当前位置: 仪器信息网 > 行业主题 > >

导电表

仪器信息网导电表专题为您提供2024年最新导电表价格报价、厂家品牌的相关信息, 包括导电表参数、型号等,不管是国产,还是进口品牌的导电表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导电表相关的耗材配件、试剂标物,还有导电表相关的最新资讯、资料,以及导电表相关的解决方案。

导电表相关的资讯

  • 智能电表让电费“飞”? 市民企盼第三方机构检测
    2月28日,南昌市苑中园小区居民徐先生向本报反映,自从1月份装上智能电表后,他这个月的电费比上个月增加了80%左右,小区内其他居民也有电费猛增的情况。南昌市供电公司当天在上门检测居民电表运转无异常后称,居民电费猛增与天气寒冷等多种因素有关,且智能电表灵敏度较高,市民须养成良好的用电习惯。  40多天用1119度电  2月28日,家住南昌市苑中园小区3栋的居民徐先生向本报反映称,他家在今年1月9日改为智能电表。2月15日他去查看了用电量。“不看不知道,一看吓一跳,一个月用了288度电。”徐先生说,这比原来一个月多了80%。  而比徐先生更为惊讶的是苑中园小区14栋的居民郑先生,2月28日下午郑先生出示的电费单显示,他在1月2日至2月14日共用了1119度电。“以前我每个月电费在180元至200元之间,这个月却增加到了670多元。”  2月28日,记者在苑中园小区走访时,不少居民均表示这次所要缴纳的电费确实比上个月要高。  智能电表推高用电量?  居民反映电费猛增较为普遍,而且电费猛增刚好发生在更换智能电表之后的这个月,“自然而然就怀疑到了智能电表身上。”徐先生的这个怀疑,也是小区内其他部分居民的想法。  2月28日,南昌市供电公司计量中心胡副主任和几名技术工人来到苑中园小区,并在现场检测了最具典型性的郑先生家的电表,检测结果显示电表没有异常。  电表与用电习惯没有异常,电费为何会猛增?对此,南昌市供电公司计量中心胡副主任说,智能电表的灵敏度比原来的机械电表更高,“如果电视机用遥控器关闭,却仍处于待机状态,同样在走电量,所以居民要养成良好的用电习惯。”  盼第三方机构检测  电表运转无异常,仅仅因为电器待机就让电费增了好几倍?居民郑先生对于现场的电表检测以及南昌市供电公司的众多解释都将信将疑,因为夏天他开多台空调时他一个月的电费也就是300多元,1月份他只开了一台小空调,电量却如此惊人。  居民徐先生称,智能电表在保证灵敏度的同时,也要保证准确性,他们希望有第三方机构对智能电表再次检测。
  • 西门子收购eMeter:电表数据管理或将翻开新篇章
    德国西门子公司收购美国加利福尼亚San Mateo的电表数据管理专业公司eMeter。  eMeter是智能电表软件平台服务商,其让电力公司可以透过其系统,精确计算每个用户所使用电量,而用户可以登陆电力公司网页来了解自家的电力使用模式,藉此达成节能效果。  西门子与eMeter公司自2008年建立战略伙伴关系。2011财政年度,西门子环保相关业务组合的收入总额近300亿欧元,这也使西门子公司成为世界上最大的环保技术供应商之一。  西门子表示,eMeter公司的EnergyIP电表数据管理软件将成为其智能电网业务组合中不可分割的一部分。  我们认为eMeter公司本来也许能够上市。但正如我们在讨论银泉网络公司上市那样,最近的市场动荡和人们对以欧洲为代表的地区经济衰退的忧虑抑制了大家对上市的期望。同时,eMeter的风险投资者们对退出耐性不够。eMeter公司现任执行总裁Gary Bloom就是专为筹划公司的出售或上市而招募来的,现在他已顺利完成这一任务。  这一收购事件对于该领域内的其它公司意味着什么呢?许多观察家早前就预言作为一个单独门类的电表数据管理业务将会消失。这个观点很实在。正如它所言,所有的大型计量公司都将自建或购买基础的电表数据管理系统。如果这一预言属实,那么接下来就应该进行生态分析了?Landis+Gyr公司(现归东芝公司所有)目前已经拥有了少数股权了。  那么这对于公用事业公司又有何影响呢?这个问题的答案目前尚不明朗。但也许你会发现很多混搭现象——例如,Itron电表公司与西门子(前身为eMeter公司)的电表数据管理系统和银泉网络公司合作。再或者,公用事业公司会开始购买电表数据管理系统作为计量业务包的一部分
  • 专题约稿|锂电表征之电镜/热分析/原子吸收解决方案
    p style="text-align: center "  span style="color: rgb(255, 0, 0) font-size: 18px "istrong专题约稿|锂电表征之电镜/热分析/原子吸收解决方案/strong/i/span/pp style="text-align: center "ispan style="color: rgb(127, 127, 127) "——“锂电检测技术系列——成分分析技术”专题征文/span/i/pp style="text-align: center "ispan style="color: rgb(127, 127, 127) "(作者:日立高新技术公司)/span/i/pp  电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能可能与材料的多种性质有关,每一类性质也可能影响多项性能,具体问题需要具体分析,没有特别统一的规律,这给电池的研究带来了很大的挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp  strong仪器信息网/strong:请介绍贵公司在锂电检测方面的仪器产品或仪器产品组合?/pp  strong日立高新/strong:日立高新公司在锂电检测方面的仪器包括:扫描电子显微镜【a href="https://www.instrument.com.cn/netshow/SH102446/Product-C7301-0-0-1.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "产品链接/span/a】,ZA3000系列原子吸收分光光度计【a href="https://www.instrument.com.cn/netshow/SH102446/C170248.htm" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "产品链接/span/a】,TA7000系列热分析仪器【a href="https://www.instrument.com.cn/netshow/SH102446/C313727.htm" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "产品链接/span/a】,AFM5300E高真空可控环境型原子力显微镜【a href="https://www.instrument.com.cn/netshow/SH102446/C244320.htm" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "产品链接/span/a】等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/a4e75b73-242f-4a4d-bea4-0182ef68a329.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "日立高新锂电检测部分产品组合/span/pp  strong仪器信息网/strong:请介绍贵公司针对锂电检测领域可以提供哪些解决方案?有哪些优势?/pp  strong日立高新/strong:日立高新在锂电池领域解决方案包括:/pp  1)通过扫描电镜观察燃料电池用电极催化剂能获得的高分辨图像,可以高衬度且高分辨观察含碳等轻元素的载体上携带的金属催化剂颗粒等纳米复合材料 /pp  2)锂电池需要准确测定的Li,Na,K等元素含量必须精确控在一定范围。检测的难点在于其电解液成分复杂,大量有机物和各种元素会产生干扰,对于精确测定带来很大挑战。日立ZA3000系列原子吸收分光光度计,采用偏振塞曼背景校正技术,能实时准确扣除背景信号干扰,在全波长范围内精确进行背景校正。可更加灵敏地检测到锂电池电解液中的金属元素。【a href="https://www.instrument.com.cn/netshow/SH102446/s905046.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "方案链接/span/a】/pp  采用日立AAS具有4条优势:操作简单,测定速度快(十几分钟) 全波长校正,测定范围包含锂电所需测定的各种金属元素 结果准确(ppb级) 相比于ICP方法成本低等。/pp  3)日立TA7000系列热分析仪器,拥有丰富的产品线。通过采用水平差动式双天平,中心热流型热电堆传感器,三层绝热型加热炉等创新技术,实现高灵敏度和高基线稳定性。为锂电池隔膜,电池正极活性物质,以及电解液安全性评价等研究提供高性能的检测。【a href="https://www.instrument.com.cn/netshow/SH102446/s905870.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "方案链接/span/a】/pp  4)日立AFM5300E高真空可控环境型原子力显微镜可以在真空条件下对锂离子电池电极材料进行观察和分析,避免电极材料受到空气中氧气和水汽的影响。原子力显微镜除了能获得高分辨的形貌图像,更能测量电极材料的电阻,电位势,导电率等的微观分布,对锂电池的研究有极大的帮助。/pp  strong仪器信息网/strong:贵公司锂电检测领域有哪些典型用户?/pp  strong日立高新/strong:典型用户包括:浙江大学,北京理工大学,北京化工大学,中科院化学所等高校、研究所等。/pp  strong仪器信息网/strong:贵公司对锂电检测市场的看法及市场拓展态度?/pp  strong日立高新/strong:锂电池的应用十分广泛,如手机、笔记本电脑、电动汽车等,锂电池已经成为生活中不可或缺的产品。但锂电池具有极高的能量密度,随着技术的不断革新,锂电池也向轻小化转变。因此为保证锂电池安全,对于生产锂电池所用的材料进行全面的分析检测越来越重要,将来锂电检测市场对于检测仪器的要求也会越来越高,因此日立高新的产品也在不断创新,不断提高仪器的性能,以满足锂电检测市场的需求。/ppstrongspan style="color: rgb(255, 255, 255) "  /span/strongstrongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr//pp  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) "【征集申报链接】/span/a /ptable cellspacing="0" cellpadding="0" border="0" align="center"tbodytr class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px word-break: break-all " width="53"p style="text-align:center"strongspan style="font-family: 宋体"系列序号/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="359"p style="text-align:center"strongspan style="font-family: 宋体"锂电检测技术系列专题主题/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="126"p style="text-align:center"strongspan style="font-family: 宋体"专题上线时间/span/strong/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span1/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——电性能检测技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="126"p style="text-align:center"span2019/span年span1/span月span style="color: rgb(0, 176, 240) "【/spana href="https://www.instrument.com.cn/zt/lidian1" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "链接】/span/a/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span2/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——成分分析技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="126"p style="text-align:center"span2019/span年span3/span月/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span3/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——形貌分析技术/p/tdtd rowspan="4" style="border:solid windowtext 1px border-left:none padding:0 0 0 0"p style="text-align:center"span2019/span年/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span4/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——晶体结构分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span5/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——spanX/span射线光电子能谱分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span6/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="359"p style="text-align:center"锂电检测技术系列——安全性和可靠性分析仪器及设备/p/td/tr/tbody/table
  • 你知道电导电极是怎么使用以及维护的吗
    电导率电极是在保证性能的基础上简化了功能,从而具有了特别强的价格优势。清晰的显示、简易的操作和优良的测试性能使其具有很高的性价比。可广泛应用于火电、化工化肥、冶金、环保、制药、生化、食品和自来水等溶液中电导率值的连续监测。  电导电极的使用  (1)为保证电导率仪器的测量精度,必要时,仪器使用前,用电导率仪对电极常数进行重新标定,同时,应定期进行电导电极常数标定,如出现误差较大时应及时更换电导电极。  (2)在测量高纯水时应避免污染,正确选择电导电极的常数,并采用密封、流动的测量方式。否则,其电导率值将很快升高,这是因为空气中的二氧化碳溶入高纯水后,就变成了具有导电性的碳酸根离子而影响测量值。  (3)为确保测量准确度,电导电极使用前应用小于0.5us/cm的去离子水(或蒸馏水)冲洗2次,然后,用被测试样冲洗后方可测量。  (4)仪器测量后显示的值已折算到25℃测量值,如不需补偿,拔去温度电极仪器显示25℃,测量的值就是当时的溶液的电导值。  电导电极的维护保养  电导电极的贮存  光亮的铂电极、镀铂黑的铂电极(长期不使用)一般贮存在干燥地方,但镀铂黑的铂电极使用前必须放在蒸馏水中数小时,经常使用的镀铂黑电极可以贮存在蒸馏水中。  电导电极的清洗  (1)可以用含有洗涤剂的温水清洗电极上的有机成分沾污,也可用酒精清洗。  (2)钙、镁沉淀物用10%的柠檬酸清洗。  (3)光亮的铂电极可以用软刷子机械清洗,但在电极表面不可以产生刻痕,不可使用螺丝起子之类硬物清除电极表面,甚至在用软刷清洗时也要特别注意。  (4)对于镀铂黑的铂电极,只能用化学方法清洗,用软刷子清洗时会破坏镀在电极表面的镀层(铂黑)。总之,实验室的实验人员如果能正确使用pH电极、电导电极,并做好电极的日常维护和保养工作,不但可以延长电极的使用寿命,而且可以大大地减少pH计、电导率仪的测量误差,从而提高化学实验、检验数据的准确性、可靠性。
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 工业电导率电导电极的选择与使用
    电极的选择与使用根据被测水样电导率的大小范围,选择常数合适的电极是准确测量的关键。特别是对纯水(3μS/cm)和超纯水(1μS/cm)的测量,应用0.1或0.01的电极,必要时还要加上密闭测量槽,才能作到准确的测量,否则将产生较大的误差。选择电极的基本原则:根据被测水样电导率的大小范围,参照下表选择常数合适的电极。在选择电极时,zui易出现的错误是“选择大常数的电极测低电导”。如选1.0的电极测3μS/cm的水样,这不可能得到准确的值。因为低电导介质的导电性很差,若再用大常数的电极去测量,则只会得到更微弱且不稳定的电信号,势必大幅度增加测量误差。 配上各种电极后的测量范围测量范围电极常数电导电极型号备注0.01~20μS/cm0.01DDJ-0.01作流动密闭测量0.1~200μS/cm0.1DDJ -0.10 1~2000μS/cm1.0DDJ -1.00 10~20000μS/cm10DDJ -10.0 30~600.0mS/cm30DDJ -30.0 超出上表所列测量范围进行测量时,误差将会有所增大。当介质电导率值100μS/cm时,宜用常数为1.0或10的铂黑电极测量以增大有效面积,使电极表面的电流密度显著下降,以有效削弱介质是浓溶液时容易产生的电极极化影响。仪表中设置的电极常数必须与电极上所标的常数一致。如所配电极上标注的电极常数为0.102,则仪表里设置的电极常数必须为0.102。
  • 日本团队合成较高性能质子导电性化合物
    据九州大学官网报道,该校山崎仁丈教授等开发出了能预测质子传导性电解质材料的人工智能(AI)模型,然后仅通过一次实验就发现了较高性能的新型质子导电性电解质。这是将实验研究和数据科学相互融合基础上获得的一项成果。  该团队一直致力于固体氧化物燃料电池(SOFC)的电解质材料研究,并将目标聚焦于在350—450℃下工作的质子导电性钙钛矿氧化物。以往他们已了解到要使金属氧化物表达出质子导电性,必须将该构成物质的一部分元素置换为受主元素,以形成δ氧气缺陷,从而引发质子导入反应。此次研究中,研究小组以置换受主元素的钙钛矿氧化物为对象,合成22种钙钛矿氧化物并收集了高精度的质子浓度数据,结合从其他论文中收集的数据,形成了65种钙钛矿氧化物的761个数据,并交给AI进行学习。然后通过变换化合物成分组合,预测了8613种材料的特性,形成材料特性“地图”,根据“地图”指引即通过实验一次合成质子导电性能较高的锶、锡、氧化钪化合物SrSn0.8Sc0.2O3-δ。相关论文在线发表于美国化学会杂志《ACS Energy Letters》。
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。
  • 钴替代电极材料中的部分铁可以提高导电性
    p  研究人员已经用钴取代了化合物Ndsub0.5/subBasub0.5/subFeOsub3-δ/sub中的一些铁原子,减少材料热膨胀的同时增加了导电率。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/a5af695e-ac28-4bad-8f56-b3ba2ce62c0f.jpg" title="钴.jpg" width="400" height="235" border="0" hspace="0" vspace="0" style="width: 400px height: 235px "//pp  科学家们在科学期刊Dalton Transactions中发表了一篇文章,其影响因子为4.099。为了通过改变缺陷数作为研究起点来提高导电性,研究人员采用了混合钕和钡的铁酸盐的化合物Ndsub0.5/subBasub0.5/subFeOsub3-δ/sub。/pp  为了更换部分铁,钴(Co)、镍(Ni)和铜(Cu)被添加到起始原料中。在700℃的温度下,溶液的蒸发和固体残渣的煅烧产生了复杂的氧化物。结果表明,所有混合材料的热膨胀系数较最初的Ndsub0.5/subBasub0.5/subFeOsub3-δ/sub更低,其中包括高达10%的掺杂金属。含铜材料是提高热膨胀的最佳选择,含钴材料在离子传导性方面表现最好。/pp  来自乌拉尔联邦大学和高温电化学研究所(俄罗斯科学院乌拉尔分部)的一组研究人员使用钴实现了缺乏热膨胀性能和最佳导电性能之间的平衡。/p
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style="text-indent: 2em "透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。/pp style="text-indent: 2em "因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。/pp style="text-indent: 2em "最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。 /pp style="text-indent: 2em text-align: center "span style="text-align: center text-indent: 0em "img src="http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title="1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"/ /span/pp style="text-align: center text-indent: 2em "span style="color: rgb(127, 127, 127) font-size: 14px "图1. 单根分散、具有碳焊结构的SWCNT网络。/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(A)典型TEM照片;(B)单根SWCNT的百分含量统计;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。/span/pp style="text-indent: 2em "通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。/pp style="text-indent: 2em "研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。/pp style="text-align: center text-indent: 2em "img src="http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title="2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。/span/pp style="text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "(A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。/span/pp style="text-indent: 2em "该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。/p
  • 智能穿戴和创伤治疗的新贵—导电水凝胶
    p  strong阿卜杜拉国王科技大学(KAUST-King Abdullah University of Science and Technology)的研究人员开发出一种导电水溶胶,使应变灵敏性、自愈性、和可拉伸性得到前所未有的优化。“我们的材料胜过所有先前报道过的水凝胶,并引入了新的功能,”材料科学与工程教授Husam Alshareef陈述到。/strong/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/de43ded7-3f8b-4d59-8f46-3dc5e0db1eb4.jpg" title="导电水凝胶的信号可清晰地分辨不同的面部表情.jpg"//strong/pp/pp style="text-align: center "strong导电水凝胶的信号可清晰地分辨不同的面部表情(图片来源:KAUST)/strong/pp  智能材料具有span style="color: rgb(255, 0, 0) "类似皮肤一样的拉伸、感知和弯曲能力,已发现在与人体交互中具有各种各样的应用/span。预期发展前景像辅助治疗创伤的可生物降解贴片一样宽广,还可扩展到触摸感应机械设备和可穿戴电子产品。/pp  该材料由一种称为MXene的金属碳化物和含水水溶胶结合而成。span style="color: rgb(255, 0, 0) "除了其超过3400%的拉伸性能外,该材料还可快速回复至其初始状态,并可粘附于不同表面之上,例如皮肤。/spanspan style="color: rgb(255, 0, 0) "即使它被切成若干块,它仍可在重新附着后快速复原。/span/pp  span style="color: rgb(31, 73, 125) "i“这种材料对拉伸和压缩敏感性的不同是一个突破性的发现,并为水溶胶的感知功能增添了一个新的维度,”/i/spanAlshareef实验室的博士后,本研究第一作者Yizhou Zhang陈述道。/pp  这一创新策略在感知皮肤变化并将其转换为电信号的应用中具有极其重要的意义。例如,一层系在使用者前额薄薄的材料可区分各种不同的面部表情,像是皱眉或微笑。这一性能可使严重瘫痪的患者能够控制电子设备和交流。/pp  当该材料薄带被系于喉部时,它们可表现出卓越的将语音转换成电信号的能力。这可使语言障碍者的谈话被清晰地听到。/pp  “我们的材料在各种生物传感和生物医学应用中潜力非凡,”本研究共同作者Kanghyuck Lee陈述道。/pp  更直接和特别有用的医学前景包括具有释药促愈功能的柔性创可贴。除了被贴于皮肤表面,这种覆盖物甚至可用于病变器官内部。研究人员还希望开发一种智能材料,可检测器官形状和体积,并能根据产生的信号改变药物的释放。/pp  一种完美的能力是将医疗传感同治疗整合起来。其他有趣的前景是在机器人领域这一材料可被利用之处,例如,将其用于指触摸式感应机械拓展功能。/pp  它同样可被用于防伪,该材料的复合电子平板被用来高度敏感地检测签名,当它们被书写时。/pp  KAUST的研究者们已提出一长串可进一步研究和开发的潜在应用。i“span style="color: rgb(31, 73, 125) "其商业化潜力巨大,”/span/iAlshareef总结道。/p
  • 电镜应用小Tips|看Axia如何应对纤维类不导电样品(二)
    上期中我们着重介绍了Axia拍摄纤维样品时,在样品喷金的条件下,所获得的高质量图片,以及能谱相关成分信息。通常,对于纤维、纸张这样导电性差的样品,在电镜高能电子束连续扫描过程中,样品表面会逐渐累积负电荷,严重时产生荷电效应,造成图像晃动、亮度突变的问题。解决这一问题通常的方法是在样品表面镀一层金膜或者碳膜以提高样品的导电性。然而,这一过程费时费力,对于样品的微观形貌细节也会造成影响,尤其是对于珍贵样品或者还需要进行能谱分析等原位观察的样品,镀膜会对样品造成不可逆转的破坏。因此,喷金并非不导电样品的首选方法。低真空模式同样适用于不导电样品。低真空模式在处理非导电样品时具有多个优势,它不仅可以实现无电荷成像还可以提高材料对比度,并使用更高的电子束流进行化学分析。低真空扫描电镜技术是通过在样品室内通入少量的气体/水蒸气实现的。少量的空气进入扫描电镜样品室,在电子和气体分子之间通过碰撞产生正离子,当这些正离子电流达到样品完全抵消全部负电荷时,也就是出现了所谓的电荷平衡,从而消除了样品表面的荷电效应。上图1~4是纤维样品在不喷金,低真空模式下拍摄的图片。1、2为背散射图像,3、4为二次电子图像,在两种图像模式下,Axia均表现出优异的成像功能。Axia ChemiSEM提供的低真空模式,可调节压力到最高150Pa,支持各种不同的样品。然而,低真空模式也并非始终是首选,在突出样品表面细节时,需要较低的着陆能量,否则这些细节会随着高加速电压而变平。例如观察纤维制品时, 不经过镀导电膜, 看原始形态, 将电压下调到1kV或以下, 既满足样品少放电, 又有足够的信号强度。图5~8为低电压下的纤维形貌, 可清楚看到纤维形态的差异, 与高电压下的图像相比,纤维表面突显出更细微的结构, 表面的颗粒感变得更为明显。通过对比,我们可以看到,Axia在1KV电压下的成像效果丝毫不落后于场发射低电压下的成像效果。Axia ChemiSEM提供了最有效的减少电荷策略,允许在高真空、电子束减速(BD)模式下为电子束敏感样品成像。电子束减速是一种光学模式,其中用施加在样品架上的负电位使样品产生偏压,使原电子在着陆前减速。因为加速电压高于着陆能量,所以可提高最终分辨率。此外,电子束减速模式能够检测到几乎平行于样品表面的低角度背散射电子(低角度BSE),从而增强了表面的拓扑结构。工业和先进的材料表征机构通常会处理未知材料和应对各种各样的要求。因此,全面的解决方案、分析功能和处理绝缘或电子束敏感样品的能力显得尤为重要。全新的 Axia ChemiSEM具有极佳的全方位性能,可为不同类型材料的表征提供最多的信息。 参考文献:[1]周广荣.低真空扫描电镜技术在材料研究中的应用[J].分析仪器,2012(06):39-42.[2]吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用[J].电子显微报,2003(06):655-656.
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 宁波材料所:面向水下可穿戴传感的耐水导电凝胶
    可穿戴传感器可以通过非侵入的方式捕捉人体的各种信号并转化为可识别的电信号,从而达到实时监测的目的,在健康管理等领域展现出了重要价值。相比于传统的刚性可穿戴传感器,由导电凝胶等软材料构建的皮肤式可穿戴传感器能与动态皮肤形成紧密的共型结构,提高传感器的传感准确性和稳定性,甚至实现对人体运动状态的实时感知。   尽管基于导电凝胶的可穿戴传感器研究已经取得巨大进展,并广泛应用于动作监测、健康管理、表情和声音识别、人机交互等诸多领域,但由于导电凝胶在水环境中存在吸水溶胀、导电组分流失、粘附性能衰退等问题,限制了其在水下探索等领域的应用与发展。近年来,通过对导电凝胶进行耐水性能的设计,研究人员实现了导电凝胶基可穿戴传感器的水下传感领域的应用,促进了该领域的研究快速发展   近日,中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员和魏俊杰博士基于在耐水导电高分子凝胶的构筑及其水下传感方面的研究基础,在Advanced Materials上发表题为“Water-Resistant Conductive Gels Toward Underwater Wearable Sensing”的综述文章(Adv. Mater. 2023, DOI: 10.1002/adma.202211758)。   在该综述中,作者首先对提高导电凝胶耐水性的方法进行了总结,归纳提出了封装设计、疏水网络结构和多重交联作用这三种耐水设计策略,并详细讨论了各种策略的耐水原理、具体设计方法以及存在的优缺点,从而为未来的耐水导电凝胶设计提供指导。随后对用于水下传感领域的耐水导电凝胶的多功能性质进行了介绍。除了水下稳定性之外,探讨了耐水导电凝胶的拉伸性质、水下粘附性质、水下自修复性质、可回收性质和3D打印性等性质对导电凝胶基水下可穿戴传感器的传感性能和制造加工工艺的影响,并重点讨论了这些性质的优化改善方法。此外,对现有耐水导电凝胶在水下传感领域的具体应用方向进行了汇总,着重总结了耐水导电凝胶在水下运动感知、水下健康监测、水下通讯、水环境分析几个方向的研究进展,并分析了耐水导电凝胶在这些应用中存在的不足,为未来的水下传感研究指明了方向。   尽管导电凝胶的耐水设计和传下传感研究已经取得了一定的成果,但该领域的发展尚处于起步阶段,仍然存在一些问题和挑战亟需解决。导电凝胶在水环境中的传感性能与陆上性能有着明显差异,相关的水下传感机制和传感模型有待进一步阐明;耐水导电凝胶的水下稳定性和水下传感性能测试还没有标准的方法,亟需建立统一的检测方法进行有效对比和评估;在耐水导电凝胶和水下可穿戴传感器的多功能设计上需要进一步努力,例如实现基于变色功能的可视化感知、基于自清洁功能的抗污能力和基于生物可降解的环境友好等。   为了满足耐水导电凝胶基水下可穿戴传感器的实际应用需求,需要进一步发展与水下可穿戴传感器匹配的无线传输技术和自供能技术;如何实现多感知功能和多技术模块在水下凝胶传感系统中的一体化集成,尤其是如何实现“软”凝胶材料与“硬”电子元件的稳定界面结合依然是该领域需要面临的一个重要挑战。   该论文得到了国家自然科学基金(51773215)、中国博士后科学基金(2021M690157、2022T150668)、宁波市自然科学基金(2121J206)、国家重点研发计划项目(2022YFC2805204、2022YFC2805202)等项目的支持。耐水导电凝胶的设计策略与水下传感应用   (中科院海洋新材料与应用技术重点实验室 魏俊杰)
  • 上海三信:主攻第四代电化学仪表
    “100家国产仪器厂商”专题:访上海三信仪表厂  为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动了“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了上海三信仪表厂(以下简称“上海三信”),上海三信仪表厂总经理吴旭明先生接待了仪器信息网到访人员。  上海三信仪表厂成立于1991年,是电化学分析仪器和电极的制造商,已通过ISO9001:2000认证,其产品具有CMC和CE证书。该厂位于中国上海漕河泾工业开发区内,生产场地面积约1200平方米。  吴旭明先生(左一)为仪器信息网工作人员介绍上海三信  上海三信的产品主要包括:pH计、电导率仪、溶解氧仪、离子浓度计、水质硬度仪以及各类pH电极、ORP电极、电导电极和离子电极。该厂还可根据客户特殊要求进行产品设计和OEM加工。  紧跟国际市场趋势 主攻第四代电化学仪表  吴旭明先生首先向我们介绍了第四代电化学仪表的特征,“第四代电化学仪表的主要特征是按仪表系列进行规划,从仪器的研发、生产、工艺和质量控制全过程都按整个仪表系列的最高级别(譬如pH0.001级、电导率0.5级)进行设计,对仪表的技术要求、外观设计、操作模式、主要器件、生产工艺等进行统一规划,突破以往单一产品先低后高、先简后繁的开发模式,一开始就从高精度、全系列的多参数仪表着手,再根据用户需求对仪器测量项目进行分类组合,形成单参数、双参数、多参数的不同产品型号,满足用户的不同需求。由于系列仪表遵循同样的设计规则和操作模式,这给生产管理和用户使用带来很大的便捷。” 表1 第一代至第四代电化学仪表的特点(来源:上海三信仪表厂)产品分类仪表特征第一代电化学仪表采用静电计管作为输入级,用指针式电表显示测量值的电化仪表第二代电化学仪表采用运算放大器和A/D转换集成电路,用电位器调节进行校准的电化学仪表第三代电化学仪表在第二代基础上,将一些标准数据储存在芯片中,采用软件技术进行自动校准,具备一些智能化功能的电化学仪表。第四代电化学仪表以多参数( pH、mV、离子浓度、电导率和溶解氧 )为设计对象,采用相同的设计规则,硬件材料和操作模式,使用不同软件程序,配置不同的传感器和配件,组成单参数、双参数或多参数的系列电化学仪表。 表2 国外第四代电化学仪表所占的市场份额(来源:上海三信仪表厂) 第二代电化学仪表第三代电化学仪表第四代电化学仪表2001~2002年4.8%77.4%17.9%2005~2006年5.3%65.3%29.3%2007~2008年2.9%44.3%52.9%2009~2010年2.9%33.3%63.8%说明:以上数据根据美国Cole-Parmer仪器样本中pH计的资料统计   “上海三信统计了2001~2010年美国Cole-Parmer仪器样本中的pH计产品,从统计数据我们可以很清楚地看出国际上电化学仪表的发展现状与趋势:目前,第二代电化学仪表已经很少,而第四代电化学仪表已占据三分之二的市场份额,是绝对的主力产品 但在国内,第二代电化学仪表还占50%以上,第四代电化学仪表所占比例不足15%。”  “近年来,上海三信发展很快,除生产电极外,还大力研发仪表制造技术,并直接瞄准国际上最先进的第四代电化学仪表进行攻关。目前,已开发成功MP500系列台式电化学仪表(有25个产品型号)、SX700系列防水型便携式电化学仪表(有11个产品型号)以及SX600系列防水型笔式测量仪(有4个产品型号)。上海三信第四代电化学仪表的生产比例达到70%,第三代电化学仪表占30%,第二代电化学仪表为0,和国际水平完全接轨。”  上海三信生产的MP500系列台式电化学仪表  上海三信生产的SX700系列便携式电化学仪表  上海三信的实验室  打造“流动实验室”  “相对于进口的第四代电化学仪表,上海三信产品的技术指标与它们的几乎一致,有些性能甚至更好,但我们产品的价格只是它们的10%-20%,具有很高的性价比。”  “除台式外,上海三信还提供笔式和便携式的电化学仪表,将仪器、电极、标准溶液及所有附件都装在一个轻便、小巧的手提箱里,配套齐全,打造‘流动实验室’,为用户带来更多实惠和便捷,在环保和水处理行业有广泛的应用前景。”  上海三信的电极车间  上海三信的仪表车间  “小型笔式电化学仪表的市场需求将扩大”  “我们的电化学仪表的核心技术(传感器技术、电子技术和软件技术)都是自主研发生产。上海三信研发第四代电化学仪表已三年,在国内处于领先水平,后期要加大新产品尤其是传感器相关技术的研发力度。”  “市场方面,上海三信的知名度还有待提高。这两年,我们参加了很多国内和国际的专业展会,今年上半年在中东迪拜,美国奥兰多和俄罗斯参加了三个知名的国际实验仪器展,反响很好。三信产品的市场正逐步扩大,上半年销售创历史新高。我们估计:随着社会的进步,小型笔式电化学仪表的市场需求将逐步扩大。”  上海三信的产品展示厅  上海三信仪表厂  附录:上海三信仪表厂网站  http://www.shsan-xin.com http://sanxin.instrument.com.cn
  • 基于Pμ SL 3D打印的导电点阵结构用于多模态传感器
    介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。原文链接:https://doi.org/10.1016/j.xcrp.2022.100786官网:https://www.bmftec.cn/links/10
  • 分析STERIS清洁剂中的非导电性有机化合物的TOC与电导率
    研究目的本研究旨在证明Sievers M9 TOC分析仪能够通过分析TOC浓度来有效检测和量化STERIS生命科学公司(STERIS Life Sciences)生产的清洁剂中的非导电性化合物的含量。背景信息很多行业在转换产品之前都会用STERIS清洁剂来清洗生产设备。在清洁验证时,必须确定生产设备的最后冲洗液中没有残留的清洁剂或药物。残留的清洁剂、污染物、或其它化合物既可能是有机物,也可能是无机物,而在检测有机物和无机物时,需要采用不同的分析方法。人们用电导率来检测普通清洁剂,但残留的清洁剂中常有痕量的有机物,而人们无法用电导率来检测有机物。如果不能将生产设备清洗干净,就会影响产品质量。因此,检测清洁剂中残留的碳污垢,就成为综合评估清洁工艺的重要环节。本研究中的M9 分析仪数据表明,TOC分析能用来有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到了补充作用。样品制备选择STERIS生命科学公司生产的以下4种清洁剂,进行初步比对和分析:CIP 100(基本清洁剂)CIP 220(酸性清洁剂)ProKlenz NpH(中性清洁剂)Spor-Klenz RTU(酸性清洁剂)将以上各种清洁剂稀释到0.01%,然后确定其碳含量(质量比)。基于稀释到0.01%的清洁剂溶液所提供的碳含量,分别将各清洁剂制备成5 ppm TOC溶液。向5 ppm TOC清洁剂溶液中分别加入1 ppm、10 ppm、25 ppm 、 50 ppm的非导电性有机化合物,再用Sievers M9分析仪分析其TOC和电导率。所有清洁剂溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的电导率和TOC双用途(DUCT)样品瓶中。M9分析仪的自动加试剂功能(Autoreagent)能够确定分析所需的最佳试剂流量。对所有样品重复测量5次,不舍弃任何一次测量结果。CIP 100分析CIP 220分析ProKlenz NpH分析Spor-Klenz RTU分析总结对于以上4种情况,在0.5 - 20 ppm范围内,残留清洁剂和有机混合物的TOC响应都是线性的。在相同的TOC范围内,关于来自非导电性有机化合物对电导率的影响,正如预期,电导率响应是水平的。在1.5 - 150 μS/cm范围内,电导率能有效检测清洁剂,却无法检测非导电性有机污垢。清洁剂基体不会妨碍痕量TOC的检测。结论在清洁验证时,电导率用来检测残留的清洁剂,但本研究中的数据表明,如果仅用电导率来评估对有机碳的清洁程度,则远远不够。尤其是当生产设备上沾有非导电性有机化合物时,如果仅靠电导率来评估清洁程度,就会使人们误以为生产设备很干净。TOC分析能有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到补充作用,因此用TOC和电导率双管齐下就能克服上述局限性。Sievers M9分析仪能够同时测量TOC和电导率,提供准确和精确的有机和无机污染物信息,作为全面评估清洁工艺的依据。◆ ◆ ◆联系我们,了解更多!
  • 290万!复旦大学超高空间分辨电子束诱导电流谱采购项目
    项目编号:0705-224002028120项目名称:复旦大学超高空间分辨电子束诱导电流谱采购国际招标预算金额:290.0000000 万元(人民币)最高限价(如有):290.0000000 万元(人民币)采购需求:1、招标条件项目概况:超高空间分辨电子束诱导电流谱采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028120招标项目名称:超高空间分辨电子束诱导电流谱采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高空间分辨电子束诱导电流谱1套电子束流范围不窄于:1 pA ~ 50 nA,连续可调预算金额:人民币290万元 最高限价:人民币290万元 合同履行期限:签订合同后9个月内合同履行期限:签订合同后9个月内本项目( 不接受 )联合体投标。
  • 首个大型可配置超导电路光机晶格创建
    瑞士洛桑联邦理工学院基础科学学院研究人员建造了第一个大型可配置的超导电路光学机械晶格,可克服量子光学机械系统的尺度挑战。该团队实现了光机械应变石墨烯晶格,并使用新的测量技术研究了非平凡的拓扑边缘状态。这项研究发表在最近的《自然》杂志上。对微机械振荡器的精确控制是许多当代技术的基础,从传感和定时到智能手机的射频过滤器。腔光力学使科学家能够利用电磁辐射压力来控制介观力学对象。这大大提高了人们对其量子性质的理解,使包括基态冷却、量子压缩和机械振子远程纠缠在内的许多进展成为可能。前沿理论研究曾预测,研究光学机械晶格有望带来大量物理学和动力学方面的创新性发现,比如量子集体动力学和拓扑现象。但要在高度可控的条件下造出这种实验性设备,构建可承载多耦合光学和机械自由度的光学机械晶格一直是个挑战。此次,研究人员开发了一种用于超导电路光学机械系统的新型纳米制造技术,该技术具有高再现性和对单个设备参数的极其严格的公差,使他们能将不同的位置设计成几乎完全相同,就像在自然晶格中一样。作为晶格单一位置的一部分,关键元件是所谓的“真空间隙鼓面电容器”,它由悬挂在硅衬底沟槽上的一层薄铝膜制成。这构成了器件的振动部分,同时形成了一个带有螺旋电感的谐振微波电路。石墨烯晶格具有非平凡的拓扑特性和局部边缘状态。研究人员在他们所谓的“光机械石墨烯薄片”中观察到了这种状态,该薄片由24个位点组成。该团队的测量结果与理论预测非常吻合,表明他们的新设备是研究一维和二维晶格拓扑物理的可靠实验平台。光机械晶格的演示不仅提供了在真实的凝聚态晶格模型中研究多体物理的途径,而且当与超导量子比特相结合时,还有望带来一种新型混合量子系统。
  • 正确的使用手持式电导率计可以提高测量的精准度
    手持式电导率计适用于精密测量各种液体介质的电导率仪、TDS和盐度值的仪器,配置CON1型铂金电导电极,有一点按键自动校准、自动量程转换、自动信息提示等优点。仪器广泛适用于各领域的科研和生产。 手持式电导率计是如何使用的: 1.使用前观察表针是否指零。 2.将校正测量开关扳在“校正”位置。 3.插接电源线,打开电源开关,并预热数分钟调节“调正”调节器使电表指示满度。 4.当使用(1)-(8)量程来测量电导率低于300μS.cm-1的液体时,选用“低周”,这时将高/低周开关扳向低周即可。当使用(9)-(10)量程来测量电导率在300μS.cm-1至105μS.cm-1范围里的液体时,则将扳向“高周”。 5.将量程选择开关扳到所需要的测量范围,如预先不知被测溶液电导率大小,应先把其扳到zui大电导率测量档,然后逐渐下降,以防表针打弯。 6.电极的使用:使用时用电极夹夹紧电极的胶木帽,并把电极夹固定在电极杆上。 7.将电极插头插入电极插口内,旋紧插口上的紧固螺丝,再将电极綅入待测溶液中。 8.接着校正当用(1)-(8)量程测量时,校正时扳到低周,当用(9)-(12)量程测量时,则校正扳到高周,扳到“校正”,调节校正调节器,使指示在满度。 9.当用(0-0.1)或(0-0.3)μS.cm-1这两档测量高纯水时,先把电极引线插入电极插孔,在电极未綅入溶液前,调节电容补偿调节器使电表指示为zui小值。 手持式电导率计的产品特点: 1.仪器配置:CON1型铂金电导电极1支,温度探棒1支,9V电池1节,BEC-530/531/540 型配置CON10型电导电极1支。 2.可设定TDS系数:根据电导分析法,测量水质溶解性总固体时应准确估算,设定TDS系数,530/540可在0.01至1.00之间设定以保障测量值的精确可靠。 3.可设定温度系数:含有不同离子的溶液往往具有不同的温度系数,准确设定温度系数对精确测量至关重要,BEC便携型可在0至3.9%每摄氏度的范围内进行设置。 4.一点按键自动校准:仪器配合标准电导液可以进行每个量程1点自动校准,校准时,仪器自动识别校准液,如果您使用错误的或与设定值偏差较大的电导液进行校准,仪器将自动报警。 5.可设定电极常数:测量高或低电导溶液时,您需要选配不同常数的电导电极,BEC便携型具有三个电极常数可选,您可以根据选用的电极自行设定,仪器将自动转换终点测量值。 6.自动量程转换:测量电导率或溶解性总固体(TDS)时,仪器具有自动量程转换功能。当电极传感器浸入溶液后,BEC便携型将自动扫描当前测量值并转换量程,仪器将以精确的分辨率显示终点测量值。 7.手持式电导率计带有自动信息提示:BEC便携型具有操作信息提示功能,当您进入某一项设置或测量信息栏将帮助您了解仪器在当前状态下可执行什么操作及如何操作,它等同于使用手册的操作步骤说明。通过信息栏的引导,您能轻松完成某项设置或测量任务。
  • 一款仿生自愈导电水凝胶能促进周围神经再生
    自愈导电水凝胶的开发对于电活性神经组织工程至关重要。典型的导电材料如聚吡咯(PPy)通常用于制造人工神经导管。此外,组织工程领域已经朝着透明质酸(HA)水凝胶等产品的使用方向发展。尽管HA修饰的PPy薄膜可用于各种生物应用,但细胞-基质相互作用机制仍然知之甚少。此外,还没有关于HA修饰的PPy注射自愈水凝胶用于周围神经修复的报道。  近日,南通大学科研团队用HA、胱胺(Cys)和吡咯-1-丙酸(Py-COOH)构建了一种具有可注射性、生物可降解性、生物相容性和神经再生能力的自修复导电水凝胶(HASPy)。该水凝胶直接靶向白细胞介素17受体A,主要通过激活白细胞介素17信号通路来促进与雪旺细胞髓鞘形成相关的基因和蛋白质的表达。科研人员将水凝胶直接注射到大鼠坐骨神经挤压损伤部位,以研究其体内神经再生的能力,并发现其可促进功能恢复和髓鞘再生。这项研究可能有助于理解细胞-基质相互作用的机制,并为HASPy水凝胶作为神经再生先进支架的潜在用途提供新的见解。该研究论文发表在《先进科学》(Advanced Science)上。
  • 我国高温超导电流引线试验获世界最高纪录
    本报合肥12月19日电 记者从中科院合肥物质科学研究院获悉,即将用于人类首座热核聚变试验堆ITER的高温超导大电流引线的研发获重要进展。该院等离子体所的科研人员,在高温超导大电流引线试验中获得了通过90千安电流的成果。这是迄今世界各国获得的最高纪录。用于本次试验的电流引线是ITER协议签署后的第一个原型尺寸的重要部件。此举表明我国正在顺利执行ITER计划并迈出了关键一步。   ITER试验堆的超导电流引线系统又称超导馈线系统,是ITER及未来核聚变反应堆不可或缺的重要系统之一,其加工、制造的质量直接影响到将来ITER的主机磁体能否正常运行。按照ITER各参与国之间采购包的划分,中国将独立承担ITER所有超导馈线系统的设计与制造。ITER主机内部大型超导磁体线圈能产生稳定的磁场来约束等离子体,但为之供电、供冷及测量诊断的低温系统、电源系统以及控制测量系统等,却在主机外部而且距离较远,因此需要设置一个独立的磁体传输线系统即超导馈线系统,来连接磁体线圈与各子系统,实现磁体系统电流、低温冷却和数据信号等的传输。   符合ITER要求的是45—68千安的超大电流引线型超导馈线系统。这次用于试验的是一个符合ITER要求的原型尺寸的电流引线,这也是参加ITER计划的七国中第一个成功通过试验的原型尺寸的部件。这种高温超导大电流引线的成功研制,不但使中国可以按时交付ITER所需的超导馈线系统,而且有利于解决聚变堆巨型超导磁体致冷节能的科学问题。
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 岛津原子力显微镜——模拟石墨负极的导电性分析
    锂离子电池是一种以嵌锂化合物为正负极材料的二次电池,在充放电过程中,锂离子在两个电极间往返脱嵌和嵌入。目前主流的锂离子电池负极材料是天然石墨与人造石墨。在锂离子电池研发与生产过程中,需要对石墨负极的导电性进行分析。 原子力显微镜可以在获得高分辨形貌图像的同时获得表面电流分布图,因此被广泛应用于分析石墨负极材料微观结构与导电性。对于原子力显微镜而言,传统的电流模式是基于接触模式进行的。当样品表面非常不规则,表面粘度高或者有较强的毛细力时,由于探针针尖此时受到与扫描方向相反的外力较大,探针无法保证垂直于样品表面,因此电流的测量会产生很大的误差。 岛津尝试用独特的ZXY扫描技术对电流分布进行测量,在每一个测试点,探针均处于垂直运动状态,因此它可避免那些影响其测试状态的外力的干扰。 因此,使用ZXY扫描技术对石墨负极进行表面电流分布测试,可以获得更真实更清晰的图像。制备模拟电池电极的石墨样品,该样品是将石墨和树脂用模具定型,然后加热烧结,最终用油浸制。这样制备的样品可以模拟真实的石墨负极。 用ZXY扫描技术同时获取石墨负极表面形貌图像和表面电流分布图像如下。左图为表面形貌图像,可清晰观察到石墨的鳞片状结构,右侧的表面电流分布图像可观察到同一区域的接触电流分布。在表面形貌图像中,可以观察到表面上分布着不规则的高约1.5 μm 的鳞片石墨。在以往的接触模式下,如果样品的表面起伏超过1μm,就很难测量电流,但使用ZXY扫描技术可以进行高分辨的观测。 而且在扫描技术下,除了可以同时获取表面形貌图像,还可以获得多种互不影响的表面属性分布。在对石墨电极进行测试时,可设定同时获得表面形貌图像,表面电流分布图像和表面力学属性分布。 扫描模拟石墨负极表面5 μm的区域,获得以下图像。4幅图像分别为表面形貌图(探针最初检测到力的形貌面)、表面形貌图(探针到达设定斥力的形貌面)、表面电流分布图像、表面吸附力分布图像。 在前2幅图中,虽然都是表面形貌图,但有明显不同。这是因为第1张图为探针接近样品表面刚刚获得力反馈信号时的位置,第2张图为探针达到设定的斥力时的位置。在两幅图相同位置的剖面线叠加分析。 从上图中可见,底部的黑色区域为样品的固体,白色虚线为表面形貌图(探针到达设定斥力的形貌面)的剖面线,也是石墨的真实表面。而蓝色虚线为表面形貌图(探针最初检测到力的形貌面)的剖面线。白色虚线和蓝色虚线中间区域内,探针检测到的力为吸引力,可判断产生的原因是样品表面的油。因此第1张图和第2张图的差别区域就是油吸附的区域。 更有趣的是,在电流分布图的剖面线中,发现电流也会因油层的存在随高度发生变化。如下图所示。电流的变化有些地方和油层的分布非常吻合,有些地方则不相同。 比较同一个点的力-距离曲线和电流-高度曲线,如下图。可见吸引力位置(油层区域)和电流高度变化区域间的相关性。 由以上数据可推断,电流的变化和油层的分布不吻合的区域,是因为表面覆盖有电阻很大的树脂,而电流的变化和油层的分布吻合的区域,则是因为油层的电阻小于树脂,提高了导电性。 综合本次测试的数据,可以发现,ZXY扫描技术不仅有效提高了对电流的检测分辨率,而且可对样品表面的各种属性进行统一分析,更有助于真实判断样品的性能及影响因素。 本文内容非商业广告,仅供专业人士参考。
  • 方阻测量仪R50 | 续写KLA产品创新的光辉历史
    薄膜方块电阻和厚度测量 —KLA45年电阻测量技术创新的桌面型解决方案 在半导体芯片等器件工艺中,后道制程中的金属连接是经过金属薄膜沉积,图形化和蚀刻工艺,最后在器件元件之间得到导电连接。对于半导体、PCB、平板显示器、太阳能应用和研发等不同行业,对各种金属层(包括导电薄膜、粘附层和其他导电层)都有各种各样的电阻和厚度的量测需求,KLA Instruments&trade Filmetrics 事业部能够提供先进的薄膜电阻测量解决方案。金属薄膜的电阻测量主要包括两种技术:四探针法和涡流法。两种测量技术各有其优势,适用于不同的应用场景。我们先来了解一下这两种技术的测量原理。问什么是四探针测量技术? 四探针测量技术已经存在了 100 多年,由于其操作简单以及固有的准确性,一直备受青睐。如下图所示,四探针与导电表面接触,电流在两个引脚之间流过,同时测量另外两个引脚之间的电压。标准的(左)和备用的(右)四探针测量原理图。R50具有双配置测量方法,通常用于薄膜边缘出现电流集聚或引脚间距变化需要校正的情况。引脚的排列方式通常是线性排列或方形排列,此处主要讨论 R50 探针使用的线性排列。对于大多数应用而言,使用的是标准测量配置 (上图左)。而备用测量配置(上图右)可作为 R50 双配置测量方法的一部分,用于薄膜边缘电流集聚或需要校正引脚间距变化的情况。此处展示的测量结果仅使用了标准测量配置。问什么是涡流测量技术? 涡流 (EC) 技术是指线圈中的交变电流会在导电层中产生交变涡流。这些交变涡流反过来会产生一个磁场,从而改变驱动线圈的阻抗,这与该层的方块电阻成正比。涡流技术通过施加交变磁场,测量导电层中感应的涡流。线圈中的交变驱动电流会在线圈周围产生交变初级磁场。当探测线圈接近导电表面时,导电材料中会感应出交变电流 (涡流)。这些涡流会产生自己的交变次级磁场并和线圈耦合, 从而产生与样品的方块电阻成正比的信号变化。导电层越导电,涡流的感应越强,驱动线圈的阻抗变化就越大。 自1975年KLA的第一台电阻测试仪问世以来,我们的电阻测试产品已经革 命性地改变了导电薄膜电阻和厚度的测量方式。而R50方块电阻测试仪则是KLA超过45年电阻测量技术发展的创新之作。R50提供了10个数量级电阻跨度范围使用的4PP四探针测试技术,以及高分辨率和高灵敏度的EC涡流技术,续写了KLA在产品创新能力和行业先锋地位的历史。 R50 方块电阻测量数据分析和可视化 无论是四探针法还是涡流法,方块电阻 (Rs) 测量完成后, 用户根据自己需求,可以直接导出方块电阻值,也可以使用 RsMapper 软件中的转换功能,将数据直接转换为薄膜厚度:Rs = ρ/t其中 ρ 是电阻率,t 是薄膜厚度。上图显示了 2μm 标准厚度铝膜的方块电阻分布图和薄膜厚度分布图。根据方块电阻数据(左),利用标准电阻率(中),将数据转换为薄膜厚度分布图(右)。在某些应用中,将数据显示为薄膜厚度分布图可能更有助于观测样品的均匀性。RsMapper 软件还提供差异分布图,即利用两个特定晶圆的测绘数据绘制成单张分布图来显示两者之间的差异。此功能可以用来评估蚀刻或抛光工艺前后的方块电阻变化。问如何选择适当的测量技术?R50 分成2个型号:R50-4PP 是接触式四探针测量系统 ;R50-EC是非接触式涡流测量系统。R50-4PP能测量的最大方块电阻为 200MΩ/sq.,因而非常适合比较薄的金属薄膜。对于非常厚的金属薄膜,电压差值变得非常小,这会限制四探针技术的测量。它只能测量厚度小于几个微米的金属膜,具体还要取决于金属的电阻率。由于非常薄的金属薄膜产生的涡流很小,加上R50-EC 的探头尺寸非常小,所以使用涡流方法测量方块电阻时,金属厚度最薄的极限大约在 100 nm (或约10 Ω/sq.,与金属材料性质有关)。对于非常厚的金属薄膜,涡流信号会增加,因此对可测量的金属薄膜的最大厚度实际上没有限制。在四探针和涡流技术都可使用的情况下,一个决定因素就是避免因引脚接触样品而造成损伤或污染。对于这类样品,建议使用涡流技术。对于可能会产生额外涡流信号的衬底样品,并且在底部有绝缘层的情况下,则建议使用四探针技术。简而言之,Filmetrics R50 系列可以测量大量金属层。对于较薄的薄膜,它们的电阻较大而四探针的测量范围较大,因而推荐使用 R50-4PP(四探针)。对于非常厚的薄膜,或者需要非接触式测量的柔软或易损伤薄膜,推荐使用 R50-EC(涡流技术)。
  • 应用报告 | EA8000A 用于快速分析导电剂和负极活性材料中的金属污染物
    引言当今,高能量密度锂离子电池(LiB)为大多数电动汽车、手机供电,甚至提供储能,使可再生能源替代化石燃料。然而,也发生过此类电池在使用过程中因过热而造成火灾和爆炸的情况。EA8000A X射线分析仪中所采用的先进技术可用于检测和表征锂离子电池生产中用作导电添加剂和负极活性材料的粉末中的金属污染物。该仪器仅需几分钟即可定位和分析粉末中的金属异物颗粒。应用报告在本应用指南中,EA8000A用于测定碳基导电剂中金属污染物的数量和成分。为证明EA8000A的检测能力,已制备15克碳基原料用于分析。分析250 mm x 200 mm样品面积仅需耗时7分钟。首先,分析仪检测已制备样品中金属异物颗粒的存在情况和位置——其在X射线透射图像中被明确标记为暗点,因为它们由比周围基质密度更大的材料制成。随后使用EDXRF技术分析此类金属异物颗粒,颗粒图像、XRF映射和光谱如应用报告中图例所示。分析仪的软件通过光谱信息提供每个被分析的颗粒的定性和定量元素成分值。联系我们日立分析仪器已开发出一系列用于燃料电池生产过程质量控制的分析仪器。欲了解与EA8000A有关的更多信息,或讨论更广泛的测试要求,请联系我们。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 天美公司参加第十六届全国超导薄膜和超导电子器件学术研讨会
    2020年11月22日至25日,由南京大学和中科院云南天文台承办,中国电子学会超导电子学分会、江苏省电磁波先进调控技术重点实验室、南京紫金山实验室协办的“第十六届全国超导薄膜和超导电子器件学术研讨会”会议在云南省昆明市召开,会议聚焦国内外超导薄膜、超导传感器探测器、超导无源器件、新型超导量子器件与电路、超导电子学关联技术与应用等展开学术讨论。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司给用户介绍了太赫兹激光器产品,并对用户提出的需求作进一步的解答,借此也会用户的需求,天美公司也会进一步的开发出符合用户需求的产品。会议期间,天美公司还受邀作了会议报告,会议报告对爱丁堡气体激光技术-高功率红外&远红外激光源作了相应的介绍。通过本次报告不但加深了新老用户对爱丁堡气体激光技术的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。 通过为其三天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在超导薄膜等关联技术上,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • 《Research》:基于Pμ SL 3D打印的超拉伸抗冻导电水凝胶用于柔性传感及脑电信号的采集
    近年来,柔性电子在可穿戴设备、电子皮肤等众多应用中扮演着越来越重要的角色,以水凝胶为基质设计的柔性电子由于其良好的导电性、柔性以及生物相容性等特点受到广泛的关注,在柔性传感器、柔性能源器件及人机接口等方面表现出广阔的应用前景。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和定制设计的结构,为以水凝胶基质设计的柔性电子器件的制造提供了灵活性和简便性。结合3D打印技术,并对水凝胶进行诸如超抗冻、超拉伸、导电等性能设计,在一定程度上拓宽了水凝胶的功能和应用范围。近日,湖南大学王兆龙助理教授、段辉高教授与上海交通大学郑平院士等人合作,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,开发了一种能够耐受-115℃极高导电能力的水凝胶体系,实现了极低温条件下的可穿戴设备运动信号检测及脑电信号高精度采集。文章以“3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogelfor Sensitive Motion and Electrophysiological Signal Monitoring”为题发表在Research(Volume 2020 |Article ID 1426078)上。其中,王兆龙助理教授及硕士研究生陈雷为共同一作。基于面投影微立体光刻技术制造水凝胶结构,首先,作者通过计算机辅助设计(CAD)软件生成的3D模型按照特定层厚切片为一系列平行的二维数字图像,然后,这些切出来的2D图案被传输到DMD芯片上,DMD芯片通过2D图案的形状调节其上照射的紫外光(LED,405nm)。具有相应定义的2D图案的成形紫外光通过一个缩小透镜,该透镜将2D图像投影到具有缩小特征尺寸的水凝胶前体溶液上。图案化的紫外光照射将会使水凝胶前体溶液在相应区域发生局部聚合反应并成型附着在打印平台上。再控制降低打印平台,紫外光投影照射继续打印下一层。这个过程反复进行,直到整个水凝胶结构被制造出来(图1)。研究者引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,将不溶于水的TPO-L均匀分散在水中,提高光引发剂引发效率,结合光固化3D打印nanoArchS/P140设备的离型膜的快速离型,大大提高水凝胶的光固化速度;利用纳米羟基磷灰石与水凝胶高分子链之间形成强烈的物理作用,从而提高3D打印水凝胶的拉伸性(2500%),并进一步提高其机械强度;三元醇和高浓度离子盐的协同作用赋予了水凝胶极佳的导电性和抗冻性(-115℃左右),3D打印水凝胶在极低温情况下仍然能够完成拉伸、弯曲和扭转的动作,并具有一定的低温导电性(图2)。图1 基于面投影微立体光刻技术的水凝胶加工过程图2 水凝胶的力学、电学和抗冻性能设计优异的机械性能和良好的导电性能使其3D打印水凝胶能够作为应变传感器用于识别包括手指弯曲、发声及吞咽等人体运动信号(图3);水凝胶还可作为柔性电极检测和采集诸如人睁、闭眼时的脑/眼电信号(EEG/ EOG),当志愿者在闭上眼睛并放松时,脑电信号显示出明显的α波(8~13Hz),当志愿者睁开眼睛并积极思考时,脑电α波即刻消失并逐渐向β波(14~30Hz)方向移动。与当前最精确的传统脑电信号采集装置对比实验表明,新体系水凝胶可以准确采集大脑中的脑电信号,反映大脑活动的整体信息,显示出在人机交互,特别是低温领域的脑机接口等方面的应用潜力(图4)。图3 柔性应变传感器应用图4 水凝胶柔性电极脑机接口应用总而言之,本研究基于面投影微立体光刻技术,引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,利用纳米羟基磷灰石提高拉伸性,并结合高浓度的离子盐和三元醇作为导电介质和抗冻剂,使得所开发的水凝胶体系具有优异机械、导电和抗冻性能,并且可作为柔性应变传感器实现对人体运动和微弱信号的实时监控,同时可进一步用作脑机接口,准确采集大脑中的脑电信号,包括α、β波以反映大脑活动的整体信息。本文提出的水凝胶在电子皮肤、人机交互甚至极低温情况下的可穿戴设备中具有良好的应用前景。未来,微尺度3D打印技术的加入使得复杂3D结构多功能柔性电子和复杂脑机接口的快速制造成为可能。原文链接:https://spj.sciencemag.org/journals/research/2020/1426078/
  • 实时SEM折叠观察 百万次折叠测试!同济大学吴庆生/吴彤《Matter》:仿生导电超级可折叠材料
    随着柔性电子产品的蓬勃发展对便携性、耐用性提出了更高的要去,因此折叠特性越来越受到关注。然而,这些产品的可折叠性取决于它们的旋转轴而不是电子材料,这极大地限制了它们的折叠方向和任意尺寸变化。为了满足未来柔性电子产品的各种折叠需求,能够实现任意重复真实折叠的导电材料是必要的,但很难获得。要实现上述折叠特性,首先要明确折叠(真折叠和伪折叠)的相关概念。真折是指压下折痕,使弯曲的两部分完全贴合。而伪折叠通常在折痕处打开。真折叠的最大应力可能比伪折叠大几个数量级。近年来,尽管研究人员已经付出了巨大努力来研究各种导电材料(如石墨烯、碳纳米管和MXene等)的组装和灵活性,但目前所有组装的导电材料仍然无法承受多次真实折叠而且折叠次数也通常以结构损坏为代价。鉴于此,同济大学吴庆生教授、吴彤研究员和上海师范大学万颖教授首次使用改进的静电纺丝/碳化技术成功设计并制备了一种超级可折叠导电碳材料(SFCM)。它可显着承受1,000,000次重复真折叠而无结构损坏和导电性波动。通过实时SEM折叠观察和机械模拟揭示了这种性能突破的根源。其具有适当孔隙、非交联连接、可滑动纳米纤维、可分离层和可压缩网络的结构可以协同作用在真折叠下的折痕处产生ε状折叠结构,通过凸起的层、分散的弧线完全分散应力,以及ε中的可滑动凹槽。因此,当整个材料真正折叠时,每根纳米纤维都避免直接面对180°折叠。这项工作体现了结构创新、性能突破和机制揭示,具有重大的科学意义和应用前景。相关工作以“A biomimetic conductive super-foldable material”为题发表在国际顶级期刊《Matter》上。SFCMs的制备和表征作者采用仿生定向场控静电纺丝技术制备生茧状聚合物结构,同时协同控制静电纺丝的参数。原位梯度-温度反应-保持技术与卷取过程一样,通过控制多级聚合物热解同时完成造孔、解结和层膨化,从而成功制备了SFCMs(图1)。SFCM的SEM图像显示其结构是由碳纳米纤维编织的多层网络。纳米纤维是直的、光滑的、多孔的,直径为200 nm,长度为毫米级,纵横比超过10,000。纳米纤维是逐层堆叠的但彼此之间没有粘连(图2)。非交联的编织层网络可以形成一个完整的应力传递和分散系统。这些微观结构特征与超柔韧的切茧高度相似。此外,SFCMs具有良好的导电性,在-1~ 0 V范围内具有稳定的电化学窗口,这对于超级可折叠的储能设备很有希望。图1 SFCMs的仿生合成图2 SFCM的结构表征超级折叠属性和机制作者设计并安装了一个设备对各种材料进行了大量折叠测试(图3)。平行实验表明,在整个折叠周期从1到1,000,000次,SFCMs的纳米纤维都完好无损,电导率没有明显波动,内侧只出现两个微槽,这是由于纳米纤维滑动造成的。外侧几乎没有结构变化。此外,进行不同形式的折叠,所有 SFCM 都可以保持结构完整性,甚至在展开后自动迅速反弹,这为超级可折叠性提供进一步支持。当 SFCM 完全折叠时会形成光滑的ε状结构。局部结构的放大观察表明所有纳米纤维都是无损伤的,这可能与它们在折叠过程中的上述结构调整密切相关。当SFCMs的厚度达到100 mm时,它们仍然可以通过形成ε折叠结构来保持超折叠性能。图3 SFCM 的超折叠特性以及与典型对照样品的比较除了弯曲(折叠),柔性指标还包括滚动、扭曲、拉伸和压缩,它们可能对超折叠性起到辅助作用(图4)。扭转和滚动测试表明SFCM没有纳米纤维损坏。在拉伸性能方面,SFCMs的应力-应变曲线表现出显着特征。在压缩测试中,SFCM 厚度的99.3%恢复可以在将压力逐渐增加到10 MPa后保持,结果反映了它们的高强度和弹性,这也有助于柔韧性。这些力学性能为并为超级可折叠性提供强有力的支持。图4 SFCM 折叠以外的灵活性特征SFCM的超折叠机制源于折痕处的ε折叠结构,其中包含三个典型区域:(1) 由层间分离和纳米纤维滑动引起的凸起层可以减少沿层的应力。(2) 由折痕正中层的凸起和凸起两侧的层的压缩所带来的两条分散弧,避免形成应力集中的0内角。(3) 由纳米纤维滑动引起的两个折叠微槽,垂直对应于两个分散弧的内部,可以分散厚度方向的应力。这三种协同的微观结构变化有效地分散了各个层次和方向的应力,实现了超折叠性(图5)。此外,对一些微观结构不满足超折叠性的要求的材料(如rGO膜、碳布以及织物等)折叠特性的研究间接支持了该原理。图5 折叠与相关材料对比小结:作者通过改进的静电纺丝/碳化技术制备了具有层状纳米纤维网络结构的超级可折叠导电碳材料。在折叠机上多次真实折叠过程中观察它们的结构变化和电导率波动来研究它们的超级折叠特性,并通过实时SEM折叠观察和机械模拟揭示了超级折叠机制。更重要的是,还根据这些结果总结了超折叠材料的构建原理,对制备其他超折叠材料具有重要的指导意义。全文链接:https://www.sciencedirect.com/science/article/abs/pii/S2590238521003921
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制