当前位置: 仪器信息网 > 行业主题 > >

导热仪

仪器信息网导热仪专题为您提供2024年最新导热仪价格报价、厂家品牌的相关信息, 包括导热仪参数、型号等,不管是国产,还是进口品牌的导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导热仪相关的耗材配件、试剂标物,还有导热仪相关的最新资讯、资料,以及导热仪相关的解决方案。

导热仪相关的资讯

  • 耐驰公司成功举办2006年度激光导热仪LFA用户会
    随着激光导热仪(LFA)在导热研究方面的逐步深入,其应用也越来越广泛。德国耐驰作为激光闪射法导热仪技术和制造的领先者,具有非常丰富的仪器操作和科研应用方面的经验。为了使用户更好地使用激光导热仪,德国耐驰公司在2006年9月21-22日在上海举办了LFA的用户会。此次会议,由耐驰中国技术支持主管曾智强博士主持,德国总部应用技术专家Blumm博士就材料导热性能测量的方法综述、激光导热仪的基本原理和激光导热方法的应用进展做了详尽细致的讲解。耐驰中国应用实验室应用专家徐梁先生做了关于激光导热仪的操作和数据处理方法的报告,共同分享德国总部及上海应用实验室多年来积累的应用经验,并和用户就使用仪器的技巧做了深入的探讨。另外,耐驰中国维修部詹宁经理介绍了激光导热仪的维护方法,以便用户能够更好的使用仪器。会议期间,与会人员表现出极大的热情,与德国及中国技术专家进行了热切而深入的交流,就激光导热仪原理、使用方法及技巧方面提出了多个富有见地的问题,专家们就这些问题进行了认真细致的解答。用户对此次会议给予了高度的评价,表示通过此次用户会,提高了激光导热仪的测试技巧,拓展了思路,尤其在利用激光导热仪测试不同形态样品导热系数的方法上给予了充分的肯定与赞赏。同时用户也对以后举办类似的用户会提出了建设性的意见。对于大家的建议,耐驰公司会积极采纳,并继续努力,在不久的将来,为大家提供更高水平的交流平台,增强交流与合作,将最新的热分析技术及仪器奉献给中国用户。详情请登录:www.netzsch.cn
  • 耐驰公司将举办激光闪射法导热仪LFA用户会
    在科学研究领域中,深入了解材料的热物理性能,从而优化最终产品的导热性能是非常重要的, 在过去的几十年里,激光闪射法已经发展成为最为广泛使用的导热测量技术。 随着近年来导热仪尤其是激光导热仪在市场的需求不断增大,耐驰作为激光闪射法导热仪技术和制造的领先者,其用户量在不断增加。 为了使用户更好的使用这种仪器,积累更多仪器操作和科研应用方面的经验,了解当今最新技术的发展, 德国耐驰仪器有限公司拟定于2006年9月21日(星期四)~22日(星期五)在上海举办激光闪射导热仪LFA用户会。届时,将由耐驰公司的德国专家和中国应用技术支持人员主讲。我们热忱欢迎各位光临讲座,有关日程和地点安排请登录:www.netzsch.cn
  • 耐驰公司激光导热仪高级用户培训会举办
    2009年12月3日,耐驰公司在上海硅酸盐研究所学术会议厅成功举办了“耐驰公司激光导热仪高级用户培训会”。来自上海、浙江和江苏的激光用户纷纷响应,复旦大学、上海交通大学、同济大学、华东理工大学、浙江大学的高校都专门派出代表参加,上海硅酸盐研究所、宝钢研究院和上海化工研究院的用户也百忙中抽出时间积极参与,与会代表50余人。  随着近几年材料的快速发展,材料导热系数的测量变得越来越重要,因此,激光导热仪的用户也得到快速增长。为了给客户提供全面、深入的技术支持,耐驰特邀激光学专家Dr.Blumm来上海举办此次高级用户会。会上,Dr.Blumm全面的讲解了激光导热仪的原理、仪器的校正方法、激光导热仪在薄的高导热材料方面的应用、激光导热在多层材料测试方面的技巧、激光导热在不均匀材料方面的测试应用,以及激光导热在一些特殊领域方面的应用等。     针对在使用过程中可能会遇到的技术问题,以及在实际操作过程中的各种技巧,Dr.Blumm都做了详细、全面的阐述,因此,参加会议的客户不但认真仔细的聆听,而且都纷纷做了笔记,并且在茶歇期间与Dr.Blumm进行了深入的沟通。此外,为了给中国的客户提供最切实的帮助,Dr.Blumm提供了大量德国实验室最新研究的各种材料的实验数据,给广大客户提供了非常有力的帮助。  会后大家都纷纷表示这次会议非常有效,完全是针对客户最迫切的需求提供的最切合实际的解决方案。也希望耐驰公司以后能经常举办此种类型的会议。耐驰公司每年都会在不同地区举办不同类型仪器的各种培训会,也希望广大用户能够抽出宝贵时间积极参与,我们会尽力为客户提供相互交流与学习的平台。  为了方便客户了解耐驰最新的培训安排,公司会将各种培训信息及时发布在公司网站,请广大客户可以随时登录耐驰公司的主页(www. netzsch.cn)随时查询。
  • 德国耐驰(NETZSCH)激光导热仪高级用户会
    近年来,随着材料科学领域的快速发展,深入了解材料的热物性能变得越来越重要,激光闪光法技术做为导热性能的测量方法,已经得到广泛的使用。德国耐驰公司作为全球一流的热物性仪器制造商,不仅提供性能优异的设备仪器,并致力于为您提供有效的技术保证和应用支持。  为了使用户能够更全面深入的了解激光闪光测量技术,耐驰公司将于12月1日和3日分别在 西安 和上海 举办专场激光导热技术高级研讨会,届时将由耐驰公司资深热物性专家Dr.Blumm向各位介绍激光闪光法导热仪的最新进展和应用技术, Dr.Blumm从事激光闪光导热仪研发和应用多年,积累了丰富的应用经验。在此,我们特邀您参加此研讨会,并相信一定会给您的工作带来意想不到的收获!  会议的具体日程安排如下:  西安研讨会:  时间:2009 年 12 月1 日 星期二  地点:西安骊苑大酒店二楼多功能厅 西安市劳动南路8号  上海研讨会:  时间:2009 年 12 月3 日 星期四  地点:上海硅酸盐研究所四号楼14层 上海长宁区定西路1295号  研讨会具体内容可以参见我们的邀请函。  如果您希望参加我们的研讨会,可以随时联系以下人员:  李静 电话:021-58663128-686, E-mail地址:jing.li@nsi.netzsch.cn  耐驰期待您的光临!
  • 335万!西安电子科技大学计划采购激光导热仪
    一、项目基本情况项目编号:0617-224121HZ0476(XDH21031D)项目名称:西安电子科技大学激光导热仪采购项目(XDH21031D)预算金额:335.0000000 万元(人民币)采购需求:激光导热仪采购,数量:1套。合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:不适用3.本项目的特定资格要求:除《机电产品国际竞争性招标文件(第一册)》要求投标人提供的证明文件外,投标人还必须提供:1)投标人加盖公章的营业执照复印件(适用于关境内投标人)或企业注册证明复印件(适用于关境外投标人)2)2.1投标人法定代表人授权书原件(适用于关境内投标人)或单位负责人授权书原件(适用于关境外投标人);2.2代理商投标,须具有投标产品制造商出具的授权书(原件),投标产品的授权链应完整、真实、有效;3)投标人银行开户许可证复印件(适用于关境内投标人)4)投标人开户银行在开标日前三个月内开具的资信证明原件或复印件5)投标人应当于招标文件载明的投标截止时间前在必联网(http://www.ebnew.com)或机电产品招标投标电子交易平台(http://www.chinabidding.com)进行成功注册和通过年检,并保证招标人或招标代理机构能够在网上选取投标人;注:境内投标人不含港澳台地区三、获取招标文件时间:2022年03月30日 至 2022年04月07日,每天上午8:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:成长大厦10会议室(地址:中国陕西省西安市南二环西段58号)方式:需持单位介绍信及购买人身份证原件及复印件购买,招标文件每套售价¥500元或85美元,售后不退。发售联系人:刘星(029-89651830);招标文件了解和咨询地点:西安市南二环西段58号成长大厦11层1102售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月21日 09点30分(北京时间)开标时间:2022年04月21日 09点30分(北京时间)地点:南二环西段58号成长大厦10层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西安电子科技大学     地址:陕西省西安市长安区西沣路兴隆段266号        联系方式:赵老师029-81891893      2.采购代理机构信息名 称:西北(陕西)国际招标有限公司            地 址:陕西省西安市雁塔区南二环西段58号成长大厦10~14层联系方式:卓迪、宋鹏飞、张喆 029-89651851              3.项目联系方式项目联系人:卓迪、宋鹏飞 、张喆电 话:  029-89651851
  • 湘潭大学采购南京大展DZDR-S 瞬态平板法导热仪
    导热仪能测什么?其实导热仪是一种测量不同材料导热系数的仪器。导热仪的应用广泛,其主要用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。  这次采购南京大展的DZDR-S瞬态平板法导热仪是湘潭大学化工学院,为什么会选择这款瞬态平板法导热仪?其主要是因其具备的性能优势,而且测量速度快,对于样品的形状无特殊要求,只需平整,操作简单。  在仪器的安装调试现场,技术人员就这款DZDR-S瞬态平板法导热仪测试流程、数据分析、放置样品等实际操作步骤进行说明和培训,让其使用人员进行操作,对仪器进行熟悉,针对疑问进行解答。  DZDR-S瞬态平板法导热仪的性能特点:  1、测量范围:0.0001—300W/(m*K)。  2、测量时间快。测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。  3、多个探头可供选择。探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。  4、测试样品类型广泛。仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。  5、双向操作,可通过软件直接计算出导热系数。主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力。  6、彩色触摸屏显示,显示清晰度高,操作便捷。  DZDR-S瞬态平板法导热仪是南京大展仪器新推出一款设备,与其他测试方法的导热仪对比,其具备的优势明显,而且测量速度快,操作简单,并且准确度高。
  • 130万!中国科学院过程工程研究所计划采购激光闪射导热仪
    一、项目基本情况项目编号:OITC-G220571961项目名称:中国科学院过程工程研究所激光闪射导热仪采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1激光闪射导热仪1是130投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。依据工信部联企业【2011】300号文件,采购标的对应的中小企业划分标准所属行业为:工业3.本项目的特定资格要求:(1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企事业法人、其他组织或者自然人;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;(3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(4)按本投标邀请的规定获取招标文件;(5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。三、获取招标文件时间:2022年11月30日 至 2022年12月07日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:http://www.oitccas.com/方式:登录东方招标平台http://www.oitccas.com/注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月21日 09点30分(北京时间)开标时间:2022年12月21日 09点30分(北京时间)地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、投标文件递交地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室2、招标文件采用网上电子发售购买方式:1)登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账号:8620816577100013)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号及用途(如未标明招标编号,有可能导致投标无效)。4、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院过程工程研究所地址:北京市海淀区中关村北二街1号联系方式:010-825448402.采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室联系方式:曹山、窦志超、王琪 010-682905293.项目联系方式项目联系人:曹山、窦志超、王琪电话:010-68290529
  • 耐驰仪器公司收购德国 Taurus 仪器公司 拓展防火测试仪、导热仪等产品线
    p  耐驰仪器公司宣布拓展了防火测试系统、导热仪和传热系数(U值)测试仪(热箱)等产品线。/pp  德国TAURUS仪器股份公司(现为NETZSCH TAURUS® 仪器股份有限公司)与耐驰分析和测试业务部门的合并是两家公司长期业务联系的结果。在导热仪领域,两家公司服务于同一市场,但设备和规格不同。随着防火测试产品线的增加,耐驰现在进入了一个全新的市场。/pp  在导热领域,耐驰现在可以提供三个额外的带保护热板(GHP)的设备。带保护加热管的管道测试仪是耐驰产品线中的新产品。使用热箱系统,可以测量大型复杂建筑部件(窗、门、外墙等)的U值。/pp  新增加的防火测试设备包括建立欧洲实验室所需的全部光谱,可用于按照欧洲标准对塑料、建筑材料、纺织品等进行法律规定的测试。防火测试也可以进行全世界类似标准的检测。在汽车、建材、电缆和塑料制造业,由于安全法规日益严格,近年来全球对防火测试的需求强劲增长。通过将魏玛的经验和技术与耐驰的全球分销网络相结合,这两者的完美组合为未来成为该市场成为领跑者做了铺垫。/pp  NETZSCH TAURUS® 仪器股份有限公司将继续为客户提供魏玛的产品。此外,耐驰完全致力于履行TAURUS产品线用户的所有现有合同,包括服务、应用、现存的合同产品和备件供应。/pp  strong关于NETZSCH TAURUS® 仪器股份有限公司/strong/pp  NETZSCH TAURUS® 仪器股份有限公司是全球领先的工业和研究应用物性测试仪器制造商之一。TAURUS开发、制造和销售最先进的热导率测量设备、热箱测试工作站和用于材料测试和质量控制的防火测试系统。/pp  “我们对这次我们产品线的自然拓展感到非常高兴。现在,我们现在能够为我们的材料测试领域的客户提供更多一体化的解决方案。我热烈欢迎魏玛的新同事,并祝愿他们——以及我们所有人——有一个成功的未来。”/pp style="text-align:center"img title="Dr. Thomas Denner, Head of Business Unit Analyzing & Testing.jpg" style="max-height: 100% max-width: 100% " alt="Dr. Thomas Denner, Head of Business Unit Analyzing & Testing.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/4ea87788-e796-4255-b768-152fdbb7fbf5.jpg"//pp-Thomas Denner博士,耐驰分析和测试业务部门主管br//pp  “TAURUS® 仪器股份有限公司的收购是两家公司悠久伙伴关系的结果。耐驰拥有全球销售和服务架构,TAURUS® 的客户也能从中受益。现在,我们不仅可以向全球客户提供全面的产品系列,还可以为客户提供优化的解决方案。”/pp style="text-align: center "img title="Dr. Jü rgen Blumm, Managing Director of Netzsch Gerä tebau GmbH.jpg" style="max-width:100% max-height:100% " alt="Dr. Jü rgen Blumm, Managing Director of Netzsch Gerä tebau GmbH.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/5eed1c13-ab3b-4418-bdce-a5759147a4d0.jpg"//pp-Jü rgen Blumm博士,Netzsch Geratebau股份有限公司总裁/pp  “我期待着继续向世界提供来自魏玛的导热系数和防火测试产品这一激动人心的挑战。”/pp style="text-align: center "img title="Dr. André Lindemann, Managing Director NETZSCH TAURUS® Instruments GmbH.jpg" style="max-width:100% max-height:100% " alt="Dr. André Lindemann, Managing Director NETZSCH TAURUS® Instruments GmbH.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/051947e1-e767-483e-a84d-6ac0d6e07847.jpg"//pp-André Lindemann博士,NETZSCH TAURUS® 仪器股份有限公司总裁/pp  “我非常确信,在耐驰,我找到了合适的合作伙伴,让我的‘宝贝’继续发展下去。我要感谢所有客户、合作伙伴和供应商数十年来愉快和有收益的合作。”/pp-Stephan Heise,执行顾问,TAURUS® 仪器公司前所有者/ppbr//p
  • 合肥热电集团有限公司120.00万元采购导热仪
    详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:导热仪 开标时间:2024-01-26 10:30 预算金额:120.00万元 采购单位:合肥热电集团有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:安徽公共资源交易集团项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf
  • 中国建筑科学研究院中技公司热流计法导热系数仪
    p  JW-Ⅲ 建筑材料热流计式导热仪是由中国建筑科学研究院中技公司生产。/pp  导热系数(或热阻)是保温材料主要热工性能之一,是鉴别材料保 温性能好坏的主要标志。根据GB/T 10295-2008研制并不断完善了单试样双热流计式 JW-Ⅲ 建筑材料热流计式导热仪,进行了自动化改造升级。热流计法导热系数仪具有测试更为快速、简便、能适应更多形状厚度的测试、价格较为适中等诸多优点。/pp  设备特点:1、电脑设置,自动控温 2、电机驱动,电动夹紧 3、配备位移传感器,自动测厚 4、配备压力传感器,过压提醒 5、自动采集数据,存储数据,打印原始数据 6、 热平衡快,温度稳定用时短,一般3个小时完成试验,比功率法导热仪节省一半时间 8、 系统误差小,检测数据重现性好。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/46483981-0202-4b20-913e-cb3c9b120e97.jpg" title="中技公司.jpg"//pp style="text-align: center "图 JW-Ⅲ导热系数测定仪图片/p
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • TA仪器携全新Discovery DSC、TGA亮相analytica China 2016
    摘要:2016年10月10-12日,analytica慕尼黑上海分析生化展在浦东新国际博览中心举行。TA仪器携带全新Discovery DSC、Discovery TGA及流变仪、导热仪、力学测试仪等共计8台仪器亮相N2展馆,吸引了众多新老客户前来咨询洽谈。 卓越数据,轻而易举——发现由全球热分析领导者设计的有史以来最优秀的DSC和TGA。2016年10月10日-12日,TA仪器携全新的Discovery DSC、Discovery TGA亮相慕尼黑上海分析生化展(analytica China 2016)N2展馆,一同亮相的还有DHR流变仪、Affinity ITC、Nano DSC、DTC-300导热仪、DXF-900导热仪以及力学测试仪。TA仪器中国区副总经理董传波先生携相关技术专家及区域经理亮相展台,就TA仪器全新设计、无可比拟的技术与众多参观者进行了深入交流。全新Discovery DSC亮相展台全新Discovery TGA亮相展台微量热产品线之Affinity ITC & Nano DSC亮相 先进的技术,完美的实际,使得TA仪器展台吸粉无数,大量的新老用户来到TA仪器展台前,一睹新产品风采。此次展览会上,TA仪器全新Discovery TGA首次公开亮相,吸引了大量观众前来参观考察。该系列仪器拥有全新的系统设计,使得仪器在灵敏度、温度控制、气氛控制和基线漂移上获得前所未有的性能,进一步巩固了TA仪器在全球热分析技术的领导地位。每一款全新的Discovery TGA的核心均为TA独有的“Tru-Mass™ ”天平系统,籍此得到最高灵敏度及最准确的实时热重数据。每台仪器都均配置APP风格的用户操作界面,结合功能强大的全新TRIOS软件、自动校正及验证等常规程序可以无缝运行,极大的提高了实验室的工作流程和生产效率。 用户零距离接触全新Discovery TGA大量参展观众聚集到TA展台前,与我们技术专家就仪器特点、使用、先进技术特色等进行了深入交流。 TA仪器浙江区域经理郑波涛先生向观众讲解导热仪TA仪器微量热技术专家林明申博士向参观者讲解微量热产品及技术此外,TA仪器中国区副总经理董传波先生接受了多家主流媒体的访问,就TA仪器全新的DSC和TGA创新点、技术优势等进行了讲解,详细介绍了Affinity ITC、Nano DSC以及ESG力学测试仪等仪器,同时就TA仪器专业的技术、全方位的服务进行了讲解,使得媒体及观众们更深入的了解TA仪器及其产品。中国区副总经理董传波先生接受媒体访问我们技术人员与媒体就仪器特色进行了深入交流
  • 发布热阻测试、热流法导热系数测试仪新品
    DRL-III导热系数测试仪(热流法)一、产品概述 该导热系数仪采用热流法测量不同类型材料的热导率、热扩散率以及热熔。测量参照标准 MIL-I-49456A薄的热导性固体电绝缘材料传热性能的测试标准,D5470-06,ASTM E1530 ,ASTM C 518, ISO 8301, JIS A 1412, DIN EN 12939, DIN EN 13163 与 DIN EN 12667 等相关国际标准。 能够测量 Ф10~30mm 的样品,厚度范围可从0.02~20mm。全部测试功能自动完成;马达控制的平板移动;样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。该仪器用于测试高分子材料,陶瓷,绝缘材料,复合材料,非金属材料,玻璃,橡胶,及其它的具有低、中等导热系数的材料。仅需要比较小的样品。薄膜可以使用多层技术准确的得到测量。二、主要技术参数:1:热极温控: 室温~200℃, 测温分辨率0.01℃2:冷极温控:0~99.99℃,分辨率0.01℃3:样品直径:Ф30mm,厚度0.02-20mm;4:热阻范围:0.000005 ~ 0.05 m2K/W5:导热系数测试范围: 0.010-50W/mK, 6:精度 ≤±3%7:压力测量范围:0~1000N8: 位移测量范围:0~30.00mm9:实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。d、老化可靠性测试。10:配有完整的测试系统及软件平台。11:操作采用全自动热分析测试软件,快速准确对样品进行试验过程参数分析和报告打印输出。三、仪器配置:1.测试主机 1台, 2.恒温水槽 1台, 3.测试软件 1套,4.胶体粉体样品框1个,*4.计算机(打印机)用户自备典型测试材料:1、金属材料、不锈钢。2、导热硅脂。3、导热硅胶垫。4、导热工程塑料。5、导热胶带(样品很薄很黏,难以制作规则的单个样品,一边用透明塑料另外一边用纸固定)。 6、铝基板、覆铜板。 7、石英玻璃、复合陶瓷。8、泡沫铜、石墨纸、石墨片等新型材料。创新点:样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。
  • 仪器的进化 从人操作仪器到仪器指导人操作——德国耐驰热分析旗舰机亮相BCEIA2021
    2021年9月27日,两年一度的科学仪器行业盛会——第十九届北京分析测试学术报告会暨展览会(简称BCEIA 2021)在北京中国国际展览中心盛大开幕。国际知名热分析仪厂商德国耐驰携四款旗舰仪器——STA 449 F3同步热分析仪、DSC 214差示扫描量热仪、Kinexus lab+旋转流变仪、LFA 467激光导热系数测量仪亮相BCEIA2021展会现场,德国耐驰曾智强博士为我们介绍了它们在材料分析中的应用。“以人为本,用户友好”是德国耐驰热分析仪器产品的一大亮点。德国耐驰展位完整采访视频如下:STA 449 F3 Jupiter同步热分析仪STA 449系列同步热分析仪可以配合约八九种方便更换的炉体以及十多种不同用途的传感器实现灵活的配置,通过温度范围、气氛设置、样品状态、测量模式等的设置实现上百种的排列组合,从而能够做到在复杂环境下对材料真实性能表现的测量。DSC 214 Polyma差示扫描量热仪DSC214是德国耐驰一台里程碑式的DSC,其升降温速度高达500℃/min,并配有热分析行业领先的检索平台工具,即通过将DSC数据输入到软件里,可以像标准检索一样去进行检索,自动分析出样品的“真实面貌”。此外,仪器本身能够引导测试人员进行参数的设置、数据的获取与计算、分析,这对于企业用户而言,尤其是没有操作经验的新手,大大缩短了培训的时间。而仪器配有的高级计算功能也能够通过软件进行自动完成,对于没有经验的新手十分友好。Kinexus lab+旋转流变仪Kinexus系列旋转流变仪收购自马尔文,具有操作简单、界面友好等特点,仪器自带的芯片能够自动识别板的参数信息,同时能够方便的进行板的更换;仪器配置的软件能够引导用户进行各种方法的测定;用户在仪器端和电脑端都能够进行操作,在进行液体样品测试时,能够带来舒适的体验。LFA 467激光导热系数测量仪LFA 467激光导热系数测量仪:这是德国耐驰最近几年的明星产品,可以广泛用于薄膜、块体、粉体、纤维等材料导热性能的测试。它可以用于测试几个微米的薄样品的导热系数;最多一次可以测试16个样品,具有较高的测试效率;软件带有全套的校正和数学模拟功能,全自动输出相应的数据,随着各行业导热、热传导概念越来越多,该仪器的活力也会越来越高。
  • 【不止于塑,仪领未来】南京大展仪器惊艳亮相2024宁波国际塑料橡胶展
    随着科技的不断进步和行业的迅速发展,橡塑行业作为国民经济的重要支柱之一,正不断吸引着全球的目光。在这个背景下,2024国际宁波塑料橡塑展如期而至,汇聚了来自世界各地的众多有名的企业,共同探讨和展示行业内的新技术与成果。    在这个展示前言技术、交流行业趋势的平台上,南京大展仪器携多款核心产品亮相,其中包括:差示扫描量热仪、热重分析仪、导热仪、炭黑含量检测仪等,展现了其在塑料橡胶检测仪器领域的优秀实力和成熟技术。    差示扫描量热仪:该设备能在程序控制温度下,测量物质与参比物之间的功率差与温度的关系,广泛应用于材料的研发、生产质量控制等领域。    热重分析仪:用于测量样品在程序控制温度下的质量和温度以及质量变化速率之间的关系,可进行材料的组分分析、热稳定性研究等,适用于橡塑、陶瓷、金属等各类材料的热性能研究。    导热仪:基于瞬态平面热源技术,能准确测量不同类型材料的导热系数,适用于塑料、橡胶、复合材料等多种材料的热传导性能评估。    炭黑含量检测仪:主要针对橡塑材料中炭黑含量的测定而设计,通过准确测量样品中的炭黑含量,对提高材料性能的稳定性和可靠性具有重要意义。    展会期间,南京大展仪器的展位前始终人头攒动。参展团队成员积极与客户互动,详细了解客户的需求,同时针对客户提出的各种问题进行耐心解答,一起探讨未来合作的可能。并且,通过现场的仪器操作演示和案例分享,让参观者直观地感受到仪器的优良性能和操作的便捷性。    通过参加2024宁波国际塑料橡塑展,南京大展仪器不仅展示了其在高分子材料测试领域的技术实力,也进一步加深了与行业内其他企业及潜在客户之间的联系,为公司未来的发展开拓了新的视野。南京大展仪器将继续秉承创新驱动发展的理念,致力于为橡塑行业提供更多高性能、高精度的检测仪器,为橡塑行业产品技术进步和创新,提供准确的测试服务支持。
  • 国际竹藤中心预算550万元购买场发射扫描电镜系统等3台仪器
    6月9日,国际竹藤中心公开招标,购买诱变育种仪、场发射扫描电镜系统、闪射法导热仪3台/套仪器,预算550万元。  项目编号:TC2101025  项目名称:国际竹藤中心2021年科研仪器购置项目  预算金额:555.0000000 万元(人民币)  采购需求:包号设备名称数量预算(万元)交货时间简要技术要求1诱变育种仪1180签订合同后3个月内工作环境:常压状态下,湿度≤60%2场发射扫描电镜系统1320签订合同后6个月内放大倍数可调范围≥10-2,000,000倍,根据加速电压和工作距离的改变,放大倍数可自动校准;3闪射法导热仪155签订合同后6个月内温度范围:-100~+200℃  *是否允许进口:仅第2包和第3包允许进口  *是否允许代理商参与:均允许  合同履行期限:详见采购需求  本项目( 不接受 )联合体投标。  开标时间:2021年06月30日 13点30分(北京时间)
  • 396万!北京市科学技术研究院分析测试研究所计划采购分析测试所仪器设备
    项目概况分析测试所仪器设备购置项目仪器设备购置 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-05-19 09:00(北京时间)前递交投标文件。一、项目基本情况项目编号:11000022210200007863-XM001项目名称:分析测试所仪器设备购置项目仪器设备购置预算金额:396 万元(人民币)采购需求:分包号分包名称采购内容分包控制金额(万元)1液相-气相联用仪等仪器名称单位数量是否允许进口产品212流动注射分析仪套1否定量浓缩模块套2是液相-气相联用仪套1是2导热仪仪器名称单位数量是否允许进口产品56.25导热仪套1是3其他仪器仪器名称单位数量是否允许进口产品127.75电化学工作站套1是红外光谱仪套1是有毒有害气体检测仪套1否真空干燥箱台1否氢空发生器台1否耐腐蚀酸碱存储柜个2否不间断电源套1否数显恒温磁力搅拌器台1否冰箱台1否线性&圆周型数显摇床台1否数显粘度计台1否熔体流动速率仪套1否超低温保存箱套1否简要技术需求:第一包:液相-气相联用仪等一、流动注射分析仪1. 货物名称:流动注射分析仪2. 数 量:1套3. 交货时间:合同签订后150天内4. 交货地点:采购人指定地点5. 应用范围:用于测定地表水、地下水、饮用水和环境水中的氨氮、总磷等成分。… … 第二包:导热仪1.货物名称:导热仪2. 数 量:1套3. 交货时间:合同签订后270天内4. 交货地点:采购人指定地点5. 应用范围:该仪器可直接测得各种固体、糊状、液体和薄膜等材料的导热系数,包括高分子材料,陶瓷,复合材料,玻璃,橡胶,一些金属,及其他的具有低、中等导热系数的材料。… … 第三包:其他仪器1. 货物名称:电化学工作站2. 数 量:1套3. 交货时间:合同签订后150天内4. 交货地点:采购人指定地点5. 应用范围:可以同时进行相同的电化学实验也可以同时进行不同的电化学实验可连接环盘电极进行测试氧化还原反应的测试。… … 其它详细技术需求详见招标文件合同履行期限:采购人指定时间或合同约定本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。本项目非专门针对中小企业招标采购。3.本项目的特定资格要求:(1)供应商不得被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。(2)满足招标文件相关要求。三、获取招标文件时间:2022-04-28 至 2022-05-09 ,每天上午09:00至12:00,下午12:00至17:00(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台方式:本项目采用电子化与线下流程结合招标方式,相关操作如下:1办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(hhttp://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南” ——“操作指南”—— “市场主体CA办理操作流程指引”,按照程序要求办理。2于北京市政府采购电子交易平台“用户指南”——“操作指南”——“市场主体注册入库操作流程指引”进行自助注册绑定。3招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。4未按上述获取方式和期限下载招标文件的投标无效。证书驱动下载:1于北京市政府采购电子交易平台“用户指南”——“工具下载”—— “招标采购系统文件驱动安装包”下载相关驱动。2 CA认证证书服务热线010-585110863技术支持服务热线010-86483801注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。注:为保证报名成功,请各投标人在北京市政府采购电子交易平台网上报名、下载文件成功后,将拟参与项目名称、招标编号、投标人名称(单位名称)、联系人及电话发至我公司邮箱:zdchzbgs@126.com。售价:¥0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点2022-05-19 09:00(北京时间)地点:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 理化实验楼五楼第一会议室(北京市海淀区西三环北路27号)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本公告同时在中国政府采购网、北京市政府采购网发布。2、需要落实的政府采购政策:《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)、《关于开展政府采购信用担保试点工作的通知》(财库【2011】124号)、《政府采购促进中小企业发展办法》(财库【2020】46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库【2014】68号)、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库【2017】141号)等。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)     地址:北京市海淀区西三环北路27号        联系方式:汪雨,68467138      2.采购代理机构信息名 称:中鼎传鸿(北京)招标代理有限公司            地 址:北京市西城区北三环中路27号商房大厦423室            联系方式:纪志达,010-62355611            3.项目联系方式项目联系人:纪志达电 话:  010-62355611
  • 企业资讯 | NETZSCH仪器入围2022上半年度科学仪器行业“用户关注仪器TOP100”榜单
    科学仪器行业用户关注仪器奖作为仪器信息网重要产品奖项之一,自举办以来,已成功评选过十四届。该奖项的评选,旨在推荐上一年度用户关注度最高的仪器,并为多行业用户选购该类别仪器提供重要的参考依据。 依托仪器信息网强大的用户访问量为数据基础,遵循公开、公正、公平的原则,通过综合评选各类仪器2022上半年度在仪器信息网的独立访问人数、用户留言量、各仪器3i指数等数据,其中NETZSCH耐驰仪器三度入围科学仪器行业用户关注仪器TOP100之“物性测试仪器及设备”类别,分别是差示扫描量热仪 DSC214 Polyma、激光法导热仪 LFA467、及同步热分析仪STA449 F3。DSC 214 PolymArena 炉体质量小,可实现快速加热与冷却,更好地模拟聚合物加工工艺配备有Arena 炉体的DSC 214 polyma是目前市场上第一台“跨界型”DSC,它跨越了传统热流型DSC和功率补偿型DSC的鸿沟。它具有比肩功率补偿型DSC的极高升降温速率,同时又兼顾热流型DSC的优势,例如基线稳定、耐腐蚀、维护简易、使用成本低等等。可以在较宽的温度范围内实现500°C/min加热速率和500°C/min冷却速率,特别适用于需要尽快在某一温度下达到平衡状态(如等温结晶和等温固化)的动力学研究,也可以利用它来模拟实际加工工艺。此外,快速的升降温速率能够加速试验,节省工作时间。独特的传感器设计理念可以获得优异的再现性Corona传感器和Concavus坩埚相结合可得到固定的环形接触区域。坩埚底部的凹型设计可以避免坩埚装样压制后的变形凸起,进而避免坩埚底部变形对传热的影响,可以得到优异的再现性。优质Concavus坩埚,可选配独特的“3in1”样品盒。样品盒中每个坩埚都有独立编号的位置,有效避免坩埚变形的同时,极有利于样品复检。LFA 467宽广的温度范围,从 -100°C 到 500°C无须更换检测器或炉体, LFA467 HyperFlash在同一台仪器上可实现 -100°C 到 500°C 的宽广温度范围。加上种类丰富的可选配件,开创了热物性测量的新天地。进样器附有 16 个样品位,样品容纳量为原来的4倍LFA 467 HyperFlash 的一大优势是可以在整个温度范围内连续测量 16 个样品,大大缩短了测量时间。液氮补给系统可以实现对检测器与炉体的自动补充液氮,保证仪器全天候不间断测量。ZoomOptics 得到的测量结果更准确,减少测量误差专利技术的 ZoomOptics(DE 10 2012 106 955 B4 2014.04.03)优化了检测器的检测范围,从而消除了孔径光阑的影响。显著增加了测量结果的精度。极高的采样频率(2MHz),特别适合于薄膜样品薄膜样品及高导热材料需要快速的数据采集速率,来精确地记录样品上表面的升温过程。LFA 467 HyperFlash 可以提供 2MHz 的数据采集速率,这是 LFA 系统的一次重大升级。STA 449 F3内置天平室电子温度控制附件,降低能量消耗和维护成本耐驰STA已成功摆脱外部恒温设备,通过内置电子恒温系统来调节天平室温度,可以获得优异的温度稳定性不使用外部恒温设备后,常规使用情况下STA 449 F3 Jupiter的能源消耗下降70%。另一方面,采用电子恒温系统,可大幅度减少维护工作量。例如无需定期检查恒温水浴的液面,无需人工调节恒温水浴温度… … 同时依然可以保证天平室温度恒定。高灵活性,满足您的应用需求结合了高性能的热流型DSC传感器和亚微克级分辨率的高灵敏度天平,从而提供无与伦比的量热和称重精度。通过选择合适的炉子,安装合适的传感器,以及恰当的配件,可以轻松地将同步热分析仪调整到几乎可以满足所有应用。坚固耐用的硬件,界面友好的软件,灵活多样的设计,以及丰富的配置选项使该系统成为质量控制和材料研究表征的理想工具。高稳定性、低漂移度、大量程STA 449 F3 Jupiter天平系统提供足够大的称样量(35g)和测量范围(35g),同时具有很高的分辨率(0.1µg),且漂移小(数小时漂移在微克量级)。真空密闭设计 - 优化实验气氛条件STA 449 F3 Jupiter为真空密闭设计。根据不同的真空泵配置,其真空度可达10-4mbar,抽真空后可以填入任意设定的气氛。系统可选配独特的OTS附件,用于彻底去除吹扫气中的微量氧杂质。
  • 加拿大专利型快速导热系数测定仪投入运行
    中科院上海硅酸盐所购买的我公司独家代理的加拿大MATHIS公司生产的专利型快速导热系数测定仪已于2006年12月安装完毕投入实验使用。该仪器可进行实验室及现场应用,可快速方便地测定固体、液体、粉沫、薄膜及粘稠物等多种不同材料的导热系数,热传导率及比热(需其它参数配合)精度为世界上最高,准确度优于5%,测试一个样品时间约为10-15分钟(包括冷却时间8-10分钟)。已有感兴趣的其它用户去参观了解该仪器。
  • 热分析仪6月招中标信息汇总—门类琳琅满目
    本网编辑对2018年6月,热分析仪器的政府机构采购招中标信息进行了汇总。  26家机构发布了招标信息,平均接近每天有一家政府机构发布采购讯息 需求仪器类别共计17类,其中同步热分析仪(STA)的需求最多,可以看出科研院所对热分析仪功能多样化的要求较高 最高预算金额为河南师范大学动力电池加速量热仪采购项目的250万元,从侧面也可以反映出,随着近年来新能源汽车产业不断受到政策导向及市场需求双重利好因素的影响,动力电池领域的研究也在不断深入,对其投入也在不断加大。表12018年6月热分析仪政府机构采购招标信息汇总采购单位公告时间采购仪器数量预算单价(元)昆明理工大学2018.6.29热重-红外联用仪2中国科学院青海盐湖研究所2018.6.29同步热分析仪1380000福建师范大学2018.6.28差示扫描量热仪及热重分析仪1280000差示扫描量热仪及热重分析仪1260000中国石油大学(华东)2018.6.26同步热分析仪1500000河南师范大学2018.6.25动力电池加速量热仪12500000东北农业大学2018.6.25差示量热扫描仪1300000河西学院2018.6.22导热系数仪1熔体流动速率测定仪1华北电力大学2018.6.22同步热分析-红外光谱联用系统11200000华中师范大学2018.6.22差示扫描量热仪1山东省医学科学院药物研究所2018.6.21同步热分析仪上海大学2018.6.21差示扫描量热仪1360000广西大学2018.6.19激光导热仪1河北工业大学2018.6.19氧弹式量热计6华东理工大学2018.6.15比热测量实验装置1热电当量实验装置1热腔辐射实验装置1热膨胀系统测量1哈尔滨工程大学2018.6.15热膨胀仪1445000济宁医学院2018.6.15同步热分析仪环境保护部华南环境科学研究所2018.6.15氧弹式量热计平凉市产品质量监督检验中心2018.6.12全自动量热仪1华东理工大学2018.6.12全自动实验室反应量热系统南宁市食品药品检验所2018.6.11熔点仪1华北水利水电大学土木学院2018.6.8HotDisk导热系数仪1广西师范大学2018.6.6差热分析仪3差示扫描量热仪3热重分析仪3福建工程学院2018.6.4差示扫描量热仪及热重分析仪460000差示扫描量热仪及热重分析仪940000铜川市质量技术监督局2018.6.4量热仪水泥水化热测定仪吉林大学2018.6.1高温高压同步热分析仪2287600农业农村部规划设计研究院2018.6.1同步热分析仪1  整个6月共有16家政府机构的包含热分析仪的采购项目完成中标及公示,可以看出,高额单价的仪器基本为国外品牌,尤其是中国科学院青岛生物能源与过程研究所采购的绝热加速量热仪单价高达183.6万元 而国产热分析仪的采购单价多在10万元以下,但仪器品类及数量较多。表22018年6月热分析仪政府采购中标信息汇总采购单位公告时间采购仪器采购型号数量采购单价(元)甘肃省药品检验研究院2018.6.27熔点仪梅特勒MP901185000广西科技大学2018.6.27显微目视熔点仪X-4B16000农业农村部规划设计研究院2018.6.26同步热分析仪STA449F5Jupiter1515000哈尔滨工程大学2018.6.25热膨胀仪EU575001甘肃中医药大学2018.6.25微机熔点仪上海申光WRS-1C28400差热分析仪上海盈诺YND-C1465000桂林航天工业学院2018.6.21导热系数测定仪大华YBF-3304900桂林理工大学2018.6.21全自动熔点仪MP1201016000河南农业大学林学院2018.6.21DSC/TGA/DTA同步热分析仪珀金埃尔默STA8001300000中国石油大学(北京)2018.6.11准稳态法比热导热系数测定仪福建师范大学2018.6.8固体比热容测定仪杭州大华DH4603B113950导热系数测定仪世纪中科光电ZKY-BRDR118650兰州理工大学2018.6.8热机械曲线仪承德金建XWR-500A1150000济南大学2018.6.7差示扫描量热仪东北林业大学2018.6.6热重-差热分析仪广西师范大学2018.6.6热重分析仪TDA-HC1000352000辽宁工程技术大学2018.6.5气体定压比热测定仪QDYR空气绝热指数测定仪KQJR中温法向辐射率测量仪ZWFX非[准]稳态导热仪FWDR-I氧氮式热量计(全自动量热仪)HKRL-4000B中国科学院青岛生物能源与过程研究所2018.6.4绝热加速量热仪Btc500&btc13011836094.5
  • 我司精彩参展2012年慕尼黑上海分析生化展
    我司于2012年10月16日,携新品以全新面貌,精彩出展第六届慕尼黑上海分析生化展(2012 analytica china)。尽情为大家呈现新品:全自动防护热板法导热仪,高端淬火相变热膨胀仪、成像热膨胀仪、双炉体热膨胀仪、激光热导仪、瞬时热参数导热仪、高压同步热分析仪、液体导热仪、赛贝克系数测定仪,便携式密度计、生物信息学软件等。 如今我司正以不负众望的姿态,蓬勃向上的激情,奋斗于仪器仪表行业,相信在下次展会中定能继续绽放光彩,为行业带来更多的惊喜。
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。图 3 高导热石墨烯膜的制备与表征影响高导热石墨烯膜热导率的第二个因素是石墨烯的片层尺寸。前文Xu等的工作表明,单层石墨烯的导热声子平均自由程可达~10 μm量级,选择大尺寸的石墨烯片层有利于减少声子与材料边界的散射,提高热导率。Kumar等用片层大小超过80 μm的石墨片作为原材料,经Hummers法制备得到平均片层大小约30 μm的氧化石墨烯分散液,并通过真空抽滤得到氧化石墨烯薄膜,经过57%的HI处理还原后得到石墨烯膜,测量得到强度达到77 MPa,热导率超过1390 W∙m−1∙K−1。Peng等用平均片层尺寸108 μm的GO制备了氧化石墨烯薄膜,并通过3000 ℃热处理还原,得到热导率高达1940 W∙m−1∙K−1的石墨烯薄膜。除了通过还原氧化石墨烯薄膜,石墨烯膜还可通过石墨烯分散液的方法制备。Teng等利用球磨方法将石墨块体剥离成石墨烯片层,并得到浓度为2.6 mg∙mL−1的石墨烯的N-甲基吡咯烷酮(NMP)分散液。再通过抽滤、烘干、2850℃热处理得到石墨烯薄膜,测量热导率为1529 W∙m−1∙K−1。一般认为,由石墨烯分散液制备石墨烯薄膜的最大优势在于保留了石墨烯的平面结构,使得薄膜具有比较高的本征热导率。这一优势从理论上讲具有合理性,但是仔细分析便可发现并非绝对:由于制备石墨烯分散液往往需要施加强机械力(研磨、球磨等),石墨烯分散液中的片层尺寸通常较小(小于1 μm);而且由于缺少含氧官能团,石墨烯片层间的相互作用较弱,存在着优劣势相互抵消的可能性,所以在实际应用前仍需要经过石墨化过程。我们认为,这一方法的优势在于易规模化、生产效率高。由于不存在片层相互作用,石墨烯分散液抽滤成膜速度较快(~几小时),易于连续抽滤;对比氧化石墨烯抽滤成膜,通常需要几天方可得到几十微米厚度的薄膜。同时,由于制备石墨烯分散液可由机械研磨完成,易于实现规模化、标准化,因而具有良好的工业应用前景。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试表 2 石墨烯导热膜主要研究成果4.2 高导热石墨烯纤维的应用高导热石墨烯纤维是一种新型碳质纤维,通过石墨烯分散液经过湿法纺丝的方法有序组装而成。其主要优势在于同时具备良好的力学、电学和热学性能,并且可以通过湿法纺丝的方法大量制备,易于实现规模化,与纺织工艺结合,可达到千米级的产量。石墨烯纤维与石墨烯薄膜的原材料相似,通常为氧化石墨烯分散液或官能化的石墨烯分散液,因而其热导率的主要影响因素也具有共同之处,石墨烯的片层大小和石墨烯片层间的界面强度有重要作用。值得注意的是,Xin等的研究发现,组装石墨烯纤维时使用两种不同片层大小的石墨烯分散液进行级配具有最好的物理性能。他们将大片层(横向尺寸~23 μm)与小片层(横向尺寸~0.8 μm)的石墨烯分散液混合纺丝,热处理后得到了热导率高达1290 W∙m−1∙K−1的石墨烯纤维,导热性能优于单一组分制备的石墨烯纤维。大片层石墨烯为长平均自由程声子提供了传热空间,小片层石墨烯在大片层石墨烯之间起到键合作用,提高了石墨烯片层之间的界面致密度,从而提升了石墨烯纤维热导率。4.3 石墨烯在热界面材料中的应用石墨烯作为高导热材料,可作为导热填料应用于热界面材料(Thermal interface material,TIM)中。热界面材料是应用于芯片封装中的一种材料,主要作用是填充芯片中的空气间隙,起到给芯片提供力学支撑、电磁屏蔽、辅助散热的作用。传统的热界面材料使用的是填充有陶瓷、金属、碳材料等作为导热填料的树脂基复合材料,利用高分子材料的力学性能提供保护,通过添加导热填料提高散热能力。由于树脂的热导率非常低(小于0.5 W∙m−1∙K−1),并且商用的导热填料热导率也较低(氧化铝热导率~35 W∙m−1∙K−1),整体热界面材料的热导率多为1–10 W∙m−1∙K−1之间。研究者尝试将高导热的石墨烯作为导热填料,提高热界面材料的导热能力。以下重点介绍石墨烯增强树脂基复合材料的热导率的主要影响因素。4.3.1 分散性石墨烯片层作为填料,在基体中的分散性对复合材料的导热性能有至关重要的影响。传统的热界面材料中,导热填料在基体中的分散性良好,填充比例可以高达90% (w),即便导热填料为球形结构,也可以形成完整的导热网络,而导热网络的形成对于复合材料导热性能的提升至关重要。石墨烯作为片层状材料,在树脂基体中必须相互搭接,方可形成有效导热网络。为了实现这一目标,要求石墨烯在树脂基体中具有良好的分散性。常见的制备方法包括基于氧化石墨烯分散液和石墨烯分散液两种工艺路径。对于氧化石墨烯分散液,由于氧化石墨烯中存在大量羟基、羧基等基团,与极性溶剂相溶性较好,可以制备较高浓度的分散液(~30 mg∙mL−1),提高在树脂基体中的填充量。这种方法的主要挑战在于需要对氧化石墨烯进行还原以提高热导率。对于石墨烯分散液,由于保留了石墨烯的平面结构而具有相对较高的高热导率,但是由于官能化程度较低,石墨烯与树脂基体界面为范德华力搭接,存在分散性不佳的问题。提高分散性的一种方法是对石墨烯进行化学键修饰,通过化学反应给石墨烯引入特定基团,使石墨烯与高分子基体形成化学键,提高分散性。Guo等利用NH2-POSS与水合肼与氧化石墨烯共同作用,在氧化石墨烯表面接枝氨基并进行还原,得到化学修饰的石墨烯。将此种化学修饰石墨烯与聚酰亚胺基体混合,得到热导率为1.05 W∙m−1∙K−1的复合材料,固含量为5% (w),比聚酰亚胺热导率高4倍。Zhang等通过硅烷偶联剂ATBN在膨胀石墨表面引入氨基,提高了石墨烯与环氧树脂基体的键合强度,同时增强了环氧树脂固化的力学性能,得到热导率为3.8 W∙m−1∙K−1的石墨烯增强复合材料,比环氧树脂热导率高出19倍。这种方法的主要优势在于形成石墨烯与小分子之间的化学键,提高石墨烯与树脂基体间的界面强度。主要问题在于化学反应过程通常会引入缺陷,使得石墨烯自身的热导率下降。Shen等研究发现化学键改性的效果与石墨烯片层大小有关:当石墨烯片层尺寸小于临界尺寸(通常为微米级)时,化学键改性对热导率提升起主要作用;当石墨烯片层尺寸大于临界尺寸时,热导率主要由石墨烯自身决定。提高分散性的另一种方法是对石墨烯进行非化学键修饰,这种方法主要利用石墨烯与小分子之间形成π−π键共轭,并利用小分子上的其他基团与高分子基体形成相互作用。形成共轭π键并不需要破坏石墨烯的C―C键,从而减少了化学反应过程中缺陷的产生。Teng等利用含芘结构的高分子Py-PGMA对石墨烯在丙酮分散液中进行非化学键修饰,起到“桥梁”的作用:一方面芘结构与石墨烯形成共轭π键,另一方面PGMA中的环氧结构与环氧树脂基体在加热与固化剂作用下进行偶联,提高了石墨烯在环氧树脂基体中的分散度,得到了热导率为1.9 W∙m−1∙K−1的环氧树脂复合材料。另外还可以通过机械方法提高石墨烯与树脂基体间的界面强度,包括使用强力超声方法提高分散度、真空抽滤混合、热压等。总结来看,提高分散度往往意味着在保留石墨烯本征的高热导率与提高石墨烯和高分子基体的界面热导间做出权衡,如何定量分析两个因素对复合材料热导率的影响将是值得研究者关注的问题。4.3.2 三维导热网络石墨烯在树脂基体中形成导热网络是提高热界面材料热导率的重要条件。相比于传统热界面材料中填充球形氧化铝,石墨烯因为其二维材料的特性,比表面积大,更容易形成导热网络,因而在相同填料比的条件下更具优势。由于石墨烯片层具有较大的宽厚比,自发形成三维导热网络并不容易。一种方法是利用模板法通过CVD生长得到三维结构的石墨烯泡沫。这种方法以具有孔结构的材料为模板,通过CVD方法在表面沉积得到石墨烯,再通过刻蚀剂去除模板,得到石墨烯泡沫。Shi课题组及首先测量了CVD法生长的石墨烯泡沫的热导率,发现其热导率为1.7 W∙m−1∙K−1,而石墨烯固含量仅为0.45% (volume fraction,x)。后来,该课题组将石蜡灌封进石墨烯泡沫形成复合材料(图5a–b),测量得到其热导率为3.2 W∙m−1∙K−1,比石蜡自身的热导率提高了18倍,并且石墨烯的填充比仅为1.23 (x)。后续工作中,Kholmanov等在石墨烯泡沫中通过CVD法原位生长碳纳米管,在泡沫孔结构中形成导热网络(图5c–d),将丁四醇灌封后形成导热复合材料,热导率为4.1 W∙m−1∙K−1,比无碳纳米管填充的石墨烯泡沫-丁四醇复合材料热导率提高了1.8倍(图5d–e)。考虑到CVD法制备的石墨烯以少层石墨烯为主,这一方法在建立三维导热结构的最大程度减少了石墨烯的填充比,适用于超轻、超薄的精细结构导热应用。图 5 石墨烯泡沫作为三维导热网络的高导热聚合物基复合材料另一种方法是利用石墨烯片层自组装形成水凝胶,再通过冷冻干燥、冰模板法等方法形成三维的石墨烯宏观结构。水凝胶中石墨烯的含量可低至2.6% (w),其余部分均由水组成,因而由水凝胶形成的石墨烯三维结构可以有效降低石墨烯固含量。Wong课题组利用定向凝固的方法用大尺寸的氧化石墨烯液晶制备了氧化石墨烯三维结构,石墨烯片层受过冷度的影响形成纵向排列为主的定向结构。通过高温还原后灌封环氧树脂,得到复合材料的热导率为2.1W∙m−1∙K−1,比环氧树脂自身热导率提升超过12倍,并且填充比低至0.92% (x)。这种方法实际上是以石墨烯气凝胶为骨架,填充聚合物形成复合材料。其优势在于石墨烯气凝胶的制备工艺与调控手段已经很成熟,且比起CVD方法生长的石墨烯泡沫更易实现规模化制备。不足之处在于需要经过还原反应得到石墨烯,而氧化石墨烯制备过程中的缺陷不易完全修复。石墨烯填充的高导热聚合材料主要工作汇总于表3。表 3 石墨烯填充高导热复合材料主要研究成果从以上工作可以看出,通过气相沉积方法和湿化学方法均可得到三维石墨烯导热宏观结构,浸渍聚合物后可以得到高导热的三维石墨烯网络增强复合材料。其主要优势是用较低的填充量即可形成导热网络,而主要挑战在于石墨烯宏观结构要具有一定的强度,否则在与聚合物复合过程中容易出现碎裂。比起传统的混料过程,制备石墨烯泡沫与石墨烯气凝胶工艺相对复杂,如何实现工业生产中的实际应用仍需在工艺路线上继续创新。5 总结与展望自从单层石墨烯热导率被实验测得以来,石墨烯导热的研究取得了长足的发展。本文总结了石墨烯热导率的测量方法,重点介绍了拉曼光谱法、悬空热桥法和时域热反射法。探讨了石墨烯热导率的影响因素,并介绍了石墨烯在导热器件中的应用。在石墨烯导热研究方兴未艾的同时,我们注意到理论研究、实验测量和实际应用中仍然存在挑战。首先,是石墨烯高导热的声子学解释。2010年Lindsay提出ZA声子是单层石墨烯中热导率贡献最大的声子模,这一理论成功解释了单层石墨烯热导率高于石墨块体。而当考虑四声子散射时,ZA模声子的贡献又低于LA、TA。如何理解单原子层中的ZA声子振动、如何预测高阶声子散射对石墨烯热导的贡献,仍需要深入的理论计算提供支持。其次,是准确测量石墨烯热导率的长度依赖和厚度依赖。随着测量技术进步,拉曼光谱法和悬空热桥法能够准确测量单层石墨烯的热导率。但是如何实现指定厚度石墨烯的转移、如何实现大尺度悬空石墨烯样品的放置,仍具有一定的技术挑战。这一部分研究是最难、最有意义也最令人感兴趣的,预期未来微纳尺度传热测量方法将继续进步,对理论预测的结果进行验证。最后,是石墨烯导热应用的工艺因素。目前,石墨烯导热膜的热学性能和力学性能已经与石墨化聚酰亚胺膜相当,并在特定领域实现了商业应用。而在这一课题中,高导热石墨烯材料的制备与技术工艺密切相关。如何实现石墨烯片层高热导率与石墨烯片层紧密搭接的双目标优化,如何低成本大规模地构建石墨烯三维导热网络,要回答这些问题仍需对石墨烯制备工艺进行深入摸索与不断改良。随着石墨烯导热研究在理论计算和实验测量的不断深入,我们相信,高导热石墨烯材料将在电子器件、能源存储、生物医学、国防军工等领域发挥更大的价值。6 “石墨烯检测技术及应用进展”主题网络会议仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中… … 报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 吉林某单位批量采购17种仪器设备
    吉林某单位批量采购17种仪器设备,进口国产不限,能做的厂商请联系,具体清单如下:序号设备名称使用需求1差示扫描量热仪(DSC)树脂玻璃化转变温度测量2动态热机械分析仪(DMA)复材玻璃化转变温度测量3流变仪树脂流变性能测试4导热仪固体导热系统测量5恒温量热仪(TMA)热膨胀系统测量;维卡热转变温度测量;6全自动金相磨抛机复材孔隙率测定7试验机碳纤维力学性能测量8视频引伸计碳纤维力学性能测量9红外光谱仪(FT-IR)碳纤维油剂、上浆剂、树脂固化剂成份分析10无损探伤仪碳纤维复材质检-无损探伤11超声波测厚仪碳纤维复材质检-厚度测量12凝胶测试仪树脂固化时间测量13流变仪14恒温恒湿箱15热压罐、模具套装16疲劳试验机17板簧测试专用夹具承载台联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 林赛斯邀您参加西安国际复合材料大会!
    8月20日,林赛斯与您相约古城西安,共赴国际复合材料大会。B29展位,与您不见不散。第二十一届国际复合材料大会将于2017年8月20日-25日在陕西省西安曲江国际会议中心举办。国际复合材料大会 (ICCM) 始于 1975 年,每两年召开一次,至今已举办过二十届,是全球复合材料界历史最长、规模最大、最具权威的学术研讨会。ICCM 曾经分别于 1989 年(第 7 届)、2001 年(第13 届)在中国举办。中国复合材料学会组织国内有关机构与学者,经过两次申办努力,终于在暌违 16 年后成功获得第 21 届国际复合材料大会的举办权。林赛斯如约和您相遇,德国林赛斯国际公司(LINSEIS)总部位于德国巴伐利亚州泽尔布(Selb),是一家有着60多年光荣历史和丰富专业经验的世界领先(热)分析仪器设备生产商,公司致力于研究、开发、生产热分析科学仪器,其产品的技术和质量一直处于业界领先地位。为了满足复合材料快速发展及多样化测量需求,德国林赛斯公司用最完善的测量体系为科研工作者提供最优的热物性测量方案。? 从开发出世界上第一台热膨胀开始,经过60多年的不断发展,林赛斯开创出了-260℃--2800℃全温度段热物性的测试方案。从全球唯一的皮米级激光膨胀仪,到高温4样品膨胀仪,再到为了解决高分子材料膨胀测量的8样品膨胀仪,以及为了满足无机材料等测试的光学膨胀仪,林赛斯在材料膨胀性能测试上树立了一个有一个丰碑。同时,林赛斯也不断推出了最全面的导热性能测试方案:从高端的激光闪射法(LFA),到热流法导热仪(HFM),专利技术的热桥法导热仪(THB),再到纳米时域反射法导热仪(LS-LFA),林赛斯可以帮你解决各种材料的导热测量需求。全球唯一的薄膜综合物性分析系统(TFA),可以帮你一次性解决薄膜多种性能测试问题,林赛斯LSR可以帮你解决材料电阻、塞贝克等热电性能测试等......,林赛斯不断推陈出新,不仅拥有特殊测量需求的磁悬浮热重系统(MSB),还推出了世界上唯一的高压热重分析仪(STA HP)来满足各个行业材料热性能材料需求......? 林赛斯热烈欢迎每一位学者、用户来和我们交流,提供宝贵意见。林赛斯将开拓创新,和您一起推动和促进热分析技术在中国的应用发展。我们希望最先进的的热分析技术能够协助每一位科研人员取得更好的成果! 会议时间:2017 年 8 月 21 日至 25 日会议地点:陕西西安 曲江国际会议中心展位号:B29联系方式:18611443573;wangpeng@chanceint.com
  • 岂止于图谱——TA仪器测试技术分享会取得圆满成功
    2015年4月28日,“岂止于图谱——TA仪器测试技术分享会”在上海西藏大厦万怡酒店顺利举行。此次会议有别于传统的以产品推介为主的分享会,主要针对工业客户的需求,以日常分析测试工作为基础,就如何正确又巧妙的安排热分析测试,如何正确解读热分析、流变和热物性测试数据,及许多客户关心的热点问题和应用进行了讲解。 本次会议主题新颖、内容针对性强、技术含量高,因此吸引了来自工业领域及学术领域的数十家单位超过百名用户的参加,更有从苏南和浙江的用户特意赶来参加我们的分享会。会上, TA仪器亚太区的产品应用经理许炎山先生结合自己丰富的应用经验对热分析数据差异进行了详细的解读。除此以外,作为热分析领域首屈一指的应用专家,许经理通过对TA仪器国内外各种经典案例的阐述和分析, 深入浅出的向大家展示了如何做出真正好的数据和图谱以及如何辨别数据的真伪,确保实验结果的真实可靠。 许经理还特别就热分析在几个热点行业中的应用做了深入大探讨,如:1)关于利用TGA如何判定分解温度及分解速率,指出了不同的TGA方法应对不同测试目的而得到准确的测试数据和效果。如使用高分辨TGA方法测定材料的分解温度较之常规的TGA升温方法更为精确;利用不同气氛比例下样品的分解速率获得样品的饱和蒸汽压和热分解速率;利用TGA分解动力学的方法分析了材料的长期耐热性和失效时期;利用温度调制TGA方法直接获得材料的分解活化能; 2)用DSC的方法解决工业中出现的不同材料问题。如家电产品各部件正常与失效品材质分析比较;PP/PE BLEND 定量检测;封装用PI膜材质鉴定;PET宝特瓶胚加工性优劣分析;3)DMA中时间温度等效(TTS)在分析产品中的应用。如通过TTS功能选择智能手机中的高分子振膜。由于案例生动形象,加上许经理风趣幽默的讲解,与会者纷纷对此演讲表现出了浓厚的兴趣,高度赞扬了许经理的高超的专业技术知识及大师风范。 当天下午,TA仪器应用专家李润明博士以及马倩博士分别就材料研发涉及的黏弹测试技术以及如何测定材料的热传导性能进行了生动的讲解。李润明博士的报告集中介绍了流变技术在日常工作中的重要应用,如日常建筑、航空航天,汽车行业等各个领域中所使用的材料都经历着流变学的行为,而用流变的技术来模拟和反馈这些材料的行为是各个研发分析专家必不可少的手段。特别地,李博士深入地探讨了利用流变技术获得材料研究中应力-应变曲线的速率依赖性,应力-应变曲线的温度依赖性,固体/流体的模量对频率依赖特征,结晶对动态模量的影响,交联对动态模量的影响,固化过程中的黏弹性演变,最低黏度温度和凝胶化温度测定等诸多方面。 对于TA仪器新产品家族——热物性测量仪器,马倩博士深入潜出地介绍了不同热物性测量仪器在日常生活中的应用。热物性仪器包括了导热仪,热膨胀仪,热相变仪和热显微镜等,可覆盖的材料包括了高分子材料,复合材料,金属材料,无机非金属材料等等。马博士对日常生活中人们通常忽略的应用场合作了精彩的分析,如测定热扩散系数对于盘式制动器的重要指导意义,灶台材料热扩散系数的重要性,建筑材料导热系数的指导意义,电子元器件热管理和散热设计等。特别地,马博士指出了不同的材料应当使用不同的测试方法,而TA仪器的热物性测量仪器涵盖了不同形态的材料,如除了常规的固体材料外,对于膜状材料,液体材料和粉体材料也能轻松测量。最后,马博士对新仪器高温光学膨胀仪作了详细介绍。高温光学膨胀仪可以实时监控和测定材料在升温过程中形态的变化过程,其收缩、膨胀,熔融坍缩等过程能采用实时视频的方式记录下来,并直接得出材料的烧结点、软化点、球化、半球化和熔点等重要信息。 TA仪器优秀的技术专家们的精彩演讲获得了与会者的热烈反响,演讲结束后的互动环节上大家纷纷提出自己的问题及看法。甚至在结束后,仍有大量与会者们希望与技术专家们进行进一步交流。 会后,与会者们纷纷表示TA仪器应多多举办这种技术应用为主的,并切合用户需求的分享会;同时,TA仪器还借此会议公布了官方微信公众账号,希望为大家提供一个更好的线上交流互动平台,供用户获得更多的应用文章、技术视频等产品技术信息。TA仪器亚太区的产品应用经理许炎山先生正在报告中TA仪器流变技术专家李润明博士正在进行案例讲解会议间歇,许炎山经理就客户提出的问题进行耐心的回答会议间歇,TA仪器南方区经理董传波先生正在和客户进行技术交流TA仪器热物性技术技术专家马倩博士正在回答客户关于导热仪的相关技术问题
  • 喀什大学加大科研投入:引进南京大展DZDR-S导热系数测定仪
    喀什大学是新疆地区一所具有较高声誉和影响力的高等学府,致力于推动科学研究和教育发展。为了满足科研需求和提升实验室设备水平,喀什大学决定采购多台南京大展DZDR-S导热系数测定仪,以提供更准确和可靠的导热系数测试数据。这批导热系数测定仪于近期完成安装调试工作,正式开始投入科研教学。   客户需求:  喀什大学一直注重科研项目和学术研究的质量,而准确测定材料的导热系数是评估材料性能和进行相关研究的关键。因此,喀什大学需要一种高精度、可靠性强且适用于多种材料的导热系数测定仪。   经过前期的调研和对比,喀什大学选择了南京大展DZDR-S导热系数测定仪。喀什大学的采购决策不仅仅关注仪器的功能和性能,更注重其完善的服务体系,能够充分保障客户仪器的正常使用,如遇到仪器使用方面的问题,能够得到及时的解决。   仪器的性能优势:  1、测量方法。DZDR-S导热系数测定仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。  2、测量速度快。DZDR-S导热系数测定仪能够在5~160s内测量出导热系数,提升实验的效率。  3、多功能性。DZDR-S导热系数测定仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。  4、易用性。DZDR-S导热系数测定仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。  5、数据准确性。DZDR-S导热系数测定仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。  6、重复性。DZDR-S导热系数测定仪对样品实行无损检测,样品可以重复使用。   售后服务:  在仪器的安装调试现场,我司的技术工程师对仪器的操作、软件的分析等方面进行了详细的培训,整个的培训过程,也让操作人员对于仪器更加的熟悉。我司不仅是为各个行业提高高品质的检测仪器产品,同时我们更注重客户的服务体验,从售前、售中到售后,一站式的服务体系,让客户真正感受到采购南京大展仪器安心、放心。   通过采购多台南京大展DZDR-S导热系数测定仪,喀什大学成功解决了导热系数测试的需求,并提升了实验室设备水平。这个案例不仅展示了喀什大学对科研发展和教育质量的重视,也体现了南京大展DZDR-S导热系数测定仪作为高精度、可靠性和用户友好性的选择。
  • 中国民用航空飞行学院选购我司快速导热系数测试仪
    中国民用航空飞行学院,简称“中飞院”,创建于1956年,是中国民用航空局直属的全日制普通高等学校,是中国民用航空局与四川省共建高校。学院作为中国民航培养高素质人才的主力高校,经过60多年的建设与发展,已成为全球民航职业飞行员培养规模在世界民航有着较高影响力的高等学府。中国民航70%以上的飞行员、80%以上的机长毕业于此,被称为“中国民航飞行员的摇篮”。中国民用航空飞行学院选购我司HS-DR-5快速导热系数测试仪,现已安装,调试完毕。HS-DR-5快速导热系数测试仪
  • 美的电气选购我司瞬态导热系数仪
    美的于1968年成立于中国广东,美的是一家以家电业为主,涉足房产、物流等领域的大型综合性现代化企业集团,旗下拥有两家上市公司、四大产业集团,是中国最具规模的白色家电生产基地和出口基地。美的电气选购我司瞬态导热系数仪
  • TA仪器与中科院宁波材料所举办的技术交流会获得很高评价
    9月3日,全球热分析和热物性产品的领导者TA仪器与中科院宁波材料所联合举办了一场关于材料测试的技术交流会,获得了所有参会者一致的高度评价。 浙江一直是中国新材料工业发展的重点区域,宁波又是浙江经济的重镇,作为当地首屈一指的中科院直属的学术单位,宁波材料研究所在当地学术和企业中享有很高的声誉。此次TA仪器与宁波材料所一起举办的讲座主题围绕着以下热点话题: 一、材料热分析表征及其应用 1、材料热分析(热重、差热)的特性及其表征方法 2、材料热分析测试的结果分析及其实验方法改进 3、材料热分析测试的应用4、 材料热物性的表征和应用(导热,热膨胀,光学显微镜等。)二、材料粘弹性能表征及其应用概览(高分子材料、复合材料、生物材料、无机材料、金属材料等) 1、材料的粘弹特性及其物理指标 2、材料粘弹特性的仪器测试方法 3、材料粘弹特性的应用来自TA仪器的技术专家马倩博士和李润明博士以其精彩的应用实例和精湛的报告水平,将业界最新及最顶尖的热分析,热物性及流变技术讲的深入浅出,令在场的所有人受益匪浅。作为全球提供最多种热物性产品选择的供应商TA仪器同时也展示了其最新的绝热材料导热仪和光学显微镜产品,使得所有人为之眼前一亮。大家都希望TA仪器可以为所有的中国客户提供更加全面和完整的材料测试的解决方案。
  • 揭秘!热电材料研究实验室仪器配置清单
    热电材料能够实现热电转换,具有安全、节能、环保等优点,近年来备受关注,许多学者也围绕其开展了大量的研究工作。在本文,仪器信息网为大家盘点了热电材料研究实验室常用的制备与表征仪器清单。国内研究热电材料的课题组众多,在小编的雷达范围内,整理归纳了其中四个课题组的仪器展示表格:1.中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组;2.中国科学院金属研究所热电材料与器件课题组;3.同济大学材料科学与工程学院热电课题组;4.哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组。一、中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组(课题组长:史迅研究员;副组长:柏胜强高级工程师;科研队伍:陈立东研究员、姚琴副研究员、瞿三寅副研究员、仇鹏飞副研究员等)该课题组主要从事高性能热电材料的设计、制备与性能优化以及高性能热电器件的设计、制造与集成方面的研究,主要内容包括:1.声子液体电子晶体材料 (类液态材料);2.类金刚石结构;3.笼状化合物;4.有机热电材料和有机/无机复合热电材料;5.热电薄膜与微型热电薄膜器件;6.高性能热电器件设计与制造技术;7.热电空调/发电系统设计与集成技术;8.热电材料与器件测量技术。课题组仪器设备展示Seebeck系数和电阻测试系统(ZEM-3)布劳恩手套箱RS50/500型管式炉纳博热( Nabertherm)LH15/13型箱式炉 放电等离子体快速烧结设备激光导热仪 霍尔系数测试设备电导率及塞贝克系数测试设备 X射线广角/小角衍射设备MSP(Modified Small Punch)试验装置二、中国科学院金属研究所热电材料与器件课题组(课题组长:邰凯平研究员;小组成员:康斯清工程师)该课题组长期从事功能材料设计、制备和性能表征方面的研究工作,以界面性质对材料物理、化学性能调控作用的共性基础科学问题为研究主线,主要研究内容包括:低维热电材料;多物理外场耦合仿真环境原位透射电镜表征;纳米结构抗辐照损伤材料。在原位透射电镜技术领域的成果被Science(350,9886,2015)、Chem Rev(116,11061,2016)、Adv Mater(02519,2016)等期刊评述为近十年来纳米材料原位电镜表征技术领域的关键研究成果,并被编入电子显微学教科书“Transmission Electron Microscopy”(Page 48,Springer,Heidelberg,2016)。课题组仪器设备展示多靶磁控溅射沉积系统-1多靶磁控溅射沉积系统-2热电性能测试设备ALD原子层沉积系统等离子体处理/原位TEM样品杆预抽系统Hall测试系统AFM红外成像显微镜微束/飞秒激光微纳加工系统紫外光刻机电子束/热蒸发镀膜系统3Omega频域法热导率测试系统稳态法热导率测试系统球型焊线机高温管式炉红外快速退火炉自主研制的各种类型原位仿真环境(JEOL/FEI)TEM样品杆三、同济大学材料科学与工程学院热电课题组(课题组长:裴艳中教授;小组成员:李文副教授)该研究小组主要针对当前热电材料转换效率较低这一技术瓶颈,从热电材料所涉及的基本物理及化学问题出发,设计和开发出高转换效率热电材料和器件。立足于前期工作的基础之上,今后具体的研究对象主要集中在半导体材料,研究内容主要包括:1.先进的材料制备方法;2.电、热、光、磁及微观结构的表征方法;3.能源材料性能所隐含的基本物理及化学问题;4.理论指导下的新型能源材料设计和开发;5.其它应用背景的半导体新材料的研究与开发。课题组仪器设备展示自主研制设备霍尔系数/塞贝克系数/电阻率同步测试 2个样品同时测试,300~900K,磁场1.5T塞贝克系数/电阻率同步测试系统 2个样品同时测试,300~1100K室温塞贝克系数测试系统Oxford低温(1.5~400K)与强磁场(12T)综合物理性能(Nernst,Seebeck,Hall系数与电/热导率)测试系统电弧熔炼系统电弧熔炼系统高温热压系统(升温速率>1000C/min)封装系统材料生长炉商业设备台式扫描电镜&能谱XRDFTIR红外光谱仪声速测定仪激光导热仪惰性气氛手套箱高温熔融炉四、哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组(课题组长张倩教授,学术顾问刘兴军教授)该课题组正式成立于2016年秋。主要研究方向为:热电半导体能源材料的电声输运调控、热电器件的设计与效率提升,柔性可穿戴发电与制冷器件。采用与相图工程和机器学习相结合的手段,优化传统热电材料,开发新型热电材料,促进热电发电与制冷的大规模商业应用进程。课题组仪器设备展示材料制备系统电弧熔炼炉高频悬浮熔炼炉立式真空管式炉微型金属熔炼炉双工位真空手套箱真空封管系统热压烧结系统放电等离子烧结SPS3D打印机多靶磁控溅射镀膜仪电子束蒸发镀膜仪高温箱式炉高能球磨机井式炉金相研磨抛光机金刚石线切割机性能测试系统激光导热仪-LFA 457差示扫描量热仪-DSC 404同步热分析仪-STA 2500热机械分析仪-TMA 457电阻率/温差电动势测试仪-CTAUV-vis-NIR变温霍尔测试系统变温红外光谱仪发电效率特性测定装置接触电阻测试平台焊接平台需要说明的是,以上仪器设备展示仅根据各课题组网站信息整理,并非各课题组实验室仪器的全部配置。因此,小编特整理了热电材料研究实验室常用的制备与表征仪器清单,供君参考。热电材料研究实验室仪器配置清单热电材料制备常用仪器电子天平马弗炉/电阻炉/管式炉/实验炉鼓风/真空干燥箱材料生长炉磁力搅拌器球磨机超声波清洗机放电等离子烧结SPS离心机悬浮熔炼炉/电弧熔炼炉石墨磨具原子层沉积系统真空/惰性气氛手套箱电子束/热蒸发镀膜设备恒温油浴/水浴锅退火炉游标卡尺3D打印机切割机研磨抛光机热电材料表征常用仪器X射线衍射仪赛贝克系数/电阻率测试系统X射线光电子能谱仪霍尔系数测试设备热重分析仪介电性能测试系统扫描电子显微镜热电转换效率测量系统透射电子显微镜电/热导率测试系统电子探针分析仪声速测定仪热膨胀仪红外光谱仪显微硬度仪热机械分析仪激光热导仪焊接平台差热扫描热量仪综合物理性能测试系统【近期网络会议推荐】3月23日“热电材料表征与检测技术”主题网络研讨会免费报名听会链接:https://www.instrument.com.cn/webinar/meetings/2021RD/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制