试结果严重偏低。具体应用到航天复合材料中,由于碳碳和石墨复合材料的热导率普遍较高,相关的测试研究表明石墨材料在1600℃温度以下的范围内测试时,加热速率几乎没有影响,对于碳碳复合材料,这个不受加热速率影响的温度范围可以扩展到1700℃。[/size][size=16px] 对于热导率普遍较低的酚醛树脂复合材料,其热膨胀对加热速率则非常敏感,且膨胀过程非常复杂。有测试观察到当碳酚醛或二氧化硅酚醛层压材料被缓慢加热时,在190℃左右发生一些快速膨胀,然后材料开始收缩,从膨胀到收缩的变化对应于热降解的开始。而在高加热速率下,热膨胀系数的急剧增加发生在与低速率下开始收缩时的大致相同温度区域。据信,在高加热速率下,树脂开始软化,然后发生气体的快速释放。这些气体不容易逸出,并在材料中产生压力,导致快速膨胀和裂缝的张开。除了热膨胀之外,因材料的结构受到影响,其他性能也会受到加热速率的影响。[/size][size=18px][color=#cc0000][b]3. 样品表面温度均匀性影响[/b][/color][/size][size=16px] 在快速加热形式的热膨胀测试设备中,往往还存在以下两方面的因素会给样品表面温度的均匀性带来影响,由此会给热膨胀系数测量带来误差:[/size][size=16px] (1)加热方式:热膨胀测试中的快速加热一般会采用聚光辐射加热、感应加热和直接通电三种形式,其中辐射加热适用于非导电材料样品,而感应加热和通电加热则适用于导电类材料样品。但不论采用哪一种加热方式,发光灯管和感应线圈都会是有限长度,从而使得样品轴向方向上的温度并不是均匀分布。特别是直接通电加热方式中的电极与被测样品直接接触,样品上的热量会通过电极散失而造成较严重的样品温度不均匀性。[/size][size=16px] (2)变形测量方式:热膨胀系数的测量一般会采用顶杆法和光学投影法,在顶杆法测试中,与样品接触的顶杆同样会对样品起到散热作用而影响样品的温度均匀性,而非接触形式的光学投影法则不存在样品散热问题,对样品的温度均匀性影响较小。[/size][size=16px] 为了研究样品表面温度不均匀性对快速加热过程中热膨胀系数测量的影响,有研究人员采用了感应加热式顶杆法热膨胀仪,如图2所示,对42CrMo超高强度钢进行了不同升温速率下的测试。样品被夹在两根熔融石英顶杆之间,其中一根顶杆固定,另一根连接到一个差动变压器(LVDT)进行样品的变形量测量。样品被放置在感应线圈的中心可实现高速加热,样品上焊接了两只S型热电偶,中心位置的热电偶用于控制样品温度,边缘位置热电偶用来测量温度均匀性。[/size][align=center][size=16px][color=#cc0000][b][img=02.感应加热式顶杆法热膨胀仪结构,500,344]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014018059_9517_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图2 感应加热式顶杆法热膨胀仪结构[/b][/color][/size][/align][size=16px] 如图3所示为样品和感应线圈结构和尺寸示意图,样品为壁厚为0.5mm的薄壁圆柱,样品长度为10mm,熔融石英棒顶杆的外径和内径分别为2mm和1mm。[/size][align=center][size=16px][color=#cc0000][b][img=03.快速加热热膨胀测试中使用的样品和感应线圈几何形状,660,222]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014201830_7644_3221506_3.jpg!w690x233.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图3 快速加热线膨胀测试中使用的样品和感应线圈几何形状[/b][/color][/size][/align][size=16px] 对上述样品,在1℃/s~1200℃/s范围内一系列不同的速率下对样品进行了加热,不同加热速率下样品中心与边缘之间的温度差测试结果如图4所示,相应的应变测试结果如图5所示。[/size][align=center][size=16px][color=#cc0000][b][img=04.不同加热速率下的样品中部和边缘的实测温差,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014398184_2549_3221506_3.jpg!w690x557.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图4 不同加热速率下样品中部和边缘的实测温差[/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b][img=05.不同加热速率下的样品应变量-温度测试结果,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014595694_4159_3221506_3.jpg!w690x556.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图5 不同加热速率下样品应变量-温度测试结果[/b][/color][/size][/align][size=16px] 从图4所示的温差曲线可以看出,对于低于10℃/s的加热速率,样品中心和边缘之间的温差不会超过10℃。对于所有其他加热速率,温差随着中心温度快速增加,并在达到某一温度时开始变缓。从该温度开始,中心与边缘之间的温差随着样品中间温度变化几乎呈线性增加。对于最高加热速率1200℃/s,温差达到最大值160℃,边缘温度相当于中心温度的大约70%。[/size][size=16px] 如图5所示,比较不同加热速率下测得的应变-温度曲线,可以观察到加热速率越高,测得的应变越低,这也与图1所示的规律一致,但这也部分可能与加热速率增加时膨胀方向上的温度梯度的增加有关。从图5可以看出,最小和最大升温速率下应变测量值的相对偏差约为20 %。[/size][size=16px] 显然,在非常高的加热速率下使用变形信号对发生相变的动力学过程的研究将导致严重的误差,因为应变信号中的误差将通过不确定的传播影响描述相变动力学的所需参数的计算,同时,还取决于所应用的动力学模型的数学性质,最终误差甚至可能大于这里测量的应变的20%误差。[/size][size=16px] 另外,样品轴向上的温度梯度是由于样品和棒之间的接触带来的热损失,这导致靠近样品边缘的温度降低。在低加热速率下,从中心到边缘的热传导几乎使整个样品的温度相等,导致小的温度梯度,但随着加热速率的增加,由于热传导使得样品中心的温度上升较快,这导致轴向温度差的增加。[/size][size=16px] 造成温度梯度的另一个因素是样品与线圈磁场的相互作用,感应热在整个样品长度上并不是均匀和恒定的,对于膨胀计的感应线圈的规则螺旋状几何形状,沿着轴向方向上存在强烈的感应温度梯度。[/size][size=18px][color=#cc0000][b]4. 总结[/b][/color][/size][size=16px] 通过上述高加热速率条件下进行的金属材料热膨胀系数测试,可以明显看到加热速率对样品内外和样品轴向温度差的严重影响,因此在今后的各种高加热速率条件下的热膨胀测试,需要特别注意以下几个内容:[/size][size=16px] (1)测试前,首先要确定具体测试的是哪一种热膨胀系数,稳态热膨胀系数测试则选用低加热速率,瞬态热膨胀系数测试则根据实际应用场景选择相应的高加热速率,这在材料的相变过程研究中非常重要。[/size][size=16px] (2)对于稳态热膨胀的测试,需要在样品内外温度一致后进行测量,这是就需要尽可能采用尽可能低的加热速率才能保证相应的测量准确性,甚至可以采用台阶式温升方式,使样品在不同温度下恒定一段时间后再进行变形测量。[/size][size=16px] (3)由于材料固有的导热性能,对于符合实际变温速率应用场景的高加热速率下的热膨胀测试,样品内外的温差更能符合材料的实际温度环境,但在热膨胀系数的具体测试中需要尽可能避免样品轴向温度差带来的测量误差。具体采取的措施是分别采用非接触形式的加热技术和位移测量技术,使被测样品不与其他物体接触或最小接触,如采用均温场更长的聚光辐射加热装置或能提供更均匀温度场的异型感应线圈对样品进行非接触式快速加热,如采用激光线扫描或投影法光学变形测试技术非接触测量样品的长度。[/size][size=16px] 总之,通过对高速加热过程中热膨胀系数测试技术的初步研究,确定了非接触快速加热和非接触位移测量的总体技术方案,为后续航天复合材料高速热膨胀系数测试研究工作的开展奠定了基础。[/size][size=16px][color=#cc0000][b][/b][/color][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 透射电镜双倾杆铍垫圈价格

    FEI透射电镜双倾杆铍垫圈,就是有两个小耳朵的那个,今天要了一下报价,接近1万5,怎么这样贵啊,大家有买过吗?感觉价格太夸张了,就一个小东西。。。。。。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制