当前位置: 仪器信息网 > 行业主题 > >

根际微生态观测系统

仪器信息网根际微生态观测系统专题为您提供2024年最新根际微生态观测系统价格报价、厂家品牌的相关信息, 包括根际微生态观测系统参数、型号等,不管是国产,还是进口品牌的根际微生态观测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合根际微生态观测系统相关的耗材配件、试剂标物,还有根际微生态观测系统相关的最新资讯、资料,以及根际微生态观测系统相关的解决方案。

根际微生态观测系统相关的仪器

  • 1 引言根际是植物、土壤和微生物相互作用的重要界面,也是物质和能量交换的结点,根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环。自1904年德国科学家Lorenz Hiltner提出根际这一概念后,相关研究方兴未艾。但由于受土壤不可观测性的限制,传统的研究方法如挖掘法、剖面法、盆栽法及土柱法仍在大量使用,陆地生态系统根际微生态学的研究进展缓慢,因此寻找并建立新的根际微生态研究方法就显得至关重要。近年来随着光学和电子学技术的提升,特别是微根窗法(Minirhizo tron)的应用,使根际微生态研究得到了较快的发展。当前,这是唯一可多个时间段内原位重复观测根系的方法,其最大优点是在不干扰细根生长过程的前提下,原位长期连续观测并记录细根从出生到死亡的消长变化动态。这种测量方法是非破坏性的,是传统的研究方法不可替代的。因此,在国外,微根窗技术目前被广泛应用于森林、果园、草地、沙漠和农业生态系统等植物根系动态及其功能的研究中。2 观测系统设计2.1 目标AZ-B0201根际微生态观测系统通过可视化微根窗技术对根系生长和形态因子进行非破坏性的长期连续定位观测,结合专业的根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等,实现探索植物细根生长和消亡动态及其周转规律、研究植物根系拓扑结构的目标。同时测量根区土壤理化指标和监测土壤水温等环境因子,揭示植物根系消长动态与环境因子间的关系。2.2 观测点布设在待研究地区选择群落结构明显、优势种典型、地势平坦、土壤层足够深厚的区域,设置观测样地。选择标准木,在根部按照45°角安装微根管。通常一个观测样地安装12~24根1.8m/0.9m(L)×5cm/3cm(D)微根管。在每标准木安装的微根管周围安装1~3根1m或者1.5m观测管,同时检测土壤水分和温度参数。2.3 数据采集频率微根管安装好,应在其与土壤间达到平衡后再开始采集数据,平衡时间从几周到几个月或一年乃至更长的时间不等。众多研究表明,通常情况下7个月后开始采集图像比较合适。数据采集根据环境条件、植物生长周期不同,使用不同的采集间隔期,范围从每1周、每2周到每4周或每6~16周。一般生长季节至少每2周取1次图像,冬天可以降低采样频率或取消。每根观测管可由下到上或由上到下依次采集图像,每管每次取图像数量不少于30个。2.4 观测内容根系形态因子:根的长度、单位面积根长密度、根尖数量、直径分布格局、死亡根及存活根数量、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量、细根生长量、细根死亡量和细根周转。根际水盐指标:土壤水分、土壤温度。土壤理化指标:根际土壤全氮、土壤全磷、土壤有效磷、土壤全硼、土壤钙离子、土壤氯离子、土壤硝酸盐和亚硝酸盐、土壤碳酸盐。2.5 观测系统组成和技术指标AZ-B0201根际微生态观测系统由手动土壤取样套件、土壤水分温度测量单元和根系形态因子观测单元共同组成。3 数据处理3.1 根系根长密度和根系面积密度在微根管图像中测量根的长度,通过总根长除以观察的整个管面积获得根系单位面积根长密度RLD(mmcm-2或cmcm-2)。根系表面积的计算可用观察到的根长乘以根直径。同样,以单位面积图片中观察到的根系表面积可得到单位面积根面积密度(mm2cm-2或 cm2cm-2)。3.2 细根生长与死亡RLDP和RLDM分别表示细根生长量和细根死亡量。假设根系在两次相邻采样间隔期内的生长与死亡速率一致的前提下,以单位管面积上根系根长的增加与减少来表示相邻两次采样间隔期内根系的生长与死亡,然后除以间隔时间,得到细根生长RLDP和死亡RLDM。式中:RLDP ——间隔期内根系生长量,mmcm-2d-1;RLDM ——间隔期内根系死亡量,mmcm-2d-1;RLDn ——第n次观测到的根系根长密度值,mmcm-2;RLDn+1 ——第(n+1)次观测到的根系根长密度值,mmcm-2;T ——相邻两次采样间隔时间,d。3.3 根系生长死亡量、现存量和周转计算1)根系年生长量为一年内所有次采样得到的根系根长净增加值(包括所有出现的新根长与以前存在的根系长度净增加值);根系年死亡量为一年内所有次采样中根系长度的消失(包括存在根的死亡以及由于根系的脱落或昆虫的取食引起根长的减少值);根系年生长量与年死亡量的单位也以每年单位管面积内的单位根长来表示(mmcm-2a-1)。2)根系现存量以每次观测到的单位面积活根系长度来表示。3)根系周转估计采用以下3种方法进行估计。① 年根系生长量与年根系平均现存量之比。② 年根系死亡量与年根系平均现存量之比。③ 年根系生长量与年根系最大现存量之比。4 应用案例4.1 植物对营养元素的竞争性利用(Science,2010)James F.、Cahill Jr.等利用AZ-B0201根际微生态观测系统对关键营养元素不同利用策略下的植物根系生长状况进行了为期8周的观测。研究结果显示,在没有竞争植物的条件下,无论关键营养物质在植物周围分布态势如何,植物的根系分布及平均直径不受影响(A、B、C)。当有竞争植物存在时,那么植物根系的分布状况、平均直径则取决于关键营养元素与植物之间的相对距离(D、E、F)。图中红条是植物甲的平均根系直径,蓝条是植物乙的平均根系直径,阴影是关键营养元素所处位置示意(如果存在的话)。4.2 氮肥对水曲柳和落叶松细根寿命的影响(植物生态学报,2009)采用微根管技术研究氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系。结果表明,林地施氮肥后,两树种细根数量都呈减少趋势, 细根总体直径增加, 分枝程度降低; 氮肥使水曲柳细根存活率提高,细根中位值寿命延长,而落叶松细根存活率对氮肥反应不敏感; 施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层,根系和春夏季新生的细根,表明氮肥对高生理活性的细根影响较强。
    留言咨询
  • BTC-Borescope小型微根窗根系观测系统 一、BTC-Borescope小型微根窗根系观测系统用途 BTC-Borescope小型微根窗根系观测系统是BTC-100X土壤根系监测系统的微型版,兼容I-CAP控制系统(镜头控制及图像抓取),其测管直径只有约7mm,适于要求小孔径测管和足够长度和亮度照明的条件下的植物根系测量分析,通过它能够清晰地观察测量到研究对象的细节。用于实验室盆栽植物、蒸渗仪,温室大棚等环境下的植物根系生长监测研究 (不防水),结合所提供的根系分析软件,能够对植物根系进行定量化测量分析,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等;根据用户需求结合土壤水 分监测,可以研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、植物胁迫研究及昆虫行为生态等。 探视器镜管整体外形成直角型(90度),其探测管的外径是0.313 英寸.(约0.795cm),长度有7,12,17,22,28和37英寸等供选择。有其它尺寸要求的顾客,可以按需求订制。便携式照明光源比一个标准微型手电明亮10倍,较强的氙气灯聚光透镜系统能为Rhizotron图像软件分析时,提供给观察管内足够明亮的光源。内置充电器,可再充电锂电池组能够持续供电约一个小时: 二、BTC-Borescope小型微根窗根系观测系统原理 利用微根窗技术(Minrhizotron,又称微根管技术),由一个插入土壤中的微根窗管、摄像头、标定手柄、I-CAP系统(由控制器和I-CAP采集器等集成安装于野外工作箱中)组成。将摄像头伸入埋设在根系周围的透明管内,通过I-CAP控制系统进行图像抓取根系照相,然后借助专业根系分析软件系统对混合图像进行分析,从而跟踪了解其生长过程。 三、BTC-Borescope小型微根窗根系观测系统技术指标: (一)迷你根系监测系统 1、 *采用高灵敏度的Super HAD II CCD 2、 *镜头单元采用一体式的紧凑设计,外观尺寸22 (H) x 22 (W) x 64 (D)mm,重量51g 3、 *视频输出和外部视频输入可选 视频输出接口: VBS和Y/C外部输入接口:HD/VD, VS, VBS 4、 通过RS-232C串行通讯,操作简单 5、此系统也包含一条5m长的电缆线(如需额外定制,需联系厂家提供价格)和便携式包。 (二)图像控捕捉制系统 I-CAP图像抓取系统:I-CAP采集器,12英寸显示屏,控制器可以遥控摄像头白光水平及聚焦。 通过摄像头直接抓取、命名并存储图象到野外控制系统上,以供日后实验室分析;包括:摄像头控制软件,图片管理软件,安装在便携式手提箱中的野外控制系统。 图像采集特征: 可自动曝光和白色的平衡 像素修正 2D/3D减少噪音(NR) 边缘增强/细节提高 内置彩色平衡 (三)根系分析软件 WinRHIZO TRON:可以以交互方式方便地分析根系,该软件一次分析一帧图像。操作者需要在不同图像间手动跟踪所需分析的根,软件在屏幕上显示根的形态信息。用于可以根据需要编辑各个根部。在屏幕上通过图形方式显示根长度分布、面积、体积、根尖数量等,将它们作为根直径的函数。软件可以提供根长度、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量等。测量结果可以显示在屏幕上,同时提供分析数据的文件。程序可以自动检索并分析此前在相同地点拍摄的图像。 除了以上分析功能,该软件能够使用户处理时间-空间上的连续性,将多幅图像拼接。对于不同时间相同位置的图像进行分析时,同时加载以前的分析信息。拼接的多帧图像中的内容可以一起分析。对于一帧图像进行分析所得的信息,可以复制到与其连续的图像上从而节约分析时间。 四、产地 美国
    留言咨询
  • SoilTron-Rhizo根系生态观测蒸渗仪 根系是根际生态学的主要研究对象,也是地下生态学的关键要素。根系研究主要采用微根窗技术(MiniRhizotron),特别是美国Bartz公司生产的BTC微根窗根系观测系统,成为微根窗技术研究根系的经典仪器设备(“The most commonly used MR(Minrhizotron) systems are produced by Bartz Technology Corporation”——引自Eshel, A. &Beeckman, T. Plant Roots: The Hidden half. 4th edition. CRC Press, New York,USA. 2013)。单纯采用微根窗技术研究植物根系时,透明维根管一般采用纵向(一般成45度角度)插入土壤剖面的办法,这种纵向安插法容易造成根系沿维根管生长,从而造成误差。通过与蒸渗仪技术结合,维根管可以水平安装——相当于在土壤剖面不同深度设置一个根系观测样带,不仅可以避免纵向安装造成的偏差,还可以对根系进行三维动态观测分析,结合蒸渗仪土壤剖面水分、温度等监测技术,可以全面分析根系时空动态及其影响因子、胁迫响应等,成为地下生态学、根际生态学等研究的重要手段。 查尔斯特大学根系蒸渗仪站,右图为不同深度根系生长情况 SoilTron-Rhizo根系生态观测蒸渗仪全面吸收了德国蒸渗仪技术和美国微根窗技术,系统由SoilTron主体结构(标准配置有Rhizo-50和Rhizo-80两种型号,直径分别为1250px和2000px)、微根窗根系成像观测单元、传感器及数据采集系统组成,传感器及数据采集系统由欧洲生产,微根管成像系统由美国生产。 系统主要技术特点及性能指标如下: 1.蒸渗仪主体由Rhizo-50和Rhizo-80两种规格型号供选配:Rhizo-50底面积50000px2,标配高度2500px,蒸渗仪不锈钢柱体厚度3mm;Rhizo-80底面积5000 cm2(直径2000px),标配高度3750px选配,蒸渗仪不锈钢柱体厚度4mm 2.Rhizo-50标准配置4层维根管根系观测,及相应4层土壤水分和土壤温度监测;Rihzo-80标准配置5层维根管根系观测,及相应5层土壤水分和土壤温度监测;可选配土壤张力计监测 3.TRIME PICO 32智能土壤水分温度传感器: a.TDR技术,高精度、高稳定 b.测量范围0-100%体积含水量,测量体积250ml c.测量精度:0-40%体积含水率±1%,40-70%体积含水率±2% d. 测量重复精度 0-40%体积含水率±0.2%,40-70%体积含水率±0.3% e.土壤温度测量范围:-15℃-50℃(可定制其他温度量程,或选配-30-50℃温度传感器),精度±0.2℃ f. 防护等级:IP68 4.微根窗根系成像观测系统: a.标准配置测管长度22”(用于Rhizo-50)或28”(用于Rhizo-80) b.微根管镜内置数码摄像镜头,图像传感器为SuperHAD II 1/3-type IT CCD,灵敏度2000 lx at F1.4 AGC: 0dB,视野FOV 55°,带360°视野可旋转镜管;可充电式光纤照明 c.图像有效像素H x V:768 x 494 pixels,525线,30帧/秒 5. 标配RootFly微根窗专业根系分析软件分析微根窗图片中根系的长度、直径、根系颜色、根系生长率和死亡率等;可选配WinRhizo根系分析软件 6. 可选配BTC-100根系观测系统,具备15-100倍放大功能和精确定位手柄等(具体参数指标参见相关资料) 7. 16通道数据采集器(可选配32通道),16比特分辨率,± 20 mV 至 ± 2.5 V 8范围输入,精确度0.03%,可存储220000组带时间戳的数据(数据可存储1年以上),测量间隔3秒至4小时可调,数据平均间隔3秒至4小时,支持GSM/GPRS/Internet远程数据传输,电压6.5-15VDC,待机耗电150μA,测量耗电15mA,3V锂电备用电池可使用5年以上,工作温度 -20-60°C; 8.专业数据下载分析软件,可进行数据下载、数据在线观测、柱状图、数据修复、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析、回归分析)与图表展示及系统设置等; 9.GPRS无线数据传输功能,打开专业软件界面后,只要连接上网即可随时下载浏览数据; 10.渗漏水监测与抽样(选配):100ml翻斗,渗漏水抽样优先,每翻斗1%,250ml PE采样瓶,REED传感器,最大流量5000ml/min 产地: 传感器及数据采集系统欧洲生产,维根管成像观测系统美国生产,国内集成
    留言咨询
  • 湿地是地球上最为重要的生态系统类型,具有巨大的环境功能和效益,在提供水源、补充地下水、抵御洪水、调节径流、蓄洪防旱、控制污染、调节气候、控制土壤侵蚀等方面有其它系统不可替代的作用,被誉为&ldquo 地球之肾&rdquo 。 湿地地下水生态观测蒸渗仪通过地下水位模拟控制系统、精准称重系统、根系观测单元、气体通量观测单元、溶质在线分析单元等,原位(In-situ)观测或异地(Ex-situ)模拟观测地下水位变化(0-2m)与湿地土壤蒸散、渗漏、降雨及溶质运移的即时(高时间分辨率)动态变化关系,研究分析湿地土壤水通量、溶质通量、气体通量、持水状况等与地下水位的动态关系,适于三角洲、河滩及洪泛平原、泥炭地、高山湿地及其它地下水位较浅(常年一般维持在0-2m)的土地类型。 湿地地下水生态观测蒸渗仪由德国UFZ环境研究中心Meissner教授与德国UGT公司研制(Patent-No.: 19907462),利用公司特制的原位取土系统采取原位湿地土柱,采用精确的地下水控制系统,可精确重现真实的野外条件。原位湿地地下水生态观测蒸渗仪直接安装在湿地现场(如图一所示),蒸渗仪底部经由平衡水箱通过压力转换器和流量表直接与外界环境(河流或湖泊水体、湿地地下水)相通。异地湿地地下水生态观测蒸渗仪可以安装在远离现场湿地的实验场(比如研究所院内等),原位地下水位经由实时水位监测和数据无线传输,及时在线调控蒸渗仪水位(如图二所示),使蒸渗仪水位一直保持与原位湿地水位一致。如果目标水位(原位水位)与蒸渗仪内的水位相差1cm或以上,地下水位模拟控制系统会自动触发调节机制,使蒸渗仪与原位湿地水位始终保持一致。 1. 原位土柱2. 温度、TDR、水势等传感器及溶液取样器等。3. 地下水水位4. 滤层5. 称重系统6. 平衡箱7. 储水罐8. 调节阀9. 数据采集器图二 安装在异地试验场的湿地地下 水生态观测蒸渗仪 地下水位模拟控制系统的调控机理为:当水位出现不一致(相差1cm)时,首先关闭蒸渗仪和平衡水箱的阀门,然后向平衡水箱注水(或从中抽水),注水水源来自储水罐(抽出的水会存放在储水罐)。此后关闭储水罐和平衡水箱间的阀门,打开平衡水箱和蒸渗仪间的阀门,使得蒸渗仪和平衡水箱水位进行平衡。此过程反复进行,直到蒸渗仪水位达到目标水位。 湿地地下水生态观测蒸渗仪每分钟即可称量记录一次。不仅是降雨、蓄水,还可记录括露水、霜、降雪、沙尘等轻微输入,使得即使是较小的蒸散也可记录到。将15分钟数据的平均,以减小风或野外动物的影响。水分平衡公式如下所示:P + Pond = Et + ( Rout&ndash Rin) ± &Delta S其中P是降雨量, Pond是表面蓄水,Et是蒸散,Rin是地下水流入,Rout是地下水流出,&Delta S是持水量改变。 一旦水分平衡公式中各组分精确测量计算出后,溶质平衡情况可由如下公式计算出:L=Cs× S其中L为溶质输入,Cs为渗漏溶质浓度,S为渗漏液体积 技术指标: 1. 蒸渗仪规格:表面积1m2,高2m;滤层25cm;可根据需要定制其它规格的蒸渗仪2. 装土类型:特别设计的湿地取土系统取原位湿地土柱3. 高精度称重系统,分辨率:0.01mm,采样频率1min,15min平均一次4. 渗漏测量:翻斗计数器,精确度0.1mm5. 高精度即时地下水位模拟控制系统,精确度1cm6. BTC-100微根窗根系生态观测系统(备选)观测根系生长状况7. 气体通量观测单元用于测量分析湿地土壤CO2、O2和甲烷通量(备选):气体抽样模块具Baseline配置,可手动或自动定时切换测量大气CO2、O2等气体含量(baseline)和呼吸室内CO2、O2等气体含量,从而更加精确地测量监测土壤气体通量内置温度和大气压传感器,温度压力自动补偿,高稳定性、高精确度氧气测量分析:燃料电池O2分析仪,不受水汽、CO2及其它气体的影响,测量范围1-100%,分辨率0.001%二氧化碳测量分析:双波段非色散红外技术,测量范围0-5%,分辨率0.0001%CH4分析器(外置备选):双波段非色散红外技术,量程0-10%,精度优于1%,分辨率1 ppm/0.0001%8. 在线原位测量分析总氮、硝态氮和亚硝态氮等9. 传 输:无线传输,用户可在ENVIdata服务器上下载;若用户有固定IP,可直接传输至用户服务器10. 传 感 器:土壤水势、TDR土壤含水量、温度传感器,可根据用户要求选择不同传感器。11. 安装层数:标准30、60、90、120cm深处,每层均安装各种传感器。 国外应用: Doerthe Bethge-Steffense等(2004)利用湿地蒸渗仪控制地下水状况研究了2003年2月对德国schö nbergg Deich 和W ö rlitz湿地的地下水位、土壤含水量、土壤水量平衡(降雨、蒸散、渗漏等)进行了研究。在研究湿地采用梯度气象站监测环境因子,包括土壤温度、水势、含水量,降雨,空气温湿度,地下水位传送给蒸渗仪的控制中心。研究首次直接得到了蒸散和渗漏,结果显示湿地土壤含水率受湿地的地下水位动态影响,受蒸散影响有限。在水量平衡中,蒸散和渗漏使得土壤水储量减少,而这是2月降雨无法补偿的。 参考文献: 1. Doerthe Bethge-Steffens, Ralph Meissner, and Holger Rupp (2004) Development and practical test of a weighable groundwater lysimeter for floodplain sites. J. Plant Nutr. Soil Sci, 167, 516-524R. Meiß ner , M. N. V. Prasad, G. Du Laing and J. Rinklebe(2010) Lysimeter application for measuring the water and solute fluxes with high precision. CURRENT SCIENCE, VOL. 99 NO. 5 601-607.R. Meiß ner and Manfred Seyfarth (2004). Measuring water and solute balance with new lysimeter techniques. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5 &ndash 9 December 2004, University of Sydney, Australia. 1-8
    留言咨询
  • ZC600全自动生态定位观测站(草原、荒漠)ZC600全自动生态定位观测站是一款自主研发的物联网感知设备,通过集成化设计和高效太阳能技术,待机功耗小于5mw,适应低温、多云光弱地区;兼容多种类传感器,实现气象、土壤、植被参数等数据的高精度采集,并利用LoRa、4G、WIFI等无线通信技术实时回传数据至生态云平台 技术参数数据云平台软件架构:具备数据库管理系统,B/S架构,实现TB级图像数据的安全存储、高效管理和访问盖度和高度计算:云平台应用模块实现植被盖度和高度云端自动计算远程控制:可通过软件远程修改相机拍照时间,可间隔拍照或选定某个时刻拍摄;可通过软件远程修改数据采集与数据上传时间,可间隔上传或定时上传。
    留言咨询
  • 物候是气候与自然环境变化最直观、综合指示器和“诊断指纹”,植物的物候信息不仅反映当地当时的环境条件,而且反映过去一段时间环境条件的积累。物候监测站用于长期监测地面植物生长状况,计算植被盖度,反映植物生长浓密程度,同时物候站记录植物群落的演替过程,分析植物演替因素(火成演替、气候性演替、动物性演替人为演替)。可测量物候指数:植被指数(NDVI)、物候可见光实时图像、物候近红外实时图像、 植被盖度值、比值绿度 (GGR)、绿指数(GCC)、红指数(RCC)、绝对绿度 (GEI)、红绿指数(GRVI)、色相(HUE);DYCAM-G1型物候监测系统主要针对草原生长状况进行实时监测,定时拍摄照片,回传至服务器计算草地盖度、草高度、植被指数等参数。系统组成 整个系统由数据感知、数据采集、数据传输、数据处理、数据展示五个部分组成:(1)数据感知:云台摄像头;(2)数据采集系统:包括数据采集器、供电系统、避雷装置、结构件;(3)数据传输系统:数据可通过4G模块、Lora模块等多种传输方式;(4)数据存储与计算:包括网关、防火墙、数据存储服务器和数据运算服务;(5)数据展示:远程大数据平台可以查看图片与视频,盖度、草高等数据;大数据平台操作简洁,容易上手。支持监测数据的查看,处理,分析,评价,管理等需求。为每个客户分配权限,安全可靠,用户可登陆系统查看下载数据,登录界面如图所示:地理信息系统将监测站采集的气象、水质、水文、环保、路面状态等数据汇入系统。对数据的分类存储、显示、管理。实现地理信息、数据、基本信息和进行关联,地理信息界面见图:远程视频查看与控制 可远程通过视频查看现场状态,调整摄像头角度,选装、镜头变焦。设备定制拍照观测样地照片,自动计算盖度、草高等信息,界面如图所示:
    留言咨询
  • 树木生理生态系统 400-860-5168转1895
    秋高气爽,公园、道旁的树木慢慢吐露秋色,大地秋意渐显。为对林地树木的生理生态状况进行实时有效的监测,“树木生理生态系统”在中秋佳节之际正式上线。树木生理生态系统能够同时对多棵树木进行实时在线监测,采集记录树木生长(树干、枝条以及气生根)、树皮的温度(阴面和阳面)、树干茎流(树干、枝条以及气生根等)等三个生理指标的数据。树木生理生态系统是北京易科泰生态技术有限公司为您量身定制的植物生理生态监测方案之一。应用领域:? 树木病虫害监测;例如松蚜虫吸食树液,降低了树干茎流和蒸腾作用,从而影响树皮温度,最终会抑制树干生长。? 树木水分胁迫和抗旱性调查研究;? 树木低温胁迫和低温耐受性调查研究等; 系统采用:l 数据采集箱:专为户外恶劣环境下使用而设计;l 树木茎杆生长单元:可轻松快速安装,对树木无损伤;l 红外冠层温度单元:高精度、非接触的表面温度测量,适用于恶劣环境条件;l 树木茎流观测单元:采用THB (Tissue Heat Balance) 加热技术或SHB (Stem Heat Balance) 加热技术技术,获取高分辨率高精度的茎流数据。 数据采集器采用的是最新研发的SDI-12接口的GreyBox N2N(Network-to-Network),能够将SDI-12传感器连接组合成网络,最多可连接上百个传感器。内置了多个模块:2 自适应的GPRS模块——实现了数据的远程传输和在线浏览;2 GPS模块——对每棵树木的位置进行精确定位;2 智能供电模块——自动管理供电系统,对系统持续供电;2 灵活的数据存储和传输模块——自身可记录220000条数据,可通过红外线传送接收模组进行通讯传输下载,而且还配备了SD卡用于存储数年数据,确保证数据不丢失,做到了双重备份的目的。 树木茎杆生长单元用于监测树木生长的微变化,包括树干、枝条以及气生根。为满足野外长期监测的需要,传感器采用了不锈钢和抗紫外线塑料材质,坚固耐用。我们提供两种设计的茎杆传感器,用于不同直径的树木和同一棵树不同位置的生长测量。树木茎杆生长也可用于气生根等裸露在地上的根的生长测量。 红外冠层温度单元采用了8μm到14 μm波段红外辐射传感器,从而将水汽和二氧化碳对测量的影响降低到最低,并且提供四种标准的视场以及定制的视场,满足不同测量树木和测量环境的需要。树木茎流观测单元在一次安装后可以连续测定树干茎流,且不会破坏植物正常生理活动。用户可根据测量植物或者部位的不同选择与之匹配的传感器类型:SHB传感器常用来测定直径小于20mm的植物或器官,由两半柱体组成包裹式加热和测量装置,茎杆外部加热,高精确度、高稳定性、高分辨率,能量需求与液流量成比例,能耗低。 THB传感器则用于直径12cm以上的树干茎流监测,利用电极片间流经木质部的电流直接加热树木木质部组织,获取高分辨率高精度的茎流数据的同时不会产生树干组织过热问题。除树木生理生态系统外,我们还提供完整的植物生理生态监测方案——“EMS-ET植物生理生态监测系统”。该系统囊括气象、土壤等环境因子传感器,果实生长、叶片温度等植物生理传感器、叶绿素荧光监测单元以及植物根系监测单元。详情请见网站链接。
    留言咨询
  • 一、产品介绍植物根系双目显微观测系统HXIN- RootSnap170 Plus是一种微根窗技术。用于植物根系表型形态特征数据的采集及分析,通过原位拍摄的方式获取根系图像,并结合分析软件进行根系图像描绘,得出根系参数值。该系统可应用于植物生理生态,农业,农药,林业等多学科。 二、硬件参数1. 工作方式:进行360度显微拍照采集,整机直接由笔记本或平板USB 3.0接口驱动,无须外接控制箱或电源,可外接充电宝给笔记本延长工作时间10小时以上;2. 拍照光源:独立的白光、紫外光、红光、绿光光源,软件控制光源的切换,光源种类及强度可程控调节,并自动调取及保存光源种类和强度值;3. 拍照图像参数:采用双目成像系统,成像范围50mm*75mm,分辨率2400DPI,拍照速度不低于1秒;4. 图像像素:5196*7086 5. 延长杆:不锈钢材质,采用分段链接方式,每节长度25cm,带有毫米刻度,定位孔可无极锁定深度;6. 控制软件:控制系统进行扫描及拍照,自带镜头畸变和色彩均衡实时矫正功能;(后期加入二维码自动识别功能,可以自动识别根管上的二维码信息用于根系图像的命名)7. 温度进水模块:探测根管温度,探测系统是否发生浸水,如果浸水则进行报警提示并断电保护; 8. 数字地球磁场方位模块,可以实时标定拍照图像所对应的地球磁场方位角,方便长期动态跟踪定位;
    留言咨询
  • 用途:VSI MS-16根系生长动态监测系统,是一套定性和定量研究根系生长、寿命、分布或用于实验的观察工具。本系统利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系及菌根发展的方法,其最大优点是在不干扰细根生长过程的前提下,能原位连续监测根系及根围,了解其发展、生产和根系结构,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、根尖数量、直径分布格局、死亡根及存活根数量等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。 工作原理:VSI MS-16根系生长动态监测系统利用微根管技术,整套系统由成像头、微根管、微根管塞、钻孔器、分析软件等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其在不同季节的生长过程。 产品特点: 超高分辨率:2500 dpi 手动根部的“可管理”图像尺寸(最大34 mm x 24 mm,在7 cm 直径微根管内)用于根部追踪 高成像速度非常快(1 s),无需“白色校准” 实时根图像,对于任何筛选目的都很重要 UI选项:图像大小调整(20 mm x 20 mm)和非线性校正(基于测量管弯曲度) 精确而强大的分度系统(经典的“Smucker”手柄,具有新颖的分度,用于头部快速、可靠的弧形定位) 12V(3A)系统,全野外和温室可操作 可选:内部可充电电池 可用于水平,垂直和有角度弯曲的测量管 管长度可延长到500厘米; 定点、连续观测根系在整个生长季中的动态变化; 根系软件可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等几十个参数). 技术规格:监测分析参数细根长、细根直径、细根颜色及存活状态等图像尺寸31 mm x 24 mm(7cm MR根管)图像像素3280 x 2464 px 2500 dpi图片格式*.jpg成像时间<1s光源2 x 3 w穗轴发光二级管(界面强度可调)操作模块LCD触摸屏,键盘,微电脑(可选蓝牙远程触发器)图像输出USB接口用户界面VSI软件(触摸感应,可用键盘或鼠标操作)供电12V,3A带电器(可选:内置可充电电池)相机材料耐用铝壳,阳极氧化相机重量420g相机尺寸170mm相机和用户界面连接HDMI线,长达7m分度头铝质,100mm*175mm,1.2kgUI模块345mm*285mm*105mm控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。刻度手柄铝质,25mm*25mm*1000mm,约670g,最多可5个手柄相连接使用微根管尺寸外径70mm,内径64mm,壁厚3mm,长度1m 和2m(长度可定制) 产地:奥地利
    留言咨询
  • SCG-BTC原位土壤CO2与根系动态观测系统 土壤中植物细根占地球生态系统年净初级生产力的33%(Gill and Jackson,2000),尽管对菌根生产力还缺乏了解,但可以肯定的是,植物细根及菌根CO2的排放对全球碳平衡具有非常重要的意义。截至目前为止,科学家对调节细根及菌根碳库动态的机理过程还缺乏了解。微根窗技术已成为研究植物根系乃至菌根动态的有力工具,但很少有研究将植物根系及菌根动态与生态系统通量如土壤碳通量结合观测分析。 美国加利福尼亚大学保护生物学研究中心RodrigoVargas教授(2008),在圣哈辛托山保护区利用BTC–100微根窗根系观测系统及土壤剖面CO2梯度观测系统,组成土壤呼吸与根系观测站,就土壤水分、细根动态、土壤呼吸进行综合观测研究,结果表明,利用BTC–100微根窗技术持续观测细根动态极为重要,观测到细根长度变化每天每平方米达40cm,而菌根长度变化每天每平方米超过100cm。细根和菌根的动态变化会影响到土壤呼吸的季节性变化和日变化。土壤CO2的生产是根系及微生物的生物量的函数,但土壤呼吸又依赖于土壤的扩散包括温度及土壤水分的影响。综合运用BTC–100微根窗技术和土壤呼吸测量技术(包括剖面CO2观测技术和呼吸室测量技术)可以帮助我们全面理解和深入解析植物根系与菌根对全球碳循环的贡献(Allen et al., 2007)。 上图:细根长度(上图空心蓝点)、菌根长度(上图实心红点)及土壤呼吸动态变化;下图:土壤温度与土壤体积含水量的动态变化(DOY为Day of year) 原位土壤CO2与根系动态观测系统为Rodrigo Vargas教授安装使用的全套系统配置组成,包括BTC–100根系观测系统、SCG–3土壤剖面CO2观测系统及ACE全自动土壤呼吸监测系统,可监测记录根系动态、TRIME–PICO土壤剖面水分及温度、土壤剖面CO2浓度、土壤呼吸(CO2通量),及空气温湿度、太阳辐射、降雨量等气象参数。 技术参数: 美国Bartz公司生产的知名品牌BTC–100微根窗(Minirhizotron)根系生态观测系统,200余篇参考文献和应用案例15–100倍放大倍数,可进行细根(直径小于2mm)、菌根动态观测具定位手柄,精确定位、长期跟踪观测根系动态生长、周转成像面积适中以确保不变形,15×时成像面积18mm(宽度)×13.5mm(深度),100×时则为3mm×2.1mmSCG–3土壤剖面CO2原位监测:16通道数据采集器(可选配32通道以监测3层以上的CO2浓度、土壤水分及土壤温度等),可存储220000组带时间戳的数据,16比特分辨率,±20mV up to ±2.5V 8范围输入,精确度0.03%,测量间隔3秒至4小时可调,数据平均间隔3秒至4小时专业数据下载分析软件,可进行数据下载、数据在线观测、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析)与图表展示及系统设置等标配3层原位CO2梯度监测,非色散单束双波长红外技术(NDIR),CO2测量范围0–5000ppm、0–7000ppm、0–10000ppm、0–20000 可选,精度±1.5%,响应时间30秒TRIME–PICO32智能传感器,TDR测量技术,测量范围0–100%体积含水量,精确度±1%;土壤温度测量范围:-20℃–50℃,测量精度:±0.2℃无线数据传输,通过软件终端浏览、下载数据,无需固定IP地址,可随时随地上网浏览、下载、分析数据ACE全自动土壤呼吸监测仪,有封闭式和开放式两种模式供选择,每种模式又有透明或非透明呼吸室供选配,测量范围为 40.0 mmols m–3(0–896ppm),分辨率为1ppm,带有自动零校准装置 产地:美国、欧洲,国内集成
    留言咨询
  • Riverwatcher用于在河流和湖泊对鱼类迁移洄游等行为习性进行监测,系统安装固定在鱼道上,利用红外线扫描技术和高分辨率数码相机,可以对洄游的鱼类进行计数、物种识别和轮廓图像记录。根据鱼道获得的数据,软件可进行各种数据统计分析,从而可评估鱼道的运行效率和水利工程结构对流域生态环境的影响。 Riverwatcher鱼道观测系统测量鱼尺寸精度超过95%,计数精度超过98%。Riverwatcher经过26年的开发研究和不断改进,是鱼道过鱼计数和记录的有效工具。Riverwatcher用于在河流和湖泊对鱼类迁移洄游等行为习性进行监测,系统安装固定在鱼道上,利用红外线扫描技术和高分辨率数码相机,可以对洄游的鱼类进行计数、物种识别和轮廓图像记录。根据鱼道获得的数据,软件可进行各种数据统计分析,从而可评估鱼道的运行效率和水利工程结构对流域生态环境的影响。Riverwatcher系统包括扫描单元、控制单元和摄像通道(可选)。摄像通道包括相机和光源,获取图片或视频跟环境光强无关。连接摄像通道的扫描单元开口标准距离为40cm。
    留言咨询
  • EMS-ET植物生理生态监测系统 植物生理生态监测系统由数据采集器、植物茎流传感器、植物生长传感器、植物叶绿素荧光监测单元、植物根系监测单元、智能土壤水分传感器、气象因子传感器、无线传输模块及在线数据下载浏览分析软件等组成,可长期置于野外自动监测植物生长状态、植物胁迫生理生态、植物水分利用等及与土壤水分和气象因子的相互关系等,适于农作物、园林园艺及林木的生理生态监测研究。 系统特点l 基于专业植物生理生态数据采集系统,包括数据采集器及相应植物生理生态数据采集分析浏览下载软件 l EMS高精度茎流监测模块,高精确度、高稳定性、高分辨率、有效避免对植物的灼伤;l 叶绿素荧光技术监测植物光合生理状态及植物胁迫生理;l 世界知名TRIME-PICO智能传感器,TDR技术,为目前测量精度和稳定性最高的土壤水分传感器,适于各种土壤类型包括高盐度高电导土壤;l 可选配微根窗技术(MiniRhizotron)观测分析植物根系动态;l 可选配植物光合作用监测方案l 可选配空气CO2监测、土壤剖面碳通量监测方案l 可选配4G远程无线数据传输模块、在线浏览下载数据,向下兼容EDGE和GPRS传输模式,确保在没有3G和4G偏远地区也可以正常工作。技术指标技术指标1. 标配32通道模块式数据采集器,可选配16通道或64通道模拟输入,符合DIN导轨安装标准,支持SDI-12传感器,最多可支持107个数字通道a) 16比特分辨率,± 20 mV 至 ± 2.5 V 8范围输入,精确度0.03%b) 4个或8个计数器c) 可存储220,000(可选配450,000)组带时间戳的数据,测量间隔3秒至4小时可调,数据平均间隔3秒至4小时d) 支持4G/3G/2G/Internet远程数据传输e) 电压6.5-15VDC,待机耗电低于1mA,测量耗电30mA,3V锂电备用电池可使用5年以上f) PSM14电源模块可以对整套系统进行过电保护g) 工作温度 -40-60°C;2. 植物生理生态专业数据下载分析软件,可进行数据下载、数据在线观测、柱状图、数据修复、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析、回归分析)与图表展示及系统设置等;3. 叶绿素荧光监测单元:a) 内置带时钟数采,可存贮10万组带时间戳的数据,可输出时空信息数据(时间、经纬度)b) 可独立工作(不受距离位置等限制),具备自动开启、自动监测、自动储存功能c) 高时间分辨率,最高达每秒10万次,可自动运行OJIP-test,在1秒时间内测量记录约500组数据并得出PI(perforance index)、Fv/Fm、ABS/RC(单位反应中心吸收光量子通量)等26个快速叶绿素荧光动态参数d) 透明光纤探头,可进行完全无损伤长期监测,可选配叶夹e) 具备3套荧光淬灭分析测量协议、3套光响应曲线分析测量协议,可显示分析荧光淬灭曲线、光响应曲线及OJIP曲线f) 除OJIP快速荧光动力学测量参数外,其它测量参数包括:F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、qP、Rfd等叶绿素荧光参数4. 包裹式植物茎流监测:SHB (Stem heat balance) 加热技术,传感器由两半柱体组成包裹式加热和测量装置,茎杆外部加热,高精确度、高稳定性、高分辨率,能量需求与茎流量成比例,能耗低,平均能耗0.3~0.4W;发热能量(mW)通过软件换算成茎流值,温度传感器为特制T型热电偶0.6mm探针,恒定温差2K或4K,包括用于直径6-12mm茎杆的茎流传感器和用于10-20mm茎杆的茎流传感器;5. 树干茎流监测(林木生理生态监测选配):茎流测量THB (Tissue heat balance) 加热技术,树干内部加热,利用电极间流经木质部的电流直接加热植物组织,高精确度、高稳定性、高分辨率,能量需求与茎流量成比例,能耗低,平均能耗0.3~0.4W;发热能量(mW)通过软件换算成茎流值,温度传感器为特制热电偶探针,恒定温差1K,用于直径12cm以上的树干茎流监测;6. 指示性茎流传感器,读数与茎流变化成正比(但不能给出实际茎流量),适于1-5mm的植物茎秆,另有适于4-10mm茎秆直径的供选配7. 茎杆生长传感器:测量范围0-5mm,分辨率0.002mm,适于茎杆直径5-25mm或20-70mm的植物8. 树木茎杆生长传感器:测量范围0-65mm,分辨率0.001mm,适于8cm以上直径的树木生长监测,可选配独立监测模块(不受测量距离影响);另可选配树干生长监测带,不锈钢质,测量范围0-50mm,分辨率0.1mm;9. 果实生长传感器:监测范围包括0-10mm(分辨率0.005mm)、7-45mm(分辨率0.019mm)、15-90mm(分辨率0.038mm)、30-160mm(分辨率0.065mm)可供选择,适于直径为4-30mm、7-160mm的圆形果实生长监测; 10. 叶面温度传感器:测量范围0-50℃,精确度优于0.15℃;另可选配非接触型(非损伤性)红外叶面温度传感器,测量范围0-100℃,精确度0.2℃;11. 红外冠层温度传感器:测量范围-20°Cto-65°C,精确度0.2°C,灵敏度40μV/°C,波段范围8-14μm,视野18度12. 净辐射传感器(选配):波段范围0.2-100μm,灵敏度10μV/W.m-2,工作温度-40°Cto+80°C,响应时间小于60s;可选配其它类型传感器,如Schenk8110,测量范围0-1500W.m-2,波段范围0.3-100μm,稳定性3%/年,灵敏度15μV/W.m-2;13. 风速风向传感器(选配):风速测量范围0-30m/s,分辨率0.01m/s,精确度±3%;风向分辨率1度,精确度±3度14. 雨量筒:面积200cm2,分辨率0.1mm;可根据客户需求选配不同类型雨量筒15. 空气温湿度传感器:温度测量范围-40-60℃(可选配其它测量范围),精度0.1℃;空气湿度测量范围0-100%,精确度2%16. 光合有效辐射传感器:波段400nm-700nm,灵敏度10.0mV/mmolm-2s-1,工作温度-20-60℃;17. 土壤水分传感器:土壤水分温度:0-100% VWC,精度± 1%(特殊的土壤校准),±3%(厂家默认校准) ;电导率≤3ds/m ;-50 - +70℃, ± 0.1℃18. 茎秆生长传感器PDS40(可选PDS60/PDS80):测量范围5-40mm(20-60mm/40-80mm),分辨率1μm,精度是全量程的0.5%,紧贴植物茎秆最大的力是2N,温度影响率1 um/K 。19. 植物根系观测单元(选配):微根管、微根管镜及分析软件组成,标配微根管直径44mm(内径42mm),高透明度、高韧性、防雨水,微根管镜长度有17英寸、22英寸、28英寸、37英寸可选,微根管成像单元,1/4”彩色 CCD,像素768 x 494,信噪比48DB,可选配手持式高分辨率成像单元,1/3”彩色CCD,分辨率最高可达1600 x 1200像素;通过USB和电脑通讯、图像抓取,操作简单20. 4G全网通无线数据传输模块,在线浏览下载数据,三重数据备份永不丢失(数据采集器内置存储、外置8G MicroSD卡、云端服务存储),向下兼容EDGE和GPRS传输模式。 产地:欧洲,国内集成
    留言咨询
  • Rhizoscope原位根系3D观测系统一、应用植物科学家和生态学者在研究植物根系生长中面对最大挑战是如何在原位、非破坏条件下了解影响根系生长的各个土壤环境因素。目前普遍采用的微根窗技术适用于野外根系研究、拥有良好的分辨率,能长时期对根系进行追踪、摄像,但根系研究范围相对较小局限于点的研究大部分是年幼的植物,微根管的埋设对植物根系的生长也有一定影响,传统的与地面成45度角微根管埋设只关注部分垂直根系研究;Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱内水平分多层级埋设根管,可后续进行摄像对根系定量分析、测量土壤水分和提取土壤溶液,研究表明水平埋设微根管更适于根系生长空间评估。二、系统组成Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱,在蒸渗柱体各深度0.2、0.4、0.65、1.45、2.0m预先留有孔用于微根管、水分测量仪埋设和土壤溶液取样。系统采用人工滴灌模拟降雨,上部构建大棚以防降雨且满足植物光合作用,在系统底部设计有排水系统。 图一:Rhizoscope原位根系3D观测系统示意图 图二:柱体取原状土用机械将2.5m(深)?0.8m(直径)蒸渗柱体打入土壤中取原状土体,在各土柱之间用混凝土连接构成走廊为1.2米宽的地下室。 图三:12个柱体构成的地下室三、技术指标Rhizoscope原位根系3D系统在蒸渗柱体内多参数监测土壤水分和土壤溶液分析基础上研究根系的生长和空间分布。1.原状土蒸渗柱体尺寸2.5m(深)?0.8m(直径)2.AZR-300根系实时观测图像:◆主机显示屏:12英寸◆高清摄像头分辨率:3840*2880(4800dpi)可调节◆拍摄视野:20mm*16mm3.Trime水分测量范围:0-100%体积含水量精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%4.AZS-100土壤溶液采集器探头材料:尼龙聚乙烯真空泵压力:100kPa四、系统根系空间分布分析多年生植物根系空间分布系统分别在0.65m、0.9m、1.45m、2.05m处安装微根管,观测植物根系的数量。在个蒸渗柱状体内播种多年生苜蓿植物,系统采用滴灌模拟降雨,水分测量仪监测土壤水分分布,土壤溶液取样器采集溶液分析。如下图四(左):为苜蓿第一年根系生长的空间分布,土壤上层根系量增长较快;如下图四(右):是苜蓿根系3年内生长空间分布情况,上层根系量增长到一定时间后基本保持稳定,下层根系量逐年增加。 图四(左):第一年苜蓿根系分布 图四(右):3年内苜蓿根系分布一年生植物根系空间分布 如下图五各柱体中播种农作物小麦,在各深度研究根系的空间分布。在整个生长周期中小麦根系总量不断增加,最深1.45m处根系很小,最多分布在0.4m处。图五:小麦根系空间分布五、系统应用 Rhizoscope原位根系3D观测系统采用的蒸渗柱体适用于地下农业改良环境研究,在用于全球气候变化植物对于水胁迫的适应性研究,同时在根系生长、根系空间分布、根际分泌有机物、根的周转率以及土壤微生物与根腐烂速率的相关性研究,非常适用于农作物和草地的土壤根际研究。
    留言咨询
  • 23800天合负氧离子在线监测系统可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,模块化结构设计,传感器都可以单独替换,配备专业安装支架,现场可通过LED屏幕直接读取数据,亦可远程云平台/WEB/微信公众号实时查看数据,后期运营维护方便。一、产品简介景区生态环境负氧离子监测系统推荐负氧离子在线监测系统可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素;二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~70m/s(±0.1m/s);2、风向:测量原理超声波,0~360°(±1°);3、空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃);4、空气湿度:测量原理电容式,0~100%RH(±2%RH);5、大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);6、PM2.5:测量原理光散射,0-1000ug/m3(±15%)7、PM10:测量原理光散射,0-1000ug/m3(±15%)8、噪声:测量原理电容式,30~130dB(±1.5dB)9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)10、氧含量:测量原理电化学,0~100%uol(±3%uol);11、数据存储:可存储一年的原始监测数据;12、数据传输:GPRS/4G/光纤13、功耗:150w14、供电方式:220V市电、太阳能(选配)15、工作环境:温度-20℃-55℃,湿度0%-100%16、屏幕:2m*1米,由36块P10单红单元板拼接而成,单元板尺寸32cm*16cm17、立杆:碳钢双立柱,每根立柱由2根1.5米立杆法兰盘对接而成,可耐受15级强台风四、产品特点1、集成度高,方案灵活:系统可集成负氧离子、空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向2、系统稳定:已合作上千家公园景区,后台运行稳定,免维护,故障率低3、多种传输:可根据现场网络情况定制传输方式,2G/4G/光纤4、支持扩展:支持传感器扩展,485接口、modbus协议传感器都可以直接使用5、显示方案多样:可根据现场需求,选用点对点、点对多、多对点的LED屏幕数据显示方案五、产品结构图六、产品尺寸图七、云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本
    留言咨询
  • ZC500农用全自动生态定位观测站一款自主研发的低功耗物联网感知设备,待机功耗<5mW,在-40℃~60℃工作温度内稳定运行,具有植被长势、物候、气象、空气质量、土壤墒情等监测功能。特点1、超低功耗设计,待机功耗小于5mw,轻量化设计,快捷安装;2、具有远程控制,定时拍照;修改数据采集与上传时间;3、无人值守,太阳能供电,多种无线传输方式,4G/WIFI/卫星通讯;4、数据支持二维码扫描浏览功能。技术参数
    留言咨询
  • 大气中的氮元素以NHx(包括NH3、RNH2 和NH4+)和NOx的形式,降落到陆地和水体的过程称为氮沉降。随着矿物燃料燃烧、化学氮肥的生产和使用以及畜牧业的迅猛发展等,人类活动向大气中排放的活性氮化合物激增,大气氮素沉降也呈迅猛增加的趋势,成为影响陆地和水生态的重要人为因素,导致酸雨、水体富营养化等全球环境问题。我国是氮沉降情况最严重的区域,根据2008《自然》发表的Dave Reay等的文章,到2030年,我国东部和东南部地区氮沉降将增加50~100%。 氮沉降在线观测系统由陆地氮沉降及酸雨在线观测单元、水体原位氮观测单元、气象单元及数据采集与无线传输单元组成,可同步在线观测大气氮沉降及酸沉降、水体营养盐状况及氮沉降对水体氮素浓度的相关关系等。系统测量原理为:原位(in-situ)大气干湿沉降采集筒采集到的样品,通过蠕动泵抽样过滤,按程序设置的测量间隔进入氮沉降在线分析仪,采用实验室标准的湿化学法循环顺序分析总氮、氨氮及硝态氮等浓度,并根据采集筒面积等求出氮沉降通量,包括总湿沉降、干沉降,总无机氮沉降和有机氮沉降,总氨氮沉降、硝态氮沉降、亚硝态氮沉降等参数。通过安装到水体中的原位营养盐监测探头,可同步监测分析水体(河流湖泊)的总氮、氨氮、硝态氮等含量,以研究分析水体营养盐与大气氮沉降的关系。分析数据在线显示和储存下载,也可通过无线通讯模块远程下载显示数据。 Ecotron氮沉降在线观测系统主要功能特点如下:1. 可连续监测大气氮湿沉降和干沉降,包括总氮、有机氮、总无机氮、氨氮、硝态氮、亚硝态氮2. 可连续监测大气酸沉降(湿沉降和部分干沉降),包括硫酸根、硝酸根对酸雨的贡献率3. 可精密连续记录大气沉降重量(选配)4. 同步原位监测河流湖泊氮素和营养盐包括氨氮、硝态氮、亚硝态氮、磷酸盐5. 数据可通过GPRS无线传输,或通过U盘直接下载数据性能指标:1. 湿化学法在线观测大气氮沉降,分析参数包括总氮、氨氮、硝态氮+亚硝态氮、亚硝态氮2. 可选配SO42-在线观测模块,在线观测分析大气氮沉降中硫酸根沉降,从而全面了解酸雨沉降情况3. 精密连续观测记录大气沉降量及降水,精确度分别为0.01g和0.1mm4. 原位营养盐监测探头可同步原位监测水体氨氮、硝态氮、亚硝态氮、磷酸盐及总磷等5. 内置时钟和显示屏,在线显示和存储数据包括日期、时间及测量值等6. 无人值守自动在线监测,建议每隔2周左右维护一次7. 交流电或太阳能供电,太阳能供电模块:12V、20W8. EnviData数据采集与无线传输模块,包括EnviData软件、数据采集器、GPRS无线通讯模块等国内外应用状况:作为全球变化的重要议题、与气候变化同步引起日益关注的氮沉降问题(在全球变化中与climate change相对应,又称chemical change),与气候变化一样已日益成为全球变化研究的热点问题。我国氮沉降研究一般采取离子交换树脂法和降水采集法(盛文萍等,2010;王德宜等,2010;张国森等,2003),然后拿到实验室进行分析,如张国森等(2003)在野外采集雨水后带到实验室分析硝态氮、亚硝态氮及氨氮浓度。相对于我国零散的大气氮沉降研究,国际上对氮沉降的监测研究更加重视和系统化,如欧洲RECOVER:2010 项目(designed to assess the impact of current and future anthropogenic pressures on sensitive European freshwater ecosystems)对30个酸雨敏感区监测点的分析结果,氮沉降如果超过10kgNha-1yr-1的阈值,将导致河流氮饱和趋势和硝态氮浓度的增高。欧洲WARMER(Water Risk Management in Europe)项目研究设计了微环流分析技术(Micro Loop Flow Analysis)以就地或原位持续监测陆地及水体氮素营养盐的动态变化(Moscetta etc. 2009)。参考文献:1. 盛文萍、玉贵瑞、方华军、姜春明,大气氮沉降通量观测方法。生态学杂志,29(8):1671-1678,20102. 王德宜、赵普生、张玉霞、张丽华,北京市区大气氮沉降研究。环境科学,31(9):1989-1992,20103. 张国森、陈洪涛、张经、刘素美,长江口地区大气湿沉降中营养盐的初步研究,14(7):1107-1111,20034. Moscetta, P., L. Sanfilippo, E. Savino, etc. Instrumentation for continuous monitoring in marine environment. IEEE Oceans&rsquo 09 conference. Biloxi(USA), 20095. Wright R. F., C. Alewell, J. Cullen, etc. Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Recover:2010 project report, 2010
    留言咨询
  • RhizoTron根系表型观测系统基于国际通用的根窗观测技术,其基本单元包括用于植物萌发生长的根盒(RhizoBox)、基于智能LED光源的植物培养系统、成像设备(扫描仪或RGB彩色镜头、高光谱镜头等)和分析软件,全自动高通量根系表型观测系统还包括自动化传送系统等。(下图分别为扫描式根系成像系统、智能LED光源板、根窗根系)主要技术特点:1) 基于根窗技术,与微根窗技术比,可全视野(根据根盒大小而定)观测根系生长发育2) 根盒大小可根据客户需求定制,宽度一般为30cm,深度可达几十到100cm3) 可选配中央控制单元,控制10-100个根窗单元同步扫描成像,做到无损伤、高通量4) 可选配基于扫描成像技术的根系观测系统,手动载样,每小时可对几十株植物进行根系扫描成像5) RGB彩色扫描成像与高光谱扫描成像技术,全面分析根系年龄、水分时空分布及土壤基质组分结构等信息6) 可选配土壤水分、温度、电导监测,及土壤O2、CO2监测7) 可选配根系多参数监测,包括O2、pH、温度等8) 可选配自动称重单元9) 可选配植物叶绿素荧光监测等生理生态监测10) 可选配根系多光谱荧光成像分析,用于植物胁迫、根生中药生理生化分析等11) 可选配智能LED光源培养台,0-100%光强调节、昼夜节律模拟12) 可选配水培作物根系观测客户定制方案,对作物根系表型进行高光谱成像分析13) 可选配红外热成像对作物根系散热进行分析 14) 可选配全自动高通量根系表型观测系统,高通量自动分析根系深度、根系宽度(根冠宽)、根冠面积、根系总长度等 欧洲PSI公司为德国IPK(Leibniz Institute of Plant Genetics and Crop Plant Research)设计安装的高通量作物根系表型分析系统主要技术指标(客户定制系统,仅供参考)1) 根窗观测面积:A4型216 x 297mm,A3型310×437mm2) RGB扫描成像分辨率:A4型4800dpi,A3型2400dpi3) VISIR可见光近红外扫描成像分析:STD4800LA2400**SpectraScen-FX10SpectraScan-FX17描述RGB高质量高速扫描仪RGB多功能、高速扫描面积大的扫描仪400-1000nm波段高光谱扫描成像900-1700nm近红外波段高光谱扫描成像分辨率4800 DPI2400 DPI1024x,可选配更高分辨率640x扫描速度较快快330fps670fps最大扫描面积cm21.6x2930x43标配40x60cm,可选配其它规格大小是否可对土壤基质扫描可以可以,可对根系与土壤水分进行成像分析4) 高光谱扫描成像分析波段:400-1000nm(标配),可选配900-1700nm或1000-2500nm短波红外波段5) 野外可选配智能一体式高光谱扫描成像技术:内置自动推扫系统、取景器相机等,高度便携,集光谱成像数据采集、可视化数据处理、触摸屏与控制键等于一体,采用图形用户界面(GUI)6) 高光谱分析软件采用SAM算法及Savitzky-Golay滤波器技术,可创建类别或分级模型并建立App直接导入高光谱成像仪使用,建议同时选配ENVI软件7) 可根据光谱特征曲线或参考光谱曲线,对不同年龄、不同胁迫条件下根系生理生化响应等进行分析、检测、性状筛选等8) 可监测分析参数:根长、根直径、根面积、根总长、根总面积、根平均直径、根数量及生物量、细根寿命、细根周转率等9) 可对土壤基质进行高光谱扫描成像分析,以研究分析土壤理化特性与土壤根系的相互关系等 10) 可同时对植株根与苗(root & Shoot)进行高光谱扫描成像分析,以分析研究植物水分分布时空动态变化、胁迫响应、表型检测筛选等11) 智能LED光源植物培养台(选配):外部大小222cm长x 86cm宽x 66cm高,内部大小180x80x55cm,LED智能光源,冷白光+近红外(可选配红蓝等其它颜色或波段LED光源),有效均一光源面积1.4m2,250μmol(photon).m-2.s-1,0-100%可调,可模拟昼夜节律等,温控范围高于室温+2~12度范围内。
    留言咨询
  • ETran地表蒸散观测系统作为水循环的重要环节,地表蒸散或称蒸发散(Evapotranspiration),是气候和生态学观测研究的重要参数,其测量方法有水平衡法、微气象法及植物生理学方法等,其中蒸渗仪技术是目前公认的基于水量平衡原理直接测量地表蒸散的唯一方法,波文比能量平衡法则是根据微气象学原理测算地表蒸散的比较普遍的方法,植物茎流测量则是植物生理学方法中测量植物蒸腾作用的重要也是主要手段。通过几种方法的综合运用,可以全面分析研究地表的蒸发散及其各气候要素的相互关系,深入分析各气候要素与土壤蒸发、植物蒸腾、植被生长及土壤水分等的动态变化格局。ETran地表蒸散观测系统由可移动式小型蒸渗仪、波文比自动气象站及茎流观测系统组成,可全面监测分析土壤水分动态、植物茎流、地表蒸发散、气象要素动态变化及其相互关系。其主要特点如下:1. 小型蒸渗仪(专利号)便携可移动,安装过程不破坏植被,采用TDR土壤水分传感器和精密自动称量系统,为高性价比直接测量地表蒸散的重要技术设备,可根据观测条件和目的选配1个或多个; 2. 可选配德国UGT蒸渗仪,用于测量草原、农田、坡地或湿地蒸散;3. SHB技术(茎杆热平衡技术)测量细枝条茎流,包裹式测量,茎杆外部加热,高精确度、高稳定性、高分辨率;4. THB技术(组织热平衡技术)测量树干茎流,独有的不锈钢片式电极和插针式温度传感器,树干内部加热,高精确度、高稳定性、高分辨率、客观真实地反映树干茎流量; 5. 波文比自动气象站实时监测太阳辐射、净辐射、土壤热通量、空气温湿度(双层)、土壤温度(双层)、风速风向及降雨量;6. 根据植被条件可选配草原蒸散观测系统(适于草原和农田等)或森林蒸散观测系统(具备多通道树干茎流观测及树干生长监测)7. 可选配小型蒸渗仪和SHB茎流监测传感器,用于实验室或温室控制实验等;8. 软件功能强大,可进行数据下载、图表展示、参数设置及基本数理统计分析 技术指标:1. 标准小型蒸渗仪配置:底面积10002cm、高50cm、重量(含原位土柱)约70kg,可选配其它底面积和深度(高度)的小型蒸渗仪2. 3层土壤水分、土壤温度传感器,可选配土壤水势等传感器3. TDR土壤水分测量,探头直径8mm,测量范围0-100%,精度优于2%,分辨率0.1%;土壤温度传感器测量范围-20~60摄氏度,分辨率0.01摄氏度,精度 0.5 C4. SHB包裹式茎流测量,测量直径6-20mm,平均耗能0.3-0.4W,特制T形热电偶温度传感器0.6mm探针5. THB不锈钢电极片式测量,利用电极间流经木质部的电流直接加热植物组织,测量树干直径8cm以上,平均耗能0.3-0.4W6. 净辐射传感器:波长范围0.3-30&mu m,0-1500W.m-2,稳定性2%/年7. 温湿度传感器:温度测量范围-40-60 deg.C,精确度± 0.2deg.C;湿度测量范围0-100%,精确度± 2%8. 土壤热通量传感器:范围-2000-2000W.m-2,温度范围-30-70 deg.C,直径80mm9. 森林生态系统建议选配林下高精度雨量筒,14640cm2,0.01mm精确度10. 森林生态系统建议选配树干流监测单元,应用范围0-200m/min11. 可选配H-F地表径流观测系统,用于观测地表径流情况12. 可选配PL300土壤空气渗透性测量仪和Hood入渗仪配置组成:1. 小型蒸渗仪1个或多个(根据观测样地条件和研究目的而定)2. 波文比气象站1个或2个(做对比实验研究用,如林内或林外、不同植被类型或耕作类型等)3. 森林生态系统建议选配林下高精度雨量筒和树干流监测单元4. 森林生态系统须同时选配多通道SHB包裹式茎流监测和THB树干茎流观测5. 建议选配H-F地表径流观测系统产地:欧洲
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • 湿地公园生态环境监测系统【TH-SDXT】实时掌握张家湖国家湿地公园的水质、气象、水文等方面情况,能实时监测张家湖国家湿地公园生态环境现状及动态变化。一、背景概述古往今来,人类逐水而居,文明伴水而生。被喻为“地球之肾”的湿地,有水域和陆地交错存在的生态环境,是多种生物的栖息地。湿地能净化水质,提供清洁的淡水资源,具有蓄洪防旱、调节气候等多种功能,与人类生产生活、经济发展密切相关。“生态兴则文明兴,生态衰则文明衰”这是历史的回响,也是未来的召唤。“为避免全球湿地持续退化和丧失而引发的系统性风险,我们必须以强烈意愿和实际行动,促进各类湿地的保护、修复、管理以及合理和可持续利用。”但由于早期,人们对环境的漠视、认识水平的局限以及对经济利益的单纯追求,长期以来在围垦、基建占用、环境污染、过度捕猎、泥沙淤积、不合理水利工程建设等诸多因素的不断叠加作用下,湿地资源遭受了严重的、不可逆转的破坏。因此对湿地生态环境等进行长期连续监测是政府在进行自然资源管理与保护和实现可持续发展等宏观决策中获取相关信息数据的必要手段。而且从保护生态系统功能及其稳定性方面考虑,也迫切需要在一些关键区域建立生态环境自动观测站,针对生态系统内的大气、植被、水体、土壤等环境进行观测,支持气象条件变化对湿地、森林、湖泊、河流、海滩、戈壁、草原等生态影响的评估预警工作。湿地公园生态环境监测系统结合多年气象环境监测行业经验,充分考虑林业草原环保国土资源等部门对于生态环境监控和集中管理的应用需求,利用物联网技术、数据通讯技术、地理信息技术等,针对湿地生态环境监测设计搭建了一套或多套在湿地生态区域环境观测大气、植被生物、水体、土壤等方面数据的观测系统方案,实现对湿地生态区域生态环境要素的自动连续观测,为及时掌握气象条件对生态环境的影响、实现地区可持续发展提供科学依据。二、监测依据《全国生态状况调查评估技术规范—湿地生态系统野外观测》《湿地生态系统定位研究站建设技术要求(LY/T 1708)》《湿地生态系统定位观测指标体系(LY/T 1707)》《湿地生态系统服务评估规范(LY/T 2899)》《国家湿地公园建设规范(LY/T 1755)》《区域生物多样性评价标准(HJ 623)》《园林绿化十三五规划纲要》《国家陆地生态系统定位观测研究网络中长期发展规划(2008—2020年)》《环境空气质量指数(AQI)技术规定(试行)》 HJ633-2012《空气离子测量仪通用规范》 GB/T18809-2002《水质采样方案设计规定》 GB/T12997-91《水质采样技术指导》 GB/T12998-91《地表水环境质量标准》 GB38382002《水污染源与在线监测系统安装技术规范》 HJ/T353-2007《水污染源在线监测系统验收技术规范》 HJ/T354-2007《水污染源在线监测系统运行与考核技术规范》 HJ/T355-2007《水污染源在线监测数据有效性判别技术规范》 HJ/T356-2007《污染源与在线自动监控(监测)系统数据传输标准》 HJ/T104-2003《仪表供电设计规定》 HG/T20509-2000《污染源在线自动监控(监测)系统数据传输标准》 HJ/T212-2005《环境污染源自动监控信息传输、交换技术规范》 HJ-T352-2007《土壤环境监测技术规范》 HJ/T166-2004环境空气质量标准 GB3095-1996地表水环境质量标准 GB3838-2002土壤环境质量标准 GB15618 1995国家林业局关于印发《国家湿地公园管理办法》的通知 林湿发〔2017〕150号三、系统建设内容气象监测:空气温度、相对湿度、风速、风向、大气压力、总辐射、日照时数、光照强度、紫外辐射、光合有效辐射、净辐射、天气现象、降水量、降雪深度、蒸发量、露点温度等;水文监测:水位、流量、流速;水质监测:水温、电导率、PH、浊度、悬浮物、余氯、溶解氧、COD、氨氮、亚硝酸盐、叶绿素、蓝绿藻、污泥浊度等;土壤监测:土壤温度、土壤湿度、土壤PH、土壤盐分、土壤氮磷钾等;环境质量:PM2.5、PM10、噪音、负氧离子、CO2、 SO2、 NO2、O3、CO等;植被生物:湿地植物动物及其群落监测可以采用包含多个视频监控传感器节点的网络作为其长期监测的手段。 四、系统概述此湿地生态环境监测系统是一套集数据采集、存储、传输和管理于一体的无人值守生态监测系统,整个系统由前端感知数据采集系统、数据传输系统、云平台应用软件分析系统、终端应用系统及供电系统等组成。前端感知数据采集系统由小气候气象观测站、空气质量监测站、水文监测站、水质监测站、负氧离子监测站、土壤监测站、视频监控等前端监测设备组成。数据传输系统由遥测终端机、DTU、GPRS等传输设备组成。云平台应用软件分析系统接收到来自数据采集系统的实时数据进行分析,利用云平台软件分析计算进行数据处理和归集整理。可以直观、形象的实时显示各监测点位和整个区域的空气质量状况,以及污染物浓度水平,并提供异常报警、区域空气质量变化趋势等多种服务。终端应用系统可通过会议室大屏、户外LED显示屏、PC端等方式实时或长期进行监测数据展示。供电系统可根据用户需求搭配市电供电、太阳能供电、风光互补供电等多种供电方案,保证设备长期稳定运行。五、系统特点1、监测指标全面、方案配置灵活,可根据实际需求监测湿地生态区域各方面环境要素, 如气象环境、水文、水质、土壤环境、空气环境质量和动植物极其群落监测等,模块化设计极大方便了后期调试和升级2、低功耗采集器:静态功耗小于50uA3、系统稳定:方案成熟多家实装案例,后台运行稳定,免维护,故障率低4、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上5、全自动,适合野外工作,可靠运行于各种恶劣的野外环境,可无人值守6、监测参数超限预警,辅助保护区应急管理7、云服务平台,可随时在线查看、下载和数据分析,具有数据质量控制功能8、通讯方式可根据现场按需选配,为方案提供最高性价比9、完善的防雷击。抗干扰等保护措施10、支持扩展:支持传感器扩展,485接口、modbus协议传感器都可以直接使用
    留言咨询
  • 湿地生态环境监测系统【TH-SDXT】是一种集数据采集、存储、传输等于一体的生态环境监测系统。针对生态系统内的大气、植被、水体、土壤等环境进行观测,支持气象条件变化对湿地、森林、湖泊、河流、海滩、戈壁、草原等生态影响的评估预警工作。一、背景概述山东天合环境科技有限公司结合多年气象环境监测行业经验,充分考虑林业草原环保国土资源等部门对于生态环境监控和集中管理的应用需求,利用物联网技术、数据通讯技术、地理信息技术等,针对湿地生态环境监测设计搭建了一套或多套在湿地生态区域环境观测大气、植被生物、水体、土壤等方面数据的观测系统方案,实现对湿地生态区域生态环境要素的自动连续观测,为及时掌握气象条件对生态环境的影响、实现地区可持续发展提供科学依据。二、监测依据《全国生态状况调查评估技术规范—湿地生态系统野外观测》《湿地生态系统定位研究站建设技术要求(LY/T 1708)》《湿地生态系统定位观测指标体系(LY/T 1707)》《湿地生态系统服务评估规范(LY/T 2899)》《国家湿地公园建设规范(LY/T 1755)》《区域生物多样性评价标准(HJ 623)》《园林绿化十三五规划纲要》《国家陆地生态系统定位观测研究网络中长期发展规划(2008—2020年)》《环境空气质量指数(AQI)技术规定(试行)》 HJ633-2012《空气离子测量仪通用规范》 GB/T18809-2002《水质采样方案设计规定》 GB/T12997-91《水质采样技术指导》 GB/T12998-91《地表水环境质量标准》 GB38382002《水污染源与在线监测系统安装技术规范》 HJ/T353-2007《水污染源在线监测系统验收技术规范》 HJ/T354-2007《水污染源在线监测系统运行与考核技术规范》 HJ/T355-2007《水污染源在线监测数据有效性判别技术规范》 HJ/T356-2007《污染源与在线自动监控(监测)系统数据传输标准》 HJ/T104-2003《仪表供电设计规定》 HG/T20509-2000《污染源在线自动监控(监测)系统数据传输标准》 HJ/T212-2005《环境污染源自动监控信息传输、交换技术规范》 HJ-T352-2007《土壤环境监测技术规范》 HJ/T166-2004环境空气质量标准 GB3095-1996地表水环境质量标准 GB3838-2002土壤环境质量标准 GB15618 1995国家林业局关于印发《国家湿地公园管理办法》的通知 林湿发〔2017〕150号三、系统建设内容气象监测:空气温度、相对湿度、风速、风向、大气压力、总辐射、日照时数、光照强度、紫外辐射、光合有效辐射、净辐射、天气现象、降水量、降雪深度、蒸发量、露点温度等;水文监测:水位、流量、流速;水质监测:水温、电导率、PH、浊度、悬浮物、余氯、溶解氧、COD、氨氮、亚硝酸盐、叶绿素、蓝绿藻、污泥浊度等;土壤监测:土壤温度、土壤湿度、土壤PH、土壤盐分、土壤氮磷钾等;环境质量:PM2.5、PM10、噪音、负氧离子、CO2、 SO2、 NO2、O3、CO等;植被生物:湿地植物动物及其群落监测可以采用包含多个视频监控传感器节点的网络作为其长期监测的手段。 四、系统概述此湿地生态环境监测系统是一套集数据采集、存储、传输和管理于一体的无人值守生态监测系统,整个系统由前端感知数据采集系统、数据传输系统、云平台应用软件分析系统、终端应用系统及供电系统等组成。前端感知数据采集系统由小气候气象观测站、空气质量监测站、水文监测站、水质监测站、负氧离子监测站、土壤监测站、视频监控等前端监测设备组成。数据传输系统由遥测终端机、DTU、GPRS等传输设备组成。云平台应用软件分析系统接收到来自数据采集系统的实时数据进行分析,利用云平台软件分析计算进行数据处理和归集整理。可以直观、形象的实时显示各监测点位和整个区域的空气质量状况,以及污染物浓度水平,并提供异常报警、区域空气质量变化趋势等多种服务。终端应用系统可通过会议室大屏、户外LED显示屏、PC端等方式实时或长期进行监测数据展示。供电系统可根据用户需求搭配市电供电、太阳能供电、风光互补供电等多种供电方案,保证设备长期稳定运行。五、系统特点1、监测指标全面、方案配置灵活,可根据实际需求监测湿地生态区域各方面环境要素, 如气象环境、水文、水质、土壤环境、空气环境质量和动植物极其群落监测等,模块化设计极大方便了后期调试和升级2、低功耗采集器:静态功耗小于50uA3、系统稳定:方案成熟多家实装案例,后台运行稳定,免维护,故障率低4、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上5、全自动,适合野外工作,可靠运行于各种恶劣的野外环境,可无人值守6、监测参数超限预警,辅助保护区应急管理7、云服务平台,可随时在线查看、下载和数据分析,具有数据质量控制功能8、通讯方式可根据现场按需选配,为方案提供最高性价比9、完善的防雷击。抗干扰等保护措施10、支持扩展:支持传感器扩展,485接口、modbus协议传感器都可以直接使用六、系统云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本七、售后服务山东天合环境科技有限公司是一家专业研发、生产、销售物联网监测检测仪器设备的企业。产品已广泛应用于气象、环保、水文水利、交通、海洋、化工、农业、林业、草原、景区、电力、市政、高校科研单位、部队、智慧路灯等行业领域单位。今天的天合人仍不忘初心,牢记使命,将继续致力于气象环境监测和智慧云互联网行业的发展,关注相关行业先进技术和仪器的发展动向,继续为广大顾客提供行业动态、方案咨询、产品选型和优质的一体化解决方案。作为专业生产物联网设备的厂家,欢迎采购人使用我们的产品.在此,我们郑重承诺:1、我公司提供的产品皆为符合相关国家标准和使用技术要求的合格产品。2、我公司愿意为采购人提供符合或高于国家标准和使用要求的服务,免费提供培训服务,开通科技服务热线。3、我公司严格遵守国家法律法规,保证依法经营,严格按标准要求组织生产,严把产品厂检验关,保证出厂产品质量合格。4 、我公司现对我们生产的所有产品,提供一年内因质量问题以旧换新、一年质保、终身保修。软件终身享受免费升级待遇。5 、我公司如有最新实验成果,将免费提供给用户,让用户也能共享我们的科技实验成果。
    留言咨询
  • ROOT-700根系生长监测系统名称:根系生长监测系统 型号:ROOT-700 产地:德国用途:植物根系对固定植株和获得水分和养分起重要作用,但是土壤不可观测性的限制,给根系生态学的研究带来一定的困难。因此, 找到原位观察根系生长的方法对研究根系生态学就显得尤为重要。ROOT 700根系生长监测系统采用目前国际最流行微根窗技术,解决了这一难题。可以在土壤中原位360度多层次旋转式扫描获取根系剖面图像,可以扫描监测土壤中活体根系的生长动态。广泛运用于苗木培养、作物生长模型研究、根系病理分析等领域。 特点: 非破坏性的原位观测; 不变形的线性扫描; 极便携、易操作、测量快; 可扫描根系不同层次的图像,合成获得整体根系的剖面图; 可定点、连续观测根系在整个生长季的动态变化; USB数据传输,测量、存储方便。 技术规格:图像扫描采集仪分辨率1200DPI软件放大分辨率19200×19200像素图像像素9600×9600像素图像彩色模式彩色(Color)画面尺寸360°高分辨率图像(22×20厘米),非拼接图像扫描速度5-15秒接口USB端口工作方式连接笔记本电脑数据存储存储在笔记本电脑上供电通过笔记本电脑USB端口供电,或外接蓄电池,或交流电源适配器扫描角度360度标准透明管尺寸70mm外径,64mm内径,长度可定制;工作环境温度0-+50℃,相对湿度0-100%(无水汽凝结)植物根系图像分析软件基本测量根总长、根平均直径、根总面积、根总体积、根尖计数、分叉计数、交叠计数、根直径等级分布参数、根尖段长分布、可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。颜色分析能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。统计效果监视大批量的全自动根系分析,对各分析结果图可编辑修正。拓扑分析能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度和分叉数等,可单独显示标记根系的任意直径段相应各参数(分档数、档直径范围任意可改,可不等间距地自定义),并能进行根的分叉裁剪、合并、连接等修正,修正操作能回退,以快速获得100%正确的结果。根系分形维数能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。数据处理各分析图像、分布图、结果数据可保存,分析结果输出至Excel表,可输出分析标记图。 产地:德国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • 物候观测系统 400-860-5168转4377
    物候观测系统 --植物生长节律在线自动观测系统组成:物候监测主要监测生物长期适应温度条件的周期性变化,形成与此相适应的生长发育节律,系统是由高像素摄像机、大容量数据采集器、多光谱成像仪为核心部件组成的系统。采用达到500万像素的网络相机来获取高质量图像数据,系统配置的Netcam相机支持白平衡设置,多光谱成像仪采用ADC Micro多光谱相机,其像素能够达到320万像素其重量只有90克,相机支架采用高强度的野外专用固定支架来安装相机,专业设计通风降温防水装置,保证系统的稳固。多光谱相机介绍系统数据传输:可自动获取、存储和传输植物多光谱和植物图像数据,自动入库管理,相机支持TCP协议,搭载无线路由器进行远程传输; 系统供电:整套系统通过野外太阳能供电,并保证在无太阳条件下能够连续工作10天以上,系统设置了防雷雨装置,保证整套系统在恶略条件下正常运行。根据设备安装地点,数据采集器使用了低温扩展型号,保证每套设备能否在高寒高海拔地区等均能正常运行。系统软件:系统软件可自动计算和在线显示多种植被指数,并通过软件监测设备的运行状态。案例一:作物发育及长势自动观测识别系统该系统是对农作物生态参数进行自动观测的系统,观测要素包括作物发育期、作物盖度和密度等,可适用于玉米、小麦、水稻、棉花等作物。案例二:锡林浩特天然牧草生长发育动态监测系统盖度计算应用案例 农业部学科群21套自动气象站 中国气象局乌鲁木齐沙漠气象所图像监测(3套) 中国气象局成都高原所(4套) 上海环科院农气站,森林通量站(2套) 唐古拉冰冻圈冰川形态监测 江西林科院林地监测(在建中)
    留言咨询
  • 点击蓝字 关注我们应用AZR-300根系生长动态监测系统采用微根窗(Minirhizotron)技术,用于非破坏性地定位监测活体根系生长动态和根际微生态环境。植物根系生长受周边土壤条件如水分、盐分和养分多因素影响,同时根系分泌物对周边土壤物理、化学和生物学影响完全不同于一般土体。为了更好的理解根系系统,获取全面的土壤参数,系统可选ENVILog/IPH模块同步观测土壤水分、电导率、温度等基本参数,AZW-100模块采集土壤间隙水溶液分析土壤溶质变化,CCM-300叶绿素含量测量模块精确测量地上部分的叶绿素含量变化情况。根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于植物生理、作物生长模型研究、根系病理分析、苗木培养、昆虫行为生态等研究。原理AZR-300由一个插入土壤中的透明根管、摄像头或复合型360度旋转高分辨率扫描摄像头、标定手柄、图像采集存储系统组成。将摄像头伸入埋设在根系周围的透明根管内,旋转摄像头记录根系360度全景图像并可对根系局部区域特写拍照后存储,下载图像文件并借助专业根系分析软件对混合图像进行分析,从而跟踪了解根系生长、发育、周转过程。应用3840×2880像素(4800dpi)高清摄像头,10um超高分辨率, 可原位无损观测根毛、菌丝, 实时清晰观察记录土壤根系生长分布动态和微型动物行为轨迹。微根窗管中能清晰观察到植物幼根、细根的生长、发育、死亡,观察到多种类型土壤动物的地下活动轨迹。专业图像拍摄软件和标定手柄的组合,可以实现图像的快速拼接,确保相邻图片间无缝连接。图像的规则命名,便于后期利用图像分析软件进行批量分析。根际土壤参数监测土壤含水量是影响植物生长的重要因素之一,植物的根系与生长的土壤环境之间是 一种平衡关系,当土壤中的水分含量比较高时,土壤中的水分会通过根系的膜进入植物的体内伴随着土壤中大量的无机营养元素的吸收。但是当土壤中的水分含量不足时,植物根系中的溶质又会向土壤中移动,而土壤中的各元素进入植物体内的则偏少,会对植物的生长有所影响。ENVILog和IPH传感器利用时域反射技术(TDR)同步测量不同土壤廓线水分和电导率。植物根际周围埋设原位测管,测量剖面深度20cm、40cm、60cm、80cm等测量土壤不同廓线的水分和电导率数值。根际土壤溶液取样间隙水又称自由水,是土壤或水体底质空隙中不受土粒吸着能移动的水分。间隙水中含有各种化学物质,如养分元素、有毒重金属、可溶性有机物等,间隙水的移动与污染物的迁移、释放、转化有密切关系,所以在水环境中间隙水的研究具有重要的意义。AZW-100土壤溶液取样模块 AZW-100模块采用负压原理原位采集土壤孔隙水,用于后续实验室化学成分分析。AZW-100土壤溶液取样模块叶绿素含量测量植物叶绿素含量的高低直接影响植物根的数量和长度,叶绿素含量越高,根数量越多,根长度越长,越有利于植物对养分以及水分的吸收,也是衡量植物产量的重要指标。测量叶绿素含量不仅能够对植株的缺氮状况进行验证,同时也可以对植物的抗性能力进行评估。CCM-300叶绿素含量仪可以精确测量叶片的叶绿素绝对含量(mg/m2),采用测量叶绿素荧光比率(F735/F700)的原理,不受叶片或样品大小、厚度和形状的影响,非破坏性测量。可用于测量针叶、发育未完全的水稻、生于岩石上的丝状藻、地衣、草坪草、仙人掌、龙舌兰属植物、菠萝、拟南芥、果实、苔藓、叶茎、叶柄。CCM-300叶绿素含量测量模块技术参数根系图像捕获系统:1、工作方式:360度旋转摄像2、PAL制式彩色摄像头,分辨率可达3840*2880(4800dpi)3、图像抓取系统:触屏平板电脑,10英寸显示屏,可以控制切换白光和紫外光源,紫外光用以辨别活根和死根。4、拍照视野: 20mm×16mm 5、标定手柄:通过控制摄像头深度和转动以准确定位图片,总长2米,可拆卸分节式6、图像获取控制软件:操控根系生长监测系统主机,并实时设置根系图像参数7、根系专业分析软件。可将多个图像按时间和空间分布并列显示,软件可分析参数:细根的长、细根直径、细根表面积、细根总长、细根总面积、细根平均直径、细根数量等指标,同时通过计算可分析生物量、细根寿命、细根周转率等;土壤水分测量模块:测量范围:TDR原理,0-100%体积含水量, 精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%土壤溶液取样模块:采样头尺寸直径22mm,长度60mm取样管长度 20cm,40cm,50cm,100cm,200cm真空泵压力:0~-85kpa,0~100kpa真空泵显示:液晶显示电池电量,内置可充电锂电池,持续工作不少于8小时,双通道,带有溢流保护叶绿素含量测量模块:最佳测量范围41 mg• m-2到675 mg• m-2测量面积:任意面积、形状、厚度均可。分辨率:1mg• m-2重复性:±0.03存储容量:2GB;重量:0.16lbs 275g;电源:2节充电AA电池;根测管:内径:50mm,长度:1m、2m可选工作环境:0℃~55℃,相对湿度0~100%RH(没有水汽凝结)主机重量:900g澳作生态关注我们,获取更多信息
    留言咨询
  • Auto HyperAOP全自动表观高光谱观测系统,搭载了全自动太阳跟踪转台和海面表观采集系统,采用水面之上法,保持相对于太阳的正确观测角,实现全自动测量。Auto HyperAOP全自动太阳跟踪系统可根据设置,在测量时间和船舶方向满足条件的情况下,进行观测几何自动调整、光谱自动采集、自动调整积分时间以及同步记录观测视野图像等功能于一体,直接测量天空辐亮度、水面辐亮度、辐照度,推导出离水辐亮度和遥感反射率。Auto HyperAOP可提供长时间、高效、无人为误差的水面表观高光谱数据,支持定点观测,也支持走航观测。系统还可根据用户需求定制,集成生物、生态、水质、水文、气象、光学等多学科传感器。l 全自动:全自动太阳跟踪转台,始终保持相对于太阳的正确观测角l 智能化:智能自动调整观测几何角,也支持手动调节l 长时间:可长期连续观测l 应用广:支持定点观测,也支持走航观测l 可定制:可定制集成生物、生态、水质、水文、气象等多学科传感器系统组成搭载传感器标准配置:2个辐亮度传感器和1个辐照度传感器可选配置:表观光学传感器(Satlantic HyperOCR/TriOS RAMSES等)、大气光学传感器、小型气象站及其他传感器;全自动转台GPS模块(测量经纬度)和摄像头(监测辐亮度测量环境)数据采集系统标配原位存储或4G无线传输;可定制北斗、铱星等其他传输方式数据接收中心配套软件(中文,人机界面友好智能)及控显单元安装结构依据选择的观测仪器和安装现场定制技术指标
    留言咨询
  • 鱼类与水生生物呼吸在线观测系统是由丹麦奥尔堡大学和哥本哈根大学研制的世界上最著名、最为广泛应用的水生生物特别是鱼类呼吸测量仪器,主要用于鱼类、水生无脊椎动物、鱼卵及其胚胎乃至浮游生物的耗氧量测量,同时还可以配置CO2传感器和PH计以测量CO2排放、PH值等,与摄像头和行为分析软件配合进行行为轨迹观测分析等。广泛应用于海洋淡水鱼类等水生生物生态学、水体环境毒理学、水产养殖、鱼类行为生理生态、水生动物发育生态及水族箱等研究。右下图为幼体虹鳟鱼的呼吸代谢测量,可以看出,在开始时由于处理鱼时造成的应急反应,耗氧量很高,随后即达到一个较低的平稳水平&mdash &mdash 相当于其基础代谢率。从图中还可以看出,本系统有很高的时间解析度,可以反应突然的耗氧量变化。鱼类与水生生物呼吸观测系统采用&ldquo 间歇式&rdquo 测量原理,集合了&ldquo 开放式&rdquo (实时测量)和&ldquo 封闭式&rdquo (测量简单但精度差)的优点,同时又克服了开放式测量时间解析度差、封闭式不能连续长时间测量等缺点。&ldquo 间歇式&rdquo 测量的呼吸室放置在水浴槽(周边水体)内,循环泵可以确保呼吸室内水体的均一并保证有足量的水体流经传感器,而水体交换泵可以使周边水体与呼吸室内水体进行交换。测量时水体交换泵关闭(呼吸室类似封闭式),然后由计算机控制开启交换泵,周边水体被泵入呼吸室从而使氧气水平达到测量前的水平。整个过程分3个步骤:测量、水体交换、等待,测量时循环泵开启,水体交换时交换泵开启循环泵关闭,等待时交换泵关闭循环泵开启,每10分钟即可测量1次。如此以来,象&ldquo 开放式&rdquo 一样,实验可以无限期地进行下去,从而进行长时间的实验分析监测。在每个测量期,由于动物的呼吸耗氧,溶解氧浓度随着测量时间的延长而降低并呈直线相关关系,动物耗氧率(每小时每公斤体重消耗的毫克氧气)等于相关曲线的斜率乘以呼吸室的静体积除以动物的体重。 功能特点: &ldquo 间歇式&rdquo 测量,在线即时观测溶解氧及鱼类等水生生物的呼吸率(耗氧率)有一通道、四通道、八通道测量系统可供选择,多通道系统可同时测量多条鱼或其它水生生物的呼吸代谢情况,以便设计梯度对照实验等可在线测量氨浓度及排氨率(选配)可在线测量调控水体温度、溶解氧、pH/CO2、盐度等环境因子(选配),并测量分析环境因子与呼吸率的关系可同时在线测量观测自然水体呼吸(藻类及细菌等)和鱼类呼吸可选配静态呼吸室或游泳呼吸室,以便测量观测鱼类在静态条件下的基础呼吸代谢率及在不同游泳速度的情况下的呼吸代谢率可根据实验研究及经费预算情况选配原电池氧电极传感器或光纤荧光氧传感器可选配行为观测配件以观测研究鱼类的行为,包括活动时间与非活动时间、运行速度、加速度、移动距离、活动方向、活动取向、在某一区域的逗留时间、在某一区域的出现次数及对兴趣点的接触次数等 配置方案: 系统主要包括数据采集及分析单元、O2等测量单元、水环境控制单元、呼吸室及其它配件或备选件。根据需求,有单通道、4通道、8通道及更多通道测量系统,可以同时连接多个呼吸室以测量多个动物的呼吸代谢情况。根据溶解氧传感器的不同,又有原电池氧电极传感器组成的系统和光纤荧光氧气传感器组成的系统两种。 原电池氧电极技术:适于50g以上的鱼类呼吸测量及水环境溶解氧控制,具体有1通道、4通道、8通道供选择 光纤荧光传感器技术:高精度高稳定性,可用于鱼卵、昆虫、蚌类、螃蟹、鱼类乃至水体藻类呼吸测量,具体有1通道、4通道、8通道供选择 呼吸室有微型呼吸室、各种静态呼吸室和游泳室(活动呼吸室)等: 微型呼吸室 斑马鱼呼吸室 蚌类及螃蟹呼吸室 静态呼吸室测量 游泳室测量 技术性能指标1)、数据采集和分析单元:包括主机和软件,主机有数据采集和继电控制作用,为8通道(同时对8个静态呼吸室的鱼进行测量实验),USB接口,与计算机连接使用,主要性能指标如下:可以接光纤荧光氧气传感器或原电池氧电极;程序控制水体交换泵的开启时间实时记录显示呼吸室内O2随时间的变化;实时记录显示周边水体(水浴槽)O2随时间变化;实时记录耗氧率随时间的变化;自动计算显示平均耗氧量、相关系数R2;实施记录显示温度随时间的变化;解析度16bit,模拟输出6 x 0-5VDC测量数据自动储存成Excel文档和所有原始数据的txt文档重量1.4kg,大小21x20x74cm。2)、O2等测量单元:O2传感器有光纤氧气传感器、原电池氧电极供选配。荧光光纤氧气传感器具有很高的时空分辨率,但价格昂贵。检测极限可达15ppb,可在线测量水体和空气中的氧气,可长期在线监测,稳定性极强,响应时间小于1秒。对于小型鱼类及其它微小生物、需要高分辨率的实验等情况下必须选择此类传感器;具体性能指标: Mini型荧光光纤氧传感器, Mini光纤氧探头外径2.8mm,内径2.0mm,被覆有光隔离材料以避免生物自发光造成的干扰,因而可以测量藻类等(有叶绿素荧光)具有内部自发光的生物耗氧;零氧耗、高稳定性,响应时间快于6秒(气相测量);可测量液相和气相氧浓度,测量范围0-50%空气氧、0 - 22.5 mg/L,测量极限0.15 %空气氧、15 ppb溶解氧;氧浓度在线温度补偿,不受电磁信号干扰原电池氧电极价格低,但精度也低,需要一些维护措施和校对,具温度补偿,测量精度好于± 1%,响应时间低于20秒时间,一般在传感器和数采中间加一个前置放大器配合使用;3)、水环境控制模块包括水温监测控制系统、氧气监测与调节系统及CO2/pH监测与控制系统等,每个监测控制系统又有单通道和4通道供选配。水温监测控制系统包括控制器主机、温度传感器、潜水泵、不锈钢撒热旋管等;Pt100温度传感器,测量范围-200° C至850° C;Eheim潜水泵;温度调控范围-20° C 至 60° C ,最大功耗3.5瓦,响应时间1-60妙,精度优于0.2° C氧气监测与调节系统包括控制器主机、原电池氧电极、螺线阀等;原电池氧电极,测量范围0-200%;响应时间0.4-60妙,精度读数的0.1%,最大功耗3.5瓦。系统通过程控螺旋阀加氧或加氮以控制水质处于过氧或缺氧状态CO2/pH监测控制系统包括控制器主机、pH机、螺旋阀、气石及CapCTRL调控软件等, 通过监测PH值间接确定水中CO2含量并调节控制水的PH和CO2含量并实时监测,PH值测量范围0-14,分辨率0.01.用于监测和控制水体pH或pCO2。4)、静态呼吸室:玻璃或丙烯酸有机玻璃,直径3.3cm到190cm各种规格供选配,长度根据用户需求而定(取决于鱼类的长度),还可根据动物性状及用户需求配置其它各种类型的呼吸室,如适于斑马鱼的呼吸室、比目鱼呼吸室、螃蟹呼吸室等等。5)、 潜水泵为离心式,流速每分钟4.5升到57升各种规格供选配,技术规格如下:流速(L/min)4.5510204057功率(Watt)45102865806)、游泳室:包括外部温控水浴池、活动室、马达、潜水泵等,不同型号技术指标如下表: 产品编码体积[l]实验截面 [cm]鱼大小 [g]水速[cm/s]长宽[cm]SW10000170mlID2.64 X L101-43-37 SW100301.5ID5.5 X 204-123-50 SW10050530x7,5x7,520-803-110117x40SW101001040x10x1050-1503-110128x45SW101503055x14x14175-5003-110147x53SW102009070x20x20450-15005-150188x71SW1025018587,5x25x25750-500010-225227x917)、微型呼吸室,硼硅酸盐玻璃,直径有11.2、14.5mm、18.5mm及22.2mm各种规格供选配,与微型被覆玻璃的磁力搅拌棒及非损伤性荧光光纤氧传感器配合使用。微型搅拌器适于0.1-5ml体积的搅拌,功率为0.1-0.25W,可遥控1-4个微型磁力搅拌棒的搅 产地:欧洲
    留言咨询
  • 观测应用大气中CO2、CH4、N2O等温室气体迅速增加,是造成全球气候变化的最重要因素之一。 痕量温室气体的测定对准确评估大气温室气体源汇至关重要,目前在定量估计温室气体吸收汇方面还存在很大的不确定性,比较而言,甲烷吸收汇和氧化亚氮吸收汇的不确定性比CO2吸收汇大得多。新一代的Aerodyne稳定碳氮气体同位素光谱仪可以对气体和同位素同步进行高频(10Hz)连续的原位监测,同时可以实现痕量温室气体含量和碳氧同位素的同步观测,为痕量温室气体的监测和溯源提供了新的工具。生态系统碳氮循环过程中的多种温室气体排放速率(CO2、CH4、N2O等)的实时测定需要提高时间分辨率、空间分辨率,需要原位无损、长时间、全参数、高精度、一体化、自动化和远程操控等技术协助捕获参数的微量变化,并通过同位素13C-CO2 、18O-CO2溯源,了解碳、氮、水循环耦合过程。系统组成该系统主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。可以同时测量痕量气体及碳氧同位素N2O、 CH4、H2O、CO2、 δ13C-CO2、δ18O-CO2 。技术特点1、 用中红外激光直接吸收技术,测量频率可达10Hz,检测限达ppt级。2、独有的双激光测量技术,一个分析仪同时测量多个痕量气体和同位素,减少多台系统测量时的系统误差。3、TDLWINTEL软件提供光谱回放模式,可选择HITRAN光谱标库里的标准光谱曲线,对测量的光谱重新拟合,对测量结果重新判定, 其它品牌无法做到。如,若标气不纯、含杂质,可从光谱回放中判定。4、多气体测量时,可用高纯度氮(99.9992%)冲洗测量室,定期测定零气光谱,去除背景干扰。5、每次测量时关闭激光,从“Zero”测量光谱绝对值(非差分法、光腔衰荡),测量过程无需标定。6、专利技术-活性钝化装置可显著提高粘性气体分子如NH3的响应时间,实现粘性气体和非粘性气体的同步观测,如NH3, CO2, O3,N2O, CH4同步观测。7、专利技术-惯性颗粒物去除接口,专门用于粘性气体测量时,去除进气口颗粒物残余,去除对二次采样的污染。8、具有激光频点校准腔室,可以在测量过程中实时校准激光吸收光谱频点,防止频点飘移。技术参数参数N2OCH4CO2H2O精度 1S0.03ppb0.1ppb100ppb10ppm精度 100S0.01ppb0.25ppb25ppb5ppm测量范围0-10000ppb0-10000ppb0-5000ppm0-5000ppm响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选参数CO2δ13Cδ18O精度 1S25ppb0.1‰0.03‰精度 100S10ppb0.03‰0.03‰测量范围25ppb0.1‰0.1‰响应时间1-10HZ可选1-10HZ可选1-10HZ可选技术应用文献信息:Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest温带森林生态系统同位素组成的长期涡动协方差测量——大气CO2交换CO2净生态系统-大气交换(NEE)的稳定同位素组成携带了有关生态系统碳循环机制的信息。二氧化碳在水中的羧化、扩散和溶解等过程分馏了二氧化碳的同位素。因此,净CO2交换的同位素组成可用于探测这些过程,并为评估生物物理生态系统模型提供独立的约束条件。它还可以阐明生态系统对大气同位素收支的影响,这对陆地/海洋、源/汇分配有影响。此外,它还可用于将NEE划分为初级生产力总量和生态系统呼吸总量。NEE通常最直接的测量方法是涡流协方差(EC)法,在缺乏直接同位素通量测量的情况下,一些旨在划分NEE的研究中使用了所谓的EC/烧瓶法(Bowling et al.,1999)间接确定了NEE的碳同位素组成。 13C在1秒到30分钟的时间范围内发生,典型的标准偏差仅为0.02‰(Saleska等人,2006年),在2008年开发出专门的量子级联激光光谱仪(TILDAS)之前,还没有能够直接监测二氧化碳同位素的仪器。与标准EC系统一样,在平静的夜晚观察到“lostflux”,在其他时段也发挥一定作用。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与积分时间(τ),对于40 min的校准间隔以及几乎相等的样品和参考池CO2摩尔混合比。细对角线是白噪声的相应期望值。垂直的橙色虚线标志着哈佛森林涡旋输送的主要时间尺度。作为比较,Allan偏差为δ13C,无校准(实线灰线)和校准(虚线灰线)。 涡动协方差要求较高的采样率,粗略地说,在涡动输送的主要时间尺度上整合数据。我们的共谱(见第4.3节)表明,在哈佛森林,涡动输送在1到1000秒的时间尺度上非常重要,峰值约为50秒或30秒(取决于您是考虑傅立叶还是多分辨率共谱)。因此,上图表明,EC系统的TILDAS仪器噪声约为C=18 ppb,δ13C=0.02‰,δ18O=0.04‰(在40秒时用橙色垂直虚线标记)。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与校准间隔(△tcal),积分时间为100 s,样品和参考池CO2摩尔混合比几乎相等。上图展示了光谱仪的特殊稳定性,如使用△tcal等于4分钟(短校准时间间隔)可将噪声降低到2倍左右。1END1
    留言咨询
  • 观测应用大气中CO2、CH4、N2O等温室气体迅速增加,是造成全球气候变化的最重要因素之一。 痕量温室气体的测定对准确评估大气温室气体源汇至关重要,目前在定量估计温室气体吸收汇方面还存在很大的不确定性,比较而言,甲烷吸收汇和氧化亚氮吸收汇的不确定性比CO2吸收汇大得多。新一代的Aerodyne稳定碳氮气体同位素光谱仪可以对气体和同位素同步进行高频(10Hz)连续的原位监测,同时可以实现痕量温室气体含量和碳氧同位素的同步观测,为痕量温室气体的监测和溯源提供了新的工具。生态系统碳氮循环过程中的多种温室气体排放速率(CO2、CH4、N2O等)的实时测定需要提高时间分辨率、空间分辨率,需要原位无损、长时间、全参数、高精度、一体化、自动化和远程操控等技术协助捕获参数的微量变化,并通过同位素13C-CO2 、18O-CO2溯源,了解碳、氮、水循环耦合过程。系统组成该系统主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。可以同时测量痕量气体及碳氧同位素N2O、CH4、H2O、CO2、δ13C-CO2、δ18O-CO2 。技术特点1、用中红外激光直接吸收技术,测量频率可达10Hz,检测限达ppt级。2、独有的双激光测量技术,一个分析仪同时测量多个痕量气体和同位素,减少多台系统测量时的系统误差。3、TDLWINTEL软件提供光谱回放模式,可选择HITRAN光谱标库里的标准光谱曲线,对测量的光谱重新拟合,对测量结果重新判定, 其它品牌无法做到。如,若标气不纯、含杂质,可从光谱回放中判定。4、多气体测量时,可用高纯度氮(99.9992%)冲洗测量室,定期测定零气光谱,去除背景干扰。5、每次测量时关闭激光,从“Zero”测量光谱绝对值(非差分法、光腔衰荡),测量过程无需标定。6、专利技术-活性钝化装置可显著提高粘性气体分子如NH3的响应时间,实现粘性气体和非粘性气体的同步观测,如NH3, CO2, O3,N2O, CH4同步观测。7、专利技术-惯性颗粒物去除接口,专门用于粘性气体测量时,去除进气口颗粒物残余,去除对二次采样的污染。8、具有激光频点校准腔室,可以在测量过程中实时校准激光吸收光谱频点,防止频点飘移。四、技术参数参数N2OCH4CO2H2O精度 1s0.03ppb0.1ppb100ppb10ppm精度 100s0.01ppb0.25ppb25ppb5ppm测量范围0-10000ppb0-10000ppb0-5000ppm0-5000ppm响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选参数CO2δ13Cδ18O精度 1s25ppb0.1‰0.1‰精度 10s-0.03‰0.035‰精度 120s10ppb0.02‰0.03‰响应时间1-10HZ可选1-10HZ可选1-10HZ可选 技术应用文献信息:Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest温带森林生态系统同位素组成的长期涡动协方差测量——大气CO2交换CO2净生态系统-大气交换(NEE)的稳定同位素组成携带了有关生态系统碳循环机制的信息。二氧化碳在水中的羧化、扩散和溶解等过程分馏了二氧化碳的同位素。因此,净CO2交换的同位素组成可用于探测这些过程,并为评估生物物理生态系统模型提供独立的约束条件。它还可以阐明生态系统对大气同位素收支的影响,这对陆地/海洋、源/汇分配有影响。此外,它还可用于将NEE划分为初级生产力总量和生态系统呼吸总量。NEE通常最直接的测量方法是涡流协方差(EC)法,在缺乏直接同位素通量测量的情况下,一些旨在划分NEE的研究中使用了所谓的EC/烧瓶法(Bowling et al.,1999)间接确定了NEE的碳同位素组成。 13C在1秒到30分钟的时间范围内发生,典型的标准偏差仅为0.02‰(Saleska等人,2006年),在2008年开发出专门的量子级联激光光谱仪(TILDAS)之前,还没有能够直接监测二氧化碳同位素的仪器。与标准EC系统一样,在平静的夜晚观察到“lostflux”,在其他时段也发挥一定作用。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与积分时间(τ),对于40 min的校准间隔以及几乎相等的样品和参考池CO2摩尔混合比。细对角线是白噪声的相应期望值。垂直的橙色虚线标志着哈佛森林涡旋输送的主要时间尺度。作为比较,Allan偏差为δ13C,无校准(实线灰线)和校准(虚线灰线)。涡动协方差要求较高的采样率,粗略地说,在涡动输送的主要时间尺度上整合数据。我们的共谱(见第4.3节)表明,在哈佛森林,涡动输送在1到1000秒的时间尺度上非常重要,峰值约为50秒或30秒(取决于您是考虑傅立叶还是多分辨率共谱)。因此,上图表明,EC系统的TILDAS仪器噪声约为C=18 ppb,δ13C=0.02‰,δ18O=0.04‰(在40秒时用橙色垂直虚线标记)。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与校准间隔(△tcal),积分时间为100 s,样品和参考池CO2摩尔混合比几乎相等。 上图展示了光谱仪的特殊稳定性,如使用△tcal等于4分钟(短校准时间间隔)可将噪声降低到2倍左右。1END1
    留言咨询
  • 淄博海瑞德环境科技有限公司小气候观测系统专门为监测农业小气候气象因子量身定制,农业生态气象观测站对于研究气候变化与生态环境的关系具有重要意义。主要观测天气要素(温湿度、风速风向、压力、降水)、辐射(总辐射、净辐射、光合有效辐射)和蒸发等。系统特点 ★ 实时监测温度、湿度、风速、风向、雨量、气压、太阳净辐射、土壤平均温度、土壤湿度、土壤热通量等多种气象参数,气象观测要素的配置方式可以根据项目的实际情况进行灵和配置。★ 象数据采集仪具有气象数据采集、实时时钟、定时存储、参数设定、参数和气象历史数据掉电保 护等功能。★ 标准RS232/485/USB通讯功能,支持标准MODBUS通讯协议,可以通过有线连接、局域网连接、Modem 连接、GPRS 移动通讯、4G 通讯等多种通讯方式与气象站接收服务器组成气象监测系统。 ★ 电源供电系统有市电220V、直流 5V、12V 和太阳能供电系统多种方式进行选择。气象数据采集器配备有绿色节能电源管理模块系统,如使用太阳能系统方式供电,可保证连续阴雨天情况下十天无断电稳态工作。 ★ 采用轻金属支架和野外防护箱,外形美观、耐腐蚀、抗干扰,可长期运行于各种恶劣的室外环境。★ 完善的防雷击、抗干扰等保护措施。在电子线路方面采用了防雷、噪声抑止等多种抗干扰措施,在硬件和软件设计方面采用了降额设计、电磁兼容设计、野值剔除等多种可靠性设计技术,可靠运行于各种恶劣的野外环境,低功耗、高稳定性、高精度、可无人值守。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制