当前位置: 仪器信息网 > 行业主题 > >

根系生态观测蒸渗仪

仪器信息网根系生态观测蒸渗仪专题为您提供2024年最新根系生态观测蒸渗仪价格报价、厂家品牌的相关信息, 包括根系生态观测蒸渗仪参数、型号等,不管是国产,还是进口品牌的根系生态观测蒸渗仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合根系生态观测蒸渗仪相关的耗材配件、试剂标物,还有根系生态观测蒸渗仪相关的最新资讯、资料,以及根系生态观测蒸渗仪相关的解决方案。

根系生态观测蒸渗仪相关的仪器

  • SoilTron-Rhizo根系生态观测蒸渗仪 根系是根际生态学的主要研究对象,也是地下生态学的关键要素。根系研究主要采用微根窗技术(MiniRhizotron),特别是美国Bartz公司生产的BTC微根窗根系观测系统,成为微根窗技术研究根系的经典仪器设备(“The most commonly used MR(Minrhizotron) systems are produced by Bartz Technology Corporation”——引自Eshel, A. &Beeckman, T. Plant Roots: The Hidden half. 4th edition. CRC Press, New York,USA. 2013)。单纯采用微根窗技术研究植物根系时,透明维根管一般采用纵向(一般成45度角度)插入土壤剖面的办法,这种纵向安插法容易造成根系沿维根管生长,从而造成误差。通过与蒸渗仪技术结合,维根管可以水平安装——相当于在土壤剖面不同深度设置一个根系观测样带,不仅可以避免纵向安装造成的偏差,还可以对根系进行三维动态观测分析,结合蒸渗仪土壤剖面水分、温度等监测技术,可以全面分析根系时空动态及其影响因子、胁迫响应等,成为地下生态学、根际生态学等研究的重要手段。 查尔斯特大学根系蒸渗仪站,右图为不同深度根系生长情况 SoilTron-Rhizo根系生态观测蒸渗仪全面吸收了德国蒸渗仪技术和美国微根窗技术,系统由SoilTron主体结构(标准配置有Rhizo-50和Rhizo-80两种型号,直径分别为1250px和2000px)、微根窗根系成像观测单元、传感器及数据采集系统组成,传感器及数据采集系统由欧洲生产,微根管成像系统由美国生产。 系统主要技术特点及性能指标如下: 1.蒸渗仪主体由Rhizo-50和Rhizo-80两种规格型号供选配:Rhizo-50底面积50000px2,标配高度2500px,蒸渗仪不锈钢柱体厚度3mm;Rhizo-80底面积5000 cm2(直径2000px),标配高度3750px选配,蒸渗仪不锈钢柱体厚度4mm 2.Rhizo-50标准配置4层维根管根系观测,及相应4层土壤水分和土壤温度监测;Rihzo-80标准配置5层维根管根系观测,及相应5层土壤水分和土壤温度监测;可选配土壤张力计监测 3.TRIME PICO 32智能土壤水分温度传感器: a.TDR技术,高精度、高稳定 b.测量范围0-100%体积含水量,测量体积250ml c.测量精度:0-40%体积含水率±1%,40-70%体积含水率±2% d. 测量重复精度 0-40%体积含水率±0.2%,40-70%体积含水率±0.3% e.土壤温度测量范围:-15℃-50℃(可定制其他温度量程,或选配-30-50℃温度传感器),精度±0.2℃ f. 防护等级:IP68 4.微根窗根系成像观测系统: a.标准配置测管长度22”(用于Rhizo-50)或28”(用于Rhizo-80) b.微根管镜内置数码摄像镜头,图像传感器为SuperHAD II 1/3-type IT CCD,灵敏度2000 lx at F1.4 AGC: 0dB,视野FOV 55°,带360°视野可旋转镜管;可充电式光纤照明 c.图像有效像素H x V:768 x 494 pixels,525线,30帧/秒 5. 标配RootFly微根窗专业根系分析软件分析微根窗图片中根系的长度、直径、根系颜色、根系生长率和死亡率等;可选配WinRhizo根系分析软件 6. 可选配BTC-100根系观测系统,具备15-100倍放大功能和精确定位手柄等(具体参数指标参见相关资料) 7. 16通道数据采集器(可选配32通道),16比特分辨率,± 20 mV 至 ± 2.5 V 8范围输入,精确度0.03%,可存储220000组带时间戳的数据(数据可存储1年以上),测量间隔3秒至4小时可调,数据平均间隔3秒至4小时,支持GSM/GPRS/Internet远程数据传输,电压6.5-15VDC,待机耗电150μA,测量耗电15mA,3V锂电备用电池可使用5年以上,工作温度 -20-60°C; 8.专业数据下载分析软件,可进行数据下载、数据在线观测、柱状图、数据修复、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析、回归分析)与图表展示及系统设置等; 9.GPRS无线数据传输功能,打开专业软件界面后,只要连接上网即可随时下载浏览数据; 10.渗漏水监测与抽样(选配):100ml翻斗,渗漏水抽样优先,每翻斗1%,250ml PE采样瓶,REED传感器,最大流量5000ml/min 产地: 传感器及数据采集系统欧洲生产,维根管成像观测系统美国生产,国内集成
    留言咨询
  • 湿地是地球上最为重要的生态系统类型,具有巨大的环境功能和效益,在提供水源、补充地下水、抵御洪水、调节径流、蓄洪防旱、控制污染、调节气候、控制土壤侵蚀等方面有其它系统不可替代的作用,被誉为&ldquo 地球之肾&rdquo 。 湿地地下水生态观测蒸渗仪通过地下水位模拟控制系统、精准称重系统、根系观测单元、气体通量观测单元、溶质在线分析单元等,原位(In-situ)观测或异地(Ex-situ)模拟观测地下水位变化(0-2m)与湿地土壤蒸散、渗漏、降雨及溶质运移的即时(高时间分辨率)动态变化关系,研究分析湿地土壤水通量、溶质通量、气体通量、持水状况等与地下水位的动态关系,适于三角洲、河滩及洪泛平原、泥炭地、高山湿地及其它地下水位较浅(常年一般维持在0-2m)的土地类型。 湿地地下水生态观测蒸渗仪由德国UFZ环境研究中心Meissner教授与德国UGT公司研制(Patent-No.: 19907462),利用公司特制的原位取土系统采取原位湿地土柱,采用精确的地下水控制系统,可精确重现真实的野外条件。原位湿地地下水生态观测蒸渗仪直接安装在湿地现场(如图一所示),蒸渗仪底部经由平衡水箱通过压力转换器和流量表直接与外界环境(河流或湖泊水体、湿地地下水)相通。异地湿地地下水生态观测蒸渗仪可以安装在远离现场湿地的实验场(比如研究所院内等),原位地下水位经由实时水位监测和数据无线传输,及时在线调控蒸渗仪水位(如图二所示),使蒸渗仪水位一直保持与原位湿地水位一致。如果目标水位(原位水位)与蒸渗仪内的水位相差1cm或以上,地下水位模拟控制系统会自动触发调节机制,使蒸渗仪与原位湿地水位始终保持一致。 1. 原位土柱2. 温度、TDR、水势等传感器及溶液取样器等。3. 地下水水位4. 滤层5. 称重系统6. 平衡箱7. 储水罐8. 调节阀9. 数据采集器图二 安装在异地试验场的湿地地下 水生态观测蒸渗仪 地下水位模拟控制系统的调控机理为:当水位出现不一致(相差1cm)时,首先关闭蒸渗仪和平衡水箱的阀门,然后向平衡水箱注水(或从中抽水),注水水源来自储水罐(抽出的水会存放在储水罐)。此后关闭储水罐和平衡水箱间的阀门,打开平衡水箱和蒸渗仪间的阀门,使得蒸渗仪和平衡水箱水位进行平衡。此过程反复进行,直到蒸渗仪水位达到目标水位。 湿地地下水生态观测蒸渗仪每分钟即可称量记录一次。不仅是降雨、蓄水,还可记录括露水、霜、降雪、沙尘等轻微输入,使得即使是较小的蒸散也可记录到。将15分钟数据的平均,以减小风或野外动物的影响。水分平衡公式如下所示:P + Pond = Et + ( Rout&ndash Rin) ± &Delta S其中P是降雨量, Pond是表面蓄水,Et是蒸散,Rin是地下水流入,Rout是地下水流出,&Delta S是持水量改变。 一旦水分平衡公式中各组分精确测量计算出后,溶质平衡情况可由如下公式计算出:L=Cs× S其中L为溶质输入,Cs为渗漏溶质浓度,S为渗漏液体积 技术指标: 1. 蒸渗仪规格:表面积1m2,高2m;滤层25cm;可根据需要定制其它规格的蒸渗仪2. 装土类型:特别设计的湿地取土系统取原位湿地土柱3. 高精度称重系统,分辨率:0.01mm,采样频率1min,15min平均一次4. 渗漏测量:翻斗计数器,精确度0.1mm5. 高精度即时地下水位模拟控制系统,精确度1cm6. BTC-100微根窗根系生态观测系统(备选)观测根系生长状况7. 气体通量观测单元用于测量分析湿地土壤CO2、O2和甲烷通量(备选):气体抽样模块具Baseline配置,可手动或自动定时切换测量大气CO2、O2等气体含量(baseline)和呼吸室内CO2、O2等气体含量,从而更加精确地测量监测土壤气体通量内置温度和大气压传感器,温度压力自动补偿,高稳定性、高精确度氧气测量分析:燃料电池O2分析仪,不受水汽、CO2及其它气体的影响,测量范围1-100%,分辨率0.001%二氧化碳测量分析:双波段非色散红外技术,测量范围0-5%,分辨率0.0001%CH4分析器(外置备选):双波段非色散红外技术,量程0-10%,精度优于1%,分辨率1 ppm/0.0001%8. 在线原位测量分析总氮、硝态氮和亚硝态氮等9. 传 输:无线传输,用户可在ENVIdata服务器上下载;若用户有固定IP,可直接传输至用户服务器10. 传 感 器:土壤水势、TDR土壤含水量、温度传感器,可根据用户要求选择不同传感器。11. 安装层数:标准30、60、90、120cm深处,每层均安装各种传感器。 国外应用: Doerthe Bethge-Steffense等(2004)利用湿地蒸渗仪控制地下水状况研究了2003年2月对德国schö nbergg Deich 和W ö rlitz湿地的地下水位、土壤含水量、土壤水量平衡(降雨、蒸散、渗漏等)进行了研究。在研究湿地采用梯度气象站监测环境因子,包括土壤温度、水势、含水量,降雨,空气温湿度,地下水位传送给蒸渗仪的控制中心。研究首次直接得到了蒸散和渗漏,结果显示湿地土壤含水率受湿地的地下水位动态影响,受蒸散影响有限。在水量平衡中,蒸散和渗漏使得土壤水储量减少,而这是2月降雨无法补偿的。 参考文献: 1. Doerthe Bethge-Steffens, Ralph Meissner, and Holger Rupp (2004) Development and practical test of a weighable groundwater lysimeter for floodplain sites. J. Plant Nutr. Soil Sci, 167, 516-524R. Meiß ner , M. N. V. Prasad, G. Du Laing and J. Rinklebe(2010) Lysimeter application for measuring the water and solute fluxes with high precision. CURRENT SCIENCE, VOL. 99 NO. 5 601-607.R. Meiß ner and Manfred Seyfarth (2004). Measuring water and solute balance with new lysimeter techniques. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5 &ndash 9 December 2004, University of Sydney, Australia. 1-8
    留言咨询
  • Rhizoscope原位根系3D观测系统一、应用植物科学家和生态学者在研究植物根系生长中面对最大挑战是如何在原位、非破坏条件下了解影响根系生长的各个土壤环境因素。目前普遍采用的微根窗技术适用于野外根系研究、拥有良好的分辨率,能长时期对根系进行追踪、摄像,但根系研究范围相对较小局限于点的研究大部分是年幼的植物,微根管的埋设对植物根系的生长也有一定影响,传统的与地面成45度角微根管埋设只关注部分垂直根系研究;Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱内水平分多层级埋设根管,可后续进行摄像对根系定量分析、测量土壤水分和提取土壤溶液,研究表明水平埋设微根管更适于根系生长空间评估。二、系统组成Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱,在蒸渗柱体各深度0.2、0.4、0.65、1.45、2.0m预先留有孔用于微根管、水分测量仪埋设和土壤溶液取样。系统采用人工滴灌模拟降雨,上部构建大棚以防降雨且满足植物光合作用,在系统底部设计有排水系统。 图一:Rhizoscope原位根系3D观测系统示意图 图二:柱体取原状土用机械将2.5m(深)?0.8m(直径)蒸渗柱体打入土壤中取原状土体,在各土柱之间用混凝土连接构成走廊为1.2米宽的地下室。 图三:12个柱体构成的地下室三、技术指标Rhizoscope原位根系3D系统在蒸渗柱体内多参数监测土壤水分和土壤溶液分析基础上研究根系的生长和空间分布。1.原状土蒸渗柱体尺寸2.5m(深)?0.8m(直径)2.AZR-300根系实时观测图像:◆主机显示屏:12英寸◆高清摄像头分辨率:3840*2880(4800dpi)可调节◆拍摄视野:20mm*16mm3.Trime水分测量范围:0-100%体积含水量精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%4.AZS-100土壤溶液采集器探头材料:尼龙聚乙烯真空泵压力:100kPa四、系统根系空间分布分析多年生植物根系空间分布系统分别在0.65m、0.9m、1.45m、2.05m处安装微根管,观测植物根系的数量。在个蒸渗柱状体内播种多年生苜蓿植物,系统采用滴灌模拟降雨,水分测量仪监测土壤水分分布,土壤溶液取样器采集溶液分析。如下图四(左):为苜蓿第一年根系生长的空间分布,土壤上层根系量增长较快;如下图四(右):是苜蓿根系3年内生长空间分布情况,上层根系量增长到一定时间后基本保持稳定,下层根系量逐年增加。 图四(左):第一年苜蓿根系分布 图四(右):3年内苜蓿根系分布一年生植物根系空间分布 如下图五各柱体中播种农作物小麦,在各深度研究根系的空间分布。在整个生长周期中小麦根系总量不断增加,最深1.45m处根系很小,最多分布在0.4m处。图五:小麦根系空间分布五、系统应用 Rhizoscope原位根系3D观测系统采用的蒸渗柱体适用于地下农业改良环境研究,在用于全球气候变化植物对于水胁迫的适应性研究,同时在根系生长、根系空间分布、根际分泌有机物、根的周转率以及土壤微生物与根腐烂速率的相关性研究,非常适用于农作物和草地的土壤根际研究。
    留言咨询
  • 1 引言根际是植物、土壤和微生物相互作用的重要界面,也是物质和能量交换的结点,根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环。自1904年德国科学家Lorenz Hiltner提出根际这一概念后,相关研究方兴未艾。但由于受土壤不可观测性的限制,传统的研究方法如挖掘法、剖面法、盆栽法及土柱法仍在大量使用,陆地生态系统根际微生态学的研究进展缓慢,因此寻找并建立新的根际微生态研究方法就显得至关重要。近年来随着光学和电子学技术的提升,特别是微根窗法(Minirhizo tron)的应用,使根际微生态研究得到了较快的发展。当前,这是唯一可多个时间段内原位重复观测根系的方法,其最大优点是在不干扰细根生长过程的前提下,原位长期连续观测并记录细根从出生到死亡的消长变化动态。这种测量方法是非破坏性的,是传统的研究方法不可替代的。因此,在国外,微根窗技术目前被广泛应用于森林、果园、草地、沙漠和农业生态系统等植物根系动态及其功能的研究中。2 观测系统设计2.1 目标AZ-B0201根际微生态观测系统通过可视化微根窗技术对根系生长和形态因子进行非破坏性的长期连续定位观测,结合专业的根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等,实现探索植物细根生长和消亡动态及其周转规律、研究植物根系拓扑结构的目标。同时测量根区土壤理化指标和监测土壤水温等环境因子,揭示植物根系消长动态与环境因子间的关系。2.2 观测点布设在待研究地区选择群落结构明显、优势种典型、地势平坦、土壤层足够深厚的区域,设置观测样地。选择标准木,在根部按照45°角安装微根管。通常一个观测样地安装12~24根1.8m/0.9m(L)×5cm/3cm(D)微根管。在每标准木安装的微根管周围安装1~3根1m或者1.5m观测管,同时检测土壤水分和温度参数。2.3 数据采集频率微根管安装好,应在其与土壤间达到平衡后再开始采集数据,平衡时间从几周到几个月或一年乃至更长的时间不等。众多研究表明,通常情况下7个月后开始采集图像比较合适。数据采集根据环境条件、植物生长周期不同,使用不同的采集间隔期,范围从每1周、每2周到每4周或每6~16周。一般生长季节至少每2周取1次图像,冬天可以降低采样频率或取消。每根观测管可由下到上或由上到下依次采集图像,每管每次取图像数量不少于30个。2.4 观测内容根系形态因子:根的长度、单位面积根长密度、根尖数量、直径分布格局、死亡根及存活根数量、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量、细根生长量、细根死亡量和细根周转。根际水盐指标:土壤水分、土壤温度。土壤理化指标:根际土壤全氮、土壤全磷、土壤有效磷、土壤全硼、土壤钙离子、土壤氯离子、土壤硝酸盐和亚硝酸盐、土壤碳酸盐。2.5 观测系统组成和技术指标AZ-B0201根际微生态观测系统由手动土壤取样套件、土壤水分温度测量单元和根系形态因子观测单元共同组成。3 数据处理3.1 根系根长密度和根系面积密度在微根管图像中测量根的长度,通过总根长除以观察的整个管面积获得根系单位面积根长密度RLD(mmcm-2或cmcm-2)。根系表面积的计算可用观察到的根长乘以根直径。同样,以单位面积图片中观察到的根系表面积可得到单位面积根面积密度(mm2cm-2或 cm2cm-2)。3.2 细根生长与死亡RLDP和RLDM分别表示细根生长量和细根死亡量。假设根系在两次相邻采样间隔期内的生长与死亡速率一致的前提下,以单位管面积上根系根长的增加与减少来表示相邻两次采样间隔期内根系的生长与死亡,然后除以间隔时间,得到细根生长RLDP和死亡RLDM。式中:RLDP ——间隔期内根系生长量,mmcm-2d-1;RLDM ——间隔期内根系死亡量,mmcm-2d-1;RLDn ——第n次观测到的根系根长密度值,mmcm-2;RLDn+1 ——第(n+1)次观测到的根系根长密度值,mmcm-2;T ——相邻两次采样间隔时间,d。3.3 根系生长死亡量、现存量和周转计算1)根系年生长量为一年内所有次采样得到的根系根长净增加值(包括所有出现的新根长与以前存在的根系长度净增加值);根系年死亡量为一年内所有次采样中根系长度的消失(包括存在根的死亡以及由于根系的脱落或昆虫的取食引起根长的减少值);根系年生长量与年死亡量的单位也以每年单位管面积内的单位根长来表示(mmcm-2a-1)。2)根系现存量以每次观测到的单位面积活根系长度来表示。3)根系周转估计采用以下3种方法进行估计。① 年根系生长量与年根系平均现存量之比。② 年根系死亡量与年根系平均现存量之比。③ 年根系生长量与年根系最大现存量之比。4 应用案例4.1 植物对营养元素的竞争性利用(Science,2010)James F.、Cahill Jr.等利用AZ-B0201根际微生态观测系统对关键营养元素不同利用策略下的植物根系生长状况进行了为期8周的观测。研究结果显示,在没有竞争植物的条件下,无论关键营养物质在植物周围分布态势如何,植物的根系分布及平均直径不受影响(A、B、C)。当有竞争植物存在时,那么植物根系的分布状况、平均直径则取决于关键营养元素与植物之间的相对距离(D、E、F)。图中红条是植物甲的平均根系直径,蓝条是植物乙的平均根系直径,阴影是关键营养元素所处位置示意(如果存在的话)。4.2 氮肥对水曲柳和落叶松细根寿命的影响(植物生态学报,2009)采用微根管技术研究氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系。结果表明,林地施氮肥后,两树种细根数量都呈减少趋势, 细根总体直径增加, 分枝程度降低; 氮肥使水曲柳细根存活率提高,细根中位值寿命延长,而落叶松细根存活率对氮肥反应不敏感; 施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层,根系和春夏季新生的细根,表明氮肥对高生理活性的细根影响较强。
    留言咨询
  • 用途:VSI MS-16根系生长动态监测系统,是一套定性和定量研究根系生长、寿命、分布或用于实验的观察工具。本系统利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系及菌根发展的方法,其最大优点是在不干扰细根生长过程的前提下,能原位连续监测根系及根围,了解其发展、生产和根系结构,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、根尖数量、直径分布格局、死亡根及存活根数量等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。 工作原理:VSI MS-16根系生长动态监测系统利用微根管技术,整套系统由成像头、微根管、微根管塞、钻孔器、分析软件等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其在不同季节的生长过程。 产品特点: 超高分辨率:2500 dpi 手动根部的“可管理”图像尺寸(最大34 mm x 24 mm,在7 cm 直径微根管内)用于根部追踪 高成像速度非常快(1 s),无需“白色校准” 实时根图像,对于任何筛选目的都很重要 UI选项:图像大小调整(20 mm x 20 mm)和非线性校正(基于测量管弯曲度) 精确而强大的分度系统(经典的“Smucker”手柄,具有新颖的分度,用于头部快速、可靠的弧形定位) 12V(3A)系统,全野外和温室可操作 可选:内部可充电电池 可用于水平,垂直和有角度弯曲的测量管 管长度可延长到500厘米; 定点、连续观测根系在整个生长季中的动态变化; 根系软件可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等几十个参数). 技术规格:监测分析参数细根长、细根直径、细根颜色及存活状态等图像尺寸31 mm x 24 mm(7cm MR根管)图像像素3280 x 2464 px 2500 dpi图片格式*.jpg成像时间<1s光源2 x 3 w穗轴发光二级管(界面强度可调)操作模块LCD触摸屏,键盘,微电脑(可选蓝牙远程触发器)图像输出USB接口用户界面VSI软件(触摸感应,可用键盘或鼠标操作)供电12V,3A带电器(可选:内置可充电电池)相机材料耐用铝壳,阳极氧化相机重量420g相机尺寸170mm相机和用户界面连接HDMI线,长达7m分度头铝质,100mm*175mm,1.2kgUI模块345mm*285mm*105mm控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。刻度手柄铝质,25mm*25mm*1000mm,约670g,最多可5个手柄相连接使用微根管尺寸外径70mm,内径64mm,壁厚3mm,长度1m 和2m(长度可定制) 产地:奥地利
    留言咨询
  • BTC-Borescope小型微根窗根系观测系统 一、BTC-Borescope小型微根窗根系观测系统用途 BTC-Borescope小型微根窗根系观测系统是BTC-100X土壤根系监测系统的微型版,兼容I-CAP控制系统(镜头控制及图像抓取),其测管直径只有约7mm,适于要求小孔径测管和足够长度和亮度照明的条件下的植物根系测量分析,通过它能够清晰地观察测量到研究对象的细节。用于实验室盆栽植物、蒸渗仪,温室大棚等环境下的植物根系生长监测研究 (不防水),结合所提供的根系分析软件,能够对植物根系进行定量化测量分析,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等;根据用户需求结合土壤水 分监测,可以研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、植物胁迫研究及昆虫行为生态等。 探视器镜管整体外形成直角型(90度),其探测管的外径是0.313 英寸.(约0.795cm),长度有7,12,17,22,28和37英寸等供选择。有其它尺寸要求的顾客,可以按需求订制。便携式照明光源比一个标准微型手电明亮10倍,较强的氙气灯聚光透镜系统能为Rhizotron图像软件分析时,提供给观察管内足够明亮的光源。内置充电器,可再充电锂电池组能够持续供电约一个小时: 二、BTC-Borescope小型微根窗根系观测系统原理 利用微根窗技术(Minrhizotron,又称微根管技术),由一个插入土壤中的微根窗管、摄像头、标定手柄、I-CAP系统(由控制器和I-CAP采集器等集成安装于野外工作箱中)组成。将摄像头伸入埋设在根系周围的透明管内,通过I-CAP控制系统进行图像抓取根系照相,然后借助专业根系分析软件系统对混合图像进行分析,从而跟踪了解其生长过程。 三、BTC-Borescope小型微根窗根系观测系统技术指标: (一)迷你根系监测系统 1、 *采用高灵敏度的Super HAD II CCD 2、 *镜头单元采用一体式的紧凑设计,外观尺寸22 (H) x 22 (W) x 64 (D)mm,重量51g 3、 *视频输出和外部视频输入可选 视频输出接口: VBS和Y/C外部输入接口:HD/VD, VS, VBS 4、 通过RS-232C串行通讯,操作简单 5、此系统也包含一条5m长的电缆线(如需额外定制,需联系厂家提供价格)和便携式包。 (二)图像控捕捉制系统 I-CAP图像抓取系统:I-CAP采集器,12英寸显示屏,控制器可以遥控摄像头白光水平及聚焦。 通过摄像头直接抓取、命名并存储图象到野外控制系统上,以供日后实验室分析;包括:摄像头控制软件,图片管理软件,安装在便携式手提箱中的野外控制系统。 图像采集特征: 可自动曝光和白色的平衡 像素修正 2D/3D减少噪音(NR) 边缘增强/细节提高 内置彩色平衡 (三)根系分析软件 WinRHIZO TRON:可以以交互方式方便地分析根系,该软件一次分析一帧图像。操作者需要在不同图像间手动跟踪所需分析的根,软件在屏幕上显示根的形态信息。用于可以根据需要编辑各个根部。在屏幕上通过图形方式显示根长度分布、面积、体积、根尖数量等,将它们作为根直径的函数。软件可以提供根长度、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量等。测量结果可以显示在屏幕上,同时提供分析数据的文件。程序可以自动检索并分析此前在相同地点拍摄的图像。 除了以上分析功能,该软件能够使用户处理时间-空间上的连续性,将多幅图像拼接。对于不同时间相同位置的图像进行分析时,同时加载以前的分析信息。拼接的多帧图像中的内容可以一起分析。对于一帧图像进行分析所得的信息,可以复制到与其连续的图像上从而节约分析时间。 四、产地 美国
    留言咨询
  • SCG-BTC原位土壤CO2与根系动态观测系统 土壤中植物细根占地球生态系统年净初级生产力的33%(Gill and Jackson,2000),尽管对菌根生产力还缺乏了解,但可以肯定的是,植物细根及菌根CO2的排放对全球碳平衡具有非常重要的意义。截至目前为止,科学家对调节细根及菌根碳库动态的机理过程还缺乏了解。微根窗技术已成为研究植物根系乃至菌根动态的有力工具,但很少有研究将植物根系及菌根动态与生态系统通量如土壤碳通量结合观测分析。 美国加利福尼亚大学保护生物学研究中心RodrigoVargas教授(2008),在圣哈辛托山保护区利用BTC–100微根窗根系观测系统及土壤剖面CO2梯度观测系统,组成土壤呼吸与根系观测站,就土壤水分、细根动态、土壤呼吸进行综合观测研究,结果表明,利用BTC–100微根窗技术持续观测细根动态极为重要,观测到细根长度变化每天每平方米达40cm,而菌根长度变化每天每平方米超过100cm。细根和菌根的动态变化会影响到土壤呼吸的季节性变化和日变化。土壤CO2的生产是根系及微生物的生物量的函数,但土壤呼吸又依赖于土壤的扩散包括温度及土壤水分的影响。综合运用BTC–100微根窗技术和土壤呼吸测量技术(包括剖面CO2观测技术和呼吸室测量技术)可以帮助我们全面理解和深入解析植物根系与菌根对全球碳循环的贡献(Allen et al., 2007)。 上图:细根长度(上图空心蓝点)、菌根长度(上图实心红点)及土壤呼吸动态变化;下图:土壤温度与土壤体积含水量的动态变化(DOY为Day of year) 原位土壤CO2与根系动态观测系统为Rodrigo Vargas教授安装使用的全套系统配置组成,包括BTC–100根系观测系统、SCG–3土壤剖面CO2观测系统及ACE全自动土壤呼吸监测系统,可监测记录根系动态、TRIME–PICO土壤剖面水分及温度、土壤剖面CO2浓度、土壤呼吸(CO2通量),及空气温湿度、太阳辐射、降雨量等气象参数。 技术参数: 美国Bartz公司生产的知名品牌BTC–100微根窗(Minirhizotron)根系生态观测系统,200余篇参考文献和应用案例15–100倍放大倍数,可进行细根(直径小于2mm)、菌根动态观测具定位手柄,精确定位、长期跟踪观测根系动态生长、周转成像面积适中以确保不变形,15×时成像面积18mm(宽度)×13.5mm(深度),100×时则为3mm×2.1mmSCG–3土壤剖面CO2原位监测:16通道数据采集器(可选配32通道以监测3层以上的CO2浓度、土壤水分及土壤温度等),可存储220000组带时间戳的数据,16比特分辨率,±20mV up to ±2.5V 8范围输入,精确度0.03%,测量间隔3秒至4小时可调,数据平均间隔3秒至4小时专业数据下载分析软件,可进行数据下载、数据在线观测、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析)与图表展示及系统设置等标配3层原位CO2梯度监测,非色散单束双波长红外技术(NDIR),CO2测量范围0–5000ppm、0–7000ppm、0–10000ppm、0–20000 可选,精度±1.5%,响应时间30秒TRIME–PICO32智能传感器,TDR测量技术,测量范围0–100%体积含水量,精确度±1%;土壤温度测量范围:-20℃–50℃,测量精度:±0.2℃无线数据传输,通过软件终端浏览、下载数据,无需固定IP地址,可随时随地上网浏览、下载、分析数据ACE全自动土壤呼吸监测仪,有封闭式和开放式两种模式供选择,每种模式又有透明或非透明呼吸室供选配,测量范围为 40.0 mmols m–3(0–896ppm),分辨率为1ppm,带有自动零校准装置 产地:美国、欧洲,国内集成
    留言咨询
  • 一、产品介绍植物根系双目显微观测系统HXIN- RootSnap170 Plus是一种微根窗技术。用于植物根系表型形态特征数据的采集及分析,通过原位拍摄的方式获取根系图像,并结合分析软件进行根系图像描绘,得出根系参数值。该系统可应用于植物生理生态,农业,农药,林业等多学科。 二、硬件参数1. 工作方式:进行360度显微拍照采集,整机直接由笔记本或平板USB 3.0接口驱动,无须外接控制箱或电源,可外接充电宝给笔记本延长工作时间10小时以上;2. 拍照光源:独立的白光、紫外光、红光、绿光光源,软件控制光源的切换,光源种类及强度可程控调节,并自动调取及保存光源种类和强度值;3. 拍照图像参数:采用双目成像系统,成像范围50mm*75mm,分辨率2400DPI,拍照速度不低于1秒;4. 图像像素:5196*7086 5. 延长杆:不锈钢材质,采用分段链接方式,每节长度25cm,带有毫米刻度,定位孔可无极锁定深度;6. 控制软件:控制系统进行扫描及拍照,自带镜头畸变和色彩均衡实时矫正功能;(后期加入二维码自动识别功能,可以自动识别根管上的二维码信息用于根系图像的命名)7. 温度进水模块:探测根管温度,探测系统是否发生浸水,如果浸水则进行报警提示并断电保护; 8. 数字地球磁场方位模块,可以实时标定拍照图像所对应的地球磁场方位角,方便长期动态跟踪定位;
    留言咨询
  • RhizoTron根系表型观测系统基于国际通用的根窗观测技术,其基本单元包括用于植物萌发生长的根盒(RhizoBox)、基于智能LED光源的植物培养系统、成像设备(扫描仪或RGB彩色镜头、高光谱镜头等)和分析软件,全自动高通量根系表型观测系统还包括自动化传送系统等。(下图分别为扫描式根系成像系统、智能LED光源板、根窗根系)主要技术特点:1) 基于根窗技术,与微根窗技术比,可全视野(根据根盒大小而定)观测根系生长发育2) 根盒大小可根据客户需求定制,宽度一般为30cm,深度可达几十到100cm3) 可选配中央控制单元,控制10-100个根窗单元同步扫描成像,做到无损伤、高通量4) 可选配基于扫描成像技术的根系观测系统,手动载样,每小时可对几十株植物进行根系扫描成像5) RGB彩色扫描成像与高光谱扫描成像技术,全面分析根系年龄、水分时空分布及土壤基质组分结构等信息6) 可选配土壤水分、温度、电导监测,及土壤O2、CO2监测7) 可选配根系多参数监测,包括O2、pH、温度等8) 可选配自动称重单元9) 可选配植物叶绿素荧光监测等生理生态监测10) 可选配根系多光谱荧光成像分析,用于植物胁迫、根生中药生理生化分析等11) 可选配智能LED光源培养台,0-100%光强调节、昼夜节律模拟12) 可选配水培作物根系观测客户定制方案,对作物根系表型进行高光谱成像分析13) 可选配红外热成像对作物根系散热进行分析 14) 可选配全自动高通量根系表型观测系统,高通量自动分析根系深度、根系宽度(根冠宽)、根冠面积、根系总长度等 欧洲PSI公司为德国IPK(Leibniz Institute of Plant Genetics and Crop Plant Research)设计安装的高通量作物根系表型分析系统主要技术指标(客户定制系统,仅供参考)1) 根窗观测面积:A4型216 x 297mm,A3型310×437mm2) RGB扫描成像分辨率:A4型4800dpi,A3型2400dpi3) VISIR可见光近红外扫描成像分析:STD4800LA2400**SpectraScen-FX10SpectraScan-FX17描述RGB高质量高速扫描仪RGB多功能、高速扫描面积大的扫描仪400-1000nm波段高光谱扫描成像900-1700nm近红外波段高光谱扫描成像分辨率4800 DPI2400 DPI1024x,可选配更高分辨率640x扫描速度较快快330fps670fps最大扫描面积cm21.6x2930x43标配40x60cm,可选配其它规格大小是否可对土壤基质扫描可以可以,可对根系与土壤水分进行成像分析4) 高光谱扫描成像分析波段:400-1000nm(标配),可选配900-1700nm或1000-2500nm短波红外波段5) 野外可选配智能一体式高光谱扫描成像技术:内置自动推扫系统、取景器相机等,高度便携,集光谱成像数据采集、可视化数据处理、触摸屏与控制键等于一体,采用图形用户界面(GUI)6) 高光谱分析软件采用SAM算法及Savitzky-Golay滤波器技术,可创建类别或分级模型并建立App直接导入高光谱成像仪使用,建议同时选配ENVI软件7) 可根据光谱特征曲线或参考光谱曲线,对不同年龄、不同胁迫条件下根系生理生化响应等进行分析、检测、性状筛选等8) 可监测分析参数:根长、根直径、根面积、根总长、根总面积、根平均直径、根数量及生物量、细根寿命、细根周转率等9) 可对土壤基质进行高光谱扫描成像分析,以研究分析土壤理化特性与土壤根系的相互关系等 10) 可同时对植株根与苗(root & Shoot)进行高光谱扫描成像分析,以分析研究植物水分分布时空动态变化、胁迫响应、表型检测筛选等11) 智能LED光源植物培养台(选配):外部大小222cm长x 86cm宽x 66cm高,内部大小180x80x55cm,LED智能光源,冷白光+近红外(可选配红蓝等其它颜色或波段LED光源),有效均一光源面积1.4m2,250μmol(photon).m-2.s-1,0-100%可调,可模拟昼夜节律等,温控范围高于室温+2~12度范围内。
    留言咨询
  • 一、设备简介 蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟设施可实现地下水位调控,超渗产流实时监测,是水文、水资源领域研究“四水”转换的重要设施,为发展区域水文模型、水资源管理提供支撑数据。1、可人为设定蒸渗罐体内的水位,得到实时潜水蒸发量,也可自动记录水位、水势的瞬时值,在与大田水势梯度一致的情况下,得到罐体内的土壤水动力学参数,水位变化量、渗漏量,揭开大田“黑箱”中的水文过程。在降雨和灌溉过程中,还可以实时自动记录产流量。2、高精度称重单元可测量各种类型降雨,从结露到下霜等。在各种气候和水分条件下测量与大田相同情况的蒸散量、表层的实时蒸散值。3、蒸渗仪表面积可用户定制,可得到最佳降雨数据。物质平衡、水量平衡和其它结果可从蒸渗仪尺寸及表面推广到更大的尺度。蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟设施在作物主根域,通过测量土壤不同深度的水量平衡和基质势,提供可用水量、干旱胁迫、过度施肥和过度灌溉预警。孔隙水取样,可将大田可用的水、肥可视化,用于确定可用肥力和地下水污染的潜在威胁。 二、系统设计 2.1系统组成和功能蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟设施由土柱、称重系统、地下水连通单元、产流仪、土壤水温电导率传感器、土壤溶液取样单元、EcoScope蒸渗中心软件组成,电源、维护井或地下室组成。2.1.1两种水位调控模式蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟罐体内地下水位控制有两种模式:a、即自动跟踪与人为设定,水位精度可达0.2mm。 b、补水、排水精度达到0.001mm。1)实现传统的固定地下水位 人工设定固定水位,水位平衡系统自动控制水泵,当罐体内水位低于设定值,水泵向罐体内注水;当罐体内水位高于设定值,水泵自动从罐体向外抽水,始终保持罐体水位在设定值附近。向罐体内注入的水和从罐体向外抽出的水,都经过高精度电子称精确称量,分辨率高达0.001mm。罐体底部的地下水连通器,与受控的双向高压泵相连,当罐体内的水位低于设定值时,水泵通过连通器向罐体内注水,使罐体内水位上升,达到预定水位时,停止注水。 反之,当罐体内的水位高于设定值时,水泵通过连通器向罐体外抽水,使柱体内水位下降,达到预定水位时,停止抽水。 向罐体内注入的水量和从罐体向外抽取的水量,都会被设置的称重单元精确计量,计量精度达到0.001mm。 罐体内的水位值,由精密的水位计测量,测量精度达到0.2mm。2)自动跟踪水位模式 水位平衡系统同时测量罐体内部水位和大田地下水位,自动跟踪大田水位,保持罐体内水位与大田的地下水位在相同的水平。控制动作过程与人为设定模式一样。大田的水位值,也是由精密的水位计测量,测量精度达到0.2mm。 自动水位调控方式,相当于把罐体内的地下水位与大田地下水位连通,用于完全模拟自然的田间水分状况。水位控制系统,每小时测量一次水位,并补充或抽取蒸散水量,可以得到罐体内蒸散的日变化曲线。3)人为设定水位调控模式 水位调控可以兼容两种控制、调节方式,即人为设定和自动调控。 人为设定模式:罐体内部水位完全由人工任意设置,最高可以到罐体内土壤表面,最低可以将罐体内部自由水完全排空。人为设定模式可以根据实验目的,任意改变罐体内的地下水位,并观察在不同的地下水位时作物的水分利用情况。 2.1.2 产流(Runoff)收集与测量蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟由罐体内地表产流的收集装置、导流管、200kg缓冲储水箱、高精度电子称组成。径流收集装置可设置在罐体内土壤表层的中部,一个漏斗形的带过滤网的进水口,可以调整进水口高度,避免被土壤堵塞。2.1.3 地下水连通控制器1)确保罐体内的土壤水文过程与大田一致蒸渗仪柱体底部的水势参数是衡量蒸渗仪土柱与野外实际情况是否一致的必要指标,也是影响蒸渗仪土柱内植物生长环境的关键指标。国内蒸渗透仪系统底部的处理一般采用碎石和细砂作为滤层,使用过程中无法得到底部水势参数,此外,长年的运行,也会导致底部的微生物环境与罐体外大相径庭。SoilScope系统底部的地下水连通器可实现底部的注水或排水,且质地坚硬,能承载数十吨重的土体重量。除用于测定田间水势的变化外,还可测量排水量,定量控制蒸渗仪柱体底部的水势。蒸渗仪底部水势和罐体外部水势始终保持一致。2)自动实施排水和补水当地下水埋深比较深,传统的蒸渗仪系统的土柱体高度无法达到地下水位时,无法调节柱体底部水势。SoilScope系统配置了带有称重系统的水桶,能提供或接收连通器的排水,也能从水桶中抽水,实现补水,且排水量和补水量自动被数据采集器存储和记录。2.1.4自动溶液取样单元土壤溶液的取样是系统自动完成的。自动采样泵的数据也可记录在数据采集器中。传统的蒸渗仪系统一般采用人工采样,耗时耗力,且无法实现定时采样。自动采样泵:可连续输出或张力控制输出。带键盘和彩色、背景光显示屏幕,可方便设置和查看。可长期、连续运行。用于精确的孔隙水和渗漏水取样。是目前国际独创技术和产品,广泛用于欧盟蒸渗站。2.1.5土壤传感器蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟设施EcoScope系统中采用的土壤水分传感器有两种可选。此两种传感器都获得了“水利部水文仪器及岩土工程仪器质量监督检验测试中心”检测合格证。来自德国是市场唯一的TDR原理土壤水分传感器,确保在测量土壤水分的过程中,不受土壤温度、电导率的影响。该传感器技术在全球已经使用了近三十年,用户遍布欧盟、美国、英国、加拿大、亚洲等国家实验室、大学和科研机构。采用负压原理测量土壤水势,不受土壤电导率的影响,适用于农田研究。采用外部注水,维护方便。带有温度传感器,液面指示器,便于注水时检测气泡,同时便于冬季排水,保护冻土层陶瓷杯,性能稳定、耐用是目前广泛用于欧盟蒸渗站的传感器。2.1.6 SoilScope设施数据采集和传输蒸渗仪SOILSCOPE蒸渗计水文过程观测模拟设施中心控制软件EcoScope 是澳作生态仪器公司自行研发设计、拥有软件著作权的的专业生态环境采集、计算软件。用户可自由选择同时显示在屏幕上的测点数据,如浏览各柱体的重量、产流量、各层土壤水分、温度、EC数据;同一界面显示同一柱体多层、或不同柱体同一层的土壤参数;对比显示不同柱体的重量、产流量、各层土壤水分、温度、EC数据;显示计算的参数如ET、潜水蒸发量。2.2 系统布设系统可以按照维护井和土柱井分别放入大田的方式建造如下图1,也可以将多个土柱放入一个地下室,如图2。罐体内的布设图如图3 ,用户可自设定土体剖面监测的深度和层数。2.3 数据采集频率2.4观测指标 三、应用案例 1、地下水位调控系统德国UMS公司建造的意大利NaPles 蒸渗仪系统用于原油事故污染土壤的生物修复。此外,也研究化学物质在固态、液态、气态转换中的运移。用户是Naples University。该系统带地下水位调控,根据野外的地下水位调控罐体内的地下水位,使它们保持一致。 如下图:2、地表径流收集系统Dedelow 蒸渗仪系统是欧盟大型项目TERENO的 蒸渗仪站之一,带地表径流收集功能,用于研究气候变化。欧盟TERENO SoilCAN-气候反馈机理项目的研究目标是气候变化对如下生态因子影响的特征分析和定量分析:C-/N 循环 和 C-/N 储量的变化生物-大气界面上温室气体的交换植被和微生物多样性及C和 N的动态变化,以及与生物多样性变化的耦合关系陆地水文(水量平衡,降雨变化,极端水文-气象事件(洪涝、干旱)、渗漏水质和水量、持水能力)研究入渗能力的蒸渗仪设计图如下,在Dedelow 蒸渗系统中,罐体表层中间有个地表径流收集器,比土壤表层高10mm,比罐体外沿低20mm。罐体外有地表径流的水管。 部分国内外应用如下:
    留言咨询
  • MS-300半自动根系观测系统是为水平或小角度安装的微根管观测而设计的,常用于根窖或配备有大量微根管的根系实验室。该系统由控制单元、双视角成像模块和带定位齿条的微根管组成。双视角成像模块固定在微根管内的定位齿条上,控制单元根据ICAP命名规则对微根管进行编号,并控制双视角成像模块在微根管内独立移动及定位拍摄,然后自动返回初始位置。这种智能化设计能够让操作者只需在不同微根管之间移动双视角成像模块即可;此外,控制单元通过RFID(射频识别标签)标记微根管编号,即可同时控制多个双视角成像模块,以便快速完成大批量根系观测实验。MS-300半自动根系观测系统成像分辨率高达2500dpi,拍摄图像存储于可移动U盘中,控制单元能够根据不同类型的微根管,单独或批量的预先设定拍摄位置。微根管两端采用磁性密封盖设计,可手动变换位置,便于拍摄到微根管内根系图像。定位齿条既可留在微根管内,也可以在各个微根管之间轮换使用。主要特点l 双摄像头,分辨率可达2500dpi;l 具备非线性校准功能,可消除微根管的曲面效应;l 成像速度快,小于1秒,无需白平衡,可高效获取图像;l 双视角成像模块借助定位齿条实现精确定位,通过磁性密封盖可转动定位齿条;l 操作者可同时操作多个双视角成像模块,特别适用于根窖或配备有大量微根管的根系实验室;l 锂电池供电,用户可自行更换电池;l 专为水平或者小角度安装的微根管设计,微根管及定位齿条长度可延长至2米;l 控制单元采用RFID技术自动识别各个微根管编号。技术参数1. 成像方向:双视角成像模块;2. 成像面积: 31mmx24mm(外径7cm微根管), 20mm×20mm(软件可自动裁剪成标准面积,同时可消除微根管曲面效应);3. 图像分辨率及格式:800万像素(3280×2464像素;2500dpi),jpg格式;4. 成像速度:<1秒/张图像;5. 图像命名:遵循ICAP命名规则;6. 照明光源:两列LED照明,强度可达160-230流明,强度软件可调;7. 操作系统:带LCD触摸屏的控制单元;8. 操作软件:VSI软件(触摸感应),实验和图像获取程序化(包括日期和位置);9. 图像存储:2个可插拔16GB移动盘;10.供电模块:可充电锂电池,含充电器,用户可自行更换电池;11.双视角成像模块:铝质外壳,阳极电镀,长300mm,直径62mm,重720g; 12.定位齿条:淬火钢材质,8mm × 7mm × 700-2000mm,重670-2000g(宽×高×长);基本配置控制单元,高清双视角成像模块,2个可插拔16GB移动盘,RFID标签,出厂定焦(外径7cm微根管),2根1.0米的定位齿条,2个磁性密封盖,便携箱,锂电池及充电器,VSI软件包; 选配:可增加双视角成像模块,特别适合根窖或配备有大量微根管的根系实验中。MS-300应用案例案例1. 德国塞尔豪森根窖实验,样地略微倾斜,坡度大约为4°,样地土壤主要为由粉沙壤土层发育而来的淋溶土。在斜坡的底部厚度可为3 m,而在顶部则不存在;一个根窖建在斜坡的顶部,另一个根窖建在斜坡的底部。在根窖建成之前,冬大麦-冬小麦在此区域轮作。 图1. 地表施工 图2. 地下微根管设置图3.不同时期根系图片对比案例2. 德国哥廷根大学根系实验室是位于大学实验植物园的野外研究机构,该实验室于2005年成立,旨在对木本植物的根系进行监测和实验操作。实验室由八个排尽水的植物容器(180 cm长 × 180 cm宽 × 220 cm深)组成,两行放置,可以从两侧进入容器的地下部分。该根系实验室有一个大型可移动屋顶,在下雨时会自动覆盖植物容器,从而可以控制实验的土壤水分。它可以进行诸如基于地上植物器官以至根系水平,幼树对土壤养分和/或水分状况差异的响应等相关实验研究。案例3. 英国EMR根系实验室是一个可以对地上以及地下的多年生作物进行现场观察和采样的独特设施。为英国大型实验室,支持国家战略需求,鼓励科学界内多学科合作。该地下实验室最初建于1960年代,在2013年由生物技术和生物科学研究委员会(BBSRC)进行了翻新。目前实验室已经重新装备,可研究苹果树以及多年生草本的根系生长,从而了解碳从植物到土壤的流动。多年生草本和高密度苹果园的种植已于2014年进行。案例4. 荷兰奈梅根人工气候室——玉米根系生长试验。2017年5月至7月,科学家Nyncke Hoekstra和Eric Visser在奈梅根人工气候室中进行了一个玉米生长实验,以研究根系对不同营养处理的生长反应。这种野外人工气候室可使作物处于近田间条件下生长,并能重点关注其根系生长。产地与厂家:奥地利 VSI
    留言咨询
  • 一、产品简介:平面原位根系监测系统是一款土壤根系原位平面多层次图像监测仪,可获取土壤、根系侧面剖面图像,监测土壤中活体根系的生长状态,可获取高分辨率图像用于分析根系的详细结构。利用专业的原位根系分析软件可快速的分析计算获得根长、根表面积、体积、平均直径、根尖数等根系形态参数。本仪器克服了旋转式根系监测仪的局限性,可以连续测量一个完整平面的根系生长状况,对根系研究更有实际意义。二、产品特点:非破坏性原位平面测量;可获取高分辨率彩色图像;可获取根系不同深度的图像,合成整体根系剖面图;可定点、连续观测根系在整个生长季节的动态变化;三、技术参数:主机分辨率:4800*9600 dpi获取图像速度:12S传感器:CIS光源:LED单次扫描宽度:216mm单次扫描深度:297mm色彩深度:48位扫描窗口:双面 1000*267*50 mm外置电源:20000mAH笔记本电脑:i5,11代 cpu,8g内存
    留言咨询
  • UGT 蒸渗仪 800 400-860-5168转1377
    产品介绍:蒸渗仪是研究生态系统中水分平衡、及其相关参数的一个重要系统,主要是针对水分在大气、植物、土壤、土壤生物、地下水的运输转移过程,及发生的相互作用等农业、林业水分相关问题而研制。主要通过土壤称重系统、监测系统和数据采集系统来研究柱状土壤中水分运移、水分平衡等相关的影响因素,德国UGT蒸渗仪技术拥有15年的相关领域的研究经验和多项技术专利,研究原位土壤、干扰小。北京沃特兰德科技有限公司可提供多种类型蒸渗仪,满足针对湿地、地下水、坡地、林地等各种研究需求。湿地地下水蒸渗仪机理:湿地地下水生态观测蒸渗仪通过地下水位模拟控制系统、精准称重系统、根系观测单元、气体通量观测单元、溶质在线分析单元等,原位(In-situ)观测或异地(Ex-situ)模拟观测地下水位变化(0-2m)与湿地土壤蒸散、渗漏、降雨及溶质运移的即时(高时间分辨率)动态变化关系,研究分析湿地土壤水通量、溶质通量、气体通量、持水状况等与地下水位的动态关系,适于三角洲、河滩及洪泛平原、泥炭地、高山湿地及其它地下水位较浅(常年一般维持在0-2m)的土地类型。湿地地下水生态观测蒸渗仪由德国UFZ环境研究中心Meissner教授与德国UGT公司研制(Patent-No.: 19907462),利用公司特制的原位取土系统采取原位湿地土柱,采用精确的地下水控制系统,可精确重现真实的野外条件。原位湿地地下水生态观测蒸渗仪直接安装在湿地现场(如图一所示),蒸渗仪底部经由平衡水箱通过压力转换器和流量表直接与外界环境(河流或湖泊水体、湿地地下水)相通。异地湿地地下水生态观测蒸渗仪可以安装在远离现场湿地的实验场(比如研究所院内等),原位地下水位经由实时水位监测和数据无线传输,即时在线调控蒸渗仪水位,使蒸渗仪水位一直保持与原位湿地水位一致。如果目标水位(原位水位)与蒸渗仪内的水位相差1cm或以上,地下水位模拟控制系统会自动触发调节机制,使蒸渗仪与原位湿地水位始终保持一致。 地下水位模拟控制系统的调控机理为:当水位出现不一致(相差1cm)时,首先关闭蒸渗仪和平衡水箱的阀门,然后向平衡水箱注水(或从中抽水),注水水源来自储水罐(抽出的水会存放在储水罐)。此后关闭储水罐和平衡水箱间的阀门,打开平衡水箱和蒸渗仪间的阀门,使得蒸渗仪和平衡水箱水位进行平衡。此过程反复进行,直到蒸渗仪水位达到目标水位。 湿地地下水生态观测蒸渗仪每分钟即可称量记录一次,不仅是降雨、蓄水,还可记录露水、霜、降雪、沙尘等轻微输入,即便是微小的蒸散也可记录到。将15分钟数据进行平均,以减小风或野外动物的影响。相关参数:湿地蒸渗仪水分平衡模型为: P + Pond = Et + ( Rout–Rin) ±ΔS 其中P是降雨量,Pond是地表水如洪水流入,Et是蒸散,Rin是地下水流入,Rout是地下水溢出,ΔS是持水量改变。 一旦水分平衡公式中各组分精确测量计算出后,溶质平衡情况可由如下公式计算出:L=Cs×S其中L为溶质输入,Cs为渗漏溶质浓度,S为渗漏液体积技术指标: 1. PE-HD一体式蒸渗仪室规格:标配高200cm,壁厚40mm,重1500kg 2. 不锈钢蒸渗仪柱体:表面积1m2,高170cm,壁厚8mm,具备无损伤原位土柱体自动提取装置;可根据需要定制其它规格的蒸渗仪 3. 原位土柱体:特别设计的无损伤湿地取土系统取原位湿地土柱 4. 3个坚固承重架可承重6000kg,3个剪切梁式称重传感器,OIML(国际法定度量衡组织)C3认证,IP68,范围2500kg,分辨率可达0.01mm,具LCD显示屏,简单零校准和量程校准; 5. 不锈钢蒸渗仪圈盖,护围蒸渗仪柱体与蒸渗仪安装口之间的缝隙,有效降低蒸渗仪地表边缘效应; 6. 蒸渗仪底部三层过滤,过滤颗粒直径分别为:0.1-0.5mm、0.71-1.25mm,3.15-5.60mm 7. 高精度即时地下水位模拟控制系统,包括水位传感器、双通道水位自动调控等,精确度1cm 8. DL-105数据采集系统,32通道,512kb RAM,15bit ADU,内置精密时钟,RS232接口,LCD实时显示数据,UGT-Log软件,用于参数设置、测量过程观测、图表显示、数据储存等 9. UMP-1土壤水分、温度、电导传感器,土壤水分测量范围0-100%,精确度优于±2%,分辨率0.1%;土壤温度测量范围-40-60°C,精度±0.2°C;土壤电导测量范围0-4mS/cm,精度优于±0.1% 10. Tensio160土壤张力计,为蒸渗仪专门设计,可长期水平安装于蒸渗仪中,可自动注水,免维护,标配直径10mm,长度30cm,测量范围+25--85kPa,精确度±0.3kPa坡地蒸渗仪机理: 坡地蒸渗仪根据山坡地的坡度而设计,可以安装在不同坡度山坡以观测研究小流域水土流失和水土保持等。其水平衡模型为:ET=P-Rsurf-Rperco-dS 其中ET为地表蒸散,P为降雨,Rsurf为地表径流,Rperco为渗漏,dS为土壤水变化。 通过精密称重系统及数据采集分析系统,可监测降雨、降雪及降露降雾量,蒸散量及降露降雾等对蒸散及土壤水分的影响,植物生长及不同植物对降露降雾的影响、对地表蒸散的影响,结合特殊设计的地表径流测量系统,还可监测径流量和入渗量;不同层次(深度)土壤水分与土壤水势传感器,可监测分析土壤水分运移及持水导水特性;原位土壤水采样装置可以自动采集渗漏水及不同层次土壤空隙水,以便分析土壤水溶质运移情况。可以选配1个或多个不同坡度或不同土地利用类型的UGT坡面蒸渗仪,以研究监测不同坡度或不同土地利用类型的水土状况。坡地蒸渗仪功能特点如下: 1. 根据不同坡度而设计,适于安装在坡面用于水文、水土流失、水资源时空分布过程等监测研究 2. 不仅可以测量垂直方向的水分(降雨、降雾降露、地表蒸散和渗漏)与溶质运移,还可测量地表径流及水土流失 3. 可选配单座或双座坡地蒸渗仪,还可选配UGT径流水蚀观测系统及H-Flume流量观测,以全面监测小流域水土流失、水文动态及溶质运移(需选配Quicklizer或MicroMac1000在线分析仪,或选配实验室EasyChem自动化学分析仪或Flowsis流动分析仪)等,从而使水资源平衡与管理研究扩展到流域和景观尺度技术指标: 1.标准配置蒸渗仪柱体直径80cm,面积0.5平方米,高度100cm,壁厚4mm,可据客户需求选配其它大小蒸渗仪,具备原位土壤柱体提取和安装配置; 2.PE-HD一体式蒸渗仪室高150cm,壁厚12mm,有单座、双座供选配 3.3个坚固承重架可承重3000kg,3个剪切梁式称重传感器,OIML(国际法定度量衡组织)C3认证,IP68,范围2500kg,分辨率可达0.01mm,具LCD显示屏,简单零校准和量程校准 4.标配2层土壤水分、温度、电导、水势监测: a)UMP-1土壤水分、温度、电导传感器,土壤水分测量范围0-100%,精确度优于±2%,分辨率0.1%;土壤温度测量范围-40-60°C,精度±0.2°C;土壤电导测量范围0-4mS/cm,精度优于±0.1% b)Tensio160土壤张力计,为蒸渗仪专门设计,可长期水平安装于蒸渗仪中,可自动注水,免维护,标配直径10mm,长度30cm,测量范围+25--85kPa,精确度±0.3kPa,输出-250mV-1000mV 5.坡地蒸渗仪径流监测单元,翻斗流量计,100ml翻斗,渗漏水抽样优先,每翻斗1%,250ml PE采样瓶,REED传感器,最大流量5000ml/min 6.全自动张力调控土壤空隙水取样系统,微机控制,标配2个隔膜泵,吸力能力400ml/min,真空调节至0.6bar,ABS密封IP65,UGT数据采集器,LCD显示屏 7.UGT-Log软件,用于参数设置、测量过程观测、图表显示、数据储存等; 8.Quicklyzer在线分析系统(选配),可荧光吸收法自动定时分析硝态氮和亚硝态氮,无需试剂,检测限1ppm,或选配其它在线分析系统分析总氮、总磷、氨氮等更多成分; 9. 具备蒸渗仪水分平衡系统,包括底面陶瓷毛细管系统、张力监测与调控系统及地下水自动补给系统,有效避免由于蒸渗仪底面与地下水隔离造成的底面边界效应;
    留言咨询
  • 一、产品介绍根系显微观测系统HXIN- RootSnap170是一种微根窗技术。采用非电视标准摄像头拍摄模式技术,在不破坏根系,不干扰植物根系正常生长的前提下,能够快速获取植物根系主根、侧根、根毛、菌根、线虫、根瘤、虫卵等整个生长、物候、变化等特征,采集到显微高清图片信息。 二、硬件参数1. 工作方式:进行360度显微拍照采集,整机直接由笔记本或平板USB 3.0接口驱动,无须外接控制箱或电源,可外接充电宝给笔记本延长工作时间10小时以上;2. 拍照光源:独立的白光、紫外光、红光、绿光光源,软件控制光源的切换,光源种类及强度可程控调节,并自动调取及保存光源种类和强度值;3. 拍照图像参数:成像范围50mm*40mm,分辨率4800DPI,拍照速度不低于1秒;4. 图像像素:10393*7559 5. 延长杆:不锈钢材质,采用分段链接方式,每节长度25cm,带有毫米刻度,定位孔可无极锁定深度;6. 控制软件:控制系统进行根系拍摄,自带镜头畸变和色彩均衡实时矫正功能;(后期加入二维码自动识别功能,可以自动识别根管上的二维码信息用于根系图像的命名)7. 温度进水模块:探测根管温度,探测系统是否发生浸水,如果浸水则进行报警提示并断电保护; 8. 数字地球磁场方位模块,可以实时标定拍照图像所对应的地球磁场方位角,方便长期动态跟踪定位;
    留言咨询
  • Plantarray植物根系生态监测系统是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。 主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈 模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接 主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点 直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉 每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求 特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量 Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究; 根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。 现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。 SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分 负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。 3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。 9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。 用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择 4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • 蒸渗仪技术是通过对原位(或实验)土壤-植物柱体系统(Soil Monolith)的精确监测和土壤水分析,以研究土壤碳氮水循环包括水分平衡、物质平衡、土壤溶质运移等的重要监测技术,是目前唯一公认的基于水量平衡原理的蒸散监测方法,在欧洲等广泛应用于农田、草原、森林及河流湿地等生态系统的长期监测,其基本原理参见下面方程式:P + I &ndash ET &ndash D - &Delta S = 0Dep + F &ndash V &ndash L &ndash &Delta M = 0为土壤水分蒸发蒸腾总量,P为降雨量,I为人为灌溉,为排水渗漏量,&Delta S为土壤持水量;F为人为施肥等造成的溶质或污染输入,V为植物吸收消纳撤除及气体排放,L为淋溶和浸出,Dep为大气沉降如氮沉降等,&Delta M为溶质含量变化。Ecotron多功能小型蒸渗仪由SoilTron主体结构及生态监测系统组成,SoilTron由土壤柱体(盛放原位土壤柱体或回填土壤)、漏斗渗漏器(用于采集土壤柱体渗漏水)、底座(用于放置土壤柱体和漏斗渗漏器并安放到精密天平)及称重系统组成,生态监测系统配置有土壤水分与土壤温度监测及根系监测等,可用于实验室研究或野外长期监测,包括植物生理生态研究、土壤-植被水分及溶质运营、野外土壤植被蒸散监测、植物根系研究等。其技术特点及性能指标如下:土壤柱体圈有PVC和不锈钢质供选择,直径有20-60cm供选择,高度有20-80cm供选择。风速(风杯) 0~60m/s ± 3%风向(尾翼) 0~360 ± 3温度(热敏电阻) -40~+55 ℃ ± 0.2℃湿度(湿敏电容) 1~100% ± 3-5%气压(硅压阻) 650~1100hPa ± 1 hPa雨量(翻斗) 0~4mm/min ± 4%总辐射(光电池) 0~2000w/㎡ ± 5% 野外基本配置包括SoilTron主体结构、土壤水分与土壤温度传感器、数采及自动气象站,监测参数包括土壤蒸散(分辨率0.01mm)、土壤水分(测量范围0-100%、精度2%、分辨率0.1%)、土壤温度(测量范围-40~+80 ℃,精度± 0.2℃)及空气温湿度、风速风向、大气压、降雨量、总辐射等气象因子(具体技术指标见下表)野外高级配置包括欧洲产8通道TDR土壤水分、温度、盐度监测及遥控,DT80数采及气象因子监测,还可选配NDVI或PRI植被指数测量(产地欧洲),同时可选配地下水位监测等实验室配置包括SoilTron主体结构、8通道土壤水分与土壤温度监测系统组成,具体性能指标如下:8通道数据采集器,可接8个土壤水分传感器;另有土壤温度和张力接口可接10个以上传感器内置数据存储器及时钟,USB数据下载TDR土壤水分测量,探头直径8mm,测量范围0-100%,精度优于2%,分辨率0.1%张力传感器探头直径仅有3mm,分辨率1mbar土壤温度传感器测量范围-20~60摄氏度,分辨率0.01摄氏度可选配微根窗根系监测配置用于植物根系生理生态研究与呼吸室法结合可分析土壤碳动态 产地:北京
    留言咨询
  • 点击蓝字 关注我们应用AZR-300根系生长动态监测系统采用微根窗(Minirhizotron)技术,用于非破坏性地定位监测活体根系生长动态和根际微生态环境。植物根系生长受周边土壤条件如水分、盐分和养分多因素影响,同时根系分泌物对周边土壤物理、化学和生物学影响完全不同于一般土体。为了更好的理解根系系统,获取全面的土壤参数,系统可选ENVILog/IPH模块同步观测土壤水分、电导率、温度等基本参数,AZW-100模块采集土壤间隙水溶液分析土壤溶质变化,CCM-300叶绿素含量测量模块精确测量地上部分的叶绿素含量变化情况。根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于植物生理、作物生长模型研究、根系病理分析、苗木培养、昆虫行为生态等研究。原理AZR-300由一个插入土壤中的透明根管、摄像头或复合型360度旋转高分辨率扫描摄像头、标定手柄、图像采集存储系统组成。将摄像头伸入埋设在根系周围的透明根管内,旋转摄像头记录根系360度全景图像并可对根系局部区域特写拍照后存储,下载图像文件并借助专业根系分析软件对混合图像进行分析,从而跟踪了解根系生长、发育、周转过程。应用3840×2880像素(4800dpi)高清摄像头,10um超高分辨率, 可原位无损观测根毛、菌丝, 实时清晰观察记录土壤根系生长分布动态和微型动物行为轨迹。微根窗管中能清晰观察到植物幼根、细根的生长、发育、死亡,观察到多种类型土壤动物的地下活动轨迹。专业图像拍摄软件和标定手柄的组合,可以实现图像的快速拼接,确保相邻图片间无缝连接。图像的规则命名,便于后期利用图像分析软件进行批量分析。根际土壤参数监测土壤含水量是影响植物生长的重要因素之一,植物的根系与生长的土壤环境之间是 一种平衡关系,当土壤中的水分含量比较高时,土壤中的水分会通过根系的膜进入植物的体内伴随着土壤中大量的无机营养元素的吸收。但是当土壤中的水分含量不足时,植物根系中的溶质又会向土壤中移动,而土壤中的各元素进入植物体内的则偏少,会对植物的生长有所影响。ENVILog和IPH传感器利用时域反射技术(TDR)同步测量不同土壤廓线水分和电导率。植物根际周围埋设原位测管,测量剖面深度20cm、40cm、60cm、80cm等测量土壤不同廓线的水分和电导率数值。根际土壤溶液取样间隙水又称自由水,是土壤或水体底质空隙中不受土粒吸着能移动的水分。间隙水中含有各种化学物质,如养分元素、有毒重金属、可溶性有机物等,间隙水的移动与污染物的迁移、释放、转化有密切关系,所以在水环境中间隙水的研究具有重要的意义。AZW-100土壤溶液取样模块 AZW-100模块采用负压原理原位采集土壤孔隙水,用于后续实验室化学成分分析。AZW-100土壤溶液取样模块叶绿素含量测量植物叶绿素含量的高低直接影响植物根的数量和长度,叶绿素含量越高,根数量越多,根长度越长,越有利于植物对养分以及水分的吸收,也是衡量植物产量的重要指标。测量叶绿素含量不仅能够对植株的缺氮状况进行验证,同时也可以对植物的抗性能力进行评估。CCM-300叶绿素含量仪可以精确测量叶片的叶绿素绝对含量(mg/m2),采用测量叶绿素荧光比率(F735/F700)的原理,不受叶片或样品大小、厚度和形状的影响,非破坏性测量。可用于测量针叶、发育未完全的水稻、生于岩石上的丝状藻、地衣、草坪草、仙人掌、龙舌兰属植物、菠萝、拟南芥、果实、苔藓、叶茎、叶柄。CCM-300叶绿素含量测量模块技术参数根系图像捕获系统:1、工作方式:360度旋转摄像2、PAL制式彩色摄像头,分辨率可达3840*2880(4800dpi)3、图像抓取系统:触屏平板电脑,10英寸显示屏,可以控制切换白光和紫外光源,紫外光用以辨别活根和死根。4、拍照视野: 20mm×16mm 5、标定手柄:通过控制摄像头深度和转动以准确定位图片,总长2米,可拆卸分节式6、图像获取控制软件:操控根系生长监测系统主机,并实时设置根系图像参数7、根系专业分析软件。可将多个图像按时间和空间分布并列显示,软件可分析参数:细根的长、细根直径、细根表面积、细根总长、细根总面积、细根平均直径、细根数量等指标,同时通过计算可分析生物量、细根寿命、细根周转率等;土壤水分测量模块:测量范围:TDR原理,0-100%体积含水量, 精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%土壤溶液取样模块:采样头尺寸直径22mm,长度60mm取样管长度 20cm,40cm,50cm,100cm,200cm真空泵压力:0~-85kpa,0~100kpa真空泵显示:液晶显示电池电量,内置可充电锂电池,持续工作不少于8小时,双通道,带有溢流保护叶绿素含量测量模块:最佳测量范围41 mg• m-2到675 mg• m-2测量面积:任意面积、形状、厚度均可。分辨率:1mg• m-2重复性:±0.03存储容量:2GB;重量:0.16lbs 275g;电源:2节充电AA电池;根测管:内径:50mm,长度:1m、2m可选工作环境:0℃~55℃,相对湿度0~100%RH(没有水汽凝结)主机重量:900g澳作生态关注我们,获取更多信息
    留言咨询
  • DJ-3012植物3D根系生长监测系统用途:植物根系对固定植株以及获得水分和养分起重要作用,但是土壤不可观测性的限制,给根系生态学的研究带来一定的困难。因此, 找到原位观察根系生长的方法对研究根系生态学就显得尤为重要。DJ-3012植物3D根系生长监测系统采用国际认可的微根窗技术,结合3D全景成像,一次性获取整个根管的剖面图像,掌握土壤中根系的生长动态,解决了目前市场上原位根系检测设备每个根管要多次扫描、分析时需要拼接带来的问题。3D全景技术在植物根系研究中创新性应用,有如下几大优势:1)每个根管一次成像,操作方便,节省时间;2)获取的根系整体连续,结果更加准确,分析不必再对图像进行拼接,避免多图分析时的重叠现象;3)扫描仪带有距离编码器,根系生长深度数据准确。 特点:非破坏性的原位观测;带距离编码器,数据包含根系生长深度信息;USB数据传输,测量、存储方便;不论根管长短,每个根管一次获取整张图像,后续分析无需再次拼接高集成性:主机集成控制、图像采集、显示和存储功能;智能化:内置双核处理器,同时处理图像、深度和探头空间数据;易操作性:360°全景成像,无需调焦,便携易用;结构合理:探头防水设计,不锈钢外壳、钢化光学玻璃探头罩; 图像分析细节展示 360°3D显示根系发育 应用领域:Ø 作物生长胁迫研究Ø 果树根系生长监测Ø 森林木根系生长周期研究Ø 古树名木移植后根系发育监测Ø 大树复壮保护技术参数:图像采集成像方式360度3D全景,无需调焦图像色彩模式RGB供电方式内置锂电池,12V,连续工作大于10h光源大于30Lux,0-100%可调数据存储32G,存储在控制单元,野外无需携带笔记本电脑测量精度0.1mm三维罗盘精度0.5°,分辨率0.01°;探头横滚极限360°探头尺寸直径40mm摄像头全景360度,1/100Lux,700TV lines鱼眼镜头180°软件放大分辨率19200×19200显示方式平面图、柱状图、3D旋转保存格式JPG,BMP,PNG等多种格式一次获取数据尺寸≥22.0cm x 80.0cm(标配)工作方式编码方式控制测量成像,保证高精度测量结果,无需携带笔记本电脑微根窗标配:内径64mm,外径70mm,长度100cm;其他长度的微根管可定制;数据传输USB快速接口工作环境温度-10至+60℃,相对湿度0-95%(无水汽凝结)防护等级IP67主机尺寸25cm×19cm×7.4cm图像分析基本测量根总长、根平均直径、根总面积、根总体积、根尖计数、分叉计数、交叠计数、根直径等级分布参数、根尖段长分布、可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积等,及其分布参数。时空数据对比支持不同时间相同位置的图像对比(需满足ICAP命名规则)数据处理分析结果输出至Excel表
    留言咨询
  • ETran地表蒸散观测系统作为水循环的重要环节,地表蒸散或称蒸发散(Evapotranspiration),是气候和生态学观测研究的重要参数,其测量方法有水平衡法、微气象法及植物生理学方法等,其中蒸渗仪技术是目前公认的基于水量平衡原理直接测量地表蒸散的唯一方法,波文比能量平衡法则是根据微气象学原理测算地表蒸散的比较普遍的方法,植物茎流测量则是植物生理学方法中测量植物蒸腾作用的重要也是主要手段。通过几种方法的综合运用,可以全面分析研究地表的蒸发散及其各气候要素的相互关系,深入分析各气候要素与土壤蒸发、植物蒸腾、植被生长及土壤水分等的动态变化格局。ETran地表蒸散观测系统由可移动式小型蒸渗仪、波文比自动气象站及茎流观测系统组成,可全面监测分析土壤水分动态、植物茎流、地表蒸发散、气象要素动态变化及其相互关系。其主要特点如下:1. 小型蒸渗仪(专利号)便携可移动,安装过程不破坏植被,采用TDR土壤水分传感器和精密自动称量系统,为高性价比直接测量地表蒸散的重要技术设备,可根据观测条件和目的选配1个或多个; 2. 可选配德国UGT蒸渗仪,用于测量草原、农田、坡地或湿地蒸散;3. SHB技术(茎杆热平衡技术)测量细枝条茎流,包裹式测量,茎杆外部加热,高精确度、高稳定性、高分辨率;4. THB技术(组织热平衡技术)测量树干茎流,独有的不锈钢片式电极和插针式温度传感器,树干内部加热,高精确度、高稳定性、高分辨率、客观真实地反映树干茎流量; 5. 波文比自动气象站实时监测太阳辐射、净辐射、土壤热通量、空气温湿度(双层)、土壤温度(双层)、风速风向及降雨量;6. 根据植被条件可选配草原蒸散观测系统(适于草原和农田等)或森林蒸散观测系统(具备多通道树干茎流观测及树干生长监测)7. 可选配小型蒸渗仪和SHB茎流监测传感器,用于实验室或温室控制实验等;8. 软件功能强大,可进行数据下载、图表展示、参数设置及基本数理统计分析 技术指标:1. 标准小型蒸渗仪配置:底面积10002cm、高50cm、重量(含原位土柱)约70kg,可选配其它底面积和深度(高度)的小型蒸渗仪2. 3层土壤水分、土壤温度传感器,可选配土壤水势等传感器3. TDR土壤水分测量,探头直径8mm,测量范围0-100%,精度优于2%,分辨率0.1%;土壤温度传感器测量范围-20~60摄氏度,分辨率0.01摄氏度,精度 0.5 C4. SHB包裹式茎流测量,测量直径6-20mm,平均耗能0.3-0.4W,特制T形热电偶温度传感器0.6mm探针5. THB不锈钢电极片式测量,利用电极间流经木质部的电流直接加热植物组织,测量树干直径8cm以上,平均耗能0.3-0.4W6. 净辐射传感器:波长范围0.3-30&mu m,0-1500W.m-2,稳定性2%/年7. 温湿度传感器:温度测量范围-40-60 deg.C,精确度± 0.2deg.C;湿度测量范围0-100%,精确度± 2%8. 土壤热通量传感器:范围-2000-2000W.m-2,温度范围-30-70 deg.C,直径80mm9. 森林生态系统建议选配林下高精度雨量筒,14640cm2,0.01mm精确度10. 森林生态系统建议选配树干流监测单元,应用范围0-200m/min11. 可选配H-F地表径流观测系统,用于观测地表径流情况12. 可选配PL300土壤空气渗透性测量仪和Hood入渗仪配置组成:1. 小型蒸渗仪1个或多个(根据观测样地条件和研究目的而定)2. 波文比气象站1个或2个(做对比实验研究用,如林内或林外、不同植被类型或耕作类型等)3. 森林生态系统建议选配林下高精度雨量筒和树干流监测单元4. 森林生态系统须同时选配多通道SHB包裹式茎流监测和THB树干茎流观测5. 建议选配H-F地表径流观测系统产地:欧洲
    留言咨询
  • 用途:BTC-100X根系生长动态监测系统是利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系的方法,其优点是在不干扰细根生长过程的前提下,能连续监测单个细根从出生到死亡的变化过程,也能记录细根乃至根毛和菌根的生长、生产和物候等特征,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。工作原理:BTC-100X根系生长动态监测系统利用微根管技术,整套系统由成像头、控制模块、手柄、光源、微根管等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其生长过程。 基本组成 控制模块 手柄 带光源的成像头分析软件技术参数:监测分析参数细根长、细根直径、细根面积、细根总长、细根总面积、细根平均直径、细根数量及生物量、细根寿命、细根周转率等,其100倍高倍放大功能,可用于监测分析根毛及菌根生理生态和动态。成像头NTSC制式彩色成像头(可选PAL制式),防水性能设计,高分辨率,带白光光源。每个视频帧看到管壁的面积为长12.5毫米×宽18毫米。放大功能100倍光源标准白光光源,可选紫外光源,以帮助识别活的细根或新萌发的根,或对荧光标记进行识别成像。控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。手柄1.2~2.2米伸缩式手柄供电12V可充电电池,可连续工作约8小时。连接电缆长度4.8米微根管尺寸直径51毫米×长度1.8米,可定制其他长度观测管。应用文献:1. 白文明、程维信、李凌浩,微根窗技术及其在植物根系研究中的应用。生态学报,2005,25(11):3076-3081.2. 李俊英、王孟本、史建伟,应用微根管法测定细根指标方法评述。生态学杂志,2007,26(11):1842-1848.3. 邱俊、谷加存、姜红英等,樟子松人工林细根寿命估计及影响因子研究。植物生态学报,2010,34(9):1066-1074.4. 宋森、谷加存、全先奎等,水曲柳和兴安落叶松人工林细根分解研究。植物生态学报,2008,32(6):1227-1237.5. 于水强、王政权、史建伟等,氮肥对水曲柳和落叶松细根寿命的影响。应用生态学报,2009,20(10):2332-2338.6. A.L.Kalyn, K.C.J.Van Rees. Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 2006, 140:236-243.7. C. E. Wells, D. M. Glenn, and D. M. Eissenstat. Soil insects alter fine root demography in peach(prunus persica). Plant, Cell and Environment, 2002, 25: 431-439.8. Carolyn S. Wilcox, Joseph W. Ferguson, George C.J. Fernandez, etc. Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 2004, 56:129-148.9. Christel C.Kern, Alexander L. Friend, Jane M.Johnson, etc. Fine root dynamics in a developing Populus deltoides plantation. Tree Physiology, 2004, 24:651-660.10. Colleen M. Iversen, Joanne Ledford and Richard J. Norby. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist, 2008, 179: 837-847.11. D.G.Milchunas, J.A.Morgan, A.R.Mosiers, etc. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glogal Change Biology, 2005, 11:1837-1855.12. James F.Cahill Jr., Gordon G. McNickle, Joshua J.Haag, etc. Plant Integrate Information about Nutrients and Neighbors. Science, 2010, 328: 1657.13. Jinmin Fu and Peter H. Dernoeden. Creeping Bentgrass Putting Green Turf Responses to Two Summer Irrigation Practices: Rooting and Soil Temperature. Crop Scinece, 2009, Vol. 49: 1063-1070.14. John S. King, Timothy J. Albaugh, H. Lee Allen, etc. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002, 154: 389-398.15. Laurent Misson, Alexander Gershenson, Jianwu Tang, etc. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest. Tree Physilogy, 2006, 26:833-844.16. Michael F. Allen. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. Vadose Zone Journal, 2007, 6(2): 291-29717. Seth G. Pritchard, Hugo H. Rogers, Micheal A Davis etc. The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biology, 2001, 7: 829-837.18. Weixin Cheng, David C.Coleman and James E.Box Jr. Measuring root turnover using the minirhizotron technique. Agriculture, Ecosystems and Environment, 1991, 34:261-267.
    留言咨询
  • DCT-MS200型根系生长动态监测系统DCT-MS200型根系生长动态监测系统由BTC公司联合开发,继承了BTC-100X根系生长动态监测系统的优点,是一套定性和定量研究根系生长、寿命、分布或用于实验的观察工具。本系统利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系及菌根发展的方法,其最大优点是在不干扰细根生长过程的前提下,能原位连续监测根系及根围,了解其发展、生产和根系结构,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、根尖数量、直径分布格局、死亡根及存活根数量等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。工作原理:根系生长动态监测系统利用微根管技术,整套系统由成像头、微根管、微根管塞、钻孔器、分析软件等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其在不同季节的生长过程。产品特点:l 超高分辨率:2500 dpil 手动根部的“可管理”图像尺寸(最大34 mm x 24 mm,在7 cm 直径微根管内)用于根部追踪l 高成像速度非常快(1 s),无需“白色校准”l 实时根图像,对于任何筛选目的都很重要l UI选项:图像大小调整(20 mm x 20 mm)和非线性校正(基于测量管弯曲度)l 精确而强大的分度系统(经典的“Smucker”手柄,具有新颖的分度,用于头部快速、可靠的弧形定位)l 12V(3A)系统,全野外和温室可操作 可选:内部可充电电池l 可用于水平,垂直和有角度弯曲的测量管 管长度可延长到500厘米;l 定点、连续观测根系在整个生长季中的动态变化;l 根系软件可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等几十个参数)技术参数:监测分析参数细根长、细根直径、细根颜色及存活状态等图像尺寸31 mm x 24 mm(7cm MR根管)图像像素3280 x 2464 px 2500 dpi图片格式*.jpg成像时间<1s光源2 x 3 w穗轴发光二级管(界面强度可调)操作模块LCD触摸屏,键盘,微电脑(可选蓝牙远程触发器)图像输出USB接口用户界面VSI软件(触摸感应,可用键盘或鼠标操作)供电12V,3A带电器(可选:内置可充电电池)相机材料耐用铝壳,阳极氧化相机重量420g相机尺寸170mm相机和用户界面连接HDMI线,长达7m分度头铝质,100mm*175mm,1.2kgUI模块345mm*285mm*105mm控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。刻度手柄铝质,25mm*25mm*1000mm,约670g,最多可5个手柄相连接使用微根管尺寸外径70mm,内径64mm,壁厚3mm,长度1m 和2m(长度可定制)产地:德国DECHEM
    留言咨询
  • DCT-MS200型根系生长动态监测系统由BTC公司联合开发,继承了BTC-100X根系生长动态监测系统的优点,是一套定性和定量研究根系生长、寿命、分布或用于实验的观察工具。本系统利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系及菌根发展的方法,其最大优点是在不干扰细根生长过程的前提下,能原位连续监测根系及根围,了解其发展、生产和根系结构,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、根尖数量、直径分布格局、死亡根及存活根数量等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。工作原理根系生长动态监测系统利用微根管技术,整套系统由成像头、微根管、微根管塞、钻孔器、分析软件等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其在不同季节的生长过程。产品特点l 超高分辨率:2500 dpil 手动根部的“可管理”图像尺寸(最大34 mm x 24 mm,在7 cm 直径微根管内)用于根部追踪l 高成像速度非常快(1 s),无需“白色校准”l 实时根图像,对于任何筛选目的都很重要l UI选项:图像大小调整(20 mm x 20 mm)和非线性校正(基于测量管弯曲度)l 精确而强大的分度系统(经典的“Smucker”手柄,具有新颖的分度,用于头部快速、可靠的弧形定位)l 12V(3A)系统,全野外和温室可操作 可选:内部可充电电池l 可用于水平,垂直和有角度弯曲的测量管 管长度可延长到500厘米l 定点、连续观测根系在整个生长季中的动态变化l 根系软件可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等几十个参数)技术参数监测分析参数细根长、细根直径、细根颜色及存活状态等图像尺寸31 mm x 24 mm(7cm MR根管)图像像素3280 x 2464 px 2500 dpi图片格式*.jpg成像时间<1s光源2 x 3 w穗轴发光二级管(界面强度可调)操作模块LCD触摸屏,键盘,微电脑(可选蓝牙远程触发器)图像输出USB接口用户界面VSI软件(触摸感应,可用键盘或鼠标操作)供电12V,3A带电器(可选:内置可充电电池)相机材料耐用铝壳,阳极氧化相机重量420g相机尺寸170mm相机和用户界面连接HDMI线,长达7m分度头铝质,100mm*175mm,1.2kgUI模块345mm*285mm*105mm控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。刻度手柄铝质,25mm*25mm*1000mm,约670g,最多可5个手柄相连接使用微根管尺寸外径70mm,内径64mm,壁厚3mm,长度1m 和2m(长度可定制)
    留言咨询
  • HD-GXY 原位根系扫描仪 400-860-5168转4976
    植物根系的生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环,因此根系的研究方法至关重要。原位根系分析仪可以扫描监测土壤中活体根系的生长动态。通过插入土壤中的透明管观察根系生长动态,提供了一种非破坏性、定点原位观察根系的方法,在不干扰根生长过程的前提下,可连续监测单个细根从出生到死亡的变化过程,广泛应用于作物生长、苗木培养等根系研究。原位根系扫描仪是一款土壤根系原位平面多层次图像监测仪,可获取土壤、根系侧面剖面图像,监测土壤中活体根系的生长状态,可获取高分辨率图像用于分析根系的详细结构。利用专业的原位根系分析软件可快速的分析计算获得根长、根表面积、体积、平均直径、根尖数等根系形态参数。本仪器克服了旋转式根系监测仪的局限性,可以连续测量一个完整平面的根系生长状况,对根系研究更有实际意义。原位根系扫描仪产品特点:非破坏性原位平面测量;可获取高分辨率彩色图像;可获取根系不同深度的图像,合成整体根系剖面图;可定点、连续观测根系在整个生长季节的动态变化;技术参数:主机分辨率:4800*9600 dpi获取图像速度:12S传感器:CIS光源:LED单次扫描宽度:216mm单次扫描深度:297mm色彩深度:48位扫描窗口:双面 1000*267*50 mm外置电源:20000mAH笔记本电脑:i5,11代 cpu,8g内存
    留言咨询
  • CI‐600植物根系生长监测系统美国国家生态监测网络(NEON)指定根系研究专业仪器植物根系生长监测系统CI-600是全球第一套&ldquo 土壤原位360度多层次旋转式图像监测仪&rdquo 。可以非破坏性定期对同一根系伸长、根系密度、扎根深度、侧根生长、分枝特性、菌根特性及细根动态、根系生命周期和分解等进行观测研究,还可获得根系颜色、细根衰亡、分解、寄生和共生微生物等定性信息(Majdi,1996)。同时可以展开根系对不同处理响应的研究(Johnson.edal.,2001)仪器特性· CI‐600 根系生长监测系统可以方便地非破坏性原位获取土壤中活体根系的生长动态图像数据· 用户使用柱型设计的360 度旋转光电耦合主机,获取定位的不同时间季节、不同深度的根系分布或土壤剖面图像数据· 应用专业根系分析软件分析根系长度、直径、截面积、投影面积、根尖数等参数技术参数· 工作环境:0℃~50℃,相对湿度0~100%RH(没有水汽凝结)· *主机特点:柱型设计的360 度旋转光电耦合主机,可对根系和土壤状态进行不变形的线性数据获取· 电源:使用数据处理终端的电池可连续使用2‐4 小时或使用交流适配器· 数据存贮:直接存贮到数据处理终端· 图像数据最高分辨率:1200dpi· *一次获取数据尺寸:215.9mm*195.7mm· 主机获取速率:5‐15 秒(与计算机和设置有关)· *主机探头尺寸:343mm 长× 64mm 直径· 透明观察管:64mm 内径1000、2000mm 长· *主机:750g 根系分析软件系统CI-690ROOTSNAP 根系分析软件系统CI-690 RootSnap 专业根系分析软件安装在触摸屏的图像数据处理终端上,可以非常方便的使用手指在根图上划过选择根系(新型方式)或使用鼠标点击选择根(传统方式),RootSnap 将自动拟合根生长的轨迹,包括调整根系轨迹弧度,根系角度研究,手指控制放大缩小图像等。自动测量根的长度、直径、表面积、体积等参数 CI-690ROOTSNAP 软件系统基本配置:专业根系分析软件,图像处理终端(酷睿处理器,21.5&ldquo 触摸屏高清显示器, WI-FI 802.11b/g/n 无线,10/100/1000 T 千兆以太网局域网)更适合于升级型号CI‐601 根系生长动态远程监测系统,远程控制监测根系生长动态,获取根系图像,使用CI‐690ROOTSNAP 在远离试验地的实验室也能计算根系生长数据CI-601 根系生长动态远程监测系统WinRHIZO Tron MF 根系分析软件利用WinRHIZO Tron MF 可以对CI-600 获取的根系图像进行分析,可得到根系根长、表面积、投影面积、体积、平均根直径和根尖数目等参数,监测根系时空生长变化。时空变化(时间,季节,深度)基本配置主机、专业根系软件、探杆、使用说明书、便携式仪器箱
    留言咨询
  • 用途:植物根系对固定植株以及获得水分和养分起重要作用,但是土壤不可观测性的限制,给根系生态学的研究带来一定的困难。因此, 找到原位观察根系生长的方法对研究根系生态学就显得尤为重要。 DJ-ROOT3D根系生长监测系统采用微根窗技术,结合3D全景成像,一次性获取整个根管的剖面图像,获取土壤中活体根系的生长动态,解决了目前市场上原位根系检测设备每个根管要多次扫描,分析时需要拼接带来的问题。 3D全景技术在植物根系研究中创新性应用,有如下几大优势:1)每个根管一次成像,操作方便,节省时间;2)获取的根系整体连续,分析结果更加准确,分析不必再对图像进行拼接,避免多图分析时的重叠现象;3)扫描仪带有距离编码器,根系生长深度数据准确。 特点:非破坏性的原位观测;带距离编码器,数据包含根系生长深度信息;USB数据传输,测量、存储方便;不论根管长短,每个根管一次获取整张图像,后续分析无需再次拼接高集成性:主机集成控制、图像采集、显示和存储功能;智能化:内置双核处理器,同时处理图像、深度和探头空间数据;易操作性:360°全景成像,无需调焦,便携易用;结构合理:探头防水设计,不锈钢外壳、钢化光学玻璃探头罩; 图像分析展示 360°显示根系发育 应用领域:? 作物生长胁迫研究? 果树根系生长监测? 森林木根系生长周期研究? 古树名木移植后根系发育监测? 大树复壮保护技术参数:图像采集成像方式360度3D全景,无需调焦图像色彩模式RGB供电方式内置锂电池,12V,连续工作大于20h光源大于30Lux,0-100%可调数据存储32G,存储在控制单元,野外无需携带笔记本电脑测深精度0.1mm三维罗盘精度0.5°,分辨率0.01°;探头横滚极限360°探头尺寸直径52mm摄像头全景360度,1/100Lux,700TV lines鱼眼镜头180°软件放大分辨率19200×19200显示方式平面图、柱状图、3D旋转保存格式JPG,BMP,PNG等多种格式一次获取数据尺寸19.56cm x 根管有效长度工作方式编码方式控制测量单元,保证高精度测量结果,无需携带笔记本电脑微根窗观察管标配:内径55mm,外径60mm,120cm、150cm、200cm长;其他直径、长度的微根管可定制;数据传输USB快速接口工作环境温度0-+50℃,相对湿度0-100%(无水汽凝结)防护等级IP67主机尺寸25cm×19cm×7.4cm图像分析基本测量根总长、根平均直径、根总面积、根总体积、根尖计数、分叉计数、交叠计数、根直径等级分布参数、根尖段长分布、可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积等,及其分布参数。颜色分析能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。统计效果监视大批量的根系分析,对各分析结果图可编辑修正。拓扑分析能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度和分叉数等,可单独显示标记根系的任意直径段相应各参数(分档数、档直径范围任意可改,可不等间距地自定义),并能进行根的分叉裁剪、合并、连接等修正,修正操作能回退,以快速获得100%正确的结果。根系分形维数能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。数据处理各分析图像、分布图、结果数据可保存,分析结果输出至Excel表,可输出分析标记图。产地:中国
    留言咨询
  • ROOT-700根系生长监测系统名称:根系生长监测系统 型号:ROOT-700 产地:德国用途:植物根系对固定植株和获得水分和养分起重要作用,但是土壤不可观测性的限制,给根系生态学的研究带来一定的困难。因此, 找到原位观察根系生长的方法对研究根系生态学就显得尤为重要。ROOT 700根系生长监测系统采用目前国际最流行微根窗技术,解决了这一难题。可以在土壤中原位360度多层次旋转式扫描获取根系剖面图像,可以扫描监测土壤中活体根系的生长动态。广泛运用于苗木培养、作物生长模型研究、根系病理分析等领域。 特点: 非破坏性的原位观测; 不变形的线性扫描; 极便携、易操作、测量快; 可扫描根系不同层次的图像,合成获得整体根系的剖面图; 可定点、连续观测根系在整个生长季的动态变化; USB数据传输,测量、存储方便。 技术规格:图像扫描采集仪分辨率1200DPI软件放大分辨率19200×19200像素图像像素9600×9600像素图像彩色模式彩色(Color)画面尺寸360°高分辨率图像(22×20厘米),非拼接图像扫描速度5-15秒接口USB端口工作方式连接笔记本电脑数据存储存储在笔记本电脑上供电通过笔记本电脑USB端口供电,或外接蓄电池,或交流电源适配器扫描角度360度标准透明管尺寸70mm外径,64mm内径,长度可定制;工作环境温度0-+50℃,相对湿度0-100%(无水汽凝结)植物根系图像分析软件基本测量根总长、根平均直径、根总面积、根总体积、根尖计数、分叉计数、交叠计数、根直径等级分布参数、根尖段长分布、可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。颜色分析能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。统计效果监视大批量的全自动根系分析,对各分析结果图可编辑修正。拓扑分析能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度和分叉数等,可单独显示标记根系的任意直径段相应各参数(分档数、档直径范围任意可改,可不等间距地自定义),并能进行根的分叉裁剪、合并、连接等修正,修正操作能回退,以快速获得100%正确的结果。根系分形维数能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。数据处理各分析图像、分布图、结果数据可保存,分析结果输出至Excel表,可输出分析标记图。 产地:德国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • 树木生理生态系统 400-860-5168转1895
    秋高气爽,公园、道旁的树木慢慢吐露秋色,大地秋意渐显。为对林地树木的生理生态状况进行实时有效的监测,“树木生理生态系统”在中秋佳节之际正式上线。树木生理生态系统能够同时对多棵树木进行实时在线监测,采集记录树木生长(树干、枝条以及气生根)、树皮的温度(阴面和阳面)、树干茎流(树干、枝条以及气生根等)等三个生理指标的数据。树木生理生态系统是北京易科泰生态技术有限公司为您量身定制的植物生理生态监测方案之一。应用领域:? 树木病虫害监测;例如松蚜虫吸食树液,降低了树干茎流和蒸腾作用,从而影响树皮温度,最终会抑制树干生长。? 树木水分胁迫和抗旱性调查研究;? 树木低温胁迫和低温耐受性调查研究等; 系统采用:l 数据采集箱:专为户外恶劣环境下使用而设计;l 树木茎杆生长单元:可轻松快速安装,对树木无损伤;l 红外冠层温度单元:高精度、非接触的表面温度测量,适用于恶劣环境条件;l 树木茎流观测单元:采用THB (Tissue Heat Balance) 加热技术或SHB (Stem Heat Balance) 加热技术技术,获取高分辨率高精度的茎流数据。 数据采集器采用的是最新研发的SDI-12接口的GreyBox N2N(Network-to-Network),能够将SDI-12传感器连接组合成网络,最多可连接上百个传感器。内置了多个模块:2 自适应的GPRS模块——实现了数据的远程传输和在线浏览;2 GPS模块——对每棵树木的位置进行精确定位;2 智能供电模块——自动管理供电系统,对系统持续供电;2 灵活的数据存储和传输模块——自身可记录220000条数据,可通过红外线传送接收模组进行通讯传输下载,而且还配备了SD卡用于存储数年数据,确保证数据不丢失,做到了双重备份的目的。 树木茎杆生长单元用于监测树木生长的微变化,包括树干、枝条以及气生根。为满足野外长期监测的需要,传感器采用了不锈钢和抗紫外线塑料材质,坚固耐用。我们提供两种设计的茎杆传感器,用于不同直径的树木和同一棵树不同位置的生长测量。树木茎杆生长也可用于气生根等裸露在地上的根的生长测量。 红外冠层温度单元采用了8μm到14 μm波段红外辐射传感器,从而将水汽和二氧化碳对测量的影响降低到最低,并且提供四种标准的视场以及定制的视场,满足不同测量树木和测量环境的需要。树木茎流观测单元在一次安装后可以连续测定树干茎流,且不会破坏植物正常生理活动。用户可根据测量植物或者部位的不同选择与之匹配的传感器类型:SHB传感器常用来测定直径小于20mm的植物或器官,由两半柱体组成包裹式加热和测量装置,茎杆外部加热,高精确度、高稳定性、高分辨率,能量需求与液流量成比例,能耗低。 THB传感器则用于直径12cm以上的树干茎流监测,利用电极片间流经木质部的电流直接加热树木木质部组织,获取高分辨率高精度的茎流数据的同时不会产生树干组织过热问题。除树木生理生态系统外,我们还提供完整的植物生理生态监测方案——“EMS-ET植物生理生态监测系统”。该系统囊括气象、土壤等环境因子传感器,果实生长、叶片温度等植物生理传感器、叶绿素荧光监测单元以及植物根系监测单元。详情请见网站链接。
    留言咨询
  • 植物根系生长监测系统作为现代植物学研究的重要工具,专门用于分析植物根系的结构、形态和生长状态。在农业科研和植物生态学研究中,根系的作用至关重要,它们是植物吸收水分、养分以及感知土壤环境变化的主要器官。植物根系分析仪作为一款自动化科学技术设备,为研究人员提供了一个高效且准确的工具,用以研究和分析植物根系。植物根系生长监测系统是一款土壤根系原位平面多层次图像监测仪,可获取土壤、根系侧面剖面图像,监测土壤中活体根系的生长状态,可获取高分辨率图像用于分析根系的详细结构。利用专业的原位根系分析软件可快速的分析计算获得根长、根表面积、体积、平均直径、根尖数等根系形态参数。本仪器克服了旋转式根系监测仪的局限性,可以连续测量一个完整平面的根系生长状况,对根系研究更有实际意义。植物根系生长监测系统产品特点:非破坏性原位平面测量;可获取高分辨率彩色图像;可获取根系不同深度的图像,合成整体根系剖面图;可定点、连续观测根系在整个生长季节的动态变化; 技术参数:主机分辨率:4800*9600 dpi获取图像速度:12S传感器:CIS光源:LED单次扫描宽度:216mm单次扫描深度:297mm色彩深度:48位扫描窗口:双面 1000*267*50 mm外置电源:20000mAH笔记本电脑:i5,11代 cpu,8g内存。
    留言咨询
  • ZC600全自动生态定位观测站(草原、荒漠)ZC600全自动生态定位观测站是一款自主研发的物联网感知设备,通过集成化设计和高效太阳能技术,待机功耗小于5mw,适应低温、多云光弱地区;兼容多种类传感器,实现气象、土壤、植被参数等数据的高精度采集,并利用LoRa、4G、WIFI等无线通信技术实时回传数据至生态云平台 技术参数数据云平台软件架构:具备数据库管理系统,B/S架构,实现TB级图像数据的安全存储、高效管理和访问盖度和高度计算:云平台应用模块实现植被盖度和高度云端自动计算远程控制:可通过软件远程修改相机拍照时间,可间隔拍照或选定某个时刻拍摄;可通过软件远程修改数据采集与数据上传时间,可间隔上传或定时上传。
    留言咨询
  • AZR-300 根系生长动态监测系统一、应用AZR-300根系生长动态监测系统是利用微根窗(Minirhizotron)技术,用于非破坏性监测根系生长动态和根际环境的仪器设备。植物根系生长受周边土壤条件如水分、盐分和养分多因素影响,同时根际分泌物对周边土壤物理、化学和生物学影响完全不同于一般土体。为了更好的理解根系系统,获取全面的土壤参数,系统可选ENVILog/IPH模块同步观测土壤水分、电导率、温度等基本参数,AZW-100模块采集土壤间隙水溶液分析土壤溶质变化。根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于植物生理、作物生长模型研究、根系病理分析、苗木培养、昆虫行为生态等研究。 二、原理AZR-300由一个插入土壤中的取景头管、摄像头或复合型360度旋转高分辨率扫描摄像头、标定手柄、图像采集存储系统组成。将取景头伸入埋设在根系周围的透明管内,旋转探头记录根系360度全景图像并可对根系局部区域特写拍照后存储,下载图像文件并借助专业根系分析软件系统对混合图像进行分析,从而跟踪了解其生长过程。 三、系统特点 1.3840*2880像素高清摄像头,实时清晰显示土壤根系和动物情况微根窗管中能清晰观察到植物幼根、细根的生长、发育、死亡,观察到多种类型土壤动物跳虫、蚂蚁、蜘蛛和蚯蚓等地下动物活动。2.专业图像分析软件,图像拼接显示,确保相邻图片间无缝连接可同时分析多幅图片。 四、根际土壤参数监测土壤含水量是影响植物生长的重要因素之一,植物的根系与外界生长的土壤环境之间是一种平衡关系,当土壤中的水分含量比较高的时候,植物中的水分会通过根系的膜进入植物的体内伴随着土壤中大量的无极营养元素。但是当土壤中的水分含量不足时,植物根系中的浓度就低于外界的生长环境,这时的主要活动是根系通往土壤环境中的比较多,而土壤中的各元素进入植物体内的则偏少,会对植物的生长需要有所影响。ENVILog和IPH传感器利用时域反射技术(TDR)同步测量不同土壤廓线水分和电导率。土壤含水量测量:测量土壤体积达5L,植物根际周围埋设原位测管,测量剖面深度20cm、40cm、60cm、80cm等测量土壤不同廓线的水分和电导率数值。 五、根际土壤溶液取样 间隙水又称自由水,是土壤或水体底质空隙中不受土粒吸着能移动的水分。间隙水中含有各种化学物质,如养分元素、有毒重金属、可溶性有机物等,间隙水的移动与污染物的迁移、释放、转化有密切关系,所以在水环境中间隙水的研究具有重要的意义。AZW-100模块采用负压原理原位采集土壤孔隙水,用于后续实验室化学成分分析。 六、技术参数1. 工作方式:360度旋转摄像(拍照)2. PAL制式彩色摄像头,分辨率3840*2880可调节3. 图像抓取系统:触屏平板电脑,10英寸显示屏,可以切换白光和紫外光源4. 20*16mm拍照视野,紫外光源系统,与测量同步使用5. 主机探头尺寸:36cm长x 6.2cm直径6. 控制盒尺寸:39 cm x 21cm x 5cm7. 主机:900g8. 探杆:总长2米,可拆卸分节式,方便携带;探杆上设置操作简便的定位器,方便主机上下移动开展定位观测9. 根根管:内径:50mm,长度:1m、2m可选10. 标定手柄:通过控制摄像头深度和转动以准确定位图片11. 图像获取控制软件:操控根系生长监测系统主机,并实时设置根系图像参数12. 根系专业分析软件。可将多个图像按时间和空间分布并列显示,软件可分析参数:细根的长、细根直径、细根表面积、细根总长、细根总面积、细根平均直径、细根数量等指标,同时通过计算可分析生物量、细根寿命、细根周转率等;13.工作环境:0℃~55℃,相对湿度0~100%RH(没有水汽凝结)14. 电源:12伏便携充电电池可使用6小时以上15. 水分测量范围:0-100%体积含水量,TDR原理16. 精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%17. 溶液采集器:采样头尺寸直径22mm,长度60mm18. 取样管长度 20cm,40cm,50cm,100cm,200cm19. 真空泵压力:0~-85kpa,0~100kpa20. 真空泵显示:液晶显示电池电量,内置可充电锂电池,持续工作不少于8小时,双通道,带有溢流保护 生产厂家:中国
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制