当前位置: 仪器信息网 > 行业主题 > >

高稳定性飞秒激光器

仪器信息网高稳定性飞秒激光器专题为您提供2024年最新高稳定性飞秒激光器价格报价、厂家品牌的相关信息, 包括高稳定性飞秒激光器参数、型号等,不管是国产,还是进口品牌的高稳定性飞秒激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高稳定性飞秒激光器相关的耗材配件、试剂标物,还有高稳定性飞秒激光器相关的最新资讯、资料,以及高稳定性飞秒激光器相关的解决方案。

高稳定性飞秒激光器相关的论坛

  • 氦氖激光器与半导体激光器的性能有何差异?

    [font=宋体]同样作为激光器,氦氖激光器稳定性比普通半导体激光器的稳定性更高,主要原因在于激光器受温度影响,激光波长会发生偏移,氦氖激光器的温度稳定度相比半导体激光器更稳定,受环境影响更小。[/font]

  • 【求助】关于质谱仪上,激光器的问题

    大家看看我贴的图片1 这个图片中的激光器的参数该怎么翻译?2 脉冲能量稳定性:2%,是什么意义?3 beam divergence(V×H)这个翻译为激光发散角,为什么值是:0.5×0.3mrad?4 有谁知道ABI的激光器用的什么牌子的?5 激光器的衰减参数是多少?

  • 航天器尺寸高稳定性复合材料桁架结构——第2部分 热变形测试方案和可行性试验研究

    航天器尺寸高稳定性复合材料桁架结构——第2部分 热变形测试方案和可行性试验研究

    [color=#990000]摘要:本文针对航天器尺寸高稳定性复合材料桁架结构的热变形测试,从样品的热膨胀系数测试到桁架全场大尺寸热变形测试,全方位提出了相应的解决方案。特别针对激光干涉法在大气环境下的高精度热变形测量,介绍了上海依阳公司开展的方案性试验结果,证明了激光干涉法完全可以用于大气环境下的位移测量,尽管测量精度有所降低,但完全可以满足百纳米量级的全场热变形测量,同时也证明了此方案的可行性,为打通整个技术路线奠定了基础。  [/color][color=#990000]关键词:尺寸稳定性,桁架,激光干涉法,热变形,热膨胀系数,航天器[/color][align=center][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232018598367_8587_3384_3.jpg!w690x387.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#990000][b]1. 引言[/b][/color]  从目前公开报道的相关文献来看,国内在航天器尺寸高稳定性复合材料桁架结构热变形测量方面还刚刚起步,还没找到有效可行的测试技术方向和手段,而对于尺寸高稳定性复合材料桁架的热变形测试,需要满足以下几方面的要求:  (1)为长期控制结构在轨期间的变形,除需测量材料的热膨胀系数之外,还需测量材料的湿热膨胀系数。  (2)为进一步降低复合材料的热膨胀系数,并获得超稳定的结构,还需深入研究复合材料的铺层设计、热膨胀系数的预测方法,同时提高样品级别的热膨胀系数测量准确性,要具备测量热膨胀系数1~5×10-8/K范围的能力。  (3)为进一步提高复合材料桁架结构整体变形测量的准确性、减小测量不确定度,需具备模拟空间环境的真空(低气压)条件下的原位测量能力,利用真空环境消除或减弱热对流所带来的不确定度。更准确的说,要对大尺寸桁架结构0.1 um的总变形量要有准确的测试能力。  本文针对上述要求,从样品的热膨胀系数测试到桁架全场大尺寸热变形测试,全方位提出了相应的解决方案。特别针对激光干涉法在大气环境下的高精度热变形测量,介绍了上海依阳公司开展的方案性试验结果,证明了激光干涉法完全可以用于大气环境下的位移测量,尽管测量精度有所降低,但完全可以满足百纳米量级的全场热变形测量。同时也证明了此方案的可行性,为打通整个技术路线奠定了基础。[b][color=#990000]2. 技术方案[/color][/b]  技术方案主要针对材料样品和整体桁架两个尺度级别的测试进行设计。样品级别的热膨胀和湿膨胀系数测试还采用顶杆法,整体桁架的热变形和热膨胀系数采用目前位移测量精度最高的激光干涉法,并实现激光干涉法既可以在大气环境下又可以在真空环境下进行测量。整体技术方案如图2-1所示。[align=center][img=,500,354]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232024059437_8538_3384_3.png!w690x489.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图2-1 热变形测试技术方案框图[/color][/align][color=#990000]2.1. 顶杆法高精度热膨胀系数测试方案[/color]  为了实现样品级别的高精度-8量级热膨胀系数测量,测试方案包括以下几方面的内容:  (1)采用传统顶杆法进行样品级别的热膨胀系数测量,顶杆的作用是将样品的尺寸变化传递出来,而不是非接触式激光干涉法直接对镜面样品表面进行测量。选择顶杆法的目的是降低样品制作难度和测量光路的调整难度。  (2)顶杆法超低热膨胀系数测量装置放置在放置在大气环境中,由此在实现变温测量的同时,还可以进行变湿测量。另外,在大气环境下样品的辐射加热速度要比真空条件下快很多,这使得大气环境下的测试效率远高于真空条件下的测试。  (3)普通热膨胀仪中的顶杆材料一般选用的是热膨胀系数为5.3×10-7/K的熔融石英,这限制了顶杆法热膨胀仪的测试能力。在±50℃范围内,可选用热膨胀系数小于1×10-8/K零膨胀材料,并结合基线修正,可使顶杆法具有非常高的测量精度。  (4)在±50℃范围内,样品温度的热电偶测温传感器和电加热控制方式很容易造成将近1℃的测量不确定度,室温附近热物理性能测试的最大误差源往往都是温度项。为此选用高精度的液体循环浴加热方式和热敏电阻温度传感器,可大幅度降低温度项误差。  (5)热膨胀测试中的位移传感器直接选用绝对测量的激光干涉仪,这样可以保证几个纳米的测量精度(不是分辨率)。  (6)在超低热膨胀系数测试中,位移传感器随环境温度变化所带来的影响非常明显,所有高精度的位移传感器都有温漂指标。为此,要对位移传感器采取恒温措施,根据不同位移传感器的温漂指标确定传感器环境温度的稳定性和恒温手段。[color=#990000]2.2. 激光干涉法全场测试方案[/color]  为了实现尺寸高稳定性复合材料桁架结构的全场热变形测量,如图2-1所示,测试方案选择采用激光干涉测试技术,这主要是基于以下几方面原因:  (1)激光干涉测试技术是目前工程应用中测量精度最高的成熟技术,由于是基于波长长度的测量,所以激光干涉法是一种绝对测试方法,比较容易实现几个纳米的位移测量精度。  (2)目前成熟的激光干涉测试技术,既可以测量热变形位移,又同时可以测量角度变化,非常适合桁架结构的全场热变形测量。  (3)目前成熟的激光干涉测试技术已经解决了以往激光干涉法测量对环境振动的苛刻要求问题,不再需要特殊和昂贵的抗震减震措施,在普通实验室的一般隔振台上就可以进行高精度测量。  激光干涉法全场测试方案是基于真空条件下的全场热变形测试,整个测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图2-2所示。[align=center][img=,690,274]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232024226897_8935_3384_3.png!w690x274.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图2-2 真空型激光干涉法桁架全场热变形测试系统结构示意图[/color][/align]  在实际测试过程中,根据被测对象情况,将激光干涉仪的分布位置设计为双端和单端测量布局两种形式。  双端测量布局形式如图2-3所示。[align=center][color=#990000][img=,690,246]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232137181177_6207_3384_3.png!w690x246.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-3 双端测量结构示意图[/color][/align]  双端测量布局具有以下特点:  (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。  (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。  单端测量布局形式如图2-4所示。[align=center][color=#990000][img=,690,439]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232137381187_8450_3384_3.png!w690x439.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-4 单端测量结构示意图[/color][/align]  单端测量布局具有以下特点:  (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。  (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试件测量。  (3)关键是可以进行空载测量,确定系统误差。  总之,对于尺寸高稳定性复合材料桁架结构的热变形高精度测量,采用真空型激光干涉法基本是国际上的主流测试方法,而且基本都是采用上述单端测量结构形式,由此可实现模拟空间真空环境的航天器桁架的原位热变形准确测量。  尽管真空型激光干涉法可以实现很高精度的热变形原位测量,且非常适合航天器桁架结构的整体性能评价和考核,但在实际应用中还存在以下几方面的不足:  (1)为满足庞大尺寸的航天飞行器桁架结构热变形测试,需要将整个桁架结构件完整放置在相应庞大的真空腔体内,并需要对真空腔体的光学窗口和真空度进行长时间的精确控制,以消除真空度变化带来的一系列影响,这使得整个测试系统非常复杂和造价昂贵。  (2)在真空环境下热传递速度很慢,桁架的整体加热和控温方式很容易造成温度不均匀,而且桁架温度达到稳定需要漫长的恒温时间。因此对于大尺寸桁架的热变形测试需要采用分区加热方式,这造成加热系统也非常复杂,且恒温时间同样的漫长。  (3)真空型激光干涉法测试系统的兼容性和灵活性较弱,需要采用巨大的真空腔体才能满足各种尺寸规格桁架的热变形测试,相应的调试工作量巨大。  综上所述,对于航天器尺寸高稳定性复合材料桁架的热变形测量,特别是对于桁架管材和整体结构的研制和考核,更大的需求是测试简便快速、覆盖广和造价低的大气环境下的激光干涉法测试系统,在测量精度上至少要比国内目前采用的数字散斑法提高1~2个数量级。[b][color=#990000]3. 大气环境下激光干涉法位移测量试验考核[/color][/b]  在大气环境下,大气中气体的波动会造成激光波长的改变,从而影响激光干涉法测量的准确性和稳定性,且非常容易造成试验过程中断,因此绝大多数激光干涉法测量基本都是在精确真空度控制条件下进行。  为了考核大气环境下激光干涉法测量的准确性和稳定性,采用激光干涉仪位移测量系统,并结合各种不同的实验环境和密封手段,对不同光程长度进行了测试。[color=#990000]3.1. 可行性试验装置和方法[/color]  可行性试验装置是在一个可拆装式木箱中放入一块0.6 m左右的石英板,石英板上分别放置参考反射镜和测量反射镜,并在石英板一侧固定激光器和干涉仪,整个木箱放置在气悬浮隔振台上,整个装置结构如图3-1所示。[align=center][color=#990000][img=,690,305]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232025524053_1160_3384_3.png!w690x305.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 可行性考核试验装置结构示意图[/color][/align]  为考核方案的可行性,设计了两种测量模式,如图3-2所示。[align=center][color=#990000][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026226487_6991_3384_3.png!w690x215.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2 测量模式示意图[/color][/align]  在空载测量模式下,测量光和参考光都照射在一个平面反射镜上,这时激光干涉仪的位移测量值应为零。空载测量模式常用来考核激光干涉仪的系统测量误差,即考核各种试验环境条件对激光干涉仪位移测量的影响。  在差分测量模式下,测量光和参考光分别照射在测量反射镜和参考反射镜上,两反射镜之间的距离变化量就代表被测物热变形大小,由此来考核大气环境下空气波动对激光干涉仪位移测量稳定性的影响。[color=#990000]3.2. 考核测试条件和结果[/color]  为了模拟不同大气环境条件,设计了以下几种试验环境,如表3-1所示。[align=center][color=#990000]表3-1 大气环境试验条件[/color][/align][align=center][img=,690,202]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026395370_1501_3384_3.png!w690x202.jpg[/img][/align]  在以上测试环境条件下,分别进行空载和差分两种模式测量,每种模式下的测试持续15分钟(选择更长测试时间会受到环境温度变化带来的影响),并进行多次重复测量,计算出不同环境条件和测量模式下的测量误差平均值。测量结果如表3-2所示。[align=center][color=#990000]表3-2 考核试验结果[/color][/align][align=center][img=,690,323]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232026537688_1320_3384_3.png!w690x323.jpg[/img][/align]  由表3-2所示的测试结果可以看出,通过增加密闭形式的木箱,可以大幅度降低空调和大气环境对测量带来的影响,在狭窄的密闭空间内,即使是大气环境下也能达到纳米量级的测量精度,由此证明了密闭容器大气环境下采用激光干涉法测量热变形技术方案的可行性。[color=#990000][b]4. 参考文献[/b][/color]  (1)刘国青, 阮剑华, 罗文波, 白刚. 航天器高稳定结构热变形分析与试验验证方法研究. 航天器工程, 2014, 23(2):64-70.  (2)马立, 杨凤龙, 陈维强, 齐卫红,李艳辉. 尺寸高稳定性复合材料桁架结构的研制. 航天器环境工程, 2016, 33(3).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center] [img=,690,215]https://ng1.17img.cn/bbsfiles/images/2019/01/201901232023218793_4119_3384_3.png!w690x215.jpg[/img][/align]

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

  • 【求助】如何评价激光粒度仪测试值稳定性(10%的测试偏差可以接受吗)?

    [font=楷体_GB2312][B][size=3][color=#DC143C]如题:激光粒度仪测试值稳定性如何确定?[/color][/size][/B][/font][color=#6495ED][size=3][font=楷体_GB2312]根据以前的测试结果,d(0.1)在0.9~1.3um时,各次测试偏差最大为10%d(0.5)在2~3um,d(0.9)在6~12um,各次测试偏差约6%[/font][/size][/color][color=#DC143C][font=楷体_GB2312][size=3]请问这样的数据能算稳定吗?[/size][/font][/color][color=#6495ED][size=3][font=楷体_GB2312]d(1.0)基本稳定,但数次测下来会有跳动:如样品A,有时为10um,有时为8.8um,或者同一次测试,开始是8.8um后来直接跳到10um并保持;样品B的最大值有时为61um,有时为71um;比较难理解。[/font][/size][/color]

  • 哪些仪器里面用飞秒激光?

    我们是专业做激光的,主要的产品是飞秒激光,当然也做纳秒激光等产品,请问到底哪些仪器里面用激光?我们做的飞秒激光器应该还是不错的,听说很多国外仪器里面用的是激光器,不过国内做仪器的人少,不好交流这些事情。如果有人可以交流,那么对于我们来讲是莫大的帮助,至少告诉我那些仪器用激光,这样也会缩小我们的查找范围。多谢!

  • 【推荐】判断和选择激光粒度分析仪注意事项

    1.粒度测量范围:粒度范围宽,适合的应用广。但不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(0.5—micro m)如何检测。   2.激光光源:一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。 3.检测器:因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。 MS2000 检测器: 专利非均匀交叉排列三维扇形检测系统, 实际分辨率最高, 无信号盲区. 相当于环形或十字星形排列的175个, 半圆形排列的93个. 使检测角达135度。 *通道数: 实际为检测器受光面积数。它有一个理论与实际的最优化值: - 偏少:接受的散射光不充分,准确度差; - 偏多:灵敏度太高, 导致重现性差。 MS 2000 每秒采样1000次, 测量时间仅2秒(2000次结果平均), 可使得准确性和重复性最优化。 4.是否使用完全的米氏理论:因为米氏光散射理论非常复杂,数据处理量大,所以有些厂家采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。 5.准确性和重复性指标: 越高越好。 6.稳定性:仪器的稳定性包括光路的稳定性和分散系统的稳定性和受周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。 7.扫描速度:扫描速度快可提高数据准确性和重复性,稳定性 8.可自动对中,无需更换镜头,可自动校正。 9.使用和维护的简便性: 10.是否符合国际标准。 ISO 13320 是对激光粒度分析仪的基本要求。但有些厂家基于己方利润的考虑,仍不按照该标准执行。 11.分散器: 湿法:是否具有超声和搅拌分散功能,超声功率和搅拌速度是否连续可调。 干法:是否密闭式测量,样品是否容易分散?如果不是,是否选择了喷射式分散器? 这是保证样品能够充分分散后得到真实分析结果的前提。

  • 半导体激光器的优点和缺点

    半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展的最新成果之一。半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。

  • 如何评价两台同型号仪器之间的稳定性?

    我们现在使用的是马尔文激光粒度仪2000型号,同样两台仪器同样的参数设置测试d(0.5)偏差偏大,如何去评价这两台仪器的稳定性?求教!经过查询资料参考ISO13320对重复性的表示,相对D50 10um, CoV 3%算正常 现有如下几个问题:1.变异因子cov适用于不同激光粒度仪之间稳定性测量吗?2.评价不同仪器不同人员测量的再现性是否应包含有设备变差E.V和评价人变差A.V在内?3.评价数据应不小于多少组,此评价才会有效?

  • 【分享】如何判断激光粒度分析仪的优劣

    判断激光粒度分析仪的优劣,主要看其以下几个方面:  1、粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射如何检测。  最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。  2、激光光源一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。检测器因为激光衍射光环半径越大,光强越弱,极易造成小粒子信噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。检测器的发展经历了圆形,半圆形和扇形几个阶段。  3、是否使用完全的米氏理论  因为米氏光散理论非常复杂,数据处理量大,所以有些厂家忽略颗粒本身折光和吸收等光学性质,采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。  4、准确性和重复性指标  越高越好。采用NIST标准粒子检测。  5、稳定性  仪器稳定性包括光路的稳定性和分散系统的稳定性和周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。  稳定性指标在厂家仪器说明中没有,用户只能凭对于仪器结构的判断和参观或询问其他长时间使用过的用户来判断。  6、扫描速度  扫描速度快可提高数据准确性,重复性和稳定性。  不同厂家的仪器扫描速度不同,从1次/秒到1000次/秒。一般来讲,循环扫描测试次数越多,平均结果的准确性越好,故速度越高越好;喷射式干法和喷雾更要求速度越高越好;自由降落式干法虽然速度不快,但由于粒子只通过样品区一次,速度也是快一些好。  用户每天需要处理的样品量,也是考虑速度的因素。  可自动对中,无需要换镜头,可自动校正。  7、使用和维护的简便性  关于这一点,在购买之前往往被忽视,而实际上直接决定了仪器使用效率和寿命。了解的方法是对仪器结构的了解和其他已有用户的反映。  拆卸、清洗是否方便:粒度仪分为主机和分散器两部分。而样品流动池总是需要定期清洗的,清洗间隔视样品性质而定。将主机和分散器合二为一的仪器往往将样品池深置于仪器内部,取出和拆卸均很繁琐,且极易碰坏光路系统。  8、是否符合国际标准标准  ISO13320标准是对激光粒度分析仪的基本要求。但并不是所有制造商都按照该标准执行。在测量亚微米粒子分布过程中,采用非激光衍射方法是不符合标准的。

  • 半导体激光器的优点和缺点有哪些?

    [font=&]半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展[/font][font=&]的最新成果之一。[/font][font=&]半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激[/font][font=&]光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光[/font][font=&]器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被[/font][font=&]半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波[/font][font=&]长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。[/font][font=&]早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之[/font][font=&]间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,[/font][font=&]目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多[/font][font=&]数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,[/font][font=&]在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。[/font]

  • 转帖]如何判断和选择激光粒度分析仪?

    判断激光粒度分析仪的优劣,主要看其以下几个方面:1.粒度测量范围:粒度范围宽,适合的应用广。但不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(0.5µ m)如何检测。2.激光光源:一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。3.检测器:因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。MS2000 检测器: 专利非均匀交叉排列三维扇形检测系统, 实际分辨率最高, 无信号盲区. 相当于环形或十字星形排列的175个, 半圆形排列的93个. 使检测角达135度。*通道数: 实际为检测器受光面积数。它有一个理论与实际的最优化值:- 偏少:接受的散射光不充分,准确度差 - 偏多:灵敏度太高, 导致重现性差。MS 2000 每秒采样1000次, 测量时间仅2秒(2000次结果平均), 可使得准确性和重复性最优化。4.是否使用完全的米氏理论:因为米氏光散射理论非常复杂,数据处理量大,所以有些厂家采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。5.准确性和重复性指标: 越高越好。6.稳定性:仪器的稳定性包括光路的稳定性和分散系统的稳定性和受周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。7.扫描速度:扫描速度快可提高数据准确性和重复性,稳定性8.可自动对中,无需更换镜头,可自动校正。9.使用和维护的简便性: 10.是否符合国际标准。 ISO 13320 是对激光粒度分析仪的基本要求。但有些厂家基于己方利润的考虑,仍不按照该标准执行。11.分散器:湿法:是否具有超声和搅拌分散功能,超声功率和搅拌速度是否连续可调。干法:是否密闭式测量,样品是否容易分散?如果不是,是否选择了喷射式分散器?这是保证样品能够充分分散后得到真实分析结果的前提。

  • 航天器尺寸高稳定性复合材料桁架结构——第1部分:热变形测试技术国内现状分析

    航天器尺寸高稳定性复合材料桁架结构——第1部分:热变形测试技术国内现状分析

    [color=#990000]摘要:本文根据公开文献报道,介绍国内在航天器尺寸高稳定性复合材料桁架结构热变形测试技术方面的研究进展,分析国内现有技术手段存在的不足和问题,并明确了尺寸高稳定性复合材料桁架的技术要求,为下一步热变形测试技术明确发展目标。[/color][color=#990000]关键词:尺寸稳定性,桁架,热变形,热膨胀系数,航天器[/color][align=center][img=,690,390]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221809393985_5910_3384_3.jpg!w690x390.jpg[/img][/align][hr/][color=#990000][b]1. 引言[/b][/color]  尺寸高稳定性复合材料结构是轻质、高精度航天器结构的重要发展方向,欧美国家自上世纪90年代就开始研究零膨胀、高/超高稳定性的航天器复合材料结构,并用于太空望远镜及其他光学仪器的支撑结构、天线反射面和重力梯度仪基座等。  传统航天器结构一般只要求高刚度、高强度、轻质量,对于尺寸稳定性的要求不是很高。但近些年来,随着遥感卫星、空间探测器、太空望远镜等高精度航天器对超稳平台的需求,尺寸高稳定性复合材料结构方面的研究也逐渐得到重视。  2010年以来,我国航天领域也开展了尺寸高稳定性复合材料结构的工程应用研究,主要用于卫星相机和其他精密仪器设备的支撑。为了满足这些仪器高分辨率有效载荷设计及安装要求,各种仪器必须具备高稳定的结构安装平台,安装平台既起支撑连接作用,又要具备耐受真空、温度影响的高的尺寸稳定性。高稳定结构在满足刚度、强度要求的基础上,应进一步满足地面温湿度环境和空间交变温度环境下的结构微变形要求。因此,高稳定结构研制须解决结构热稳定性的测试问题,以验证高稳定结构的热稳定性设计,为仿真模型修正提供依据,并对最终航天器高稳定结构进行考核和评价。  本文将根据公开文献报道,介绍国内在航天器尺寸高稳定性复合材料桁架结构热变形测试技术领域内的研究进展,分析国内现有技术手段存在的不足和问题,并明确了尺寸高稳定性复合材料桁架的技术要求,为下一步热变形测试技术明确发展目标。[color=#990000][b]2. 国内测试技术现状[/b][/color]  根据文献报道,2013年中国空间技术研究院研制的某卫星高稳定、高精度复合材料桁架结构,如图2-1所示,承载着敏感器、天线等精密设备。[align=center][color=#990000][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221812085502_1103_3384_3.png!w690x213.jpg[/img][/color][/align][align=center][color=#990000]图2-1 尺寸高稳定性桁架结构示意图和坐标系[/color][/align]  根据卫星的任务要求,该桁架结构不仅需要满足承载强度要求,而且还要保证其上设备与基准的相对位置或指向关系稳定不变,即在外部环境条件变化时,其结构几何尺寸变化很小或趋于零。为了满足设备的高精度安装及在轨高稳定性的要求,必须首先保证该桁架结构的制造精度及在轨的热稳定性。  针对热稳定性的考核测试,文献从桁架材料样品的热膨胀系数测试和整体桁架热变形测试两个不同尺度上进行了研究。[color=#990000]2.1. 样品热膨胀系数测试[/color]  样品级的热膨胀系数测试分别采用了德国耐驰公司的DIL 402C 热膨胀仪和国产热膨胀仪,并进行了测试结果对比,这两种仪器都是顶杆法热膨胀仪。因为受各种因素的限制,顶杆法热膨胀仪的测量精度最多能达到-7量级的水平,在没有采用低膨胀系数标准材料进行考核和校准的前提下,所以文献得到的桁架材料热膨胀系数测量结果只能确定在-7量级,无任何测量不确定度范围。  造成普通顶杆法热膨胀仪测量准确性无法满足低膨胀/超低膨胀材料需求的主要原因如下:  (1)热膨胀仪中的顶杆材料一般选用的是热膨胀系数为5.3×10-7/K的熔融石英,这就限制了顶杆法热膨胀仪的测试能力。  (2)在-5~+50℃范围内,样品温度的热电偶测温传感器和电加热控制方式很容易造成将近1℃的测量不确定度,室温附近热物理性能测试的最大误差源往往都是温度项。  (3)在普通顶杆法热膨胀仪中,测量样品变形的位移传感器测量不确定度往往在0.5~3微米范围内,并需定期进行计量校准。有些热膨胀仪只给出测量分辨率而不给出测量不确定度(或精度和误差等)和温度漂移指标,往往很容易夸大测试能力,需谨慎对待,需采用不同热膨胀系数范围的相应标准材料进行考核和校准。[color=#990000]2.2. 桁架全场热变形测试[/color]  针对高稳定性桁架,文献认为其整体桁架结构最小热变形仅为2微米左右,在对桁架结构进行热稳定测试时设计了以下要求:  (1)热稳定试验测试系统理论精度至少达到微米级;  (2)测试系统须耐受一定环境噪声、设备噪声及温度波动;  (3)整体桁架全场测量,尽可能减少测试仪器对结构热变形的影响,理想测试方法为非接触测量。  针对上述要求,文献提出了基于数字图像的散斑测试技术,并进行了热稳定测试研究。散斑测量装置为定制丹麦Dantec Dynamics公司的Q-400测试系统,可非接触测量全场变形,如图2-2所示。在测试开始时,被测物体表面涂有随机散斑,通过2台专用高精度CCD相机追踪温度加载前后的散斑变化;采用相关算法计算出物体表面因变形引起的变化,获得每个点的三维位移矢量,进行计算出全场每点的变形值和应变值,变形测量精度达到微米级。[align=center][color=#990000][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221812272113_6108_3384_3.jpg!w690x351.jpg[/img][/color][/align][align=center][color=#990000]图2-2 Q-400测试系统[/color][/align]  据文献报道,被测桁架结构由杆件和接头组成,最大外包络尺寸(未安装设备)为 1532 mm×837 mm×392 mm,温度范围为20~45℃,每间隔5℃测量一次变形,测试现场照片如图2-3所示。[align=center][color=#990000][img=,690,382]https://ng1.17img.cn/bbsfiles/images/2019/01/201901221813028822_5623_3384_3.png!w690x382.jpg[/img][/color][/align][align=center][color=#990000]图2-3 热变形测试[/color][/align]  整个测试过程中使桁架结构件经历7次热循环,随着循环次数增加,桁架结构变形量(天线a安装点相对敏感器c安装点的距离变化)减小,且逐渐趋于稳定,最初的变形量为3um/K,最终变形量为0.7um/K。相对于20~45℃的温度变化范围,近25℃的热循环温度变化使得桁架结构的总变形量范围应该为17.5~75um。如果天线a安装点与敏感器c安装点的间距按照1.5 m进行计算,那么相应的热膨胀系数变化范围为(0.7~3)×10-6/1.5=0.47~2×10-6/K,这与样品的热膨胀系数测试结果基本相吻合,多次热循环后的最终热膨胀系数处于一个量级。对于桁架结构上述变形量,采用数字散斑法还算能勉强进行测试,但如果桁架复合材料的热膨胀系数降低到5×10-8/K,那么桁架结构最终最小总变形量为25×1.5×5×10-8=1.9um,或0.075um/K;如果热膨胀系数再降低到1×10-8/K,桁架结构最终最小总变形量将为25×1.5×1×10-8=0.375um,或0.015um/K。对于这种微变形,再采用同量级精度的散斑法就无法进行测量,桁架结构的热变形规律基本淹没在散斑法的系统测量误差之内,而这种-8量级的超低热膨胀系数复合材料早在上世纪七八十年代NASA就应用在桁架结构中,这也是我国航天器复合材料桁架结构的必然趋势。  综上所述,桁架结构数字散斑法热变形测试中存在以下几方面的问题:  (1)测试前需要在桁架上涂覆散斑涂料,可能会给桁架带来影响。  (2)在文献中,标称激光散斑测量变形的精度为1微米,这已经达到了激光散斑法的测量极限,无法满足今后低变形桁架的测试需要。  (3)激光散斑法无法进行真空环境下的原位全场测量。  (4)国外研究和应用桁架技术已有四十年以上的经历,对桁架及其复合材料的热膨胀系数和热变形进行过大量测试方法研究,但从未在相关报道中看到过采用散斑法测量桁架结构的热变形,绝大多数采用的都是准确性更高的激光干涉法。[b][color=#990000]3. 尺寸高稳定性复合材料桁架热变形测试要求[/color][/b]  根据文献和国外的发展历程,对于尺寸高稳定性复合材料桁架热变形测试需要满足以下几方面的要求:  (1)为长期控制结构在轨期间的变形,除需测量材料的热膨胀系数之外,还需测量材料的湿热膨胀系数。  (2)为进一步降低复合材料的热膨胀系数,并获得超稳定的结构,还需深入研究复合材料的铺层设计、热膨胀系数的预测方法,同时提高样品级别的热膨胀系数测量准确性,要具备测量热膨胀系数1~5×10-8/K范围的能力。  (3)为进一步提高复合材料桁架结构整体变形测量的准确性、减小测量不确定度,需具备模拟空间环境的真空(低气压)条件下的原位测量能力,利用真空环境消除或减弱热对流所带来的不确定度。更准确的说,要对大尺寸桁架结构0.1um的总变形量要有准确的测试能力。[color=#990000][b]4. 参考文献[/b][/color]  (1)刘国青, 阮剑华, 罗文波, 白刚. 航天器高稳定结构热变形分析与试验验证方法研究. 航天器工程, 2014, 23(2):64-70.  (2)马立, 杨凤龙, 陈维强, 齐卫红,李艳辉. 尺寸高稳定性复合材料桁架结构的研制. 航天器环境工程, 2016, 33(3).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 马尔文2000激光器出现故障

    实验室有一台马尔文2000激光粒度仪,2012年购置的,最近开机后打开软件总是跳出提示说仪器激光器出现故障,不知道是哪里的问题,有经历过的么,请教一下是怎么回事,怎么维修

  • 求尼高力Impact410激光器配件

    我们1996年进口尼高力Impact410红外光谱仪,经广州德祥公司工程师检修确认激光器损坏,没有配件更换。请问哪位大侠能帮助维修或指点门路?

  • 光电液位开关与浮球开关哪个稳定性高?

    光电液位开关与浮球开关哪个稳定性高?

    [size=24px][font=宋体]首先,浮球开关是比较老的一款液位检测开关,内部是由浮球、干簧管、磁铁组成,它是通过水位的上升或下降而带动浮球和磁铁,当磁铁移动到干簧管位置时,驱动簧片开关打开或关闭。浮球开关是机械式工作原理,结构也很复杂松散,长时间使用容易产生水垢不易清洗,从而导致浮球卡死,而且这种结构不适合检测粘稠或有杂质液体。[/font][img=,566,322]https://ng1.17img.cn/bbsfiles/images/2022/12/202212081024169989_2326_4008598_3.jpg!w566x322.jpg[/img][font=宋体]光电液位开关内部含有光学电子元件,纯光学感应检测,内部是由发光二极管和光敏接收器组成,头部是棱镜结构。利用传感器的检测探头在接触液体和空气时发生的反射原理,从而输出不同的信号,因其原理,所以它不受液体颜色、温度、腐蚀性、压力等影响。[/font][font=宋体][font=宋体]光电液位开关具有体积小、稳定性高、内部无机械部件、安装方便、可靠性高等优点。此类传感器不仅可以实现水箱在位检测,还能实现多个点位同时检测,应用非常广泛。如果您有需要,我们可以给您提供专业的方案。[/font][font=Calibri][url=https://www.eptsz.cn/]www.eptsz.cn[/url][/font][/font][/size]

  • 【求助】请教非接触模式AFM稳定性如何改善

    【求助】请教非接触模式AFM稳定性如何改善

    不久前买了一批micromasch的针尖,按我的理解,非接触模式的afm针尖的力常数和共振频率越高针尖越稳定,因此我特地选取了高力常数,高共振频率的NSC11(三角的悬臂梁,参数详见附件),现在实验发现测试时针尖稳定性非常差,即使是在扫描起伏10nm,范围100nm^2的表面仍然发现针尖很容易失振。在这之前我在同样的样品上也用过micromasch(75kHz,力常数大概几个N/m)和nanosensor(290kHz,40N/m)的针尖,悬臂梁都是长方形的,但是并没有发现如此不稳定的状况。新买的针尖到目前试了7个针尖,都是同样的情况。有那位高手给点意见,在非接触模式的afm下可以通过调节哪些参数有效的控制针尖的不稳定性,可不可以通过一些什么测试(比如力曲线)从中看出针尖和表面间的作用如何,从而对此时的稳定性做出一定的评价。我用的Omicron的AFM/STM.另外我觉得可能是针尖的质量有问题,不过针尖的参数既然接近,那问题又会出在哪?不知有没有人向这些针尖代理要求更换针尖的,介绍下经验。谢谢![img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704272212_50265_1606326_3.jpg[/img]

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • 仪器稳定性问题

    按照光谱检定规则:1.A级 B级仪器短程稳定性RSD/% 2.0 4.0仪器长期稳定性RSD/% 4.0 8.0性能低于B级的,不能用于公证数据测试。2. 一般验收时的两个稳定性要求:短期稳定性:repeat n=10 RSD0.5%长期稳定性:repeat/10min,n=24 RSD2%你的ICP-OES稳定性如何?

  • ICP-MS的稳定性

    有许多因素影响[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的稳定性,它们包括:电源的波动,电子元件噪音,等离子体噪音,样品引入方式和样品的基体效应。总的说来,在现代仪器上,输入电源的波动都很小,而对信号稳定性有重要影响的主要根源均在于电源后的诸项,特别是高盐效应或难熔基体如Al或Zr所产生的效应。 长时间喷入高盐溶液所产生的影响是使采样锥逐渐堵塞,最后导致灵敏度迅速降低。不过,短时间喷入高盐溶液也将导致等离子体很不稳定。这是由于样品和溶剂负荷都增大,同时没有解离的物质也通过等离子体所致。从较大的微粒局部地释放出被测物质也产生挥发噪音。于是离子提取过程就可能受到影响,信号稳定性就被破坏。在激光烧蚀过程中,若被烧蚀的材料量很大,也会导致信号的不稳定。颗粒物质在等离子体中不能完全解离,就可能产生不稳定的信号。 引入含有高浓度难熔元素的溶液也可能影响信号的稳定性。 样品引入系统本身可能就是一个信号不稳定的根源,特别是当产生的信号为一瞬时的信号时,实际上,影响短期信号稳定性最严重的是等离子体本身及某些类型的雾化器的不正确操作以及某种雾化器联用的蠕动泵的脉动。 除了上述影响稳定性的因素外,循环水的影响事实上也是非常大的,实验中曾发现[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的短期稳定性和长期稳定性都很好,但有一个很奇怪的现象,即仪器的测量信号每5分钟左右有一个较大的周期性波动,波动的幅度高达10%左右,这种波动不随时间的延长而改变或消失,和是否使用离子交换树脂柱分离在线测量无关,也和蠕动泵的转速无关。经过认真分析,排除了电源的波动、电子元件噪音、等离子体噪音、样品引入方式、样品的基体效应等因素,最后发现其根源可能在于循环冷却水。本实验室的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]仪器原来配备的循环冷却水机损坏,更换了一台的循环冷却水机,其控温范围为±10C,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]在运行状态时,循环冷却水机的温度一般设定为100C,其温度变化周期正好也是5分钟左右,从而推测循环冷却水机可能是仪器测量信号波动的原因。

  • 仪器稳定性工作

    看到我的同事工作很认真,每天ICP等稳定后光谱分析都要做暗电流扫描,波长校正,矩管一般2天换一次,每天都重新走工作曲线,为了仪器的稳定性,您觉得正常吗?

  • 布鲁克的机子激光器出问题

    布鲁克的机子激光器出问题,换样品测的时候激光器必然熄灭是什么原因啊,改变下波长时又亮了。还有超过60S的扫描时间还是熄灭了,求助,

  • 比浮球稳定性更强的水位传感器-光电液位传感器

    [font=等线]光电液位传感器是一种利用[/font][font=等线]光线在水中和空中折射的不同来判断液位的变化,内部无机械运动,[/font][font=等线]相比传统的浮球[/font][font=等线]开关[/font][font=等线],光电液位传感器具有更强的稳定性和可靠性[/font][font=等线]。[/font][font=等线]光电液位传感器采用光电原理,内部没有任何机械运动部件,因此不会因为机械部件的损坏或卡死而导致传感器的故障。这种无机械运动的设计使得光电液位传感器在长时间运行中能够保持稳定的性能,减少了维护和更换零部件的频率,降低了使用成本。[/font][font=等线]光电液位传感器体积小巧,安装简便。相比之下,浮球式液位传感器通常需要较大的安装空间,并且安装过程中需要考虑浮球的浮动范围和机械部件的位置,安装相对复杂。而光电液位传感器可以根据实际需求选择不同尺寸和形状,灵活性更高,安装也更加方便快捷。[/font][font=等线][url=https://www.eptsz.com]光电液位传感器[/url]响应速度快,精度高。由于光电原理的特性,传感器可以快速准确地感知水位的变化,并及时输出相应的信号,可以满足对于水位变化监测精度要求较高的场景,如水池水位控制、流量监测等。[/font][font=等线]相比浮球式液位传感器在稳定性、可靠性、安装方便性和响应速度等方面都有明显优势,是一种更为先进和可靠的水位传感器技术。随着科技的不断进步和应用场景的不断拓展,光电液位传感器在工业自动化、环境监测等领域的应用前景广阔。[/font]

  • 【求助】FTIR仪器稳定性的检测问题!

    看到书上讲到在新的FTIR到货后,其中一项是要检测FTIR的稳定性,方法是仪器稳定后,用4cm-1的分辨率测定100%(透过)线,每隔10分钟测定一次,共测定六次,将6次测定得到的100%线用共同坐标画在一张图上,如果6次测定的基线重复,而且基本很平,说明仪器在此50分钟时间内,重复性和稳定性比较好。问题:这个基线的测定是不是和测定样品的红外光谱方法一样,先测背景,然后测再继续测100%线?另外,是不是每次测100%线时都要先进行一次背景扫描?我们这里的红外一般是半天扫描一次背景,不过FTIR是放在恒温恒湿房间里。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制