当前位置: 仪器信息网 > 行业主题 > >

高温电压击穿测试仪

仪器信息网高温电压击穿测试仪专题为您提供2024年最新高温电压击穿测试仪价格报价、厂家品牌的相关信息, 包括高温电压击穿测试仪参数、型号等,不管是国产,还是进口品牌的高温电压击穿测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温电压击穿测试仪相关的耗材配件、试剂标物,还有高温电压击穿测试仪相关的最新资讯、资料,以及高温电压击穿测试仪相关的解决方案。

高温电压击穿测试仪相关的资讯

  • 苏州热工研究院验收我司100kv电压击穿试验仪
    苏州热工研究院验收我司100kv电压击穿试验仪和ATI-212电阻率测试仪,我司工程师上门安装调试,成功验收得到客户的好评,下面是客户调试现场
  • 绝缘油击穿电压测定仪在润滑油行业中应用
    润滑油作为机械设备的润滑剂,其电气性能对设备的正常运行至关重要。击穿电压作为评价润滑油电气性能的重要指标之一,能够帮助工程师判断润滑油的电气性能是否达到设备要求。下面我们就来具体了解一下击穿电压在润滑油行业中的应用。1. 润滑油电气性能的表征润滑油的电气性能主要包括介电常数、介质损耗因数、电阻率等参数。其中,介电常数反映了润滑油在电场作用下的极化能力,介质损耗因数反映了电流通过润滑油时所消耗的能量,电阻率则反映了润滑油的导电性能。而击穿电压则可以进一步评价润滑油的电气绝缘性能,即当电压达到某一数值时,润滑油内部将产生放电现象,导致电流突然增加,这一电压值就是击穿电压。2. 击穿电压在润滑油选择中的应用在选择润滑油时,需要根据设备的运行工况和润滑油厂商提供的产品手册来选择合适的润滑油牌号在。产品手册中,通常会提供不同牌号润滑油的介电常数、介质损耗因数、电阻率和击穿电压等电气性能参数。在选择润滑油时,需要综合考虑这些参数,尤其是击穿电压,以确保设备在正常运转时,润滑油的电气性能能够满足设备要求。3. 击穿电压在润滑油品质控制中的应用在润滑油的生产过程中,由于原材料、生产工艺等因素的影响,润滑油的电气性能会发生一定的变化。为了确保生产出的润滑油符合产品要求,需要对润滑油的电气性能进行检测和监控。其中,击穿电压作为一项重要的检测指标之一,可以用于评估润滑油品质的稳定性。通过定期检测润滑油的击穿电压,可以对生产工艺和原材料进行及时调整,以确保生产的润滑油具有良好的电气性能。
  • 绝缘油击穿电压测定仪:采用干式变压器组合
    A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性强。6、数据自动存储,并可随时调出和打印。7、采用干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 10000V!氮化镓功率器件击穿电压新纪录
    近日,美国弗吉尼亚理工大学电力电子技术中心(CPES)和苏州晶湛半导体团队合作攻关,通过采用苏州晶湛新型多沟道AlGaN/GaN异质结构外延片,以及运用pGaN降低表面场技术(p- GaN reduced surface field (RESURF)制备的肖特基势垒二极管(SBD),成功实现了超过10kV的超高击穿电压。这是迄今为止氮化镓功率器件报道实现的最高击穿电压值。相关研究成果已于2021年6月发表于IEEE Electron Device Letters期刊。图1:多沟道AlGaN/GaN SBD器件结构图(引用自IEEE ELECTRON DEVICE LETTERS, VOL. 42, NO. 6, JUNE 2021)实现这一新型器件所采用的氮化镓外延材料结构包括20nm p+GaN/350nm p-GaN 帽层以及23nm Al0.25Ga0.75N/100nm GaN本征层的5个沟道。该外延结构由苏州晶湛团队通过MOCVD方法在4吋蓝宝石衬底上单次连续外延实现,无需二次外延。基于此外延结构开发的氮化镓器件结构如图1所示,在刻蚀工艺中,通过仅保留2微米的p-GaN场板结构(或称为降低表面场(RESURF)结构),能够显著降低峰值电场。在此基础上制备的多沟道氮化镓肖特基势垒二极管(SBD),在实现10kV的超高击穿电压的同时,巴利加优值(Baliga’s figure of merit, FOM)高达2.8 ,而39 的低导通电阻率,也远低于同样10kV耐压的 SiC 结型肖特基势垒二极管。多沟道氮化镓器件由于采用廉价的蓝宝石衬底以及水平器件结构,其制备成本也远低于采用昂贵SiC衬底制备的SiC二极管。创新性的多沟道设计可以突破单沟道氮化镓器件的理论极限,进一步降低开态电阻和系统损耗,并能实现超高击穿电压,大大拓展GaN器件在高压电力电子应用中的前景。在“碳达峰+碳中和”的历史性能源变革背景下,氮化镓电力电子器件在电动汽车、充电桩,可再生能源发电,工业电机驱动器,电网和轨道交通等高压应用领域具有广阔的潜力。苏州晶湛半导体有限公司已于近日发布了面向中高压电力电子和射频应用的硅基,碳化硅基以及蓝宝石基的新型多沟道AlGaN/GaN异质结构外延片全系列产品,欢迎海内外新老客户与我们洽商合作,共同推动氮化镓电力电子技术和应用的新发展!
  • 212万!广东工业大学手套箱与电流电压测试仪等设备采购项目
    项目编号:M4400000707015234001项目名称:手套箱与电流电压测试仪等设备采购(四次)采购方式:公开招标预算金额:2,128,500.00元采购需求:合同包1(金相显微镜探针台等设备采购):合同包预算金额:2,128,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表金相显微镜探针台1(套)详见采购文件199,000.00-1-2其他专用仪器仪表高温分析探针台1(套)详见采购文件158,000.00-1-3其他专用仪器仪表探针台5(套)详见采购文件245,000.00-1-4其他专用仪器仪表电容电压特性测试仪5(套)详见采购文件180,000.00-1-5其他专用仪器仪表电流电压测试仪10(套)详见采购文件500,000.00-1-6其他专用仪器仪表少子寿命测试仪5(套)详见采购文件150,000.00-1-7其他专用仪器仪表霍尔效应测试仪5(套)详见采购文件27,500.00-1-8其他专用仪器仪表四探针测试仪5(套)详见采购文件115,000.00-1-9其他专用仪器仪表晶体管图示仪5(套)详见采购文件45,000.00-1-10其他专用仪器仪表数字荧光示波器16(套)详见采购文件496,000.00-1-11其他专用仪器仪表万用表10(套)详见采购文件13,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起至质保期满之日
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 安东帕推出新型高温纳米压痕测试仪
    p  安东帕近日宣布推出新型高温纳米压痕测试仪UNHT³ HTV。作为测量低载荷下纳米尺度机械性能的测试系统,UNHT³ HTV可用于测量温度在 800 ° C 以下的薄膜和涂层的硬度和弹性模量。其专利 UNHT 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201702/insimg/71016a8c-f6a0-4c09-81ab-e26ce87e40b8.jpg" title="UNHT3_HTV_w.jpg"//pp  UNHT3 HTV的核心是基于非常成功和专利的超纳米压痕试验机(UNHT)。/pp  测量头已针对高温操作进行了优化,并结合了正在申请专利的样品台,可以在工作范围内的任何温度下进行测量,并具有最高的热稳定性。这样的测量特性引发了研究人员的兴趣:/pp  环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。/pp  最高载荷框架刚度 ( 106 N/m) 和最低框架柔度 ( 0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“实际深度”和“载荷控制”模式。/pp  高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使泵振动降至最低。/pp  独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压头、参比 压头和样品加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1° C 内。/pp  符合 ISO 14577 和 ASTM E2546 国际标准/ppbr//p
  • 长春智能生产绝缘材料电气强度测试仪
    GJW-50kV计算机控制电压击穿试验仪一、适用范围 本机主要适用于固体绝缘材料如:绝缘漆、树脂和胶、浸渍纤维制品、云母及其制品、、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试,符合GB1408.1-2006标准常温状态下的测试。二、主要技术参数及精度1、输入电压: AC220V2、输出电压: 0~50KV(交直流)3、测量范围: 5kV~50kV4、高压分级及升压速率 1)0~5kV 升压速率 0.5kV/S 2)>5kV 升压速率 1kV/S 3)升压速率连续可调5、耐压试验电压: 0~50KV连续可调整6、耐压时间: 0~4H7、功率: 5KVA8、电源: AC220V ± 10% 50-60HZ三、精度等级:1级四、主要功能该仪器采用计算机控制,能过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验,主要适用于固体绝缘材料。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。本仪器属我公司首创,国家专利批为我公司专利五、基 本 配 置1、主机2、试验台一个3、油箱一个4、试验电极三个5、试验软件6、清华同方计算机一套7、A4彩色喷墨打印机一台 公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号联系电话:0431-848644218 13944864580 传真:0431-84642036 联系人:芮小姐Http://www.znyq.com. E-mail:rsm-72@163.com
  • 用落镖冲击测试仪检测药用pvc硬片的耐冲击性能相较于落球冲击测试仪,哪个更好
    药用PVC硬片的耐冲击性能检测是一个关键的质量控制步骤,以确保药品包装的完整性和保护药品免受运输和处理过程中的冲击。落镖冲击测试仪和落球冲击测试仪都是用于评估材料耐冲击性能的设备,但它们在设计和应用方面存在差异。落镖冲击测试仪落镖冲击测试仪通常用于评估软包装材料如薄膜、复合膜等的抗冲击穿透能力。它使用一个或多个特定重量和形状的落镖,从一定高度落下冲击试样。这种测试方法更多地侧重于材料的抗穿透性能,适用于检测软包装材料在实际使用中抵抗尖锐物体冲击的能力。落球冲击测试仪落球冲击测试仪则通常用于测试硬质塑料材料如药用PVC硬片的冲击强度。它使用一定质量的球体从预设高度自由落体,冲击试样,以此来模拟实际使用中可能遇到的冲击情况。落球冲击试验可以检测药用PVC硬片的耐用性、硬度、强度和韧性等性能。比较与选择在选择落镖冲击测试仪还是落球冲击测试仪时,需要考虑以下因素:材料特性:药用PVC硬片作为一种硬质塑料材料,更适合使用落球冲击测试仪进行测试。测试目的:如果测试目的是评估材料的耐冲击能力以及硬度和强度,落球冲击测试仪可能更为合适。标准遵循:应参考相关的医药包装材料测试标准或国际标准,如YBB00212005-2015等,这些标准可能指定了特定的测试方法。设备能力:确保所选设备能够满足药用PVC硬片的测试要求,包括试样尺寸、冲击高度和能量等。结论根据上述信息,对于药用PVC硬片的耐冲击性能检测,落球冲击测试仪 更为适合,因为它专门设计用于评估硬质塑料材料的冲击强度,并且符合药用PVC硬片的测试标准和要求。
  • 高温大电流1200V/100A SiC 肖特基器件首次研制成功 填补国内空白
    p 碳化硅与其他半导体材料相比,具有高禁带宽度、高饱和电子漂移、高击穿强度、低介电常数和高热导率等优异的物理特点。在同样的耐压和电流条件下,SiC器件的漂移区电阻比硅要低200倍 SiC肖特基二极管具有超快的开关速度,反向恢复电流几乎为零,具有超低的开关损耗等优点。/pp  在国家重点研发计划“新能源汽车”重点专项项目“高温车用 SiC 器件及系统的基础理论与评测方法研究”支持下,中国科学院微电子研究所与株洲中车时代电气股份有限公司研究团队针对高温下SiC芯片存在的高温电流导通能力退化,大面积芯片电流集中引起的热电强耦合导致的电流降低(损耗增加)性能退化等问题,开展了高温SiC芯片载流子的输运机理与行为规律的基础科学问题研究,从载流子传输路径优化、电流/电场均衡分布的芯片设计思路出发,利用外延层、有源区、精细化终端结构等综合优化技术,突破高温下SiC芯片电流输运增强技术,成功研制车用高温、大电流、高可靠1200V/100A SiC SBD器件,并通过该器件的静态、动态等全参数测试,以及可靠性摸底试验。结果显示,该项目研制的SiC肖特基器件与Cree公司的第五代同电压等级的CPW5-1200-Z050B产品的电流密度208A/cm2相比,在电流密度方面具有优势,在国内处于领先水平,即将应用于车用SiC模块的研发。/p
  • 激光诱导击穿-拉曼光谱分析仪
    成果名称激光诱导击穿-拉曼光谱分析仪(LIBRAS)单位名称四川大学生命学院分析仪器研究中心联系人林庆宇联系邮箱lqy_523@163.com成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 □合作开发 &radic 其他成果简介: 台式LIBS(左)、便携式LIBS(右) 手持式LIBS 技术背景 作为一种激光光谱分析技术,同其他光谱分析技术相比较而言,激光诱导击穿光谱(简称,LIBS)技术具有诸得天独厚的优势,特别是分析速度快,无需样品前处理,多元素同时分析以及所有元素都可测定等优势,这些优势都已经使LIBS技术逐渐成为一种非常流行的元素分析手段,在冶金地质、航空航天等众多应用领域也逐渐得到尝试性的使用。基于上述技术优点,本中心开发了激光诱导击穿光谱系列仪器,包括:台式LIBS系统,便携式LIBS仪器以及手持式LIBS分析仪,相关仪器的样机已展开多次的优化升级,实现了LIBS仪器的国产化突破。但是,虽然LIBS技术有上述众多优点,但是该技术本身却只是一种原子发射光谱技术,利用该技术也只能对被分析样品进行元素分析,获取被分析物质单一的元素构成信息,不能得到相关组成元素的结构信息,因此,利用单一的LIBS技术无法对样品进行全面系统的检测分析。而在地质勘探、石油录井等实际应用需求中,往往不仅仅要求对组成样品的元素进行分析,更重要的是要获取被分析物的结构信息,特别是关于地层岩石的岩性、结构以及矿物种类的综合信息,在这一点上,单纯靠LIBS技术肯定是无法实现的。因此,开发出一种即可实现元素分析,又同时可实现结构鉴定的快速原位光谱分析技术就显得十分重要。Raman光谱作为一种非破坏性的光谱分析技术,是很具吸引力的。该技术利用低能量激光作用于样品表面,通过接收物质所产生的散射光谱,知道物质的振动转动能级情况,从而可以鉴别物质结构、分析物质的性质。Raman光谱技术可以提供快速、简单、可重复、且无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头测量,一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。因此,Raman光谱技术和LIBS技术从仪器构成、光路设计到结果分析等方面都有着诸多相同或相似之处,将这两种技术结合在一起,开发出可同时得到原子光谱、分子光谱的激光光谱分析系统将有非常广阔的应用潜力。仪器先进性LIBRAS仪器可用于分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。仪器关键技术研发1. 独特的光学设计。采用一套光学系统,实现两种不同波长激发的两种不同类型信号的获取,光学系统内无任何移动镜片组件,结构稳,性能强。2. 创造性的高能风冷脉冲激光系统。采用自主研发风冷脉冲激光器作为LIBS光源,单脉冲能量100 mJ,整机无需水冷,体积紧凑。3. 创造性的实现高能激光器的低压低功耗供电。激光器可采用锂电池供电,使仪器的便携化成为可能。性能指标光斑尺寸:LIBS光路100 µ m;Raman光斑20 µ m;分析距离:40 mmLIBS部分:激光波长1064 nm;脉冲激光能量100 mJ;激光频率1 Hz(可联系激发);脉冲宽度8-10 ns;光谱接收范围:可全谱接收(200-800选配);Raman部分:激光波长532nm;能量 20 mW;光谱接收范围:540-750 nm(选配)应用前景:LIBRAS技术是LIBS技术的提升和扩展。由于Raman光谱可以用来研究分子的振动和转动情况,提供物质内部的结构信息,各种简正振动频率及有关振动能级的情况,但在物质所含元素,尤其是次要元素和痕量元素的检测方面,能力及其有限。而在油气开采、地质勘探、冶金、电力生产、环境卫生和深空探测等领域,如果既要检测物质中的主要、微量和痕量元素,也要知晓物质中分子组份和结构信息,单独的Raman技术,以及其他的现有光谱检测技术(比如,电感耦合等离子体发射光谱法、X射线荧光光谱法、气相色谱分析法等)都不能完成任务,只有把LIBS技术和Raman技术有机结合起来才能满足此要求。以油气开采为例:在录井现场完成分析,可以快速的做出解释评价,及时为勘探开发的的决策提供依据,减少了钻井现场等措施的时间,避免决策的失误。通过应用该技术,提高录井解释符合率上升10%以上,每年减少10%试油工作量,仅西南油气田每年可以节约勘探成本5-6亿元人民币。在国内外油气田推广应用,每年可以节约勘探开发成本50-60亿元人民币。降低油气勘探开发成本,扩大油气开发规模,为国民经济的持续发展做贡献。除此以外,例如在冶金、地质等领域,亦可以带来相当巨大的经济效益。知识产权及项目获奖情况:专利1:单脉冲激光源的双波长同轴激光诱导击穿-脉冲拉曼光谱联用系统及方法(发明专利,已提交);专利2:激光诱导击穿光谱与拉曼光谱联用仪自动化测控系统(发明专利,已提交);专利3:激光诱导击穿/拉曼光谱联用分析仪(外观专利,已提交);其他:LIBRAS仪器入选&ldquo 2014中国科学仪器与分析测试行业十大新闻&rdquo 。
  • 第八届中国激光诱导击穿光谱学术会议(CSLIBS 2020)通知
    我国在激光诱导击穿光谱(LIBS)机理的探索、新技术研发以及应用研究方面近年来发展迅速。成功举办了“第八届国际LIBS大会(LIBS2014)-北京”、“第一届亚洲LIBS研讨会(ASLIBS2015)-武汉”、“第一届国际LIBS峰会-北京”、从第一届“CSLIBS会议-青岛”,我国已举办七届“CSLIBS会议”,极大地推动了中国LIBS的科学研究、新技术开发和相关设备的研制等方面的学术交流。目前我囯LIBS在煤电、聚变核能、冶金、海洋、食品安全、环境监测等领域的应用均取得显著进步。为进一步提高LIBS技术在我国的研究水平,推动LIBS技术的进步与创新,为LIBS领域科技工作者、相关企业提供学习和交流的平台。由中国光学工程学会激光诱导击穿光谱专业委员会主办、大连理工大学承办“第八届中国激光诱导击穿光谱学术会议(CSLIBS2020)”。鉴于当前大连新冠肺炎疫情形势,根据上级关于新冠肺炎疫情防控要求,切实保障各参会代表的身体健康和生命安全,经LIBS专业委员会常委会讨论决定,本届会议将通过网络线上方式举办,于2020年8月28日至31日召开。诚挚邀请国内外从事LIBS研究的专家、学者、研究生和企业界人士参加会议,通过线上学术报告和线上墙报(微视频)等方式就LIBS技术的重要科学问题、最新研究结果以及发展趋势等问题展开研讨,诚挚邀请国内外LIBS相关的仪器设备公司参会交流。感谢您的理解与支持!会议方式网络线上会议会议组织主办单位:中国光学工程学会激光诱导击穿光谱专业委员会承办单位:大连理工大学协办单位:物理学院仪器信息网三束材料改性教育部重点实验室中俄白等离子体科学联合研究中心大会主席:丁洪斌组织委员会(按姓氏笔画):丁洪斌、王哲、王茜蒨、王秋平、尹王保、朱香平、孙兰香、李华、李祥友、李颖、张雷、陆继东、周卫东、郑荣儿、赵南京、段忆翔、俞进、贾云海、崔执凤、董晨钟、曾晓雁地方委员会主席:李聪、海然地方委员会成员:吴鼎、冯春雷、王奇、吴兴伟、付彩龙、王勇、孙立影、刘佳敏、吕燕、石劼霖、何中林、武华策、P.Dasgupta、M.Imran、H.Sattar一、入会方式通过仪器信息网CSLIBS2020页面进入会议直播间:https://www.instrument.com.cn/webinar/meetings/CSLIBS2020(点击报名)参会回执表内手机号作为参会凭证,未提前报名者可通过网站提示完成报名。二、会议形式根据会议委员会商议讨论,此次会议将更注重研讨LIBS最新研究成果及其存在的关键科学与技术问题,主要采用如下模式安排会议内容:1、线上大会报告设立LIBS课程专题讲座、邀请报告、口头报告等,探讨LIBS技术的未来发展趋势,并评选优秀青年报告奖。2、线上微视频墙报展示根据提交的论文摘要,遴选研究成果,安排专门微视频墙报交流单元,并评选优秀学生墙报奖。3、线上仪器展示会议将为LIBS相关企业提供线上展示平台,展出最新仪器产品和技术。三、会议总体安排2020年8月28日LIBS课程讲座2020年8月29日开幕式、大会报告2020年8月30日大会报告、微视频墙报展示2020年8月31日大会报告、闭幕式、颁奖四、LIBS课程讲座日程2020年8月28日(周五)时间题目报告人单位主持人8:30-10:00LIBS定量化研究进展王哲清华大学丁洪斌10:00-10:15休息10:15-11:45LIBS光谱中的基体效应和基于机器学习的校准方法研究俞进上海交通大学11:45-13:30休息13:30-15:00纳秒皮秒飞秒激光烧蚀等离子体时空演化特征研究丁洪斌大连理工大学俞进15:00-15:15休息15:15-16:45水下及极端环境LIBS基本问题讨论郑荣儿中国海洋大学五、报告详细日程2020年8月29日(周六)时间题目报告人单位主持人8:30-9:00大会开幕式丁洪斌大连理工大学副校长姚山教授致辞中国工程院金国藩院士致辞Session19:00-9:25I1-SAF-LIBS系列实验及结论尹王保山西大学王哲9:25-9:50I2-LIBSOnlineAnalysisinMineralProcessing,MetallurgyandMetalRecyclingIndustries孙兰香中科院沈阳自动化所9:50-10:15I3-ApplicationofLIBSonresearchofancientmuralmaterialsandtechniqueinMogaoGrottoesatDunhuang孙对兄西北师范大学10:15-10:25休息Session210:25-10:50I4-LIBS(李博士)、MIPS(马博士)、还是其它博士?段忆翔四川大学俞进姚明印10:50-11:15I5-激光诱导击穿光谱定量化技术及煤质在线分析系统装备研发侯宗余清华大学11:15-11:30O1-基于激光诱导击穿光谱技术的物质分类研究张大成西安电子科技大学11:30-11:45O2-酒精火焰辅助增强水中金属元素LIBS探测的实验研究卢渊中国海洋大学11:45-12:00O3-长短双脉冲LIBS新方法用于高温钢铁成分检测崔敏超西北工业大学12:00-13:30休息Session313:30-13:55I6-便携式激光诱导击穿光谱成分分析仪开发及应用李祥友华中科技大学段忆翔才来中13:55-14:20I7-LIBS光谱与迁移学习相结合的火星探测的岩石分析孙琛上海交通大学14:20-14:35O4-基于激光烧蚀产生的分子碎片谱特性的脑肿瘤诊断腾格尔北京理工大学14:35-14:50O5-赣南脐橙叶片LIBS扫描分析下典型病害快速诊断章琳颖江西农业大学14:50-15:05展商1-“碳”索新界——赛默飞NitonApollo手持式LIBS分析仪及应用介绍沙嘉梦赛默飞世尔科技(中国)有限公司15:05-15:15休息Session415:15-15:40I8-水下原位LIBS系统研制与试验郭金家中国海洋大学董晨钟孙兰香15:40-16:05I9-聚变装置偏滤器刻蚀与沉积皮秒激光诱导击穿光谱定量诊断研究赵栋烨核工业西南物理研究院16:05-16:20O6-激光诱导击穿光谱技术结合基于光谱窗的偏最小二乘判别分析方法(SW-PLS-DA)用于塑料瓶的快速分类刘可华中科技大学16:20-16:35O7-基于人体血浆的LIBS光谱与机器学习相结合的卵巢癌诊断研究岳增奇上海交通大学16:35-16:50O8-激光诱导击穿光谱技术在纳米功能薄膜材料分析方面的研究刘世明山东理工大学16:50-17:05O9-DiagnosisofdeuteriumretentionandimpuritydepositionontungstendivertortilesfromKSTARtokamakbylaser-inducedbreakdownspectroscopy孙立影大连理工大学2020年8月30日(周日)时间题目报告人单位主持人Session58:30-8:55I10-激光诱导击穿光谱临床医学和癌症诊断技术进展王茜蒨北京理工大学郑荣儿王茜蒨8:55-9:20I11-激光诱导击穿光谱技术的最新进展及其在生物医学领域的应用研究郭连波华中科技大学9:20-9:45I12-激光诱导击穿光谱技术应用于燃料燃烧过程特性研究董美蓉华南理工大学9:45-10:00O10-双脉冲激光烧蚀等离子体动力学数值模拟研究付彩龙核工业西南物理研究院10:00-10:15展商2-基于500ps门宽ICMOS技术以及其应用金鹏程东方闪光(北京)光电科技有限公司10:15-10:25休息Session610:25-10:50I13-基于LIBS和SPAMS技术的大气原位在线探测研究刘玉柱南京信息工程大学陆继东贾云海10:50-11:15I14-LIBS测量烟气中微量重金属元素的光谱特性研究王珍珍西安交通大学11:15-11:30O11-LIBSSignalFluctuationCorrectionswithPlasmaImageandseveraltypicalapplicationsofLIBS张鹏沈阳自动化所11:30-11:45O12-基于机器学习算法的LIBS光谱数据处理在钾肥在线分析中的应用研究邹龙上海交通大学11:45-12:00O13-DepthprofilingofmultilayercoatingofAl/W/Moonsteelsubstrateusinglaser-inducedbreakdownspectroscopyMuhammadImran大连理工大学12:00-13:30休息13:30-22:00微视频墙报展(LIBS专委会组织遴选优秀学生墙报奖)2020年8月31日(周一)时间题目报告人单位主持人Session78:30-8:55I15-共线双脉冲LIBS中激光加热对光谱强度的影响周卫东浙江师范大学崔执凤朱香平8:55-9:20I16-激光烧蚀耦合大气压辉光放电等离子体原子光谱应用于土壤重金属元素定量研究汪正中科院上海硅酸盐研究所9:20-9:45I17-水溶液中多种微量金属元素的激光诱导击穿光谱动力学研究杨新艳安徽师范大学9:45-10:00O14-非规则样品LIBS探测增强技术研究雷冰莹中科院西安光机所10:00-10:15展商3-海洋光学如何帮助您快速启动LIBS实验张昊翔海洋光学亚洲公司10:15-10:25休息Session810:25-10:50I18-基于光纤激光器的小型化高重频LA-SIBS在合金元素分析中的应用李润华华南理工大学周卫东李颖10:50-11:15I19-磁约束聚变装置激光诱导击穿光谱壁元素诊断研究进展李聪大连理工大学11:15-11:30O15-面向生物医学诊断的LIBS装置与分析方法林庆宇四川大学11:30-11:45O16-Animagefeaturesassistedlineselectionmethodinlaser-inducedbreakdownspectroscopy闫久江华中科技大学11:45-12:00O17-Ontheuseoflaboratorystandard-basedmodelsforpredictionwithLIBSspectrafromirregularmaterialsSaharShabbir上海交通大学12:00-13:30休息Session913:30-13:55I20-LIBS遥测系统对核电钢铁材料的定量分析张勇山东东仪光电公司李祥友赵南京13:55-14:20I21-材料温度对激光烧蚀等离子体光谱信号的影响研究海然大连理工大学14:20-14:35O18-压力效应对水下等离子体和空化气泡演化特性的影响田野中国海洋大学14:35-14:50O19-面向火星探测应用的LIBS岩石物理基体效应研究徐伟杰上海交通大学14:50-15:05O20-基于LSSVM的土壤重金属定量分析黄玉涛长春工业大学15:05-15:15休息Session1015:15-15:40I22-纳秒激光烧蚀等离子体中离子加速以及瞬态鞘层诊断研究吴鼎大连理工大学尹王保张雷15:40-16:05O21-基于共振激发的激光诱导击穿光谱检测杜鹃叶中的铅元素朱晨薇华中科技大学16:05-16:20O22-样品表面粗糙度对微芯片激光诱导击穿光谱微区分析的影响汪为沈阳自动化所16:20-16:35O23-使用LASSO算法基于LIBS光谱相关性的钢中碳元素检测张宇清上海交通大学16:35-17:00闭幕式,颁奖王哲丁洪斌六、微视频墙报列表2020年8月29日(周六)时间题目报告人单位主持人8:30-9:00大会开幕式丁洪斌大连理工大学副校长姚山教授致辞中国工程院金国藩院士致辞Session19:00-9:25I1-SAF-LIBS系列实验及结论尹王保山西大学王哲9:25-9:50I2-LIBSOnlineAnalysisinMineralProcessing,MetallurgyandMetalRecyclingIndustries孙兰香中科院沈阳自动化所9:50-10:15I3-ApplicationofLIBSonresearchofancientmuralmaterialsandtechniqueinMogaoGrottoesatDunhuang孙对兄西北师范大学10:15-10:25休息Session210:25-10:50I4-LIBS(李博士)、MIPS(马博士)、还是其它博士?段忆翔四川大学俞进姚明印10:50-11:15I5-激光诱导击穿光谱定量化技术及煤质在线分析系统装备研发侯宗余清华大学11:15-11:30O1-基于激光诱导击穿光谱技术的物质分类研究张大成西安电子科技大学11:30-11:45O2-酒精火焰辅助增强水中金属元素LIBS探测的实验研究卢渊中国海洋大学11:45-12:00O3-长短双脉冲LIBS新方法用于高温钢铁成分检测崔敏超西北工业大学12:00-13:30休息Session313:30-13:55I6-便携式激光诱导击穿光谱成分分析仪开发及应用李祥友华中科技大学段忆翔才来中13:55-14:20I7-LIBS光谱与迁移学习相结合的火星探测的岩石分析孙琛上海交通大学14:20-14:35O4-基于激光烧蚀产生的分子碎片谱特性的脑肿瘤诊断腾格尔北京理工大学14:35-14:50O5-赣南脐橙叶片LIBS扫描分析下典型病害快速诊断章琳颖江西农业大学14:50-15:05展商1-“碳”索新界——赛默飞NitonApollo手持式LIBS分析仪及应用介绍沙嘉梦赛默飞世尔科技(中国)有限公司15:05-15:15休息Session415:15-15:40I8-水下原位LIBS系统研制与试验郭金家中国海洋大学董晨钟孙兰香15:40-16:05I9-聚变装置偏滤器刻蚀与沉积皮秒激光诱导击穿光谱定量诊断研究赵栋烨核工业西南物理研究院16:05-16:20O6-激光诱导击穿光谱技术结合基于光谱窗的偏最小二乘判别分析方法(SW-PLS-DA)用于塑料瓶的快速分类刘可华中科技大学16:20-16:35O7-基于人体血浆的LIBS光谱与机器学习相结合的卵巢癌诊断研究岳增奇上海交通大学16:35-16:50O8-激光诱导击穿光谱技术在纳米功能薄膜材料分析方面的研究刘世明山东理工大学16:50-17:05O9-DiagnosisofdeuteriumretentionandimpuritydepositionontungstendivertortilesfromKSTARtokamakbylaser-inducedbreakdownspectroscopy孙立影大连理工大学2020年8月30日(周日)时间题目报告人单位主持人Session58:30-8:55I10-激光诱导击穿光谱临床医学和癌症诊断技术进展王茜蒨北京理工大学郑荣儿王茜蒨8:55-9:20I11-激光诱导击穿光谱技术的最新进展及其在生物医学领域的应用研究郭连波华中科技大学9:20-9:45I12-激光诱导击穿光谱技术应用于燃料燃烧过程特性研究董美蓉华南理工大学9:45-10:00O10-双脉冲激光烧蚀等离子体动力学数值模拟研究付彩龙核工业西南物理研究院10:00-10:15展商2-基于500ps门宽ICMOS技术以及其应用金鹏程东方闪光(北京)光电科技有限公司10:15-10:25休息Session610:25-10:50I13-基于LIBS和SPAMS技术的大气原位在线探测研究刘玉柱南京信息工程大学陆继东贾云海10:50-11:15I14-LIBS测量烟气中微量重金属元素的光谱特性研究王珍珍西安交通大学11:15-11:30O11-LIBSSignalFluctuationCorrectionswithPlasmaImageandseveraltypicalapplicationsofLIBS张鹏沈阳自动化所11:30-11:45O12-基于机器学习算法的LIBS光谱数据处理在钾肥在线分析中的应用研究邹龙上海交通大学11:45-12:00O13-DepthprofilingofmultilayercoatingofAl/W/Moonsteelsubstrateusinglaser-inducedbreakdownspectroscopyMuhammadImran大连理工大学12:00-13:30休息13:30-22:00微视频墙报展(LIBS专委会组织遴选优秀学生墙报奖)2020年8月31日(周一)时间题目报告人单位主持人Session78:30-8:55I15-共线双脉冲LIBS中激光加热对光谱强度的影响周卫东浙江师范大学崔执凤朱香平8:55-9:20I16-激光烧蚀耦合大气压辉光放电等离子体原子光谱应用于土壤重金属元素定量研究汪正中科院上海硅酸盐研究所9:20-9:45I17-水溶液中多种微量金属元素的激光诱导击穿光谱动力学研究杨新艳安徽师范大学9:45-10:00O14-非规则样品LIBS探测增强技术研究雷冰莹中科院西安光机所10:00-10:15展商3-海洋光学如何帮助您快速启动LIBS实验张昊翔海洋光学亚洲公司10:15-10:25休息Session810:25-10:50I18-基于光纤激光器的小型化高重频LA-SIBS在合金元素分析中的应用李润华华南理工大学周卫东李颖10:50-11:15I19-磁约束聚变装置激光诱导击穿光谱壁元素诊断研究进展李聪大连理工大学11:15-11:30O15-面向生物医学诊断的LIBS装置与分析方法林庆宇四川大学11:30-11:45O16-Animagefeaturesassistedlineselectionmethodinlaser-inducedbreakdownspectroscopy闫久江华中科技大学11:45-12:00O17-Ontheuseoflaboratorystandard-basedmodelsforpredictionwithLIBSspectrafromirregularmaterialsSaharShabbir上海交通大学12:00-13:30休息Session913:30-13:55I20-LIBS遥测系统对核电钢铁材料的定量分析张勇山东东仪光电公司李祥友赵南京13:55-14:20I21-材料温度对激光烧蚀等离子体光谱信号的影响研究海然大连理工大学14:20-14:35O18-压力效应对水下等离子体和空化气泡演化特性的影响田野中国海洋大学14:35-14:50O19-面向火星探测应用的LIBS岩石物理基体效应研究徐伟杰上海交通大学14:50-15:05O20-基于LSSVM的土壤重金属定量分析黄玉涛长春工业大学15:05-15:15休息Session1015:15-15:40I22-纳秒激光烧蚀等离子体中离子加速以及瞬态鞘层诊断研究吴鼎大连理工大学尹王保张雷15:40-16:05O21-基于共振激发的激光诱导击穿光谱检测杜鹃叶中的铅元素朱晨薇华中科技大学16:05-16:20O22-样品表面粗糙度对微芯片激光诱导击穿光谱微区分析的影响汪为沈阳自动化所16:20-16:35O23-使用LASSO算法基于LIBS光谱相关性的钢中碳元素检测张宇清上海交通大学16:35-17:00闭幕式,颁奖王哲丁洪斌点击名报联系方式电子邮件:CSLIBS2020@163.com联系人电话:13084141818(李聪:摘要、会议注册)13555928210(海然:摘要、会议注册、展商)13552834693(魏晖浩:展商,仪器信息网会议平台)18842407101(石劼霖:注册费、发票)通讯地址:大连市高新园区凌工路2号大连理工大学物理学院赞助单位
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 激光诱导击穿光谱(LIBS)研究领域再次取得重要进展
    激光诱导击穿光谱技术(LIBS)又称激光诱导等离子体光谱,是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。但在普遍应用中,LIBS技术面临信号波动大、光谱强度低、信噪比差、探测灵敏度低等不利因素。瞬态光学与光子技术国家重点实验室汤洁研究员课题组近年来开展了激光等离子体光谱研究领域的技术攻关。放电辅助增强策略可实现大幅度的激光等离子体光谱增强。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,这不可避免地导致能源浪费和环境污染相关问题。2023年2月份,瞬态光学与光子技术国家重点实验室汤洁研究员课题组与Vassilia Zorba教授团队合作共同提出一种离子动力学调制方法,对克服传统放电辅助LIBS技术(D-LIBS)放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该项工作借助于这种方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。然而,这一方法在液态样品的探测中受液相对放电过程的干扰导致LIBS信号波动大,影响探测光路甚至无法探测,极大阻碍了放电辅助LIBS(DA-LIBS)在液态样品中痕量物种定性或定量分析方面的应用。近日,针对放电辅助LIBS在液态样品探测中面临的关键技术性难题,该团队提出了DA-LIBS结合滤纸采样的方法,促进等离子体中更多的物质被持续加热、电离,致使其寿命从几微秒延长至近百微秒,等离子体光谱强度增加1–2个数量级,滤纸均匀采样巧妙克服了液相干扰放电过程及信号稳定性差等不利因素,显著增强激光烧蚀样品的稳定性,等离子体光谱信号稳定性得以提升33%。凭借显著的光谱增强效应,痕量Ca、Ba元素检出限降低至ppb量级( 1ppb=10-9=十亿分之一),相比于传统单脉冲LIBS,检出限降低近2个数量级。相比于其他LIBS增强技术(如双脉冲LIBS),该方法不仅享有同等高水平的探测灵敏度,还具备低成本、低能耗、装置简易等优势,将在环境与生态废油污染监测中,对污染物质的溯源,以及预防措施的制定,展现出巨大的应用潜力和价值。图片来源于中国科学院西安光学精密机械研究所该项研究成果发表于分析化学领域顶级期刊 Analytical Chemistry(Nature Index 收录,IF:8.0)。
  • 众瑞仪器发布ZR-3260型自动烟尘烟气综合测试仪 (C款,正压)新品
    ZR-3260型自动烟尘烟气综合测试仪(C款,正压)产品简介:ZR-3260型自动烟尘烟气综合测试仪(C款,正压),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。执行标准l HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法l GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法l HJ/T 48-1999 烟尘采样器技术条件l HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法l JJG 968-2002 烟气分析仪l JJG 680-2007 烟尘采样器l JJG 518-1998 皮托管检定规程l Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪l HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法技术特点l 仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;l 适用于烟道正压环境,主机烟尘无动力源采样;l 烟气测试流量控制满足HJ/T 46 的要求;l 采样管与皮托管材质为310S耐温耐腐蚀材质;l 采用刚玉滤筒采集颗粒物,适用于800℃以下高温工况;l 满足烟道压力0.3MPa\800℃的采样工作环境要求;l 双重水冷却烟气,确保烟气进入主机之前降温到仪器可承受的温度;l 具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;l 同时支持触控和按键操作,7.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;l 板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;l 支持外置蓝牙高速打印机;l 精确电子流量计控制,实时监测计温,计压,自动调节流量;l 微电脑控制等速跟踪采样,专有调节方式,响应时间快;l 烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置;l 具备操作导航功能,引导用户快速完成整个采样过程;l 气嘴接口侧向布局,防雨防尘效果好;l 交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电;l 具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;l 内置锂电池,满电状态下可正常工作不低于3小时;l 加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。创新点:仪器具有CO对SO2的自动修正功能,选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;适用于烟道正压环境,主机烟尘无动力源采样;烟气测试流量控制满足HJ/T 46 的要求;采样管与皮托管材质为310S耐温耐腐蚀材质;采用刚玉滤筒采集颗粒物,适用于800℃以下高温工况;满足烟道压力0.3MPa800℃的采样工作环境要求;双重水冷却烟气,确保烟气进入主机之前降温到仪器可承受的温度;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;精确电子流量计控制,实时监测计温,计压,自动调节流量;微电脑控制等速跟踪采样,专有调节方式,响应时间快;具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。ZR-3260型自动烟尘烟气综合测试仪 (C款,正压)
  • 首台智能化高性能激光诱导击穿光谱仪成功登录中国
    2008年10月21日,上海凯来实验设备有限公司成功地完成了清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)的安装调试工作。目前这套Spectrolaser 4000 Target LIBS系统标配有532nm激光源,*能量为1064nm,300mj,4通道光谱仪,CCD检测器,内置图像2维扫描系统,将协助该中心进行煤炭领域的研究工作,最终目标将在煤矿,发电厂等企业实现在线快速分析,这标志着中国在煤炭的元素分析领域将掌握一种崭新的分析手段。   清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)   LIBS应用专家讲解中   激光源导出系统实验   在大气环境中激发效果   外置激光源空气中测试名片中元素含量的实验   标煤(GBW111 O2i)   标煤(GBW111 O2i)LIBS 图谱1   标煤(GBW111 O2i)LIBS 图谱2  标煤(GBW111 O2i)结果显示,该样品煤中含有Si, Fe, N, Ti, C, Mg, Ba, Na, Sr, K, Ca, O、H、Al等多种元素,其中总S含量为33.51%(偏差为0.18%),挥发性硫含量为24.92%(偏差为0.29%),C含量为49.83%(偏差为0.35%),H含量为2.98%(偏差为0.14%),N含量为0.90%(偏差为0.03%),完全符合标准。  传统的煤分析方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。  煤炭分析背景资料  煤炭是我国国民经济发展的物质基础,煤炭企业生产的煤炭产品不仅要在数量上满足国民经济各物质生产部门的生产和人民群众的生活需要,而且也要在质量上满足不同用户的使用要求。  长期以来,我国煤炭供需关系总的来讲一直比较紧张,只要将煤炭从地下采出,销售就不成问题,这在一定程度上也淡化了人们的质量意识。但发展到今天,煤炭质量问题己引起越来越多用户的高度重视,对煤炭企业提出了严峻的挑战。从目前煤炭市场情况看,煤质不好,不仅价格较低,而且煤炭的利用率较低,浪费严重。据统计,我国煤炭平均利用率约在30%左右。一般来说煤炭燃烧时,煤质越差,热损失越多,热效率也就越低,耗煤数量也越多。如普通锅炉使用灰分为4O%的原料煤与使用灰分为90%的原料煤相比,热效率至少相差10%。可见,由于煤质不好或供煤品种的不对路,其浪费是惊人的。  同时,我国每年因燃煤而产生的硫的氧化物和氮的氧化物的总量在1000万t以上,这些有害的酸性气体排入大气后,在一定的条件下与雨水一起再降到地面。相当于从空中降下2000多万t强酸,对环境污染很大,特别是烟煤中所含苯并芘对人体危害*,其浓度每增加百万分之一,癌发率上升5%。由上可见,提高煤炭质量,不仅可以达到节约煤炭,降低用户生产成本的目的,而且有利于环境的保护,减轻煤炭利用对环境的污染。  为了严格控制煤炭的质量,1987年,国家标准局发布《煤质分析试验方法一般规定》(GB/T 483-1987)。其中包括:煤的元素分析方法 煤中碳和氢测定方法电量—重量法 煤中全硫的测定方法 煤中各种形态硫的测定方法 煤中磷的测定方法 煤中砷的测定方法 煤中氯的测定方法 煤中氟的测定方法 煤中锗的测定方法 煤中镓的测定方法 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 煤中铬、锡、铅的测定方法 煤中铀的测定方法 煤中钒的测定方法 煤中硒的测定方法 煤中汞的测定方法等等(详见GB/T 483-1987)。  传统的方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。   实验室留影1   技术交流会议合影留念  LIBS 技术背景介绍  激光诱导击穿光谱仪(LIBS),无论是在样品制备、检测元素及分析时间上都明显优异于传统分析技术。其基本原理是使用高能量激光光源在分析材料表面形成高强度激光光斑(等离子体),使样品激发而发光, 通过检测系统对激发光信号的分析从而对待测样品元素进行定性和定量分析。  早在1961年,相关技术的论文已发表在了Brech上,但由于当时的激光发射器造价较高,实际生产的应用并不多见。随着激光发射器的商业化,LIBS已经逐渐应用在各行各业:环境:土壤,微粒,沉积物 材料分析:金属,矿渣,塑料,玻璃、煤炭 法医和生物医学:牙齿,骨头 计量学:硅晶片,半导体材料 生物学研究:植物,谷物 国防和军事:爆破,生化武器 艺术品修复和保存:颜料 宝石学和冶金术:贵金属,宝石。  上海凯来拥有一支理论知识扎实和实践经验丰富的团队,秉承着为客户提供完善技术服务的理念,与清华大学BP清洁能源研发与教育中心合作开发LIBS在煤炭领域中的应用。此次合作也对LIBS技术的肯定,欢迎任何对此技术方法感兴趣的分析工作者一起探讨,同时我们可以提供测试服务。相信在不久的将来,LIBS将具有广阔的市场前景。
  • LIBS人的盛会 第六届中国激光诱导击穿光谱技术研讨会召开
    p  strong仪器信息网讯/strong 2018年3月24日,第六届中国激光诱导击穿光谱技术研讨会(CSLIBS 2018)在西安交通大学召开。CSLIBS 2018由中国光学工程学会激光诱导击穿光谱专业委员会主办,西安交通大学承办,西安电子科技大学、中国科学院西安光学精密机械研究所协办。来自科研院校的专家学者以及相关企业、仪器设备公司的200多位代表参加了此次会议。/pp style="text-align: center "img title="会场1.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/1933c015-4973-48a8-b006-9a706065852b.jpg"//pp style="text-align: center "img title="会场1.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/c154933b-bdb3-4f0f-906b-0a9b6ae69a4b.jpg"//pp style="text-align: center "CSLIBS 2018会议现场/pp  会议举行了简短的开幕式,激光诱导击穿光谱专业委员会副主任陆继东、西安交通大学能动学院副院长赵亮分别致欢迎辞,西安交通大学王珍珍教授主持开幕式。致辞中,陆继东副主任表示,本次会议有许多热爱激光诱导击穿光谱的老朋友,也有非常多的来自各个领域的新朋友,会议将以“能源动力”为主题展开广泛的交流。赵亮副院长介绍了西安交大能动学院的概况,以及学院开展激光诱导击穿光谱研究工作的情况。二位都预祝此次会议取得圆满成功和丰硕成果。/pp style="text-align: center "img title="陆继东1.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/6ef00b4f-e892-4c39-92f8-b7c0abd03bc2.jpg"//pp style="text-align: center "激光诱导击穿光谱专业委员会副主任陆继东/pp style="text-align: center "img title="赵亮.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/43ee6863-9b89-459e-a932-5629c18ce2e5.jpg"//pp style="text-align: center "西安交通大学能动学院副院长赵亮/pp style="text-align: center "img title="王珍珍.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/193a7e27-6135-44a0-8235-80e411cb9525.jpg"//pp style="text-align: center "西安交通大学王珍珍教授/pp  激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,LIBS)利用激光功率密度非常高的特点,与物质(气体、固体、液体)直接相互作用,从而产生高温等离子体,待测元素在高温等离子体中激发或电离,根据特征谱线进行定性分析,根据特征谱线的强度进行定量分析。LIBS具有不需要样品准备、多元素同时检测、测量速度快、可远程非接触测量、系统结构组成简单等诸多优点,因此,在2004年的一篇综述文章中,世界著名的光谱分析专家James Winefordner博士称之为化学分析技术的“未来之星”。/pp  不过,LIBS是一个优点与缺点都非常明显的分析技术。由于受不可控的激光-物质(无法通过样品准备进行精确控制)相互作用的影响,加上其后的激光-等离子体(由激光烧蚀产生)、等离子体-环境气体、等离子体-激波(由等离子体快速碰撞产生)之间相互作用过程中受多种不确定因素的影响,导致LIBS系统信号测量不确定度较高,可重复性精度较差;受基体效应的影响,测量误差也相对较大。/pp  所以,关于对LIBS的看法也有着很多不同的声音,看好、不看好都有。对此,上海交通大学俞进教授和清华大学王哲教授都曾说到,LIBS在短短的时间内吸引了大量学者和工业界人士的关注,是因为LIBS能够解决其他技术不能解决的问题。而对于LIBS能不能用的问题,二人如此说到,“LIBS肯定能用,但不能用在所有地方,让LIBS做自己能做的事情!”/pp  如此,也意味着在今后一段时间内,LIBS还需要进行大量的机理、数据处理、应用研究,积极和其他仪器配合,开发商业化定量分析技术......,虽然这个过程可能会有点长,但是对于推动LIBS技术发展、实现其大规模商业应用来说,这些都是非常重要的。/pp  CSLIBS 2018为期两天,在第一天,西安交通大学严俊杰教授、西安电子科技大学邵晓鹏教授分别做主题报告。/pp style="text-align: center "img title="严俊杰.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/d95b2f75-d32a-4885-ace5-50ca466d7c57.jpg"//pp style="text-align: center "西安交通大学严俊杰教授/pp style="text-align: center "报告题目:燃煤电站调峰过程的能耗和环保性能理论研究/pp  实现灵活运行、深层次节能减排是燃煤发电行业发展面临的机遇与挑战,提升燃煤电站调峰过程的能效、速率并降低排放是重点、难点、热点问题。针对这一关键问题,严俊杰教授研究团队进行了10 余年的持续研究,建立了燃煤发电机组全厂瞬态模型,通过研究燃煤机组变负荷瞬态过程中热工控制与热力系统的耦合匹配特性,获得了燃煤发电机组瞬态过程能耗特性,揭示了节能机理;研究了通过热力系统与热工控制耦合匹配实现机组变负荷速率提升的基础理论问题,并利用LIBS等分析技术定量分析了灵活运行对机组排放特性的影响规律。/pp style="text-align: center "img title="邵晓鹏.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/c50b36f6-5bcb-48bb-8e2d-97376cbd5fdc.jpg"//pp style="text-align: center "西安电子科技大学邵晓鹏教授/pp style="text-align: center "报告题目:计算成像技术及应用/pp  传统光学成像技术由于受到物理上的限制,在探测距离、成像分辨率与视场等方面存在着矛盾。为了实现更高、更远、更小的要求,引出计算成像技术的概念。邵晓鹏教授通过对计算成像技术的深入分析,对其数学问题和物理机制进行了深入的探讨。并重点讨论了计算成像技术的发展,分别介绍了多孔径成像技术、散射成像技术、编码成像技术、偏振成像技术以及光声成像技术等,并针对SWaP 的要求,提出了基于全局优化全新的光学系统设计思路。最后,针对人工智能技术在光电系统中的应用,阐述了超分辨率重建技术和TLD目标跟踪技术,并对计算成像技术的发展进行了总结与展望。/pp  与上届研讨会有所不同的是,在CSLIBS 2018的第一天进行的报告中,LIBS应用研究的内容有一定的增加。部分报告内容如下:/pp style="text-align: center "img title="陆继东.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/31830c05-8e65-4200-a9c8-6f8caba604aa.jpg"//pp style="text-align: center "华南理工大学陆继东教授/pp style="text-align: center "报告题目:能源转化过程对于光学测量的需求和LIBS 技术的可能潜力/pp  以煤炭为首的化石能源以及生物质能的转化是一个复杂的物理化学过程,而能源清洁转化系统的安全、可靠、经济运行取决于对全流程关键参数的快速、在线检测。因此,急需发展合适的光学测量技术。报告中,陆继东教授综合分析了能源转化过程中基础研究和工业应用对光学测量的需求,结合其研究团队的多年研究进展对LIBS技术在能源转化过程中的应用、瓶颈和前景进行了深入的探讨和分析。/pp  其后,陆继东教授团队的董美蓉、姚顺春分别做题为“激光诱导击穿光谱技术应用于单颗粒煤燃烧过程特性研究”、“直接测量颗粒流的等离子体光谱优化方法研究”的报告。报告分别介绍了在煤燃烧前、燃烧过程中、燃烧后等环节利用LIBS进行的研究工作所取得的进展。/pp style="text-align: center "img title="王金华.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/b6fdb6c4-01a5-4c6b-b556-341e1af2b539.jpg"//pp style="text-align: center "西安交通大学王金华教授/pp style="text-align: center "报告题目:高压预混湍流火焰结构和动力学实验研究/pp  王金华在报告中介绍了利用OH-PLIF(平面激光诱导氢氧基荧光技术)火焰结构激光诊断技术开展高压预混湍流火焰结构和动力学实验研究,包括两个方面:一是在层流平面火焰和预混层流本生灯火焰上,利用OH-PLIF 获得局部拉伸火焰的反应区结构,研究火焰自身对于固有扰动、拉伸、流场扰动的响应规律和机理;二是在准各向同性预混湍流火焰本生灯上,结合高压燃烧实验平台,定量控制湍流场参数、火焰自身参数,利用OH-PLIF 获得湍流火焰瞬时火焰结构及其统计表征,研究流场、火焰自身与湍流火焰结构参数三者的作用规律和机理。/pp style="text-align: center "img title="李常茂.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/b919703d-64bd-4479-bc87-ff6ac7495ae5.jpg"//pp style="text-align: center "中国工程物理研究院材料研究所李常茂博士/pp style="text-align: center "报告题目:LIBS 在核材料分析领域应用研究进展/pp  发展核能对优化能源结构、保障能源安全、促进污染减排和应对气候变化具有重要作用。然而核裂变材料拥有高放射性,给传统成分分析手段带来困难。而核材料分析是LIBS优势应用领域之一,可以说也是LIBS 技术发展及应用的一大机遇。在国际上,LIBS分析核材料正成为一大热点,其发表的相关论文数量快速增长,而在我们国内,相关论文几乎为“0”。/pp  李常茂博士在报告中介绍了核燃料循环基本环节基础上,介绍了LIBS 在铀含量检测、放射性同位素分析、核污染远程分析等方面的研究现状。如,铀、钚基体光谱复杂,对LIBS光谱分辨率有极高要求;微量铀分析灵敏度低至150ppm,铀钚材料中杂质元素分析灵敏度低至100~500ppm,但均严重依赖于基体光谱复杂度;LIBS分辨同位素效果一般,目前仅能分辨具有较大同位素位移的核素,且需要特定的气氛条件;远程LIBS分析距离高达30m,核污染检测灵敏度约为10~100ug\cm2,但严重依赖于基体材料。/pp style="text-align: center "img title="poster.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/25a36426-8a03-492d-9b91-ff2febe37059.jpg"//pp style="text-align: center "Poster Session/pp  更多会议内容请见后续报道。/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20180326/242756.shtml" target="_blank"span style="color: rgb(255, 0, 0) "strong第六届中国LIBS研讨会闭幕 2019相约安徽/strong/span/a/pp /p
  • 川大研制出便携式激光诱导击穿光谱仪(LIBS)
    日前,由四川大学生命学院分析仪器研究中心牵头承担的国家重大科学仪器设备开发专项成果&mdash &ldquo 便携式激光诱导击穿光谱仪(LIBS)&rdquo 亮相第九届中国西部国际科学仪器展览会。该产品是国内自主研发的首例便携式LIBS仪器。除了具有与实验室台式LIBS相似的优点之外,其方便,便携,可现场,在线分析等优势受到国内外用户和参展商的高度关注。这一成果也标志着我国激光诱导击穿光谱仪器自主研制能力的提升。  与传统的技术相比较,该便携式仪器用途更加广泛,能够更好地服务于冶金、地质、医学,生物,环境污染监测等多个领域,为相关产业提供有效的现场、原位、快速分析的技术装备,从而加快检测速度,缩短分析时间,降低分析成本,提高生产效率,有广阔的市场前景和空间。四川大学自主研制的便携式激光诱导击穿光谱仪亮相第九届中国西部国际科学仪器展览会
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 融合发展 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕
    仪器信息网讯 2023年5月8日,第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕。会议旨在进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新。本次会议由中国光学工程学会主办,中国光学工程学会光谱技术及应用专业委员会、西北师范大学承办,敦煌研究院、中国科学院近代物理研究所、上海理工大学、中国科学院合肥物质科学研究院、中国矿业大学、先进能源科学与技术广东实验室联办。来自国内相关领域240余家单位的600余位代表出席会议,仪器信息网作为合作媒体出席并对大会进行系列报道。会议现场大会开幕式由中国光学工程学会理事、中国光学工程学会光谱技术及应用专业委员会副主任委员兼秘书长、清华大学王哲教授主持,大会主席、中国科学院上海技术物理研究所王建宇院士、西北师范大学副校长李文生教授分别致辞。大会主席、中国科学院上海技术物理研究所 王建宇院士 致辞虽然科学技术不断的发展,为光谱分析仪器带来了性能上的提高和应用范围的扩展,但不断提高的科学技术水平,也对光谱仪器的性能、体积、成本提出了更加苛刻的要求。王建宇院士在致辞中表示,随着国家对自主创新和工程应用的大力支持,我国光谱技术的发展取得了长足的进步,原创性成果持续涌现。在此形势下,希望通过本届会议,紧跟最新发展趋势,引导重点单位,部署分子科学、光学、电子、化学、仪器等相关行业跨界融合,推动全方位的合作,搭建开放的交流平台,为光谱领域的技术创新提供新的动力。西北师范大学副校长 李文生教授 致辞当前,信息技术创新日新月异,数字化、网络化、智能化深入发展,同时也加速了光谱技术成为近代光学计量的重要分支学科。因其具有测量范围宽、速度快、分析精度高等优势,已在元素分析燃烧诊断、文物保护、大气检测、工业检测、生物医疗、航空遥感、矿物检测等诸多领域发挥着越来越重要的作用。李文生教授表示,随着高端新型光谱仪器的自主化和国产化,其必将为我国近代化工业、农业、科技等众多领域的发展壮大作出重要贡献。中国光学工程学会副秘书长邓伟 进行中国光学工程学会重要活动发布为期两天的会议,组委会精心安排了大会报告、分类报告、青年学者口头报告和张贴报告、优秀论文评选和产品展示等活动。值得一提的是,本次会议特别安排了激光诱导击穿光谱及相关技术、原子光谱与质谱、激光拉曼光谱与激光荧光光谱技术及应用、光声光谱与TDLAS技术及应用、红外及太赫兹光谱、超快及瞬态光谱、燃烧诊断、环境监测、工业检测等多个分会场。会议同期,中国光学工程学会成立了光谱技术及应用专业委员会,并召开了第一届专业委员会工作会议,旨在充分发挥专家学者的创造力、凝聚力和积极性,搭建一个交叉融合,创新奋进的交流平台。光谱技术及应用专业委员会开幕式之后,中科院安徽光学精密机械研究所刘文清院士、中科院上海技术物理研究所王建宇院士、清华大学王哲教授、中国矿业大学周怀春教授、北京邮电大学夏安东教授、中国海洋大学郑荣儿教授分别作大会报告。上海理工大学蔡小舒教授、西北师范大学董晨钟教授分别主持大会报告。中科院安徽光学精密机械研究所 刘文清院士《温室气体光学监测技术进展》环境污染和气候变化是我国生态环境建设的两大关键问题。大气污染气体与温室气体二者同根同源,具有显著的协同性,都涉及到大气成分的变化,但是它们的监测技术原理和仪器构成千变万化,取决于监测对象的浓度和来源。刘文清院士在报告中简要介绍了目前用于在线、现场、地基和天基碳监测技术、成果及应用案例。刘文清院士指出,我国急需补齐温室气体监测能力短板,包括温室气体地面大气及生态碳汇监测、地基及天基遥感监测能力,并加快建立园区、城市、区域、全球不同层面的温室气体监测技术体系。中科院上海技术物理研究所 王建宇院士《深空探测中的激光光谱技术》目前激光诱导击穿/荧光光谱、拉曼光谱、可调谐激光光谱等技术已广泛应用于火星探测中,并且将在后续国际行星探测任务中发挥更大作用。王建宇院士在报告中介绍了深空探测中激光光谱技术取得的一系列进展,比如,中国首次火星探测搭载的 MarSCoDe 已经在火星上获取了宝贵的探测数据,帮助科学家进一步研究火星表面物质成分;中国将在嫦娥七号搭载拉曼光谱仪实现月球表面首次拉曼光谱探测等。王建宇院士指出,中国的行星探测已经走在国际前列,未来将继续进行月球、火星以及小行星探测,采用更多的激光光谱技术手段帮助人类了解行星的形成和地质演化过程。清华大学 王哲教授《中国激光诱导击穿光谱发展现状和展望》王哲教授从基础研究、仪器设备开发、定量分析算法、不同领域应用等方面综述了激光诱导击穿光谱在中国的研究进展,重点介绍了在LIBS精确定量方面的进展,并展望了在国家重大战略目标下LIBS未来的发展潜力和面临的挑战。同时,立足于中国在能源、冶金、化工、农业、文保等多个领域的重大需求,王哲教授展望了LIBS在中国未来发展的机遇和挑战,提出了中国在 LIBS 技术进步和大规模应用的潜在方向。中国矿业大学 周怀春教授《用于燃烧及高温光谱/成像诊断的高精度辐射模型》燃烧等高温辐射对象的光谱/成像诊断是一个越来越受到关注的重要发展方向。周怀春教授研究团队提出了基于蒙特卡洛法的DRESOR法,因其能够获得高方向分辨率辐射强度而成为高温辐射图像分析重要方法之一。同时,该团队进一步提出了辐射计算模型精度的定量评价指标和方法,分别针对蒙特卡洛法和DESOR法,提出了提高其计算精度的方法,特别是证明了改进后的DRESOR法全面优于蒙特卡洛法,为进一步提高燃烧及高温辐射光谱/成像诊断技术的性能奠定了良好基础。北京邮电大学 夏安东教授《复杂分子体系的溶剂化相关的激发态过程的探测和调控》夏安东教授在报告中介绍了课题组长期以来针对复杂分子激发态溶剂化动力学过程复杂且无法直接探测的相关技术和科学问题,发展的多种表征激发态溶剂化动力学的超快光谱技术的原理和方法。他重点介绍采用激发态受激调控(基于受激亏蚀原理)的策略实现了激发态关键中间态的溶剂化过程和关键中间"暗态"的直接探测和表征,激发态溶剂化演化动力学过程中的速率常数和溶剂化相关的结构变化动力学的同时探测等。中国海洋大学 郑荣儿教授《深海 LIBS:何去何从?》随着我国自主研发的深潜器和观测平台技术的发展和进步,如何提升深潜器的作业能力、如何借助于这些平台获得有突破性的科学成果,成为海洋技术领域关注的焦点。郑荣儿教授的报告从“LIBS for Sea or Sea for LIBS ”的讨论出发,对水下 LIBS 探测技术研究和器件研发的历史沿革和发展现状进行介绍。同时,围绕海洋资源探测的战略需求,郑荣儿教授对深海原位LIBS探测技术的未来发展方向和潜在应用“何去何从”进行了探讨。上海理工大学蔡小舒教授 主持大会报告西北师范大学董晨钟教授 主持大会报告此外,本次会议还得到多家仪器企业的支持,并在会议期间分享、展示了他们最新的产品、技术及应用解决方案。展示交流现场
  • 聚光科技发布CALIBUS系列手持式LIBS激光诱导击穿光谱仪新品
    英国阿朗科技公司至今已服务于金属元素成分分析行业近40年。40年间ARUN公司共推出10多款产品,覆盖现场及实验室金属材料检测领域。CALIBUS系列手持式LIBS激光诱导击穿光谱仪是ARUN最新推出的手持产品,有着绝佳的元素分析性能,尤其是C元素检测分析性能优异,是目前分析检测碳元素最稳定的手持光谱仪。 检测范围宽 全谱元素检测,可精准稳定检测C及合金材料中的Li、B、Be元素,填补了XRF的检测盲区;分析能力强 全新高分辨率的光学系统设计,搭配CMOS传感器,使得检测精度更高;无辐射 采用激光诱导击穿技术,没有辐射危险,产品通过《设备使用安全认证》;分析速度快 1s完成分辨牌号,快速分析检测;样品适应性广 无需样品前处理,样品适应性广:不要求导电,不要求消解,不要求大量;易用性高 智能触摸屏,人性化交互界面,操作简单便捷,大大提高工作效率。 应用领域: 冶金制造:CALIBUS手持式LIBS光谱仪优异的定量定性检测能力,能解决客户在冶金制造全过程中的质量控制、材料分类、安全防范、事故调查等检测要求,无论是黑色金属还是有色金属,CALIBUS都可以快速、准确给出准确可靠的测试数据,获得接近实验室级别的分析结果。轻金属材料分析:CALIBUS是一款超高分辨率、宽波段范围的手持激光光谱仪,有着强大的分析能力,能够准确分析以往X射线荧光分析仪不能识别的轻元素,即可对C,Si,Mg,B,Be,Li,Na等原子序数小于13的元素的现场快检,满足一切金属材料检测应用场景。材料可行性鉴定:材料检验是确保金属制品使用合格材质的关键。CALIBUS的出现,使工业生产过程中对金属材料的100%全检替代抽样检验成为现实,只需扣动扳机,元素含量及牌号1秒即可准确清晰显示在彩色触摸屏上,并可适应各种现场检测条件。金属交易:在金属废料交易市场中,进行快速可靠的现场分析检测是非常必要的,CALIBUS能够快速准确的对大量的废旧金属(碳素钢、不锈钢、铸铁、铝合金、铜合金等)进行现场检测和分拣,为购销双方在交易时做出迅速可靠的判断。创新点:阿朗CALIBUS系列手持激光诱导击穿光谱仪是英国阿朗科技公司的最新光谱产品。创新点一 CALIBUS的谱线范围190nm-800nm,可对C,Si,Al,Mg,B,Be,Li,Na等原子序数小于13的元素进行现场快检。尤其是其优异的C元素检测能力,解决了广大黑色金属应用领域客户的痛点,弥补了XRF技术检测的不足与空白;创新点二 CALIBUS采用三光室光学系统设计,CMOS探测器,分辨率低于0.1nm。另外它的氩气吹扫功能够消噪增强谱线信号强度,保证检测的准确性,搭配标样可实现金属材料的定量分析; 创新点三 CALIBUS内置高频纳秒级激光器,可在极短时间内完成多次分析,并迅速稳定下来,且无辐射危险,即CALIBUS激光光谱仪1s即可对金属材料完成准确安全的检测分析;CALIBUS系列手持式LIBS激光诱导击穿光谱仪
  • 激光诱导击穿光谱(LIBS)分析技术的几个重要发展趋势
    LIBS是一种激光烧蚀光谱分析技术,激光聚焦在测试位点,当激光脉冲的能量密度大于击穿阈值时,即可产生等离子体。基于这种特殊的等离子体剥蚀技术,通常在原子发射光谱技术中分别独立的取样、原子化、激发三个步骤均可由脉冲激光激发源一次实现。等离子体能量衰退过程中产生连续的轫致辐射以及内部元素的离子发射线,通过光纤光谱仪采集光谱发射信号,分析谱图中元素对应的特征峰强度即可以用于样品的定性以及定量分析。  自从1960年第一台红宝石激光器的发明为原子光谱分析注入新鲜血液之后,类似于火花源的激光光束聚焦击穿现象即见诸文献报道。1962年 Jarrell-Ash的Brech发表第一篇关于用激光产生等离子体进行分析的文章,标志着激光烧蚀分析技术的诞生。1964年,得益于激光器Q开关脉冲技术,使得激光烧蚀无需通过辅助电极放电,直接通过激光产生等离子体进行分析,这也是今天LIBS的雏形。至20世纪80年代,美国Los Alamos实验室利用激光等离子体的光谱信息实现了对于物质元素信息的测量,从而将该技术正式命名为LIBS (Laser Induced Breakdown Spectroscopy)。本世纪分析领域的一大新闻就是美国NASA采用LIBS技术作为火星车表面矿物分析手段&mdash &mdash ChemCam,并出色地完成了科考任务。因而,LIBS技术的应用也相应地成为了一大研究热门。与其他常用元素分析的方法相比,其主要优点有:  (1) 利用激光特有的性能,可实现远程、实时、在线元素检测。  (2) 仪器体积相对较小,适用于现场分析、可在恶劣条件下进行测定。  (3) 可用于各种形态的固体、液体甚至气体分析,而且无需繁琐的样品前处理过程,分析简便、快速。  (4) 可测定难溶解的高硬度材料,对样品尺寸要求不严格,且对样品的破坏性小,实现微损甚至近于无损检测,样品消耗量极低(约0.1&mu g-0.1mg)。  (5) 分析时间短,从激光脉冲发射到信号收集的整个过程仅仅需要毫秒级别的时间。  (6) 可进行多元素同时检测。  远距离辐射光接收技术及光纤传感技术的迅速发展使得激光技术对高温、恶劣环境下的非接触分析得以实现,对环境的较好适应性使其成为优秀的原位监测手段,赋予其优异的实用性。凭借着以上优势,LIBS技术在光谱分析领域的舞台上崭露头角。在过去的三十多年中,国际研究者对LIBS的理论基础进行了大量的研究工作。主要集中于高速相机拍摄LIBS等离子体形貌、不同物质时间分辨谱图、LIBS等离子体温度及电子数密度的估算、激光与物质相互作用机理的研究等。  基于LIBS技术的痕量分析和在线检测的仪器设备已经开始进入市场。国外已出现较为成熟的商品化仪器,但是,昂贵的销售价格限制了其使用对象,核心技术的垄断以及可能涉及到的重要战略作用,成了束缚国内研究及应用领域的一根铁链。国内LIBS技术相对起步较晚,目前虽有一些高校及科研单位从事LIBS技术的研究,但大部分仍偏向于理论及方法的探索,研究目的多为对基础理论的探讨与改进。作为高新技术产业,国内没有相应的自主研发及集成的技术企业,相关产品均来自国外。但目前国内市场中的LIBS进口仪器并没有形成垄断地位或者一家独大的状况,行业处于多家企业共存,百家争鸣的状态,具有代表性的主要有IVEA、Applied Phonics、Applied Spectra、TSI、牛津等公司。作为一种新兴技术,上述公司的不同型号产品也都是在近几年刚刚进入中国市场。  从目前LIBS发展现状来看,主要有以下几大方向:  趋势一:便携化  近年来,随着对工业节能减排的要求,以及环境污染事件频发、食品安全等一系列问题、快速检测仪器得到了极大的重视。对于军事国防业及突发事件对快速响应的需求,环境监测与地质对在线监测的需求,历史文化遗产对于不可移动物质判别的需求,LIBS技术以其无样品预处理,多形态分析以及无辐射危害的优势成为现场检测技术最新发展的热点,而便携化无疑是这一技术的一大发展趋势。这类仪器不但要考虑仪器的集成度和稳定性等基本指标,还需要考虑能耗、抗振动、工作环境等问题。  无论是IVEA的手持LIBS还是TSI的车载小型LIBS仪器,都是在现有仪器基础上形成的小型化仪器,此外,牛津的手持仪器已经可以实现电池操控,五秒内对钢铁样品实现分类定性,这是商业化LIBS的一大进步,值得所有面向应用的科研团队学习。而对于国内的LIBS技术来说,依然多是基于实验室的研究仪器,需要复杂的参数调节与严格的检测环境。在此背景下,我们分析仪器研究中心团队首次实现了便携式激光诱导击穿光谱分析仪器的国产化。便携式激光光谱分析仪(LIBS Mobile)以及体积更小、质量更轻,更适用于野外现场样品快速分析的手持式LIBS仪器:手持式激光光谱分析仪(LIBS Mini),均能在数秒之内在原地完成对固体、液体甚至气体形态的物质的完整在线元素分析,因此该类便携式仪器可用于地质、环境、安保、古董、冶金、表面处理及电子器件现场分析。  趋势二:专用化  在实际应用中,要摒弃&ldquo 一机多用&rdquo 的面面兼顾思维模式,不仅浪费资源,也往往使仪器不能达到最优的使用效果。对于不同的使用需求,要开发各种有针对性的实用仪器。专用仪器的使用成本和检测精度都会得到有效的改善。针对特定的检测对象和检测指标,关键还要有大量的、稳定可靠的校正模型以及模型的维护和二次开发能力。以牛津mPulseTM为例,其抓住钢铁分类为应用点,采用聚类分析的手段,虽然限制了LIBS技术的应用范围,但是同时也降低了仪器成本,提高了测定速度与准确率。只有跟用户单位的有效沟通和通力协作才能够实现LIBS技术的真正专用,比如我们分析仪器研究中心的LIBS仪器,就是在基于成熟的便携LIBS系统的基础上,根据来自地质研究院以及钢铁集团的实际需求,对仪器的硬件参数与软件操作进行改进与升级。同时,建立了LIBS技术用于岩性识别的方法体系,并借助于化学计量学手段开展基体校正研究,探索了地层样品的LIBS元素定量-半定量分析的模型部分。  趋势三:核心零部件研制和创新  国家对于国产科学仪器的发展给予了高度的关注和资金支持,而核心零部件性能对于仪器整体性能的提升至关重要。光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术于一身。但目前我国光栅、检测器、扫描装置等部件多依赖于进口。因而,积极采用以及自主研发国产部件对于最终成型仪器的商品化上市以及产品的竞争力具有极大的推动作用。优质光电倍增管检测器 光谱分析用多维固体检测器&mdash 线阵、面阵式CCD检测器 高刻线密度、高光通量全息光栅 中阶梯闪耀光栅 高强度短弧氙灯-连续光源等,这些国内或较少有自主产品,或相应的质量和性能不及国外产品。最重要的是,仪器成本往往取决于相关部件的成本,若我们仅仅靠装配组装技术,永远无法掌握真正的核心技术,也难于形成有国际竞争力的产品。反过来,LIBS技术的大力发展,不仅对于技术本身有积极意义,对于零部件国产化的进程也具有极大的促进作用。许多业内人士都曾呼吁大家关注仪器核心零部件的研制。在这一点上,我们的LIBS研发团队对此也深有体会。  趋势四:分析方法的创新  只有单纯的谱图,是远远无法满足工业分析需求的。而简单的线性拟合方法,又会受到基质效应等因素的影响。对于分类方法来说,固定不变的参数同样会因为外界基质的变动而在实际应用中产生较大误差。大多数LIBS分析软件依赖于光谱仪的操控,仅仅是获得元素的谱图,而后续再采用第三方软件进行处理 亦或是通过最小化参数的改变来实现定性测定的要求。可以说,没有合适分析方法的LIBS仪器仅仅是硬件的堆积。只有加入分析方法学,统计算法学等,才能够实现LIBS技术的有效应用。这一点也是国外现有LIBS技术的一个共性问题,其操作或过于繁复,或过于简单,用户需要自己考量的部分太多。因此,我们的研发团队在对于分析参数的变动与软件的简化,实现原位物质瞬时定性与快速定量等方面,结合光谱特征谱线识别与标定方法,在整体上完成了自动化实验平台的研发与设计,为整个LIBS实验过程的自动化控制打下了坚实的基础。  趋势五:技术联用  近年来,由于激光光谱仪器部件的趋同性,技术发展的一大趋势是将之与其他检测技术联用,例如将LIBS多元素检测能力和拉曼技术或荧光技术在分子层面的检测能力相结合,得到更为全面的物质成分信息。我们提出开发兼具原子光谱和分子Raman光谱的LIBRAS(Laser Induced Breakdown Raman Spectroscopy)系统,实现激光光谱仪对样品中元素和物质种类的鉴别和量化,这是分析技术的一次重点跨越,在推进分析测试技术方面将具有革命性的意义。另外,通过与传统富集方法的结合或者是创新的信号增强技术也是目前LIBS 技术研究工作中的一个重要方向。随着网络技术的发展,分析仪器与移动网络和云技术的联用可以对于远距离测试,异地操控等实际应用有极大价值,其潜力亦不可忽视。  趋势六:遥测  目前纳米脉冲激光器的使用已经可以进行长达百米左右距离的固体目标遥测。通过使用有效的聚焦透镜对激光束远程高度聚焦,已经实现了远距离的等离子体激发和收集。随着LIBS仪器的日趋成熟,今后可能将其安装在遥控操作式载体上,完成对空气、地面甚至水下检测任务。以火星探测为例,在航天应用时,不可能将探头固定于某一位点,应用LIBS技术,在非接触的远距离条件下即可获得岩石的测定结果,因而LIBS技术继火星车ChemCam之后又一次被选为金星探测用仪器。  趋势七:提高可靠性  可靠性是分析仪器的灵魂和生命线。对于当前的LIBS系统,可靠性仍然是发展中亟待解决的问题之一。此外,在仪器完善过程中,必须采取一系列可靠性设计分析工作,做好可靠性试验与验证工作。当务之急是建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性,尽快制定出完善的检测标准,得到行业的认可,从而以最快速度扩大LIBS技术的应用范围。为此,我们的研发团队在前期激光等离子体空间分辨性质研究的基础上,对仪器的光学收集系统进行了创造性地改良,保证了信号收集效率的增强,提高了仪器的灵敏度,并通过光学技术的进步,采用单脉冲双光束激发的LIBS专利技术,能够有效地避开等离子体的遮蔽效应,使最终激光能量受外界环境干扰因素显著地降低。  综上所述,LIBS技术的发展正呈现出突飞猛进的势头,其研究热点主要集中于更高的灵敏度、更高的准确性、更好的选择性、更高的自动化程度、仪器的小型化和智能化等方面。在国外已经被广泛地应用于环境、国防、航空、冶炼等领域中,并且在很多领域中展现出取代传统的原子光谱技术占据主导地位的势头。对LIBS系统的设计装配,坚固耐用与用户友好型的商业化过程是LIBS未来发展的关键。毫无疑问,LIBS要更加充分地发挥其市场潜力,必将在现在的价格上进行大幅调整,向低成本迈进。同时,必须发展现场便携式系统,建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性。总而言之,LIBS的未来比过去任何时刻都要光明,作为元素分析领域最耀眼的一颗新星,需要我们以国人特有的顽强精神和锐意进取的态度,做大做强,赶超国际领先水平,让世界感受到国际化标准下国产仪器的崭新面貌,在LIBS发展史上留下浓墨重彩的一笔。(撰稿人:四川大学分析仪器研究中心 段忆翔教授)  注:文中观点不代表本网立场,仅供读者参考
  • TSI推出手持式激光诱导击穿光谱仪(LIBS)
    近日,在Pittcon 2014举行期间,TSI推出了一款坚固耐用的ChemLogix&trade 手持式激光诱导击穿光谱元素分析仪(LIBS)用于现场研究,质量控制和移动实验室的市场。  该ChemLogix&trade 手持式激光诱导击穿光谱仪采用位于IR-B频段,Class 1级别的对人眼安全的激光源,可以除去样品表面的污染物。仪器使用不需要特殊的用户培训和个人防护装备。ChemLogix&trade 手持式激光诱导击穿光谱仪可以在几秒钟内完成分析,甚至是对轻元素的分析也可以在这么短的时间内完成。该仪器非常适合要求苛刻的领域,以及在线质量监测。  TSI LIBS全球产品经理Phillip Tan说:&ldquo LIBS技术是一种行之有效的固体样品元素快速分析手段。该技术几乎不需要样品制备,并且甚至可以在短短一秒钟获得结果。利用我们的ChemReveal&trade 台式激光诱导击穿光谱元素分析仪,实验室研究人员已经意识到LIBS在元素分析方面的能力与优势。通过采用便携LIBS,我们的用户现在可以在现场或生产车间快速得到分析结果。&rdquo
  • A102点对点测试仪获评“山纺精品仪器”
    经过严格的评选流程,山纺仪器A102点对点测试仪以其市场占有率高、用户好评多、外观精美、质量可靠被评为&ldquo 山纺精品仪器&rdquo 。再次感谢广大用户对该仪器的厚爱,期待更多的厂家在选用本公司的A102点对点测试仪及其使用过程中,能够不断给我们提出宝贵意见,您的每一个不满意,都是我们前进的动力和方向。一、主要用途用于检测防静电服点对点电阻率。二、试验方法本原理是对试样加入测试电压100  V 共15  s,流经试样的微弱电流用标准电阻取样放大后,从高阻计上读出。数字直接显示出电阻值,精度高、显示迅速、稳定性好、读数方便。三、主要技术参数1、量程范围: 105    &Omega ~1015  &Omega ;2、高阻计示值误差:± 1%,3、输出电压:100V DC四、适用标准 国家标准GB12014- 2009《防静电服》
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。
  • 首届线上举办 人数历届最高,第八届中国激光诱导击穿光谱学术会议(CSLIBS 2020)圆满落幕
    仪器信息网讯2020年8月31日,由中国光学工程学会激光诱导击穿光谱专业委员会主办、大连理工大学承办、物理学院、仪器信息网、三束材料改性教育部重点实验室、中俄白等离子体科学联合研究中心协办的“第八届中国激光诱导击穿光谱学术会议(CSLIBS2020)”圆满落下帷幕。此次会议获得了LIBS领域科技工作者的广泛关注,在4天的会议(8月28日至31日)过程中,有超千人报名在线观看了直播,创历届记录。8月29日8:30,第八届中国激光诱导击穿光谱学术会议(CSLIBS2020)正式开始。会议开幕式由CSLIBS2020会议主席大连理工大学丁洪斌教授主持,大连理工大学副校长姚山教授和中国光学工程学会名誉理事长、中国工程院院士金国藩分别为大会致辞。大连理工大学副校长姚山教授在致辞中首先对参会者的参与表示热烈欢迎,并对大连理工大学的基本状况进行了介绍,对大连理工大学在LIBS研究领域取得的丰硕成果进行了简介,对多年来中国光学工程学会及LIBS专委会的支持表示感谢,最后,他预祝大会圆满成功。中国光学工程学会名誉理事长、中国工程院院士金国藩在致辞中指出,LIBS技术已在多个领域展现出非凡的前景,被誉为元素分析领域的“未来之星”。同时他也指出了LIBS研究目前存在的问题,他希望通过本次会议,大家可以共同探讨,互相启发,推动LIBS技术的发展,并预祝会议圆满成功。我国在激光诱导击穿光谱(LIBS)机理的探索、新技术研发以及应用研究方面近年来发展迅速,目前已成功举办了“第八届国际LIBS大会(LIBS2014)-北京”、“第一届亚洲LIBS研讨会(ASLIBS2015)-武汉”、“第一届国际LIBS峰会-北京”。“CSLIBS会议”是中国LIBS领域最高等级的学术会议,自第一届“CSLIBS会议-青岛”召开以来,“CSLIBS会议”已连续举办七届,此会议极大地推动了中国LIBS的科学研究、新技术开发和相关设备的研制等方面的学术交流。2020年是不平凡的一年,CSLIBS2020原定于在辽宁大连举办,但鉴于当大连新冠肺炎疫情的严峻形势,根据上级关于新冠肺炎疫情防控要求,切实保障各参会代表的身体健康和生命安全,经LIBS专业委员会常委会讨论决定,本届会议首次联合仪器信息网网络会议平台,通过网络线上方式举办,开辟了LIBS学术会议网络召开的先河,并获得了参会人数远超往届的效果。CSLIBS2020邀请了近百位LIBS领域科技工作者,通过线上学术报告和线上墙报(微视频)等方式就LIBS技术的重要科学问题、最新研究结果以及发展趋势等问题展开了研讨,为进一步提高LIBS技术在我国的研究水平,推动LIBS技术的进步与创新,提供了一个学习和交流的平台。青年工作者是科学界的未来,为启发和培养LIBS青年工作者,CSLIBS2020组委会特别特别邀请了4位LIBS领域的权威专家进行主题讲座和在线答疑,清华大学王哲教授、上海交通大学俞进教授、大连理工大学丁洪斌教授和中国海洋大学郑荣儿教授分别带来了精彩的学术讲座,为LIBS领域的青年工作者传授最新的LIBS知识,并为他们答疑解惑。清华大学王哲教授(左一)、上海交通大学俞进教授(左二)、大连理工大学丁洪斌教授(右二)、中国海洋大学郑荣儿教授(右一)随后,会议研究报告正式开始,山西大学尹王保教授、中科院沈阳自动化研究所孙兰香研究员、四川大学段忆翔教授、华中科技大学李祥友研究员、中国海洋大学郭金家教授级高工、北京理工大学王茜蒨教授、南京信息工程大学刘玉柱教授、浙江师范大学周卫东教授、中国科学院上海硅酸盐研究所汪正研究员、华南理工大学李润华教授等46位专家依次为大家带来了精彩的报告。报告日程2020年8月29日Session19:00-9:25I1-SAF-LIBS系列实验及结论尹王保山西大学王哲9:25-9:50I2-LIBSOnlineAnalysisinMineralProcessing,MetallurgyandMetalRecyclingIndustries孙兰香中科院沈阳自动化所9:50-10:15I3-ApplicationofLIBSonresearchofancientmuralmaterialsandtechniqueinMogaoGrottoesatDunhuang孙对兄西北师范大学Session210:25-10:50I4-LIBS(李博士)、MIPS(马博士)、还是其它博士?段忆翔四川大学俞进姚明印10:50-11:15I5-激光诱导击穿光谱定量化技术及煤质在线分析系统装备研发侯宗余清华大学11:15-11:30O1-基于激光诱导击穿光谱技术的物质分类研究张大成西安电子科技大学11:30-11:45O2-酒精火焰辅助增强水中金属元素LIBS探测的实验研究卢渊中国海洋大学11:45-12:00O3-长短双脉冲LIBS新方法用于高温钢铁成分检测崔敏超西北工业大学Session313:30-13:55I6-便携式激光诱导击穿光谱成分分析仪开发及应用李祥友华中科技大学段忆翔才来中13:55-14:20I7-LIBS光谱与迁移学习相结合的火星探测的岩石分析孙琛上海交通大学14:20-14:35O4-基于激光烧蚀产生的分子碎片谱特性的脑肿瘤诊断腾格尔北京理工大学14:35-14:50O5-赣南脐橙叶片LIBS扫描分析下典型病害快速诊断章琳颖江西农业大学14:50-15:05展商1-“碳”索新界——赛默飞NitonApollo手持式LIBS分析仪及应用介绍沙嘉梦赛默飞世尔科技(中国)有限公司Session415:15-15:40I8-水下原位LIBS系统研制与试验郭金家中国海洋大学董晨钟孙兰香15:40-16:05I9-聚变装置偏滤器刻蚀与沉积皮秒激光诱导击穿光谱定量诊断研究赵栋烨核工业西南物理研究院16:05-16:20O6-激光诱导击穿光谱技术结合基于光谱窗的偏最小二乘判别分析方法(SW-PLS-DA)用于塑料瓶的快速分类刘可华中科技大学16:20-16:35O7-基于人体血浆的LIBS光谱与机器学习相结合的卵巢癌诊断研究岳增奇上海交通大学16:35-16:50O8-激光诱导击穿光谱技术在纳米功能薄膜材料分析方面的研究刘世明山东理工大学16:50-17:05O9-DiagnosisofdeuteriumretentionandimpuritydepositionontungstendivertortilesfromKSTARtokamakbylaser-inducedbreakdownspectroscopy孙立影大连理工大学2020年8月30日(周日)时间题目报告人单位主持人Session58:30-8:55I10-激光诱导击穿光谱临床医学和癌症诊断技术进展王茜蒨北京理工大学郑荣儿王茜蒨8:55-9:20I11-激光诱导击穿光谱技术的最新进展及其在生物医学领域的应用研究郭连波华中科技大学9:20-9:45I12-激光诱导击穿光谱技术应用于燃料燃烧过程特性研究董美蓉华南理工大学9:45-10:00O10-双脉冲激光烧蚀等离子体动力学数值模拟研究付彩龙核工业西南物理研究院10:00-10:15展商2-基于500ps门宽ICMOS技术以及其应用金鹏程东方闪光(北京)光电科技有限公司Session610:25-10:50I13-基于LIBS和SPAMS技术的大气原位在线探测研究刘玉柱南京信息工程大学陆继东贾云海10:50-11:15I14-LIBS测量烟气中微量重金属元素的光谱特性研究王珍珍西安交通大学11:15-11:30O11-LIBSSignalFluctuationCorrectionswithPlasmaImageandseveraltypicalapplicationsofLIBS张鹏沈阳自动化所11:30-11:45O12-基于机器学习算法的LIBS光谱数据处理在钾肥在线分析中的应用研究邹龙上海交通大学11:45-12:00O13-DepthprofilingofmultilayercoatingofAl/W/Moonsteelsubstrateusinglaser-inducedbreakdownspectroscopyMuhammadImran大连理工大学2020年8月31日(周一)时间题目报告人单位主持人Session78:30-8:55I15-共线双脉冲LIBS中激光加热对光谱强度的影响周卫东浙江师范大学崔执凤朱香平8:55-9:20I16-激光烧蚀耦合大气压辉光放电等离子体原子光谱应用于土壤重金属元素定量研究汪正中科院上海硅酸盐研究所9:20-9:45I17-水溶液中多种微量金属元素的激光诱导击穿光谱动力学研究杨新艳安徽师范大学9:45-10:00O14-非规则样品LIBS探测增强技术研究雷冰莹中科院西安光机所10:00-10:15展商3-海洋光学如何帮助您快速启动LIBS实验张昊翔海洋光学亚洲公司Session810:25-10:50I18-基于光纤激光器的小型化高重频LA-SIBS在合金元素分析中的应用李润华华南理工大学周卫东李颖10:50-11:15I19-磁约束聚变装置激光诱导击穿光谱壁元素诊断研究进展李聪大连理工大学11:15-11:30O15-面向生物医学诊断的LIBS装置与分析方法林庆宇四川大学11:30-11:45O16-Animagefeaturesassistedlineselectionmethodinlaser-inducedbreakdownspectroscopy闫久江华中科技大学11:45-12:00O17-Ontheuseoflaboratorystandard-basedmodelsforpredictionwithLIBSspectrafromirregularmaterialsSaharShabbir上海交通大学Session913:30-13:55I20-LIBS遥测系统对核电钢铁材料的定量分析张勇山东东仪光电公司李祥友赵南京13:55-14:20I21-材料温度对激光烧蚀等离子体光谱信号的影响研究海然大连理工大学14:20-14:35O18-压力效应对水下等离子体和空化气泡演化特性的影响田野中国海洋大学14:35-14:50O19-面向火星探测应用的LIBS岩石物理基体效应研究徐伟杰上海交通大学14:50-15:05O20-基于LSSVM的土壤重金属定量分析黄玉涛长春工业大学Session1015:15-15:40I22-纳秒激光烧蚀等离子体中离子加速以及瞬态鞘层诊断研究吴鼎大连理工大学尹王保张雷15:40-16:05O21-基于共振激发的激光诱导击穿光谱检测杜鹃叶中的铅元素朱晨薇华中科技大学16:05-16:20O22-样品表面粗糙度对微芯片激光诱导击穿光谱微区分析的影响汪为沈阳自动化所16:20-16:35O23-使用LASSO算法基于LIBS光谱相关性的钢中碳元素检测张宇清上海交通大学8月30日下午,CSLIBS2020还特别线上墙报展示(微视频),以新颖的方式为青年工作者提供了一个展现自我的平台,47位博士及硕士研究生以微视频的方式,展示了他们的研究成果,获得了业界的一致好评。微视频墙报列表编号题目报告人工作单位P1矿浆中Cr元素的激光诱导击穿光谱分析研究赵振矿冶科技集团有限公司P2基于激光诱导击穿光谱的轿车轮毂轴承钢的金相研究李铸福建工程学院P3基于激光诱导击穿光谱的沿海滩涂重金属元素分析李鹏福建工程学院P4超声辅助碱溶法结合激光诱导击穿光谱对头发中锌、铜的高精度测定张思屿华中科技大学P5激光诱导击穿光谱表征3D打印零件的机械性能杨金伟福建工程学院P6基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法陈彤中科院沈阳自动化所P7树木燃烧过程中激光诱导的等离子体温度与CN自由基分子发射的相关性颜逸辉南京信息工程大学P8材料的晶粒尺度对激光诱导击穿光谱技术分析结果的影响研究张殿鑫西南交通大学P9基于LIBS的煤质在线检测技术在燃煤电厂中的应用占凯平华中科技大学P10基于LIBS的关于非金属夹杂物对金属特性影响的研究周涛福建工程学院P11利用LIBS和SPAMS技术在线探测空气中的氟利昂陈宇南京信息工程大学P12基于LIBS和SPAMS技术的大气VOCs中卤素的直接在线探测张启航南京信息工程大学P13一种两阶段变量选择的LIBS定量分析方法郭宇潇西南科技大学P14基于激光诱导击穿光谱的大米镉胁迫效应研究付港荣江西农业大学P15空间限域与微波辅助下Cu元素LIBS光谱信号增强研究吴书佳江西农业大学P16特征选择在激光诱导击穿光谱中的应用研究崔旭泰北京理工大学P17激光诱导击穿光谱结合学习矢量量化在中药分类中的应用研究魏凯北京理工大学P18激光诱导击穿光谱结合人工神经网络识别甲状旁腺相里文婷北京理工大学P19基于LIBS原位检测的甲烷-空气层流扩散火焰特性研究饶刚福华南理工大学P20基于便携式激光诱导击穿光谱技的耐热钢老化等级评估张勇升华南理工大学P21不同挥发分煤的激光诱导击穿光谱时空分布特性研究蔡俊斌华南理工大学P22Temporal-resolvedspectraldiagnosisoflaser-inducedheliumplasma何亚雄福建师范大学P23激光诱导击穿光谱技术在航空合金牌号识别中的应用研究冯中琦西安电子科技大学P24利用KNN算法的金属LIBS远程分类研究刘旭阳西安电子科技大学P25LIBS技术分析Er2O3涂层的抗液态锂腐蚀性能冯思远西南交通大学P26基于声波信号的水下LIBS光谱标准化方法黄甫臻中国海洋大学P27不同压力下的水下LIBS自吸收效应研究张永全中国海洋大学P28激光诱导击穿光谱技术结合螯合树脂富集法对水溶液中的Fe(Ⅱ)和Fe(Ⅲ)进行检测和分离赵怀冬重庆邮电大学P29微气柱辅助LIBS方法及其在液体样品金属元素原位检测中的应用蒋莉莉青岛大学P30基于光纤传能的移动式激光诱导击穿光谱钢铁快速检测与分类曾庆栋湖北工程学院P31基于PCA-SVM算法的激光诱导击穿光谱钢铁合金快速检测与分类研究陈光辉湖北工程学院P32LIBS定量分析软件设计及其在中药材元素分析中的应用韩伟伟西北师范大学P33基于LIBS技术中药材中Cu的定量分析方法研究杨富春西北师范大学P34LIBS技术结合化学计量学在中药材产地溯源中的应用研究王玉鹏西北师范大学P35利用激光诱导击穿光谱和化学计量学测定古代壁画颜料粒径的一种潜在方法李雪蕊西北师范大学P36基于支持向量机的LIBS测量飞灰含碳量定量分析陈鹏西安交通大学P37LIBS在藏红花元素检测及真假分辨中的应用张程元喆南京信息工程大学P38激光诱导击穿光谱测定无机-有机杂交纳米材料的半衰期汪威良华中科技大学P39使用多个实验设置下的光谱提高LIBS的分类性能宋玉洲清华大学P40纳米增强激光诱导击穿光谱的对比研究刘家岑清华大学P41一种用于煤质分析的基体匹配定标法顾炜伦清华大学P42基于验证的集成变量选择及其在激光诱导击穿光谱技术分析煤质中的应用宋惟然清华大学P43在线近红外联用激光诱导击穿光谱分析技术在磷矿浮选工艺中应用史烨弘矿冶科技集团有限公司P44基于PMT的高灵敏度、高时间分辨LIBS系统用于EAST托卡马克第一壁元素诊断武华策大连理工大学P45激光解吸附质谱空间分辨定量研究钨表面燃料滞留吕燕大连理工大学P46高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究刘佳敏大连理工大学P47真空环境下磁约束聚变装置器壁表面杂质OPC-LIBS定量诊断研究仝伟娜大连理工大学会议的闭幕式上,本届会议主席大连理工大学丁洪斌教授对参会代表的精彩报告,会务组辛勤的付出,仪器信息网提供网络平台以及4天的细致专业的服务表示由衷的感谢。随后,LIBS专委会常务副主任清华大学王哲教授颁布了本次会议的优秀青年学者报告奖和优秀学生墙报奖,并鼓励他们勇于创新。最后,会议主席丁洪斌教授宣布,本届CSLIBS2020圆满结束。闭幕式过后,LIBS专委会宣布,第九届中国激光诱导击穿光谱学术会议(CSLIBS2021)将与第四届亚洲LIBS研讨会(ASLIBS2021)同时举办,由中国海洋大学承办,中国海洋大学郑荣儿教授欢迎大家明年来到美丽的青岛,共话LIBS美好未来。会议同期,仪器信息网还特别举办了LIBS在线展活动,时间为8月27日-9月7日。
  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪面世
    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展&mdash &ldquo 激光诱导击穿-拉曼光谱分析仪(LIBRAS)&rdquo 首次亮相于2014年12月20日-21日的&ldquo 激光光谱分析前沿技术国际研讨会&rdquo 。  继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。  LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • CTM系列高温持久低压大电流筒式高温炉寿命测试已超过2000小时
    三思纵横CTM系列高温持久蠕变试验机广泛用于各种金属及合金材料在高温环境下的蠕变性能和持久强度试验,测试材料的蠕变极限、持久强度极限等性能参数,其配套产品高温炉的性能直接决定了试验机在高温工作环境中的表现,三思纵横配备的筒式高温炉保温效果好,均温带长(200mm),高温可达1200℃,电炉寿命长,在不高于1200℃的条件下可以保障使用30000小时。 三思纵横深圳研发部秉承严谨的工作态度,对公司CTM系列高温持久蠕变试验机配套筒式高温炉进行了极限工作环境下的寿命测试,据研发部提供的数据,本次测试始于2012年3月19日16:00.测试电压25V,测试条件为1200℃温度下24小时不间断测试,截至发稿时,该筒式高温炉已无间断正常工作逾2000小时,此项测试工作目前进展顺利,并将持续进行。 据研发部介绍,筒式高温炉工作效率高,是传统对开式高温炉的十几倍,无需降温升温和保温过程即可进行更换试样重复试验。相对于早起的对开式高温炉,筒式炉在材料使用上进行了较大的改进,选用HRE &Phi 5mm电热管炉丝取代了对开式高温炉的常规&Phi 1mm炉丝,加热速度更快,温度可控性强,目前可以达到100℃-1200℃范围内均可控,安全性能和保温效果都得到了极大的提升。 本次试验再次验证了三思纵横CTM系列高温持久蠕变试验机的可靠性,也为研发部提供了客观合理的观测数据,为今后设备性能的进一步提升提供了丰富详实的技术资料。 欢迎登录公司网站查看公司最新动态www.sunstest.com
  • 新品上市丨嘉仪通【便携式泽贝克系数测试仪PTM】,了解一下?
    近日,武汉嘉仪通科技有限公司正式对外推出最新研发的【便携式泽贝克系数测试仪PTM】。该测试仪小巧轻便,可快速测量薄膜、块体等不同形态热电材料的Seebeck系数,能够应用于热电材料初选、均匀性测试、高通量实验、热电教学体验等与热电材料相关的各个环节,为热电材料科研及产业化提供了更专业、便携的测试新选择!便携式泽贝克系数测试仪该款设备是在中国热电材料领域老前辈的建议下,为实现我国热电材料产业化,打造“精品工程”,嘉仪通科技专项研发的便携式热电参数测试产品!一、核心特点1.材料初选可快速筛选薄膜、块体等热电材料样品,提高初选环节的效率,避免无用实验,极大节约实验成本;2.均匀性测试助力高通量实验,快速检测薄膜、块体等热电材料的均匀性,准确找到材料最优配比;3.教学体验完美适用于本科阶段热电材料相关原理教学、实验讲解等教学体验环节;4.企业精品工程打造有助于优化热电材料工艺设计,进一步提升热电产品质量和稳定性,助力企业打造具有优良品质的精品工程。 二、基本特点1.快速测样测试时间低至10s/次,测试结果自动呈现,极大提高团队的实验效率。2.准确测试采用稳定可靠的方法测量,操作简单,性能稳定,数据准确(中国计量院拿NIST标样进行对比测试,测试结果误差在7%以内)3.样品要求低直接测试热电材料的Seebeck系数,对样品形状无特殊要求。4.长时间续航大容量电池,可供全天(大于10h)持续不间断使用。5.小巧安全设备小巧轻便,易于携带,安全性能高三、技术参数型号PTM-2(企业版)PTM-3温差范围≤40K加热功率6 W泽贝克系数量程20~700 μV/K2~1000 μV/K泽贝克系数分辨率0.1μV/K测量误差±7%±7%充电电压220V/5V2A电池容量8000mAh续航时间12 h样品电阻≤1K Ω≤10K Ω样品尺寸薄膜:长≥10,宽≥5,单位mm块体:长≥1.5,宽≥1.5,高≥1.5,单位mm纤维样品:长≥20,直径≥0.2,单位mm四、测试实例碲化铋棒材截面均匀性测量结果 鹏南电子科技提供样品SEEBECK系数测试结果单位名称样品名称测试一(μV/K)测试二(μV/K)测试三(μV/K)平均值(μV/K)标准样品镍带-19.4-19.6-19.5-19.5清华大学热电薄膜16.516.716.616.7四川大学改性导电聚合物11.111.211.311.2太原理工大学硅化镁-102.9-103.1-103.0-103.0合肥工业大学硅化镁168.0168.0168.1168.0【便携式泽贝克系数测试仪PTM】一经推出,就受到了广大顾客的青睐。目前,已经有中国科学院化学研究所、西安耐司科学仪器有限公司、广东雷子克热电工程技术有限公司等三家科研单位和企业已经或正在采购该设备。此外,还有十余家高校、科研院所和企事业单位也非常有意向购买这款便携式设备。嘉仪通的此款新品,在第十次中国热电材料及应用学术会议(2018年5月6-9号,中国杭州)上首次公开展出,吸引了众多热电研究相关老师的注目。部分老师直接将样品带到大会现场进行测试,测试结果准确有效,得到了相关老师的一致好评。大会现场测样与此同时,嘉仪通科技一直非常注重产品的技术研发与换代升级。虽然此款【便携式泽贝克系数测试仪PTM】刚刚推出,但其升级版产品也正在紧锣密鼓的研发当中,将进一步提升产品各方面测试性能,为从事热电材料领域研究的广大客户提供更方便、更精准测试的好产品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制