当前位置: 仪器信息网 > 行业主题 > >

高温纳米压痕测试仪

仪器信息网高温纳米压痕测试仪专题为您提供2024年最新高温纳米压痕测试仪价格报价、厂家品牌的相关信息, 包括高温纳米压痕测试仪参数、型号等,不管是国产,还是进口品牌的高温纳米压痕测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温纳米压痕测试仪相关的耗材配件、试剂标物,还有高温纳米压痕测试仪相关的最新资讯、资料,以及高温纳米压痕测试仪相关的解决方案。

高温纳米压痕测试仪相关的仪器

  • Hit 300 是一款优质且价格非常实惠的纳米硬度测试仪,专为每位用户和各种类型的环境打造。直观、自动化的 Hit 300 可让您每小时进行 600 次测量,甚至在您走开的时候。主动阻尼减震可确保在所有环境中的准确性。独特的双激光瞄准系统在对准样品时可提供小于 1 mm 的精度。设计时考虑了功能性:安装只需 15 分钟,培训到获得第一个结果只需 1 小时。市场上最简单易用的纳米压痕测试仪市场上最简单易用的纳米压痕测试仪价格不到同类仪器的一半主动减震隔离3 年质保15 分钟内准备就绪,可开始测量
    留言咨询
  • 高温超纳米压痕测试仪 (UNHT3 HTV)全球第一台真正意义的商品化的高温高真空超纳米压痕仪,主要测量小载荷下纳米尺度机械性能的测试系统,温度在 800 °C 以下的薄膜和涂层的硬度和弹性模量。专利 UNHT3 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。主要特点 新一代的高温纳米压痕测试仪环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。最高载荷框架刚度 (106 N/m) 和最低框架柔度 (0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“控制位移”和“载荷控制”模式。高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使振动降至最低。独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压痕针尖、参比针尖和样品进行加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1°C 内。符合 ISO 14577 和 ASTM E2546 国际标准技术指标载荷最大载荷100 mN载荷分辨率 6 nN本底噪音 0.5 [rms] [μN]*位移最大位移100 μm位移分辨率0.006 nm本底噪音0.15 [rms] [nm]*极限真空度10? mBar最高温度800 °C
    留言咨询
  • 市场功能上最多且简单易用的纳米压痕测试仪NHT3 /UNHT3专为纳米级位移测量提供小载荷,可用于测试硬度、弹性模量和蠕变等。其范围涵盖小载荷 (0.1 mN) 至大载荷 (500 mN),可在载荷范围内提供最大的通用性。由于独特的表面参比技术,无需等待其达到热稳定状态,立即完成压痕测试。全新“快速点阵”压痕模式可以进行一系列快速的测量(每小时测试量高达 600 个压痕)。主要特点最简单易用的纳米压痕测试仪最直观易用的软件:用简单的参数(最大载荷)、统计数据分析和保存的测试方案模板轻松开始测试适用于表面的不同放大倍数的多物镜视频显微镜最坚固耐用的纳米压痕测试仪:参比环保护压痕针尖不受碰撞“快速点阵”压痕模式带“模板”快速且符合要求:按照仪器化压入测试 (IIT) 的 ISO14577 标准要求,“快速点阵”压痕模式每小时测试压痕数目高达 600个全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速的分析数据多样品台夹具用于自动测试,6 样品夹具最多可固定 6 个样品,自定义样品夹具可固定更多样品采用独特的表面参比设计,保证高精度的位移测量表面参比为材料压入位移提供恒定参考(相对于样品表面)高框架刚度 (107 N/m) 为纳米压痕测量提供高准确度和精确度测量的高稳定性采用表面参比技术来实现纳米压痕测量中的高热稳定性(原始热漂移率 0.05 nm/s)框架使用定制的人造花岗岩以提高稳定性采用低热膨胀系数 (10-6/°C) Macor材料的独特设计确保高热稳定性可用于多种分析模式的多种测试模式多种测试模式:正弦模式、连续周期 (CMC)、恒定应变速率、用户自定义、高级点阵和多样品方案、载荷和位移控制模式各种机械性能的多种分析模式:硬度 (HIT、HV、HM)、弹性模量、储能和损耗模量、蠕变、应力 - 应变曲线使用标准压痕针尖可在液体中进行测量技术指标载荷最大载荷100/500 mN分辨率0.003/0.02 μN载荷本底噪音0.05 [rms] [μN]*位移最大位移100/200 μm分辨率0.03/0.01 nm深度本底噪音0.03[rms] [nN]*载荷框架刚度 107 N/m国际标准ISO 14577, ASTM E2546
    留言咨询
  • 超高精度、高稳定纳米压痕测试仪UNHT3 高精度超纳米压痕测试仪采用真实力传感器,可用于测量材料在纳米尺度的机械性能。UNHT3 采用独特的主动表面参比专利技术,几乎消除了热漂移和框架刚度的影响。因此,非常适用于所有类型的材料(包括聚合物、纳米涂层和软组织)的长时间测量。主要特点用于低载荷测量的最佳的计量型纳米压痕测试仪表面参比系统上的真实力传感器确保可直接测量微牛级的力主动表面参比技术:独特的专利设计(欧洲专利 1828744 和美国专利 7,685,868)从低压入位移(几纳米)到高压入位移(高达 100 μm)从低载荷 (10 μN) 到高载荷(高达 100 mN)市场上稳定性最高的纳米压痕测试仪长期蠕变测试不需要进行热漂移修正未修正的热漂移低至 10 fm/sec,消除了热漂移影响即使在高载荷下也保持高框架刚度 (108 N/m)独特的无热膨胀 Macor 材料载荷和位移的全部反馈控制系统“快速点阵”压痕模式带“模板”模式采用“快速点阵”压痕模式的快速测量点阵:每小时测量高达 600 次,符合 ISO14577 仪器化压入测试 (IIT) 要求全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速分析数据多样品夹具用于 6 个或更多样品连夜进行一系列测试高精度的纳米压痕测试仪用于进行准确的表面检测高质量载荷-位移曲线,载荷 0.1 mN超灵敏表面探测包含刚度探测测量凝胶和硬质材料载荷分辨率为 0.003 μN位移率分辨为 0.003 nm可用于多种分析模式的多种测试模式多种测试模式:连续多周期 (CMC)、恒定应变速率、用户自定义、高级点阵动态力学分析 (DMA) 模式包含“正弦”模式各种机械性能的不同分析:硬度、弹性模量、储能和损耗模量、蠕变、应力 - 应变、赫兹应力分析环境控制:真空、液体、温度和相对湿度技术指标载荷最大载荷100 mN分辨率3nN位移最大位移100 μm分辨率最小至 0.006 nm载荷框架刚度 107 N/m国际标准ISO 14577, ASTM E2546
    留言咨询
  • 用于软性与生物材料的纳米压痕仪安东帕 生物压痕测试仪TM 属于纳米压痕仪,非常适用于表征人体组织和软材料的机械性能。该仪器专为研究软生物材料(如软组织)而设计。依靠生物压痕仪无与伦比的载荷与位移范围和出色的分辨率,可以最为灵敏地表征软骨、生物组织、支架、水凝胶或眼部组织的弹性模量、蠕变及其他特性。仪器特点安东帕生物压痕测试仪™ :专为研究而设计借助安东帕 生物压痕测试仪TM,可以研究得出极软生物材料机械性能。更好地了解人体,以提高诊断水平、开发新药品和进行组织工程等等时,这个尤其重要。针对这些方面,生物压痕测试仪配备用于测试生物材料的特殊功能,例如能够执行受控的载荷与位移测量。另外,生物压痕测试仪通过检测接触刚度的变化来提供判定接触点,并提供专为生物材料而调整的测量模式。压痕程序:针对测量进行了优化安东帕 生物压痕测试仪TM 提供了多种压痕测试模式选择,包括标准、高级和循环模式。支持使用简单矩阵、高级矩阵和可视矩阵等各种矩阵进行统计评估和定制压痕测试。可以建立用户定义的压痕配置文件。接触点判定便捷,使生物压痕测试仪成为一种非常易于使用的仪器。测量系统:独具一类该仪器本身的测量单位专为高精度测量设计。集成式载荷传感器能够施加最大 20 mN 的载荷。位移传感器可以测量较大的量程。另外,安东帕 生物压痕测试仪TM 还具有良好的热稳定性,适合研究蠕变和流动特性。提供长焦物镜显微镜。高精度自动样品台使得能在 X、Y 和 Z 方向精确移动,从而将样品放到理想位置。软件:获得结果的关键所在借助功能强大但易于操作的软件,用户可以完全控制压痕程序(载荷、位移等)。软件会自动分析结果,另外还提供了统计模块,让用户可以获得数据和结果的快速分析。可以执行用户定义的 ASCII 导出,并且多名用户可以利用受控的访问权限来使用仪器。另外,还可以利用赫兹应力模型从压痕曲线的加载部分计算得出弹性模量,与常用的 Oliver & Pharr 方法相比,该方法更为适合生物材料。各种不同的针尖:用户可以根据需求选择安东帕 生物压痕测试仪TM 支持多种不同的压头,具体取决于用户的材料和需求。种类包括半径 0.01 mm 至 0.5 mm 及更大的球形、平头(平底圆柱)、锥形、维氏和立方锥,另外还可以按需要定制针尖,以便满足乃至要求最苛刻的应用要求(大半径球形、圆柱形等)。技术指标载荷最大载荷20 mN分辨率最小至 0.001 μN本底噪音0.1 [rms] [μN]*位移最大位移100 μm分辨率最小至 0.006 nm本底噪音0.25 [rms] [nm]*
    留言咨询
  • 奥地利安东帕Anton Paar高温纳米压痕测试仪HT-UNHT高温纳米压痕测试仪 (HT-UNHT) 是一个低载荷的纳米力学测试系统,可用于测量在高达 700 ℃ 温度下薄膜和涂层的硬度和弹性模量。已获专利的 UNHT 主动式表面参比技术与独有的加热技术相结合,可在任何温度条件下提供高稳定性解决方案。目前提供 3 种解决方案:- 高达 200 ℃(带有液体冷却)- 高达 450 °C(带有液体冷却)- 高达 700 ℃(真空)力: 100 mN深度:100 um温度: 700 °C
    留言咨询
  • 美国KLA InSEM HT原位高温纳米力学测试系统,纳米压痕仪
    留言咨询
  • UNHT3 高精度超纳米压痕测试仪采用真实力传感器和位移传感器,可用于测量材料在纳米尺度下的机械性能。UNHT3 采用独特的主动表面参比专利技术,消除了热漂移和框架刚度的影响。因此,非常适用于对所有类型的材料(包括聚合物、纳米涂层和软组织)进行原子到纳米尺度的长时间测量。对于极低或极温度下的测量,真空室版本 (UNHT3 HTV) 适用于 -150℃ 至 800℃ 的温度以及低至 10-7 mbar 的真空度。 型号: 超纳米压痕测试仪:UNHT3 Standard• 环境条件下的测量• 从室温至 200℃ 的可变温度测试 型号: 超纳米压痕测试仪:UNHT3 HTV• 真空环境可更好地控制加热,并保护压痕针尖和样品免受氧化• 全自动程序,可将热漂移降至最低• 从 -150℃ 至 800℃ 的可变温度测试• 真空度低至 10-7 mbar 最精确的纳米压痕测试仪UNHT3 可测量他人估计的结果:两个独立的位移和载荷传感器可真正可靠地控制力和压入深度。另外,UNHT3 采用独特的主动表面参比专利设计:参考参比针尖记录样品的表面位移位置,同时针尖压痕完成测量,以此扣除热漂移和框架刚度影响。这种独特的设计支持大范围的压入位移(从几 nm 到 100 μm)和压入载荷(从几 μN 到 100 mN)。 市场上稳定性最高的纳米压痕测试仪UNHT3 采用独特的主动表面参比专利技术和无热膨胀的 Zerodur 材质,是市面上唯一一款无需任何位移校正且热漂移低至可忽略不计 (10 fm/sec) 的纳米压痕测试仪。凭借独特的稳定性,UNHT3 是唯一可用来长期测量蠕变等测试的纳米压痕测试仪。 高效率和测量速度(每小时测量 600 次)借助该仪器独特的热稳定性,样品在安装后即刻便能进行测量,不必等待数小时以便其达到热稳定状态。因此,每天可单独测量许多样品。使用“快速点阵”模式,每小时可通过真实的压痕曲线和 600 多个压痕。另外,用户配置、测量模式、多样品测量和可定制报告也促使其成为市面上效率最高的仪器。 通过“Sinus 动态测量模式”进行其他动态机械分析 (DMA)使用集成的“Sinus 动态测量模式”,可以对机械特性进行位移曲线 DMA 分析(HIT、EIT 对比位移),并可测量薄膜到块状材料等样品的粘弹特性(E' 、E' ' :储能和损耗模量、tan δ)。Sinus 动态测量模式还提供其他功能,例如压痕仪快速校正以及应力/应变分析。 在高真空和高达 800℃ 的高温下进行测量UNHT3 的 HHT 版本是唯一一款配备全自动程序的超纳米压痕仪,可将热漂移降至最低,在整个温度范围内实现热漂移 3 nm/min。这是通过独特的专利加热控制系统来实现的,该加热控制系统以 0.1℃ 的精度同时控制样品和压痕针尖温度。压痕软件控制加热和环境条件,并与系统实时交互,以最大限度地减少热漂移,并启动所有所需的测量。您可以计划一组具有不同温度步长的任何类型的压痕(也可使用标准 UNHT3),仪器会根据预设矩阵自动进行测量。技术规格最大载荷 [mN]50 / 100(1)载荷分辨率 [nN]3载荷背底噪声 [rms] [μN]≤0.05加载速度 [mN/min]最多 1000 种深度量程 [μm]50 / 100(1)深度分辨率 [nm]0.003深度背底噪声 [rms] [nm]≤0.03数据采集频率 [kHz]192选件加热台的温度可高达 200℃?最低冷却至 -120℃ (2)?液体测试?(1) 可选(2) 带环境腔体专利:UNHT3 的主动表面参比技术:US 7,685,868 B2
    留言咨询
  • Hit 300 是一款优质且价格非常实惠的纳米硬度测试仪,专为每位用户和各种类型的环境打造。直观、自动化的 Hit 300 可让您每小时进行 600 次测量,甚至在您走开的时候。主动阻尼减震可确保在所有环境中的准确性。独特的双激光瞄准系统在对准样品时可提供小于 1 mm 的精度。设计时考虑了功能性:安装只需 15 分钟,培训到获得第一个结果只需 1 小时。市场上最简单易用的纳米压痕测试仪市场上最简单易用的纳米压痕测试仪价格不到同类仪器的一半主动减震隔离3 年质保15 分钟内准备就绪,可开始测量
    留言咨询
  • 产品信息Micro Materials 产品纳米力学综合性能测试系统NanoTest Xtreme可以实现真空环境下的纳米力学测试! 为了更加准确、可靠地预测材料的性质,研究学者们对测试条件模拟真实环境程度的要求越来越高。Micro Materials 公司的NanoTest Vantage 产品可以提供最全面的纳米力学测试功能。现在Micro Materials 公司的最新产品NanoTest Xtreme 可以实现真空环境下-40℃至1000℃这一温度范围内的纳米级力学测试, 并且没有氧化和结霜的影响。自1988年以来,我们一直处于纳米力学创新的前沿: ► 第一个商用高温纳米压痕平台 ► 第一台商用纳米冲击测试仪器 ► 第一个商用液体池 ► 第一台用于高真空、高温纳米力学的商用仪器更适合以下极端环境条件的研究:1、 航空发动机部件的高温 2、 用于高速加工的工具涂层 3、 电站蒸汽管的高温4、核反应堆覆层中的辐射效应 5、低温对油气管道焊缝修复的影响 NanoTest Xtreme 特点:a、500 mN加载头在真空下最高测试温度:1000°Cb、30 N加载头在真空下的最高测试温度:800°C c、真空下的最低测试温度:-40°C d、极限真空度:10-7 mbar e、与真空下所有标准纳米测试技术兼容(纳米压痕、纳米划痕、纳米磨损、纳米冲击、纳米微动) f、可选配第二个加载头,最大负载从500mN增加到30 N g、填充功能可在非空气环境中进行测试 h、高分辨率光学显微镜 i、可选配在整个温度范围内均可使用的SPM 成像/纳米定位平台 NanoTest Xtreme 优点:1、 将高温能力扩展到1000°C,超出NanoTest Vantage提供的850°C 2、 将低温能力提高至-40°C,且无样品结霜 3、超低的热漂移归因于与NanoTestVantage相同的仪器设计原理 4、 完整的纳米力学测试(例如压痕、划痕、磨损、摩擦、冲击) 5、能够填充气体以匹配材料操作环境参数指标1、加载框架 高度抛光的铝,用于快速脱气 加载应用:电磁 标准压头最大负载 500 mN 最大负载,可选高负载头 30 N 位移传感器 :电容式 负载分辩率 3 nN 位移分辨率 0.002 nm 重新定位精度 0.4 µ m 样品处理 :手动控制,网格压痕,特定位置选择,多个同时安装的样本 热漂移 0.005 nm/s 符合标准 :符合ISO 14577和ASTM 2546标准 2、高温平台 最高温度 1000 º C 压头尖端加热 :是 可测试样本区 16 mm x 16 mm 温度控制 :反馈和恒定功率 温度精度 0.1 º C 3、低温平台 最低温度 -40 º C 4、SPM纳米定位平台 扫描范围 100 µ m x 100 µ m X Y定位精度 2 nm 5、真空 工作模式 :真空或气体吹扫 真空度 :极限10-7 (标准10-6 )mbar 6、选件 纳米划痕,纳米磨损,纳米冲击,动态硬度 应用NanoTest&trade Xtreme可以广泛应用于:航空航天、汽车工业、半导体、生物医学、MEMS、高分子、薄膜和涂层,以及太阳能/燃料电池等。
    留言咨询
  • 一、高温原位纳米压痕仪简介 InSEM HT产品可以在真空环境下对小体积材料进行各种高温原位力学测试(室温~800℃),可以实时观察材料在高温下的形貌变化,进而获取更多关于材料在高温下的机械性能。InSEM HT(高温)通过在真空环境中单独加热尖端和样品来测量高温下的硬度、模量和硬度。INSEMHT与扫描电子显微镜(SEM)和聚焦离子束(FIB)或独立真空室兼容。附带的InView软件可以协助开发新的实验。科学出版物表明,InSEM HT结果与传统大型高温试验数据吻合。广泛的温度范围使InSEM HT成为开发研究材料的一个非常有价值的工具。二、 功能主要功能The CSM technique involves oscillating the probe during indentation to measure properties as a function of depth, force,time, or frequency. The option comes with a constant strain rate experiment that measures hardness and modulus as a functionof depth or load, which is the most common test method used across academia and industry. CSM is also used for other advancedoptions, including the ProbeDMA™ method for storage and loss modulus measurements and AccuFilm™ substrate-independent measurements.The CSM is integrated into the InQuest controller and InView software to deliver unparalleled ease of use and data quality 连续刚度测量(CSM)CSM技术在压痕过程中测量深度、力、时间或频率变化的力学性能。该方案采用恒定应变速率试验,测量硬度和模量作为深度或载荷的函数,是学术界和工业界最常用的试验方法。CSM还用于其他高级测试,包括存储和损耗模量测量的ProbeDMA™ 方法和AccuFilm™ 基底独立测量。NanoBlitz3D NanoBlitz 3D利用Inforce 50加载器采用玻氏压头测量高E(3Gpa)材料的三维测量图。NanoBlitz压痕小于1个点/ s,最多10万个压痕(300x300阵列),并提供每个压痕在载荷下的杨氏模量、硬度和刚度,大量的测试提高了统计的准确性。NanoBlitz 3D还提供可视化软件和数据处理功能。AccuFilm™ 薄膜方法包 AccuFilm™ 薄膜方法包是一种基于Hay-Crawford模型的全新测试方法,使用连续刚度测量(CSM)测量基底材料的独立特性。AccuFilm™ 修正了基底对软基板上硬薄膜以及硬基底上软薄膜测量的影响。ProbeDMA™ 聚合物方法包 聚合物包可以测量聚合物的模量对频率的函数。该测试包括平冲头、粘弹性参考材料和评价粘弹性性能的试验方法。这种测量技术是表征纳米聚合物和聚合物薄膜的关键技术,而传统的DMA测试仪器无法很好地测试这些薄膜。 划痕磨损试验功能划痕试验在以规定速度穿过样品表面时,向压头施加恒定或倾斜载荷。划痕试验可以表征许多材料系统,如薄膜、易碎陶瓷和聚合物。 Gemini 2D多轴传感器 Gemini 2D多轴技术将相同的标准压痕功能带到第二个横轴上,同时沿两个方向轴运行。该专利技术有助于深入了解材料特性和失效机制,可以测量泊松比、摩擦系数、划痕、磨损、剪切等参数。 技术特点KLA InSEM HT产品:先进的激发器的结构设计,完全实现载荷和位移的分别控制和探测,完美实现纳米压痕检测,包括动态力学测试、软材料测试、及薄膜测试等等。符合ISO14577的国际标准的压痕测试InSEM HT动态测试附件是由连续刚度专利技术的发明人研发的:动态力 学测试原理为在准静态加载过程中,施加在压头上一个正玄波,从而表征出随着压痕深度、载 荷、时间或者频率的变化材料力学性能的变化。NanoBlitz3D技术,提供每个压痕在载荷下的杨氏模量、硬度和刚度,大量的测试提高了统计的准确性,自动生成杨氏模量、硬度和刚度Mapping图,是研究非均相材料研究的重要方法。技术能力InForce50载荷激发器InForce1000载荷激发器高精度的纳米马达台最大加载载荷:50mN最大加载载荷:1000mNX 向最大行程:20 mm纵向载荷分辨率:3nN纵向载荷分辨率:6nNY 向最大行程:20 mm压头最大移动范围:50um压头最大移动范围:80umZ 向最大行程:25 mm位移噪音背景:0.01nm噪音背景:0.1nmEncoder X-Y-Z sensor resolution: 4 nm位移数字分辨率:0.002nm位移数字分辨率:0.004nm
    留言咨询
  • 市场上zui简单易用的纳米压痕测试仪Hit 300 集成了主动式电子减振台,其减振效果是传统空气振动隔离台的 4 倍。价格不到同类仪器的一主动减震隔离3 年质保15 分钟内准备就绪,可开始测量Hit 300 附带了一些功能,最终使每个人都可以进行压痕测试。压头Ω要,可在 15 分钟内完成校准。表面参考环可保护压头免受碰撞,并可消除热漂移的错误影响。该软件直观,可引导您逐步完成工作流程。得益于独特的集成激光十字器,您可以直接定位样品表面上必须进行测量的点。低于 1 mm 的目标对准精度使您受益。Hit 300 是市场上zui坚固耐用的纳米硬度测试计。所有部件均已按zui高寿命规格进行了测试。可将仪器安装在您需要的任何地方,从实验室到生产设施。Hit 300 交付时已完全配置好了,因此安装工作在 15 分钟内就可完成。操作简单,用户培训通常只需 1 小时。
    留言咨询
  • 纳米压痕测试仪 (NHT2) 专为纳米级深度测量提供低载荷,可用于测量硬度、弹性模量和蠕变等。该系统可用于表征有机材料、无机材料、硬质材料和软性材料。纳米压痕测试仪NHT2由于采用了独一无二的表面参比技术,因此无需等待热稳定即可在 3 分钟内完成压痕测试。力:分辨率:0.01 μN最大力:500 mN深度:分辨率:0.01 nm最深:200 μm框架刚度: 107 N/m国际标准:ISO 14577、ASTM E2546 等
    留言咨询
  • 纳米压痕仪 400-831-3325
    Nano IndenterG200Nano Indenter G200系统专为各种材料的表征和开发过程中进行纳米级测量而设计。 该系统是一个完全可升级,可扩展且经过生产验证的平台,全自动硬度测量可应用于质量控制和实验室环境。 产品描述Nano Indenter G200系统是一种准确,灵活,使用方便的纳米级机械测试仪器。 G200测量杨氏模量和硬度,包括从纳米到毫米的六个数量级的形变测量。 该系统还可以测量聚合物,凝胶和生物组织的复数模量以及薄金属膜的蠕变响应(应变率灵敏度)。 模块化选项可适用于各种应用:频率特定测试,定量刮擦和磨损测试,集成的基于探头的成像,高温纳米压痕测试,扩展负载容量高达10N和自定义测试。主要功能 电磁驱动可实现高动态范围下力和位移测量 用于成像划痕,高温纳米压痕测量和动态测试的模块化选项 直观的界面,用于快速测试设置 只需几个鼠标点击即可更改测试参数 实时实验控制,简便的测试协议开发和精确的热漂移补偿 屡获殊荣的高速“快速测试”选项,用于测量硬度和模量 多功能成像功能,测量扫描和流程化测试方法,帮助快速得到结果 简单快捷地确定压头面积函数和载荷框架刚度主要应用 高速硬度和模量测量 界面附着力测量 断裂韧性测量 粘弹性测量 扫描探针显微镜(3D成像) 耐磨损和耐刮擦 高温纳米压痕工业应用 大学,研究实验室和研究所 半导体和电子工业制造业 轮胎行业 涂层和涂料工业 生物医药行业 医疗仪器 更多应用:请根据您的要求与我们联系
    留言咨询
  • 超纳米压痕测试仪 (UNHT) 用于检测纳米材料的机械性能。由于 UNHT 采用获专利的主动式表面参比设计,因此几乎不受热漂移和框架柔顺的影响,并且完全适应各种材料的长时间测量需求,包括聚合物、极薄层和软组织。规格力:分辨率 : 3 nN最大力:100 mN深度:分辨率:0.003 nm最深:100 μm框架刚度: 108 N/m国际标准:ISO 14577、ASTM E2546 等
    留言咨询
  • 产品描述Nano Indenter G200系统是一种准确,灵活,使用方便的纳米级机械测试仪器。 G200测量杨氏模量和硬度,包括从纳米到毫米的六个数量级的形变测量。 该系统还可以测量聚合物,凝胶和生物组织的复数模量以及薄金属膜的蠕变响应(应变率灵敏度)。 模块化选项可适用于各种应用:频率特定测试,定量刮擦和磨损测试,集成的基于探头的成像,高温纳米压痕测试,扩展负载容量高达10N和自定义测试。主要功能电磁驱动可实现高动态范围下力和位移测量用于成像划痕,高温纳米压痕测量和动态测试的模块化选项直观的界面,用于快速测试设置 只需几个鼠标点击即可更改测试参数实时实验控制,简便的测试协议开发和精确的热漂移补偿屡获殊荣的高速“快速测试”选项,用于测量硬度和模量多功能成像功能,测量扫描和流程化测试方法,帮助快速得到结果简单快捷地确定压头面积函数和载荷框架刚度主要应用高速硬度和模量测量界面附着力测量断裂韧性测量粘弹性测量扫描探针显微镜(3D成像)耐磨损和耐刮擦高温纳米压痕工业应用大学,研究实验室和研究所半导体和电子工业制造业轮胎行业涂层和涂料工业生物医药行业医疗仪器更多应用:请根据您的要求与我们联系应用高速硬度和模量测量材料的机械特性表征在新材料的研究与开发中具有重要意义。 Nano Indenter G200能够以每秒一个数据点的速率测量硬度和模量。 对机械性能的高速评估使半导体和薄膜材料制造商能够将先进技术应用于生产线上的质量控制与保证。界面粘附力测量通常通过沉积能够存储弹性能量的高压缩层来诱导薄膜分层。 界面粘附力测量对于帮助用户理解薄膜的失效模式是至关重要的。Nano Indenter G200系统可以触发界面断裂并测量多层薄膜的粘附性和残余应力性质。断裂韧性断裂韧性是在平面应变条件下发生灾难性破坏的应力 – 强度因子的临界值。 较低的断裂韧性值表明存在预先存在的缺陷。 通过使用刚度映射法容易地通过纳米压痕评估断裂韧性。 (刚度映射需要连续刚度测量和NanoVision选项)粘弹特性聚合物是非常复杂的材料 它们的机械性能取决于化学,加工和热机械历史。 具体来讲,机械性能取决于材料分子母链的类型和长度,支化,交联,应变,温度和频率,并且这些依赖性通常是相互关联的。 为了采用聚合物进行研究时获得有用的信息进行决策,应在相关背景下对相关样品进行机械性能测量。 纳米压痕测试使得这种特定的测量更容易完成,对样品制备要求不高,可以很小且少量。 Nano Indenter G200系统还可用于通过在与材料接触时振荡压头来测量聚合物的复数模量和粘弹性。扫描探针显微镜(3D成像)Nano Indenter G200系统提供两种扫描探针显微镜方法,用于表征压痕印痕的裂缝长度,以测量设计应用中的断裂韧性。 断裂韧性定义为含有裂缝的缺陷材料抵抗断裂的能力。Nano Indenter G200的压电平台具有高定位精度和NanoVision选项,可提供高达1nm的步长编码器分辨率,最 大扫描尺寸为100μm×100μm。 测试扫描软件选项将X / Y运动系统与NanoSuite软件相结合,可提供500μm×500μm的最 大扫描尺寸。 NanoVision阶段和测试扫描选项都需要精确定位在样品区域来完成纳米压痕测试和断裂韧性计算。耐磨性和耐刮擦性Nano Indenter G200系统可以对各种材料进行划痕和磨损测试。 涂层和薄膜将经受许多工艺,测试这些薄膜的强度及其与基板的粘合性,例如化学和机械抛光(CMP)和引线键合。 重要的是这些材料在这些工艺过程中抵抗塑性形变并保持完整,也不会在基板上起泡。 对于介电材料,通常需要高硬度和弹性模量来支持这些制造工艺。高温机械测试高温下的纳米压痕提供了在达到塑性转变之前、之中与之上的精确测量能力,得到材料的纳米力学响应。 了解材料行为,例如形变机制和相变,可以预测材料失效并改善热机械加工过程中的控制。 在主要机械测试方法过程中改变温度是对材料进行纳米尺度测量塑形转变的一种方式。产品优势Nano Indenter G200系统专为各种材料的表征和开发过程中进行纳米级测量而设计。 该系统是一个完全可升级,可扩展且经过生产验证的平台,全自动硬度测量可应用于质量控制和实验室环境。
    留言咨询
  • 高温超纳米压痕测试仪 (UNHT3 HTV)全球第一台真正意义的商品化的高温高真空超纳米压痕仪,主要测量小载荷下纳米尺度机械性能的测试系统,温度在 800 °C 以下的薄膜和涂层的硬度和弹性模量。专利 UNHT3 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。主要特点 新一代的高温纳米压痕测试仪环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。最高载荷框架刚度 (106 N/m) 和最低框架柔度 (0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“控制位移”和“载荷控制”模式。高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使振动降至最低。独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压痕针尖、参比针尖和样品进行加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1°C 内。符合 ISO 14577 和 ASTM E2546 国际标准技术指标载荷最大载荷100 mN载荷分辨率 6 nN本底噪音 0.5 [rms] [μN]*位移最大位移100 μm位移分辨率0.006 nm本底噪音0.15 [rms] [nm]*极限真空度10? mBar最高温度800 °C
    留言咨询
  • 高温超纳米压痕测试仪 (UNHT3 HTV)全球第一台真正意义的商品化的高温高真空超纳米压痕仪,主要测量小载荷下纳米尺度机械性能的测试系统,温度在 800 °C 以下的薄膜和涂层的硬度和弹性模量。专利 UNHT3 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。主要特点 新一代的高温纳米压痕测试仪环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。最高载荷框架刚度 (106 N/m) 和最低框架柔度 (0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“控制位移”和“载荷控制”模式。高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使振动降至最低。独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压痕针尖、参比针尖和样品进行加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1°C 内。符合 ISO 14577 和 ASTM E2546 国际标准技术指标载荷最大载荷100 mN载荷分辨率 6 nN本底噪音 0.5 [rms] [μN]*位移最大位移100 μm位移分辨率0.006 nm本底噪音0.15 [rms] [nm]*极限真空度10? mBar最高温度800 °C
    留言咨询
  • 产品简介MML公司的纳米力学性能测试系统NanoTest&trade Vantage可以提供新型材料和特种材料开发和优化的大量信息。是世界上最灵活、功能最强大的纳米力学测试系统。它可以为用户提供高精度的纳米压痕测试,同时提供相关的全面综合测试:如纳米划痕和磨损测试、纳米冲击和疲劳测试、以及在高温、液体环境中的测试。这些纳米水平上的测试可以为我们提供材料表面局部的定量信息,数据可靠、测试省时。这些因数使得NanoTest&trade Vantage在世界范围内成为大学、工业实验室和标准机构中很多表征和优化项目的最关键设备。自1988年以来,我们一直走在纳米力学创新的前沿: ► 第一个商用高温纳米压痕平台 ► 第一台商用纳米冲击试验机 ► 第一个商用液体池 ► 第一台用于高真空、高温纳米力学的商用仪器产品优势:► 无与伦比的技术多样性 无纳米压痕,纳米划痕,纳米冲击,纳米微震动磨损,纳米磨损 ► 高精度的多种载荷纳米(至500mN)和微米(至30N) ► 引领市场的环境兼容能力 引高温(至850°C)、低温(至-20°C)、液体和湿度环境 ► 真正测量多 真 样性动态、静态、电气和多种成像模式技术指标1、加载框架 花岗岩复合材料设计专门用于计量应用 2、加载应用 电磁 标准头最大载荷 500 mN 位移传感器 线性电容 负载分辨率 3 nN 位移分辨率 0.002 nm 重复定位精度 0.4 µ m 可测试区域 50 mm x 100 mm 样品处理 手动控制并点击显微镜图像 热漂移 0.005 nm/s 接触力 1 µ N 显微镜– 4个物镜 x5, x10, x20 和 x40 屏幕放大率 x410, x825, x1650, x3300 隔振 负K,机械被动 压头交换时间 1 min 符合标准 完全符合ISO 14577和ASTM 2546 3、划痕模块 最大摩擦力 250 mN 摩擦载荷分辨率 10 µ m 最大划痕距离 10 mm 划痕速度 100 nm/s 至 0.1 mm/s 4、冲击模块 加速距离 高达20 µ m 接触应变率 高达104 s-1 微动磨损模块 轨道长度 ≤20 µ m 频率 ≤20 Hz 最大磨损次数 10 5、SPM纳米定位平台 XY扫描范围 100 µ m x 100 µ m Z扫描范围 20 μm 定位精度 ≤2 nm 闭环线性 99.97% 6、AFM XY扫描范围 110 µ m x 110 µ m Z范围 22 µ m 7、高温选项 温度 850 °C 主动,独立的样品和压头加热 是 压头材料 金刚石,氮化硼,蓝宝石 8、高负载头 最大载荷 30 N 摩擦载荷分辨率 300 μN 应用范围航空航天、汽车工业、半导体、生物医学、MEMS、高分子、薄膜和涂层,以及太阳能/燃料电池等
    留言咨询
  • InSEM HT高温原位纳米压痕仪通过在真空环境下独立加热压头和样品,以测量高温下的硬度、模量和刚度。InSEM HT与扫描电子显微镜 (SEM) 及聚焦离子束 (FIB) 工作室或独立真空室兼容。InView软件可帮助高级研究人员开发新实验。科学出版物显示,InSEM HT的结果与传统大尺度高温试验数据匹配良好。拥有较大的温度范围能力和较低的拥有成本,这种组合使 InSEM HT成为材料开发研究中的宝贵工具。产品描述InSEMHT(高温)通过在真空环境中分别独立加热压头和样品以测量高温下的硬度、模量和刚度。InSEM HT与扫描电子显微镜(SEM)和聚焦离子束(FIB)工作室,或独立的真空工作室兼容。配有的InView软件可帮助高级研究人员开发新的实验。科学出版文献表明,InSEM HT结果与传统的大尺度高温测试数据匹配良好。测试温度范围宽以及拥有成本低的特点使InSEM HT成为材料开发研究计划中很有价值的设备。InSEM HT高温测试系统可在真空环境下独立加热压头和样品,并与多种 SEM/FIB室或独立真空室兼容。在温度高达800℃ 时,可在原位模拟极端温度条件并获得一致、可靠的测试数据。钼制底座上的单晶碳化钨压头针对高温测试应用进行了优化,有多种几何形状可供选择。主要功能● InForce 50驱动器,压头可加热,适用于电容位移测量和电磁力驱动,并配有可互换的压头● 样品可升温至800°C,采用10mm样品尺寸和真空兼容的样品安装系统● InQuest高速数字控制器,具有100kHz数据采集速率和20μs时间常数● 用于样本定位的XYZ运动系统● SEM视频捕获,可以将SEM图像和测试数据进行同步● 独特的软件集成压头校准系统,可实现快速,准确的压头校准● 与Windows10兼容的InView控制和数据审查软件以及测试方法开发软件,用于用户自定义实验主要应用● 高温测试● 硬度和模量测量(Oliver-Pharr)● 连续刚度测量● 高速材料特性分布图● 蠕变测量● 应变速率敏感因子硬度和模量测量(Oliver-Pharr)机械性能对新材料的研发至关重要。InSEM HT纳米压痕仪可测量各种材料的硬度,尤其是监控在热应力下的机械性能的变化。连续刚度测量连续刚度测量用于量化动态材料特性,例如应变率和频率引起的影响。InSEM HT纳米压痕仪提供从0.1Hz到1kHz的动态激发,可进行基于时间的监测,准确确定初始表面接触并连续测量接触刚度随深度或频率的变化。快速材料力学性能成像对于复合材料而言,不同区域之间的力学性能可能存在很大差异。InSEM HT在X 轴和Y轴上的样品台可移动范围为20毫米,Z轴的范围为25毫米,还能在样品区域内测试各种样品高度。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。高温测试很多行业领域的材料研究不仅侧重于机械应力下的性能,还有热应力下的性能。InSEM HT是专为下一代材料测试而设计的仪器,可用于如航空航天、车辆和军事/防御等先进技术应用场景。蠕变测量材料由于外加负载以及温度升高而发生变形。蠕变测量是机械和热应力联合作用下应变随时间的变化,蠕变行为对于车辆和航空航天系统的有效设计至关重要。InSEM HT支持的测试温度高达800℃,并可同时监测材料的应变。应变速率敏感因子使用应变速率敏感因子,可以定量描述不同加载条件下产生的应变。例如,短时间内在材料上施加机械/热应力,产生的应变可能与更缓慢地施加应力时不同。InSEM HT支持用户自定义实验,在高达800°C时测量不同加载条件下的应变响应。适用行业● 大学、实验室和研究所● 航空航天● 汽车制造● 硬质涂层● 核能● 军事/国防● 更多应用,请联系我们以探讨您的需求选配件连续刚度测量(CSM)CSM技术在压痕过程中控制压头振荡,以测量样品性能随深度、荷载、时间或频率的变化。该选项默认进行恒应变速率测试,测量硬度和模量随深度或载荷的变化,这是学术界和工业界最常用的测试方法。CSM 还可用于其他高级选件,包括用于储存模量和损耗模量测量的ProbeDMA&trade 方法和排除衬底影响的测量方法AccuFilm&trade 。CSM功能集成在InQuest控制器和InView软件中,使用极为简便,且确保数据质量。InForce 50作动器InForce 50作动器可以施加最高50mN的力以进行纳米力学测试。KLA专利的电磁力加载技术,确保测量的可靠性以及加载力与位移的长期稳定性。行业领先的机械设计可确保单一方向自由度的谐波运动,从而沿单轴方向控制加载力和位移。InForce和Gemini作动器系列的压头均可互换。InForce 50作动器与CSM、NanoBlitz、ProbeDMA&trade 、生物材料、样品加热、划痕、磨损和 ISO 14577等测试选项兼容。InForce 1000作动器InForce 1000作动器采用高达1000mN的力度执行纳米力学测试。KLA专利的电磁力加载技术,确保测量的可靠性以及加载力与位移的长期稳定性。行业领先的机械设计可确保单一方向自由度的谐波运动,从而沿单轴方向控制加载力和位移。InForce和Gemini作动器系列的压头均可互换。InForce 1000作动器与CSM、NanoBlitz、样品加热、划痕、磨损和ISO 14577等测试选项兼容。NanoBlitz 3DNanoBlitz 3D可以采用InForce 50/InForce1000作动器和玻式压头,获得杨氏模量较高(3GPa)的材料的纳米力学特性3D图。NanoBlitz 3D每个压痕时间小于1s,单次测试可包含多达100,000个压痕点(300×300阵列),获得每个压痕点在特定载荷下的杨氏模量(E)、硬度(H)和接触刚度(S)。大量的测试数据能够提高统计的准确性。统计直方图可以呈现样品中的多个物相或材料组分。NanoBlitz 3D方法包还包含可视化软件和数据处理功能。AccuFilm &trade 薄膜测试方法AccuFilm&trade 薄膜测试方法是一种基于Hay-Crawford模型的InView测试方法,使用连续刚度测量(CSM)来测量排除基材影响的材料特性。AccuFilm&trade 可对软衬底上的硬性薄膜测量进行衬底材质影响的校正,也可对硬衬底上的软性薄膜进行同类校正。DataBurst对于配有InView软件和InQuest控制器的系统,DataBurst选项容许以大于1kHz的速率记录位移数据,用于测量阶跃载荷响应、位移突进(pop-in)和其它瞬时事件。InSEM HT系统与用户方法开发选件搭配使用,可修改方法方便与DataBurst协作使用。InView的“用户方法开发”选项InView提供一个功能极为强大且直观的实验脚本编辑平台,可用于设计新颖或复杂的实验。经验丰富的用户可借助InSEM HT设置并执行几乎所有小尺度的机械测试。KLA独家提供此功能。压头和标准样品有多种尖锐的压头可供选择,例如玻式(Berkovich)、立方角(cube corner)和维氏(Vickers)压头,还可提供平压头、球形压头和其它几何形状的压头。整个产品系列均提供标准样品和校准标准。相关产品
    留言咨询
  • iMicro纳米压痕仪iMicro纳米压痕仪可轻松测量硬质涂层、薄膜和小尺寸材料等。其准确、灵活,并且用户友好,可以提供压痕、硬度测试、划痕和纳米级万能试验等多种纳米力学测试。作动器易于更换,能够提供大范围的动态载荷和位移,对于从软质聚合物到硬质金属/陶瓷等材料,均可以进行准确而可重复的测试。模块化的功能选项可以适配各种应用:材料力学特性图谱、频率相关特性测试、划痕和磨损测试以及高温测试。iMicro提供一整套的扩展功能选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D材料力学性能成像、Gemini 2D作动器用于摩擦学和其它双轴力学测量。 产品描述iMicro 纳米压痕仪标配InForce 1000作动器,用于进行纳米压痕和万能纳米力学试验,并可选配InForce 50作动器用于测试较软的材料。InView 软件包灵活、现代,让用户轻松进行纳米尺度测试。iMicro是一款紧凑型测试平台,其箱体中内置高速InQuest控制器和隔振框架。各种不同的材料和器件均可以进行测试,包括金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等。 产品特色InForce 1000作动器采用电容式位移传感和电磁力驱动,且压头易于更换InForce 50作动器选件,提供最大50mN的法向力,可用于测量较软的材料;Gemini 2D作动器选件,可实现两个方向的动态测量独特的压头校准系统,集成在软件中,可实现快速、准确的压头校准InQuest高速控制器电路,数据采集速率可达100kHz,时间常数最快为20µ sXY运动系统以及易于安装的磁性样品台高刚度框架,且集成隔振功能集成显微镜,数字变焦,可实现精确的压痕定位符合ISO 14577等标准的测试方法InView软件包,包含RunTest、ReviewData、InFocus、InView University在线培训和InView移动应用程序 产品应用硬度和模量测量(基于Oliver-Pharr模型)快速材料力学性能成像ISO 14577 硬度测试聚合物损耗因子、储存模量和损耗模量定量的划痕和磨损测试高温纳米压痕测试 适用行业大学、科研实验室和研究所半导体与封装产业PVD/CVD 硬质涂层(DLC、TiN)MEMS:微机电系统/万能纳米力学试验陶瓷与玻璃金属与合金制药涂层 涂料复合材料电池与储能汽车与航空航天主要应用硬度和模量测量(基于 Oliver-Pharr 模型)力学性能表征在薄膜的制造和工艺控制中至关重要,其中包括汽车工业中的涂层质量控制,以及半导体制造中前段和后段的工艺控制。iMicro纳米压痕仪能够测量从超软凝胶到硬质涂层的各种材料的硬度和模量。高效地评估材料性能,保证了在生产线上进行有效的质量管控。快速材料力学性能成像对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能存在很大差异。iMicro的样品台在X轴和Y轴方向上能够分别移动100mm,且其在Z轴方向上能够移动25mm,因此可以测试尺寸大且高度不同的样品。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。ISO 14577 硬度测试iMicro 纳米压痕仪内置预先编写的 ISO 14577 测试方法,其依据 ISO 14577 标准测量材料硬度。该测试方法可以自动测量并输出杨氏模量、纳米压痕硬度、维氏硬度和归一化压痕功。聚合物损耗因子、储存模量和损耗模量iMicro 纳米压痕仪能够测量超软材料(包括粘弹性聚合物)的损耗因子、储存模量和损耗模量。储存模量、损耗模量和损耗因子是粘弹性聚合物的重要性能,因为作用到此类材料上的能量以弹性能的形式储存或以热量的形式耗散。上述指标即用于衡量材料中的能量储存和耗散情况。定量的划痕和磨损测试iMicro 可以对多种材料进行划痕和磨损测试。涂层和薄膜要经受多种工艺流程,例如化学机械抛光(CMP)和引线键合,这会考验这些薄膜的强度及其与衬底的附着力。对这些材料来说,重要的是在这些流程中抵抗塑性形变,并保持完好而不从衬底上剥离。理想情况下,电介质材料应具有较高的硬度和弹性模量,这将有助于其在经历制造流程时有效抵抗外界影响。高温纳米压痕测试高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。
    留言咨询
  • 产品描述iMicro采用InForce 1000驱动器进行纳米压痕和通用纳米机械测试,并可选择添加InForce 50驱动器来测试较软的材料。InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。iMicro是内置高速InQuest控制器和隔振门架的紧凑平台。 可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能InForce 1000驱动器,用于电容位移测量,并配有电磁启动的可互换探头可选的InForce 50驱动器提供最 大50mN的法向力来测量软性材料,并提供可选的Gemini 2D力荷载传感器用于双轴动态测量。独特的软件集成探头校准系统,可实现快速准确的探头校准InQuest高速控制器电子设备,具有100kHz数据采集速率和20μs时间常数XY移动系统以及易于安装的磁性样品架高刚度龙门架,集成隔振功能带数字变焦的集成显微镜,可实现精确的压痕定位ISO 14577和标准化测试方法InView软件包,包含RunTest、ReviewData、InFocus报告、InView大学在线培训和InView移动应用程序主要应用硬度和模量测量(Oliver Pharr)高速材料性质分布ISO 14577硬度测试聚合物tan delta,储存和损耗模量定量刮擦和磨损测试样品加热工业应用大学、研究实验室和研究所半导体行业PVD / CVD硬涂层(DLC,TiN)MEMS(微机电系统)/纳米级通用测试陶瓷和玻璃金属和合金制药涂料和油漆复合材料电池和储能汽车和航空航天应用硬度和模量测量(Oliver Pharr)机械表征在薄膜的加工和制造中至关重要,其中包括汽车工业中的涂层质量,以及半导体制造前段和后段的工艺控制。iMicro纳米压痕仪能够测量从超软凝胶到硬涂层的各种材料的硬度和模量。 对这些特性的高速评估保证了在生产线上进行质量控制。高速材料性质分布对于包括复合材料在内的许多材料,其机械性能可能因部位而异。 iMicro的样品平台可以在X轴和Y轴上移动100mm,并在Z轴方向移动25mm,这使得该系统适用于不同的样品高度并可以在很大的样品区域上进行测量。 可选的NanoBlitz形貌和层析成像软件可以快速绘制任何测得的机械属性的彩色分布图。ISO 14577硬度测试iMicro纳米压痕仪包括预先编写的ISO 14577测试方法,可测量符合ISO 14577标准的材料硬度。 该测试方法对杨氏模量、仪器硬度、维氏硬度和标准化压痕进行自动测量和报告。聚合物Tan Delta、储存和损失模量iMicro纳米压痕仪能够针对包括粘弹性聚合物的超软材料测量tan delta和储存与损耗模量。 储存与损耗模量以及tan delta是粘弹性聚合物的重要特性,其能量作为弹性能量存储并作为热量消耗。 这两个指标都用于测量给定材料的能量消耗。定量划痕和磨损测试iMicro可以对各种材料进行刮擦和磨损测试。 涂层和薄膜会经过化学机械抛光(CMP)和引线键合等多道工艺,考验薄膜的强度及其与基板的粘合性。 重要的是这些材料在这些工艺中抵制塑性变形,并且保持原样而不会基板起泡。 理想地,介电材料应具有高硬度和弹性模量,因为这些参数有助于确定材料在制造工艺下会如何反应。高温纳米压痕测试高温下的纳米压痕对于表征热应力下的材料性能至关重要,特别对热机械工艺中的失效机理进行量化。 在机械测试期间改变样品温度不仅能够测量热引起的行为变化,还能够量化在纳米级别上不易测试的材料过渡塑性。产品优势iMicro纳米压痕仪可轻松测量硬涂层,薄膜和少量材料。该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 可互换的驱动器能够提供大动态范围的力荷载和位移,使研究人员能够对软聚合物到硬质金属和陶瓷等材料做出精确及可重复的测试。模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损测试以及高温测试。 iMicro拥有一整套测试扩展的选项,包括样品加热、连续刚度测量、NanoBlitz3D / 4D性质分布,以及Gemini 2D力荷载传感器,可以提供摩擦和其他双轴测量。
    留言咨询
  • iNano纳米压痕仪使测量薄膜、涂层和小体积材料变得更简单。准确、灵活、用户友好的仪器可以进行多样的纳米材料力学测试,包括压痕、硬度、划痕和通用的纳米尺度测试。大的力和位移动态测量范围允许对从软聚合物到金属材料进行精确和可重复的测试。 模块选项可以适配各种应用:材料性能分布图、特定频率测试、划痕和磨损测试以及高温测试。iNano纳米压痕仪拥有一整套可扩展的测试选项,包括样品加热、连续刚度测量、NanoBlitz 3D/4D性能分布图和远程视频选项。产品描述iNano纳米压痕仪使测量薄膜、涂层和小体积材料变得更简单。准确、灵活、用户友好的仪器可以进行多样的纳米材料力学测试,包括压痕、硬度、划痕和通用的纳米尺度测试。大的力和位移动态测量范围允许对从软聚合物到金属材料进行精确和可重复的测试。 模块选项可以适配各种应用:材料性能分布图、特定频率测试、划痕和磨损测试以及高温测试。iNano纳米压痕仪拥有一整套可扩展的测试选项,包括样品加热、连续刚度测量、NanoBlitz 3D/4D性能分布图和远程视频选项。iNano采用InForce 50作动器进行纳米压痕和通用纳米机械测试。InForce 50的50mN力荷载和50μm位移范围使得该系统适合各种测试。InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。iNano是内置高速InQuest控制器和隔振门架的紧凑平台。该系统可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能● InForce 50作动器,用于电容位移测量和电磁力驱动,具有可互换的压头● 独特的软件集成压头校准系统,可实现快速准确的压头校准● InQuest高速电子控制器,具有100kHz数据采集速率和20μs时间常数● XY移动系统带有易于安装的磁性样品架● 具有数字变焦功能的集成显微镜,可获得精确的压痕定位● ISO 14577和标准化测试方法● InView软件包,包含RunTest、ReviewData、InFocus报告、InView University在线培训和InView移动应用程序主要应用● 硬度和模量测量(Oliver Pharr)● 材料力学性能分布图● ISO 14577硬度测试● 聚合物损耗因子,储存模量和损耗模量● 高温纳米压痕测试硬度和模量测量(基于Oliver-Pharr模型)在薄膜的工艺控制和制造过程中,表征其力学性能至关重要,其中包括汽车行业的涂层质量,以及半导体制造中的前道和后道工艺控制等。iNano 纳米压痕仪可以测量各种材料的硬度和模量,从超软胶到硬涂层。高效地评估材料性能,保证了在生产线上进行有效的质量管控。快速材料力学性能成像对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能存在很大差异。iNano提供了X和Y轴100毫米和Z轴25毫米的样品台移动,允许在大样品面积上测试各种样品高度。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。ISO 14577 硬度测试iNano纳米压痕仪包括一个预先编写的ISO 14577测试方法,用于测量符合ISO 14577标准的材料硬度。 该测试方法可以自动测量并输出杨氏模量、纳米压痕硬度、维氏硬度和归一化压痕功。聚合物损耗因子iNano纳米压痕仪能够测量 超软材料(包括粘弹性聚合物)的损耗因子。 储存模量、损耗模量和损耗因子是粘弹性聚合物的重要性能,因为作用到此类材料上的能量以弹性能的形式储存或以热量的形式耗散。上述指标即用于衡量材料中的能量储存和耗散情况。高温纳米压痕测试高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。适用行业● 大学、研究实验室和研究所● 半导体和封装行业● 聚合物和塑料● MEMS(微机电系统)/纳米级通用测试● 陶瓷和玻璃● 金属和合金● 制药● 涂料和油漆● 聚合物制造● 复合材料● 电池和储能● 更多应用,请联系我们以满足您的要求适用行业举例半导体晶圆半导体制造商通常致力于生产高质量的薄膜,而薄膜柔韧性较差将导致开裂和剥离。基底和外延层中未检测到的缺陷,也可能导致长期隐患和裂纹延展,造成器件失效。KLA纳米压痕仪能够测量超薄膜的弹性模量和硬度,及断裂韧性和开裂阈值,且不受基底的影响。将纳米力学性能与工艺参数建立关联,对于最大化半导体器件产能至关重要。半导体封装电子元件的性能和寿命可能取决于其封装的完整性。KLA纳米压痕仪让半导体封装厂商可以评估聚合物底部填充物的力学性能、焊料应变速率敏感因子和金属部件的强度。聚合物与塑料聚合物与塑料由于其时效变形特性,而被用于许多应用之中。无论聚合物是用作减振器、挤出材料还是医疗植入物,通常都通过动态力学分析(DMA)对其进行分析。在许多情况下,塑料部件的几何形状不适合采用传统的DMA仪器进行测试。无论样品的几何形状如何,KLA纳米压痕仪都能够局部定位塑料部件上的目标区域,并测量与频率相关的储能模量、损耗模量和损耗因子。iNano也可用于测量粘弹性蠕变和应力松弛特性。陶瓷与玻璃陶瓷和玻璃因其独特的光学、力学和电学特性,而成为许多应用中使用的重要材料。陶瓷与玻璃的传统力学测试(例如,四点弯曲测试)可能既耗时又昂贵。iNano可以快速表征少量材料的弹性模量和硬度。纳米压痕仪的划痕测试功能也非常适合定量评估光学涂层的耐划擦性。金属与合金金属与合金在许多行业中发挥着重要作用,例如汽车、航空航天、医疗和半导体。金属与合金的传统力学测试(例如,拉伸测试)可能既耗时又昂贵。iNano可以对少量材料进行快速表征。它还让用户可以表征弹性模量、硬度和抗蠕变性,以及这些特性随空间位置变化的梯度。电池与储能电池材料的力学性能与电池的稳定性、充电容量和续航时间密切相关。iNano 纳米压痕仪非常适合测试各种电池材料,从软质锂金属到硬质陶瓷基片。iNano提供面向多种环境的先进测量解决方案,其中包括干燥室和手套箱。制药、食品和个人护理药品、食品和个人护理产品的力学性能与客户满意度和体验密切相关。材料的弹性模量或刚度可能与质地和触感有关。药物糖衣的力学性能对于准时释放药性也至关重要。iNano 纳米压痕仪提供定量信息,补充定性客户反馈。纳米级通用测试iNano纳米压痕仪系统能够测量纳米级力学形变和其它纳米力学特性。iNano的多种测试能力包括纳米压痕、压缩、拉伸、蠕变、应力松弛和疲劳的测量。此外还支持标准和自定义试验方法。KLA纳米压痕仪团队的专职科学家还可提供咨询和实验设计。选配件连续刚度测量(CSM)连续刚度测量用于量化测定动态材料特性,例如应变速率效应和频率相关特性。CSM技术在压痕过程中控制压头振荡,以测量样品性能随深度、荷载、时间或频率的变化。该选项默认进行恒应变速率测试,测量硬度和模量随深度或载荷的变化,这是学术界和工业界最常用的测试方法。CSM 还可用于其它高级测试选项,包括 ProbeDMA&trade 选项以测量存储模量和损耗模量,以及AccuFilm&trade 选项以获得不受衬底影响的薄膜性能。CSM 功能集成在 InQuest 控制器和 InView 软件中,使用极为简便,且确保数据质量。300°C样品加热300°C样品加热选项允许将样品放入加热室中进行均匀加热的同时使用InForce 50作动器进行测试。 该选项包括高精度温度控制系统、惰性气体保护系统以减少氧化、冷却系统以移除余热。ProbeDMA、AccuFilm、NanoBlitz和CSM功能均与样品加热选项兼容。NanoBlitz 3DNanoBlitz 3D利用InForce 50作动器和Berkovich压头来生成高模量 ( 3GPa)材料的纳米机械特性的3D图。 NanoBlitz 3D每个压痕时间小于1s,单次测试可包含多达100,000个压痕点(300×300阵列),获得每个压痕点在特定载荷下的杨氏模量(E)、硬度(H)和接触刚度(S)。大量的测试数据能够提高统计的准确性。统计直方图可以呈现样品中的多个物相或材料组分。NanoBlitz 3D方法包还包含可视化软件和数据处理功能。NanoBlitz 4DNanoBlitz 4D公司利用InForce 50作动器和Berkovich压头来生成低模量/硬度和高模量 (3GPa)材料的纳米机械性能的4D图。 NanoBlitz 4D每个压痕仅需5-10秒,单次测试可包含多达10,000个压痕点(100×100阵列),获得每个压痕点的杨氏模量(E)、硬度(H)和接触刚度(S)等随深度的变化。NanoBlitz 4D 采用恒应变率方法。其软件包还包含可视化软件和数据处理功能。AccuFilm&trade 薄膜方法包AccuFilm&trade 薄膜方法包提供基于Hay-Crawford模型的InView测试方法,其采用连续刚度测量(CSM)获得不受衬底影响的薄膜材料性能。AccuFilm&trade 能够修正薄膜力学性能测量中衬底的影响,其应用既包括“硬膜软基底”,也包括“软膜硬基底”的情况。ProbeDMA&trade 聚合物方法包聚合物方法包可以测量聚合物的复模量随频率的变化。该方法包中包括平压头、粘弹性标样和评估材料粘弹性的测试方法。该技术可以有效表征纳米尺度聚合物和聚合物薄膜,填补传统的动态力学分析(DMA)测试仪在此领域的空白。Biomaterials生物材料方法包生物材料方法包基于连续刚度测量(CSM)技术,可以测量剪切模量低至1kPa的生物材料的复模量。该方法包中包括一个平压头和评估材料粘弹性的测试方法。该技术可以有效表征小尺寸生物材料,填补传统的流变仪在此领域的空白。划痕和磨损测试方法包划痕测试中,在压头上施加恒定或线性变大的载荷,并使其以设定速度在样品表面划过。划痕测试可以表征多样的材料体系,例如薄膜、脆性陶瓷和聚合物等。DataBurst对于配有InView软件和InQuest控制器的系统,DataBurst选项容许以大于1kHz的速率记录位移数据,用于测量阶跃载荷响应、位移突进(pop-in)和其它瞬时事件。配备了“用户方法开发”选项的iMicro系统,也可以修改方法以启用DataBurst。InView的“用户方法开发”选项InView提供一个功能极为强大且直观的实验脚本编辑平台,可用于设计新颖或复杂的实验。经验丰富的用户使用配备独有InView选项的iNano系统几乎可以设置和执行所有微力学测试。主动减震系统以及一体式机柜可选的高性能主动隔振系统在其内置隔振的基础上,为iNano纳米压痕仪提供了额外的隔振。 该系统易于安装,可在所有六个自由度上减少震动,且无需调试。一体式模组托架将所有模组集成在一处,方便使用。True TestI-V电气测量iNano微力学系统的True Test I-V选项采用InView软件控制,使用了精密电流表和电压源、一个可以通过压头的导通电路和导电压头。 该设计帮助用户对样品施加特定电压,测量压头处的电流,且同时操作InForce 50。压痕仪压头和校准样品InForce 50和Gemini作动器采用可互换的压头。 有多种尖锐的压头可供选择,例如玻式(Berkovich)、立方角(cube corner)和维氏(Vickers)压头,还可提供平压头、球形压头和其它几何形状的压头。整个产品系列也提供标准参考材料和校准标准。远程视频选项除了现有的显微镜物镜之外,远程视频选项还在iNano腔室内提供了两个视角。 第一个安装的支架专门关注测试过程中的压痕仪压头,此设置非常适合于柔性和软材料。 第二个支架安装在机架上,用于在测试设置期间观察样品和显微镜物镜。 标准显微镜物镜和USB摄像头之间的视图切换由软件控制。相关产品
    留言咨询
  • KLA 纳米压痕仪 iMicro 400-860-5168转2125
    灵活且用户友好的纳米压痕仪,适用于测量模量、硬度(Oliver-Pharr模型,ISO 14577)、储存模量/损耗模量以及万能力学试验。能够施加高达1N的力,为硬质材料测试提供更高载荷和更大深度。可供选配的不同作动器,用于软质材料、摩擦学研究、横向力测量和其它需要双轴测量力和位移的场景。产品描述iMicro纳米压痕仪可轻松测量硬质涂层、薄膜和小尺寸材料等。其准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米力学测试。作动器易于更换,能够提供大范围的动态载荷和位移,对于从软质聚合物到硬质金属/陶瓷等材料,均可以进行准确而可重复的测试。模块化的功能选项可以适配各种应用:材料力学特性图谱、特定频率测试、划痕和磨损测试以及高温测试。iMicro提供一整套的扩展功能选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D材料力学性能成像,以及Gemini 2D作动器用于摩擦学和其它双轴力学测量。iMicro 纳米压痕仪标配InForce 1000作动器,用于进行纳米压痕和通用纳米力学测试,并可选配InForce 50作动器用于测试较软的材料。InView 软件包灵活、现代,让用户轻松进行纳米尺度测试。iMicro是一款紧凑型测试平台,其箱体中内置高速InQuest控制器和隔振框架。可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能● InForce 1000驱动器,采用电容式位移传感和电磁力驱动,且压头易于更换● InForce 50作动器选件,提供最大50mN的法向力,可用于测量较软的材料;Gemini 2D作动器选件,可实现两个方向的动态测量。独特的压头校准系统,集成在软件中,可实现快速、准确的压头校准● InQuest高速控制器电路,数据采集速率可达100kHz,时间常数最快为20µ s● XY运动系统以及易于安装的磁性样品台● 高刚度龙门架,且集成隔振功能● 集成显微镜,数字变焦,可实现精确的压痕定位● 符合ISO 14577等标准的测试方法● InView软件包,包含RunTest、ReviewData、InFocus、InView University在线培训和InView移动应用程序主要应用● 硬度和模量测量(基于Oliver Pharr模型)● 快速材料力学性能成像● ISO 14577硬度测试● 聚合物损耗因子,储存模量和损耗模量● 定量划痕和磨损测试● 高温纳米压痕测试硬度和模量测量(基于 Oliver-Pharr 模型)力学性能表征在薄膜的制造和工艺控制中至关重要,其中包括汽车工业中的涂层质量控制,以及半导体制造中前段和后段的工艺控制。iMicro纳米压痕仪能够测量从超软凝胶到硬质涂层的各种材料的硬度和模量。高效地评估材料性能,保证了在生产线上进行有效的质量管控。快速材料力学性能成像对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能存在很大差异。iMicro的样品台在X轴和Y轴方向上能够分别移动100mm,且其在Z轴方向上能够移动25mm,因此可以测试尺寸大且高度不同的样品。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。ISO 14577 硬度测试iMicro 纳米压痕仪内置预先编写的 ISO 14577 测试方法,其依据 ISO 14577 标准测量材料硬度。该测试方法可以自动测量并输出杨氏模量、纳米压痕硬度、维氏硬度和归一化压痕功。聚合物损耗因子、储存模量和损耗模量iMicro 纳米压痕仪能够测量超软材料(包括粘弹性聚合物)的损耗因子、储存模量和损耗模量。储存模量、损耗模量和损耗因子是粘弹性聚合物的重要性能,因为作用到此类材料上的能量以弹性能的形式储存或以热量的形式耗散。上述指标即用于衡量材料中的能量储存和耗散情况。定量的划痕和磨损测试iMicro 可以对多种材料进行划痕和磨损测试。涂层和薄膜要经受多种工艺流程,例如化学机械抛光(CMP)和引线键合,这会考验这些薄膜的强度及其与衬底的附着力。对这些材料来说,重要的是在这些流程中抵抗塑性形变,并保持完好而不从衬底上剥离。理想情况下,电介质材料应具有较高的硬度和弹性模量,这将有助于其在经历制造流程时有效抵抗外界影响。高温纳米压痕测试高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。适用行业● 大学、实验室和研究所● 半导体与封装行业● PVD / CVD硬涂层(DLC,TiN)● MEMS(微机电系统)/纳米级通用测试● 陶瓷与玻璃● 金属与合金● 制药● 涂层涂料● 复合材料● 电池与储能● 汽车与航空航天● 更多应用,请联系我们以满足您的求选配件连续刚度测量(CSM)连续刚度测量用于量化测定动态材料特性,例如应变速率效应和频率相关特性。CSM技术在压痕过程中控制压头振荡,以测量样品性能随深度、荷载、时间或频率的变化。该选项默认进行恒应变速率测试,测量硬度和模量随深度或载荷的变化,这是学术界和工业界最常用的测试方法。CSM 还可用于其它高级测试选项,包括 ProbeDMA&trade 选项以测量存储模量和损耗模量,以及AccuFilm&trade 选项以获得不受衬底影响的薄膜性能。CSM 功能集成在 InQuest 控制器和 InView 软件中,使用极为简便,且确保数据质量。InForce 50作动器InForce 50作动器可以施加最高50mN的力以进行纳米力学测试。KLA专利的电磁力加载技术,确保测量的可靠性以及加载力与位移的长期稳定性。行业领先的机械设计,确保作动器简谐运动仅有单一方向自由度,从而使加载力和位移仅发生在该方向。InForce 50作动器与CSM、NanoBlitz、ProbeDMA、生物材料、样品加热、划痕、磨损和 ISO 14577等测试选项兼容。InForce和Gemini全系列作动器均使用统一规格的压头。Gemini双轴作动器Gemini双轴技术,保证增加的横向轴与常规压痕具有相同的性能,且CSM能够在两个方向同时工作。基于这项专利技术获得更多测试结果,有助于形成对材料特性和失效机制新的认知。横向力和摩擦学测量可以通过双轴作动器实现,其可以用于测量泊松比、摩擦系数、划痕、磨损、剪切特性和形貌特征。300°C 样品加热300°C 样品加热选项使用准密闭腔室装载样品,均匀加热的同时进行力学测试,InForce 1000或InForce 50作动器均可使用。该选项包括高精度温度控制系统、惰性气体保护系统以减少氧化、冷却系统以移除余热。ProbeDMA、AccuFilm、NanoBlitz和CSM功能均与样品加热选项兼容。NanoBlitz 3DNanoBlitz 3D可以采用InForce 50/InForce1000作动器和玻式压头,获得杨氏模量较高(3GPa)的材料的纳米力学特性3D图。NanoBlitz 3D每个压痕时间小于1s,单次测试可包含多达100,000个压痕点(300×300阵列),获得每个压痕点在特定载荷下的杨氏模量(E)、硬度(H)和接触刚度(S)。大量的测试数据能够提高统计的准确性。统计直方图可以呈现样品中的多个物相或材料组分。NanoBlitz 3D方法包还包含可视化软件和数据处理功能。NanoBlitz 4D NanoBlitz 4D可以采用InForce 50/InForce1000作动器和玻式压头,获得较低杨氏模量/硬度以及较高杨氏模量 (3GPa)的材料的纳米力学特性4D图。NanoBlitz 4D每个压痕仅需5-10秒,单次测试可包含多达10,000个压痕点(100×100阵列),获得每个压痕点的杨氏模量(E)、硬度(H)和接触刚度(S)等随深度的变化。NanoBlitz 4D 采用恒应变率方法。其软件包还包含可视化软件和数据处理功能。AccuFilm&trade 薄膜方法包AccuFilm&trade 薄膜方法包提供基于Hay-Crawford模型的InView测试方法,其采用连续刚度测量(CSM)获得不受衬底影响的薄膜材料性能。AccuFilm&trade 能够修正薄膜力学性能测量中衬底的影响,其应用既包括“硬膜软基底”,也包括“软膜硬基底”的情况。ProbeDMA&trade 聚合物方法包聚合物方法包可以测量聚合物的复模量随频率的变化。该方法包中包括平压头、粘弹性标样和评估材料粘弹性的测试方法。该技术可以有效表征纳米尺度聚合物和聚合物薄膜,填补传统的动态力学分析(DMA)测试仪在此领域的空白。Biomaterials生物材料方法包生物材料方法包基于连续刚度测量(CSM)技术,可以测量剪切模量低至1kPa的生物材料的复模量。该方法包中包括一个平压头和评估材料粘弹性的测试方法。该技术可以有效表征小尺寸生物材料,填补传统的流变仪在此领域的空白。划痕和磨损测试方法包划痕测试中,在压头上施加恒定或线性变大的载荷,并使其以设定速度在样品表面划过。划痕测试可以表征多样的材料体系,例如薄膜、脆性陶瓷和聚合物等。DataBurst对于配有InView软件和InQuest控制器的系统,DataBurst选项容许以大于1kHz的速率记录位移数据,用于测量阶跃载荷响应、位移突进(pop-in)和其它瞬时事件。配备了“用户方法开发”选项的iMicro系统,也可以修改方法以启用DataBurst。InView的“用户方法开发”选项InView提供一个功能极为强大且直观的实验脚本编辑平台,可用于设计新颖或复杂的实验。KLA独家提供该选项,使用配备该选项的iMicro,经验丰富的用户几乎可以设计和运行任何小尺度力学测试。主动减震系统以及一体式机柜可选高性能主动减震系统,凭借其内置防震装置,为 iMicro 纳米压痕仪提供额外减震。该系统易于安装,可在所有六个自由度上减少震动,且无需调试。一体式模组托架将所有模组集成在一处,方便使用。True Test I-V测试iMicro 纳米压痕仪的True Test I-V选项通过InView软件控制,包含精密的电流/电压源表、经过压头的导电通路以及导电压头。该设计确保用户能够对样品施加特定电压、测量通过压头的电流,并同时操作InForce 50/InForce 1000作动器进行力学测试。线性光学编码器(LOE)iMicro的线性光学编码器选项集成在X和Y移动台中,可以提高测试过程的定位精度和速度。压头和校准样品InForce 50、InForce 1000和Gemini作动器使用统一规格的压头。有多种尖锐的压头可供选择,例如玻式(Berkovich)、立方角(cube corner)和维氏(Vickers)压头,还可提供平压头、球形压头和其它几何形状的压头。整个产品系列均提供标准样品和校准标准。相关产品
    留言咨询
  • 产品详细介绍核心参数仪器种类:纳米压痕仪 产地类别:进口纳米压痕仪、划痕仪 大压痕深度: 100 um 有效加载载荷范围:100 mN 有效载荷分辨率: 3 nN 位移分辨率: 0.003 nm产品介绍:超高精度、高稳定纳米压痕测试仪UNHT3 高精度超纳米压痕测试仪采用真实力传感器,可用于测量材料在纳米尺度的机械性能。UNHT3采用独特的主动表面参比专利技术,几乎消除了热漂移和框架刚度的影响。因此,非常适用于所有类型的材料(包括聚合物、纳米涂层和软组织)的长时间测量。主要特点用于低载荷测量的的计量型纳米压痕测试仪表面参比系统上的真实力传感器确保可直接测量微牛级的力主动表面参比技术:独特的专利设计(欧洲专利 1828744 和美国专利 7,685,868)从低压入位移(几纳米)到高压入位移(高达 100 μm)从低载荷 (10 μN) 到高载荷(高达 100 mN)市场上稳定性高的纳米压痕测试仪长期蠕变测试不需要进行热漂移修正未修正的热漂移低至 10 fm/sec,消除了热漂移影响即使在高载荷下也保持高框架刚度 (108 N/m)独特的无热膨胀 Macor 材料载荷和位移的全部反馈控制系统“快速点阵”压痕模式带“模板”模式采用“快速点阵”压痕模式的快速测量点阵:每小时测量高达 600 次,符合 ISO14577 仪器化压入测试 (IIT)要求全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速分析数据多样品夹具用于 6 个或更多样品连夜进行一系列测试高精度的纳米压痕测试仪用于进行准确的表面检测高质量载荷-位移曲线,载荷 0.1 mN超灵敏表面探测包含刚度探测测量凝胶和硬质材料载荷分辨率为 0.003 μN位移率分辨为 0.003 nm可用于多种分析模式的多种测试模式多种测试模式:连续多周期 (CMC)、恒定应变速率、用户自定义、点阵动态力学分析 (DMA) 模式包含“正弦”模式各种机械性能的不同分析:硬度、弹性模量、储能和损耗模量、蠕变、应力 - 应变、赫兹应力分析环境控制:真空、液体、温度和相对湿度技术指标载荷大载荷100mN分辨率3nN位移大位移100μm分辨率小至 0.006nm载荷框架刚度107 N/mISO14577, ASTM E2546
    留言咨询
  • KLA 纳米压痕仪 G200X 400-860-5168转2125
    这是一款先进的纳米压痕仪,用户可以在操作界面上灵活、方便地进行纳米级力学测试。Nano Indenter G200X采用高速控制器电子设备、升级后的用户界面和先进的InView&trade 软件能实现各种可选的高级应用模块功能:特定频率测试、定量划痕和磨损测试、基于探针的集成成像、高温测试和自定义测试协议。能够快速准确的提供各种定量的力学测试结果。能够轻松表征广泛的材料力学性能,从硬质涂层到超软聚合物样品,并针对不同应用提供综合全面的纳米力学测试升级选件和解决方案。产品描述Nano Indenter G200X可提供纳米级的力学测试功能,简单易用,能够精确进行各种力学定量分析。G200X系统能够轻松表征广泛的材料力学性能,从硬质涂层到超软聚合物样品,并针对不同应用提供综合全面的纳米力学测试升级选件和解决方案。G200X系统中配置了高精度纳米马达样品台、我们最大的样品安装系统和高分辨率光学显微镜。InView软件、InQuest控制器和InForce驱动器让KLA全线压痕产品系列具有一致的卓越性能。 G200X系统可选功能包括连续刚度测量(CSM)、扫描探针显微成像、划痕测试、动态力学分析频率扫描,IV电压电流特性测试、超高速压痕测试和冲击测试等等。主要功能● 电磁驱动作动器可轻松实现载荷和位移的宽动态范围的控制● 高分辨率光学显微镜与精密XYZ 移动系统结合能实现高精度观察与定位测试样本。● 便捷的样本安装台与多样本定位设置功能实现高通量测试。● 高度模块化设计使设备远不止能进行压痕测试,设备还提供扫描探针成像功能、划痕及磨损测试功能、高温纳米力学测试功能、连续刚度测试(CSM) 和高速3D及4D力学图谱等模块化升级选件。● 直观的用户操作界面便于快速地进行测试设置;仅需点击几下鼠标即可完成复杂测试的参数设置。● 实时高效的实验控制,简单易用的测试流程开发和测试参数设置。● 全新的InView软件,提供用于分析数据的Review软件和生成各种综合性测试报告的 InFocus软件。● 备受赞誉的材料表面力学图谱功能和高速测试功能,极大地提高了定量数据的可靠性。● InQuest高速数字控制器,数据采集速率最高可达100kHz,时间响应常数最快为20μs。主要应用● 快速硬度和模量测量 (基于Oliver-Pharr 模型)● 快速材料表面力学特性分布测量● ISO 14577 标准化硬度测试● 薄膜及涂层测试● 界面附着力测量● 断裂韧性测量● 粘弹性测量,包括储能模量和损耗模量及损耗因子● 扫描探针显微成像(3D 成像)● 定量划痕和摩擦磨损测试● 高温纳米压痕测试● IV电学测试硬度和模量测量(基于Oliver-Pharr模型)材料的力学性能表征在薄膜的工艺控制和制造过程中表征力学性能发挥着至关重要的作用,其中包括汽车行业的涂层质量,以及半导体制造中的前道和后道工艺控制等。G200X纳米压痕仪能够测量从超软凝胶到硬质涂层的各种材料的硬度和模量。对这些特性进行快速评估可以为生产线提供可靠的品质控制及保障。快速压痕力学性能成像对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能会有很大差异。G200X系统在X和Y轴方向上各提供100毫米的样品台移动范围,在Z轴方向上提供25毫米的移动范围,在大面积样本区域下轻松表征不同厚度、宽度、长度的样本。可选的NanoBlitz表面形貌和断层扫描软件能快速生成任何测量力学性能的彩色图。ISO 14577硬度测试Nano Indenter G200X包括一个预编程的ISO 14577测试方法,可根据ISO 14577标准测量材料的硬度。该测试方法可自动测量和报告杨氏模量、纳米压痕硬度、维氏硬度和归一化的压痕功。界面附着力测量薄膜剥离通常是由沉积可以储存弹性能量的高压缩层引起的。界面附着力测量对于帮助用户了解薄膜失效模式而言至关重要。Nano Indenter G200X系统可以通过膜层界面的断裂及黏附特性和残余应力等性能的测试,实现对多层界面的性能评估。断裂韧性断裂韧性指在平面应变条件下应力强度因子发生突然性失效的临界值。低断裂韧性值意味着样品预先存在缺陷。使用刚度成像法可轻松通过纳米压痕仪获得断裂韧性。(刚度成像测量需要连续刚度测量和NanoVision选件。)粘弹性能聚合物是结构异常复杂的材料,其力学性能易受化学特性、加工工艺和热力学过程的影响。具体而言,力学性能由母链的类型和长度、支化、交联、应变、温度和频率等因素决定,而他们通常是相互关联的。应在相关环境中对聚合物样本进行力学测试,为聚合物设计参数决策提供有用的数据信息。纳米压痕测试所需样本尺寸小,制作简单,更容易进行这种特定环境的测量。Nano Indenter G200X系统在压头与材料充分接触的同时可激发压头的高频振动来测量聚合物样品的复模量和粘弹性。扫描探针显微成像(3D成像)Nano Indenter G200X系统有两种扫描探针显微成像方式,可用于表征压痕的裂纹长度,和测量设计应用中的断裂韧性。断裂韧性指含有裂缝的缺陷材料防止断裂扩展的能力。Nano Indenter G200X的压电样品台具有高定位精度的NanoVision选件,可提供高达1nm步进的编码器分辨率,最大扫描尺寸为100µ m x 100µ m。Survey Scanning软件选件将X/Y运动系统与InView软件相结合,可提供500µ m x 500µ m的最大扫描尺寸。NanoVision样品台和Survey Scanning选件均需要对样品的精确区域进行纳米压痕测试和断裂韧性计算。定量划痕和摩擦磨损测试涂层和薄膜要经受多种工艺流程,例如化学机械抛光(CMP)和引线键合,这会考验这些薄膜的强度及其与衬底的附着力。对这些材料来说,重要的是在这些流程中抵抗塑性形变,并保持完好而不从衬底上剥离。理想情况下,电介质材料应具有较高的硬度和弹性模量,这将有助于其在经历制造流程时有效抵抗外界影响。高温纳米压痕测试高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。适用行业● 高校、实验室和研究所● 半导体芯片行业● PVD/CVD 硬质涂层(DLC、TiN)● MEMS:微机电系统/纳米级通用测试● 陶瓷与玻璃● 金属与合金● 制药● 膜层材料与油漆● 复合材料● 电池与储能● 汽车与航空航天● 更多应用:请联系我们探讨您的需求应用举例硬质涂层通常,厚度5µ m的硬质涂层用于表面保护、提高耐磨性、摩擦/润滑、提高耐温性和生物相容性。Nano Indenter G200X系统可以精确地执行ISO标准化的纳米压痕测试,并在不受衬底影响的情况下测量涂层的弹性模量和硬度。Nano Indenter G200X还可测量划痕硬度和耐磨性。在涂层表面粗糙度较大的情况下,NanoBlitz 3D选件可对材料特性进行快速的定量评估。半导体晶圆半导体制造商往往致力于生产具有高度机械完整性的薄膜。我们的纳米压痕仪可以测量几乎最薄薄膜的弹性模量和硬度,而不会出现来自底层衬底的影响。探明实际材料变化与工艺参数之间的相关性,对于半导体应用至关重要。半导体封装电子元件的性能和寿命可能取决于其封装的完整性。我们的纳米压痕仪能让半导体封装厂商评估聚合物底部填充物的力学属性、焊料应变率灵敏度和金属部件的强度。陶瓷与玻璃陶瓷和玻璃因其独特的光学、力学和电学特性,而成为许多应用中使用的重要材料。陶瓷与玻璃的传统力学测试(例如,四点弯曲测试)可能既耗时又昂贵。G200X工具可以快速表征小尺寸材料的弹性模量和硬度。划痕测试功能也非常适合定量评估光学涂层的抗划伤性。聚合物与塑料聚合物与塑料由于其随时间产生形变的特性,而被用于许多应用之中。无论聚合物是用作减振器、挤压材料还是医疗植入物,通常都通过动态力学分析(DMA)对其进行分析。在许多情况下,塑料部件的几何图形不适合采用传统的DMA仪器进行测试。无论样品的几何图形如何,KLA纳米压痕仪都能够局部定位塑料部件上的目标区域,并检测与频率相关的储存模量、损耗模量和损耗因子。Nano Indenter G200X也可用于测量粘弹性蠕变和应力弛豫特性。金属与合金金属与合金在许多行业中发挥着重要作用,例如汽车、航空航天、医疗和半导体。金属与合金的传统力学测试(例如,拉伸测试)可能既耗时又昂贵。G200X可以对小尺寸材料进行快速表征。它还能让用户表征弹性模量、硬度和抗蠕变性,以及这些特性随空间位置变化的梯度。电池与储能电池材料的力学属性与电池的稳定性、充电容量和续航时间密切相关。Nano Indenter G200X系统非常适合测试各种电池材料,从软质锂金属到硬质陶瓷基片。Nano Indenter G200X提供面向多种环境的先进测量解决方案,其中包括干燥室和手套箱。研发KLA Instruments纳米压痕仪,不仅能满足要求严苛的研发应用所需的精度和准确度,还是应用灵活的科学仪器。无论是测量新型材料的力学性能、检测金属的形变机制,还是分析随温度变化的应变速率敏感因子,Nano Indenter G200X拥有应用多样的纳米压痕测量能力,以实现先进的研究和加速开发进程。制药、食品和个人护理药品、食品和个人护理产品的力学性能与客户满意度和体验密切相关。材料的弹性模量或刚度可能与质地和触感有关。药物糖衣的力学性能对于准时释放药性也至关重要。G200X系统可提供定量信息,以对定性客户反馈进行补充。汽车与航空航天KLA Instruments的纳米压痕仪可以根据温度对材料进行高级表征,这对于汽车和航空航天应用而言是一项关键功能。强度、刚度和随时间变化的力学性能都可使用Nano Indenter G200X 纳米压痕技术进行测量。纳米级通用测试G200X系统能够测量纳米级力学形变和其它纳米力学特性。对纳米压痕、压缩、张力、蠕变、应力松弛和疲劳的测量展现了该系统功能多样的特点。此外还支持标准和自定义试验方法。KLA纳米压痕仪团队的专职科学家还可提供咨询和实验设计。选配件InForce 1000作动器InForce 1000作动器采用高达1000mN的压痕载荷进行纳米压痕测试。获得专利的电磁力驱动技术可确保测量的可靠性和载荷与位移的长期稳定性。行业领先的机械设计可确保单一方向自由度的简谐运动,从而沿单轴方向控制加载力和位移。整个InForce系列作动器的压头均可互换。InForce 1000作动器与CSM、NanoBlitz、样品加热、划痕、磨损和ISO 14577等测试选件兼容。InForce 50作动器InForce 50作动器采用高达50mN的压痕载荷执行纳米压痕测试。获得专利的电磁力驱动技术可确保测量的可靠性和载荷与位移的长期稳定性。行业领先的机械设计可确保一个自由度的简谐运动,从而沿单轴方向控制载荷和位移。整个InForce系列作动器的压头均可互换。InForce 50座动器与CSM、NanoBlitz、ProbeDMA&trade 、生物材料、样品加热、划痕、磨损和 ISO 14577等测试选项兼容。连续刚度测量(CSM)连续刚度测量用于量化动态材料特性,例如应变速率和频率引起的影响。CSM技术可在压痕过程中振荡压头测量随深度、荷载、时间或频率而变化的力学特性。该选项附带一个恒定应变速率实验,该实验测量硬度和模量作为深度或载荷的函数,这是学术界和工业界最常用的测试方法。CSM 还可用于其它高级测量选项,包括用于储存模量和损耗模量测量的 ProbeDMA&trade 方法和与基底无关的薄膜的杨氏模量测量方法 AccuFilm&trade 。CSM集成于InQuest控制器和InView软件中,易于使用,且能保证数据质量。NanoBlitz 3DNanoBlitz 3D利用InForce 50或InForce 1000驱动器和Berkovich压头绘制高模量( 3GPa)材料的纳米力学性能3D分布图。NanoBlitz 以每个压痕 1 秒的速度最多可执行 100,000 个压痕(300x300 阵列),并在指定载荷下对阵列中的每个压痕测量杨氏模量 (E)、硬度 (H) 和刚度 (S) 值。大量的测试数据能够提高统计的准确性。直方图显示多相材料的性能分布。NanoBlitz 3D方法包具有可视化和数据处理能力。300°C 样品加热300°C 样品加热选项允许将样品放入腔室均匀加热,同时使用 InForce 1000 或 InForce 50 作动器进行测试。该选项包括高精度温度控制、惰性气体保护以减少氧化,以及冷却循环以去除多余的热量。ProbeDMA,AccuFilm,NanoBlitz和CSM均可与样品加热选件兼容。NanoBlitz 4DNanoBlitz 4D 利用 InForce 50 或 InForce 1000作 动器和 Berkovich 压头为低 E/H 值和高-E (3GPa) 材料生成纳米力学特性 4D 图。NanoBlitz 4D以每个压痕 5-10 秒的速度最多可执行 10,000 个压痕(100×100 阵列)测试,并提供杨氏模量 (E)、硬度 (H) 和刚度 (S),作为阵列中每个压痕深度的函数。NanoBlitz 4D 采用恒应变速率方法。该功能包具备可视化和数据处理功能。AccuFilm 薄膜方法组合AccuFilm 薄膜方法组合是一种基于 Hay-Crawford 模型的 InView 测试方法,采用连续刚度测量 (CSM) 对与基片无关的材料特性进行测量。AccuFilm对软基底上硬质薄膜测量进行基底材质影响的校正,也对硬基底上的软性薄膜进行同类的校正。ProbeDMA 聚合物方法组合聚合物方法组合提供了对聚合物随频率变化的复模量进行测量的能力。该方法组合中包括平压头、粘弹性参考材料和用于评估粘弹性的测试方法。传统动态力学分析(DMA)测试仪器无法很好地表征的纳米级聚合物和聚合物薄膜,而这种技术对其进行表征又十分关键。生物材料方法包生物材料方法包基于连续刚度测量(CSM)技术,可以测量剪切模量低至1kPa的生物材料的复模量。该方法包中包括一个平压头和评估材料粘弹性的测试方法。该技术可以有效表征小尺寸生物材料,填补传统的流变仪在此领域的空白。NanoVisionNanoVision选件配备了用于高分辨3D成像方法和能精确定位的闭环纳米定位样品台。NanoVision让用户能够以纳米级精度对压痕测试位置进行定位,从而实现对复杂材料的各个相进行独立表征。NanoVision用户还可以通过检查残余压痕形貌,获取到凸起高度、变形体积和断裂韧性等材料特性的量化分析。Survey ScanningSurvey Scanning选件利用Nano Indenter G200X系统的精确、可重复的X/Y运动来提供500μm x 500μm的最大扫描尺寸。10nm线性编码器的成像效果比G200更好。NanoVision样品台和Survey Scanning选件可配合使用,为纳米压痕测试精确定位,这对于确定样品断裂韧性尤其有用。InView软件版本所有Nano Indenter G200X系统均采用了标准的InView软件,可以让用户可以访问预编程测试方法,其中包括符合ISO 14577标准的方法。InView方法开发选件能让研究人员使用简单的协议编写自己的InView测试方法。InView软件包中内置InView ReviewData和InFocus应用程序,可用于轻松查看数据和创建演示文稿。InView拥有模拟模式,用户可以离线编写测试方法、处理和分析数据。相关产品
    留言咨询
  • KLA 纳米压痕仪 iNano 400-860-5168转1185
    iNano纳米压痕仪可轻松测量薄膜、涂层和少量材料。 该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 该仪器的力荷载和位移测量动态范围很大,因而可以实现从软聚合物到金属材料的精确和可重复测试。 模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损以及高温测试。 iNano提供了一整套测试扩展选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D属性映射和远程视频选项。
    留言咨询
  • 纳米压痕仪 400-860-5168转2459
    Hysitron TS 77 Select™ 自动化纳米力学和纳米摩擦学测试系统是一台具有最高的性能、功能和易用性的台式纳米压痕仪。这款新测试系统采用了布鲁克著名的 TriboScope 电容式传感器技术,能可信地测试从纳米到微米尺度上的机械和摩擦特性。TS Select 支持模式包括定量纳米压痕、动态纳米压痕、纳米划痕、纳米磨损和高分辨率机械性能成像等功能。 Ts Select特性:提供核心测试技术, 包括纳米压痕、动态纳米压痕、纳米划痕、纳米磨损和原位 SPM 成像通过电容式传感器技术,使用静电力驱动同时提供高灵敏度和低温漂具有高速纳米压痕功能,可快速对机械性能进行成像,获得具有统计性的结果使用直观且易于使用的控制软件,使操作人员能够进行可靠的测量系统预设了满足ISO 14577 和 ASTM E2546标准的测试脚本具有系统自动校正功能和多样品自动测试功能,更快地获得结果
    留言咨询
  • 市场功能上最多且简单易用的纳米压痕测试仪NHT3 /UNHT3专为纳米级位移测量提供小载荷,可用于测试硬度、弹性模量和蠕变等。其范围涵盖小载荷 (0.1 mN) 至大载荷 (500 mN),可在载荷范围内提供最大的通用性。由于独特的表面参比技术,无需等待其达到热稳定状态,立即完成压痕测试。全新“快速点阵”压痕模式可以进行一系列快速的测量(每小时测试量高达 600 个压痕)。主要特点最简单易用的纳米压痕测试仪最直观易用的软件:用简单的参数(最大载荷)、统计数据分析和保存的测试方案模板轻松开始测试适用于表面的不同放大倍数的多物镜视频显微镜最坚固耐用的纳米压痕测试仪:参比环保护压痕针尖不受碰撞“快速点阵”压痕模式带“模板”快速且符合要求:按照仪器化压入测试 (IIT) 的 ISO14577 标准要求,“快速点阵”压痕模式每小时测试压痕数目高达 600个全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速的分析数据多样品台夹具用于自动测试,6 样品夹具最多可固定 6 个样品,自定义样品夹具可固定更多样品采用独特的表面参比设计,保证高精度的位移测量表面参比为材料压入位移提供恒定参考(相对于样品表面)高框架刚度 (107 N/m) 为纳米压痕测量提供高准确度和精确度测量的高稳定性采用表面参比技术来实现纳米压痕测量中的高热稳定性(原始热漂移率 0.05 nm/s)框架使用定制的人造花岗岩以提高稳定性采用低热膨胀系数 (10-6/°C) Macor材料的独特设计确保高热稳定性可用于多种分析模式的多种测试模式多种测试模式:正弦模式、连续周期 (CMC)、恒定应变速率、用户自定义、高级点阵和多样品方案、载荷和位移控制模式各种机械性能的多种分析模式:硬度 (HIT、HV、HM)、弹性模量、储能和损耗模量、蠕变、应力 - 应变曲线使用标准压痕针尖可在液体中进行测量技术指标载荷最大载荷100/500 mN分辨率0.003/0.02 μN载荷本底噪音0.05 [rms] [μN]*位移最大位移100/200 μm分辨率0.03/0.01 nm深度本底噪音0.03[rms] [nN]*载荷框架刚度 107 N/m国际标准ISO 14577, ASTM E2546
    留言咨询
  • 纳米压痕仪 400-860-5168转6134
    FT-NMT04纳米力学测试系统是一种多功能的原位SEM/FIB纳米压痕仪,能够在微米和纳米尺度上准确量化材料的力学行为。 FT-NMT04原位纳米压痕仪针对金属、陶瓷、薄膜以及超材料和MEMS等微观结构的机械测试进行了优化。此外,通过使用各种附件,FT-NMT04的功能可以扩展到各个研究领域的各种要求。 典型应用包括通过微柱的压缩测试或狗骨试样、薄膜或纳米线的拉伸测试来量化塑性变形机制。典型应用包括通过微柱的压缩测试或狗骨试样、薄膜或纳米线的拉伸测试来量化塑性变形机制。此外,在压缩测试期间进行连续刚度测量,可以在微梁断裂测试期间量化裂纹扩展和断裂韧性。由于 FT-NMT04 分别具有 500 pN 和 50 pm 的无可比拟的低本底噪声,因此可实现具有无可比拟的可重复性的浅纳米压痕,以及纳米压痕与 EBSD 成像的前所未有的相关性。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制