当前位置: 仪器信息网 > 行业主题 > >

高能量一体化激光器

仪器信息网高能量一体化激光器专题为您提供2024年最新高能量一体化激光器价格报价、厂家品牌的相关信息, 包括高能量一体化激光器参数、型号等,不管是国产,还是进口品牌的高能量一体化激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高能量一体化激光器相关的耗材配件、试剂标物,还有高能量一体化激光器相关的最新资讯、资料,以及高能量一体化激光器相关的解决方案。

高能量一体化激光器相关的资讯

  • 澳开发出能量更强单原子激光器
    据美国《每日科学》网站3月31日报道,澳大利亚因斯布鲁克大学研究小组最新实现的更高能量单原子激光,不但具有传统激光器的属性,还展示了单个原子相互作用的量子力学性质。   在传统型激光器中,光学性质活跃的物质被放置在两面镜子之间的一个空腔内,然后用电流或另一束激光将其激发。光学性质活跃的物质所发射出的光子被反射再次穿过物质,会激发更多光子的发射,最终产生激光。系统中单个电子或光子的量子涨落对整个激光器几乎没有影响。   单个原子激光器,其激光出自于单个原子。首先对于激光系统性能而言,其工作阈值条件具有非常重要的意义。因斯布鲁克大学的科学家瑞纳布拉特与皮特施密特领导的研究小组,展示了激光阈值高度完美化的最小可能:单个原子可在光学腔中单模交互。被“囚禁”在离子阱中的单一钙离子,因接受外部激光刺激而活跃,释放出一个光子。由两面镜子组成的高精度光学腔,能捕捉并聚集该光子,离子循环的每个周期都有一个光子被添加到腔洞系统中,使光线得以增强。   单原子激光器可促进人们了解单个原子与单个光子之间的相互作用,由单原子激光器产生的非经典光将实现对光子流量的精细控制,在光子信息工程中具有很大的应用前景。自1958年研制成功以来,激光就被冠以“最快的刀、最准的尺”之名。但现今的这项技术正在将此概念延伸到一个全新的领域。   该项成果发表于最新一期《自然物理学》杂志上.
  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪面世
    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展&mdash &ldquo 激光诱导击穿-拉曼光谱分析仪(LIBRAS)&rdquo 首次亮相于2014年12月20日-21日的&ldquo 激光光谱分析前沿技术国际研讨会&rdquo 。   继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。   LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。
  • 高能量约束先进模式等离子体运行研究取得重要成果
    实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。近期,中国科学院合肥物质科学研究院等离子体物理研究所核聚变大科学团队发挥体系化建制化优势,取得了系列原创性的前沿物理基础研究成果。1月7日,国际学术期刊《科学进展》(Science Advances)发表了团队在高能量约束先进模式等离子体运行方面取得的重要成果。   托卡马克先进运行模式是当前磁约束核聚变研究的热点之一。核聚变大科学团队在托卡马克装置等离子体物理实验研究中发现并证明了一种新的高能量约束和自组织模式,即超级I模(Super I-mode)。其特点是等离子体中心的电子内部输运垒和等离子体边界的I模共存,从而大幅度提高了能量约束。该先进模式具有芯部无杂质积累,便于聚变反应生成物排出,维持平稳温度台基等优点,并实现了芯部高约束与无边界密度台基及边界不稳定性的兼容,使得等离子体与壁相互作用同长时间尺度上的高性能等离子体运行方面的优势能够比较好地结合起来。这种无需通过外部控制来确保等离子体稳态运行的高能量约束模式,可应用于国际热核聚变实验堆长脉冲运行,对于未来聚变堆运行具有重要意义。   日前,核聚变大科学团队还首次证明了托卡马克等离子体中存在湍流驱动的电流成份,是保持高电子温度稳定运行的关键物理机制。借助湍流回旋动理学模拟计算证实了实验中观察到的湍流是电子温度梯度模,其产生的剩余协强可驱动这一电流。湍流驱动的电流和压强梯度共同驱动内扭曲模,形成湍流-湍动电流-内扭曲模自我调节系统,从而维持芯部电子温度梯度稳定。相关研究成果日前发表在《物理评论快报》(Physical Review Letters)上。   此外,核聚变大科学团队在托卡马克装置中外联合实验中利用封闭偏滤器下的杂质注入脱靶控制,以及高极向比压运行模式下双输运垒带来的约束增强,实现了高比压高参数芯部等离子体与偏滤器全脱靶状态的有效兼容集成。结合理论模拟揭示了偏滤器脱靶、边界输运垒和内部输运垒三者之间相互作用的物理机制。脱靶引起的双输运垒的自组织协同作用,改善了芯部与边界的兼容性,带来了能量约束的净增益。相关研究成果之前发表在《自然-通讯》(Nature Communications)上。   核聚变大科学团队通过发挥建制化、多学科、大平台的特点,结合开放共享的国际交流与合作,凝聚优势资源,组织开展体系化的等离子体物理实验基础研究。在引领核聚变前沿技术发展的基础研究深耕探索,发现了系列新的物理现象,揭示和验证了其中的相关物理机制,特别是在高性能稳态长脉冲等离子体运行模式方面开展的研究,为聚变堆建设和运行奠定了基础。   等离子体所核聚变大科学团队及国内外合作者在高能量约束先进模式、湍流驱动等离子体电流、偏滤器脱靶与高约束等离子体兼容集成等方面取得的系列重要成果,得益于与中国科学技术大学、法国原子能委员会、美国通用原子能公司、麻省理工学院、普林斯顿大学、加州大学洛杉矶分校、橡树岭联合大学、劳伦斯利弗莫尔国家实验室、橡树岭国家实验室等国内外核聚变研究机构开展的密切交流与合作。   相关工作得到中科院、科技部、国家自然科学基金委等的资助,以及安徽省、合肥市、合肥综合性国家科学中心的大力支持。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 我国研制成功5千瓦级全固态激光器 打破国际禁运
    美国“百夫长”激光炮就是将数个8千瓦级工业激光器并联。   林学春研究员(左一)与国外同行开展学术交流(科学报图片)   工欲善其事,必先利其器。   激光就是先进制造领域的一把利器,对一个国家的先进制造业发展有着至关重要的作用,而先进制造业的水平,体现着综合国力的强弱。   29岁就成为中国科学院半导体所最年轻的研究员,他最感谢的是他的导师、中国工程院院士许祖彦,导师不仅教给他扎实的基础知识,同时也教会他如何做人。   跨越鸿沟,就是一个全新的自己   2005年,博士毕业后来到半导体所科技处工作刚刚一年的林学春接到了一项艰巨的任务——筹建全固态光源实验室。   从无到有,往往要付出常人难以想象的努力。创建初期,林学春白天被科技处各种事务性工作填得满满当当,研究只能放在晚上做。大功率激光器实验危险性很强,水、电、光都集中到一个很小的区域,稍不留神,水溅出来会有灾难性的后果,看不见的激光射出来会把钢板烧个窟窿。而那时,实验室里只有林学春一个人在同时面对这些可能发生的危险。   危险,林学春不怕,但让他苦恼的是,如何才能得到理想的实验结果。很长一段时间内,他觉得自己离成功很远,想到研究所为实验室投入的那么多经费可能要付诸东流,他不免心急如焚。   一个能取得成功的人总是一个善于调节自己情绪的人。很快,他就豁然开朗了,要作出成绩必须先平静下来,有无所畏惧的决心和勇气。他把激光器部件一个个拆开,反复对比每一个参数,认真设计每一个步骤,经常在不知不觉中,发现窗外天已大亮。   尽管很累,但是他说,要感谢那段时间,因为在每天的坚持中,他不光看到了自己的进步,还锻炼了自己的意志,“现在我无论碰到什么困难都不怕,跟过去遇到的困难比起来小多了”。   跨越了鸿沟,成果接踵而至。实验室相继突破3kW、4kW、6kW和8kW激光输出,缩短了与国际上该领域的差距。2008年,以林学春作为项目负责人承担的“863”重点项目“高功率5千瓦全固态激光器”的课题“高功率全固态激光器研究”通过了科技部专家组严格评估,这是我国首次研制成功的满足工业需求的5千瓦级全固态激光器,并具有完全自主知识产权。这项成果对打破国际禁运、实现激光先进制造装备工程化具有重要意义。   进军“激光革命”   人类的文明史就是一部人类利用光的历史,激光则是迄今为止“最亮的光”,“激光革命”在改变着世界。让自己所制造的激光器服务于社会,在这场“革命”中取得一点小小的成绩,是林学春最大的心愿。   近年来,为加快科技成果转化,林学春及其科研团队以“工业应用需求”为导向,研制出一系列工业化高稳定性、高可靠性激光器及其装备,广泛应用于激光焊接、表面处理、精细加工和激光医疗等领域并取得了显著的成效。   他们研制的高稳定性全固态激光器被中国计量院作为标准光源,对国内的功率计进行标定。他们还开发出国内领先的1000W准连续(90ns)全固态激光器,用于船舶的除漆除锈等行业,目前应用于新加坡IDI激光有限公司。   林学春及其科研团队研发出的全固态高能量脉冲(12J/脉冲)激光器可以对金属表面进行毛化,使载货重轨能在雨雪等恶劣天气下正常行驶,技术将有望应用到高速铁路上,这将大大提高我国高铁在恶劣天气中的运营能力。   林学春团队研制出的工业用1~5kW高性能系列化全固态激光器于2010年成功与江苏省丹阳市天坤集团签订成果转化协议,直接为研究所带来了2000万元的现金收益。这项技术将广泛应用于汽车、船舶、航空、铁路等对国民经济起举足轻重作用的材料加工领域,对尽快扭转我国在先进制造领域关键成套装备基本依靠进口的局面,提高技术创新能力具有重要意义。   尽管如此,年轻的林学春一贯地谦逊:“我们只是在老一辈科学家引领下做了一些可供借鉴的工作而已,将来还有很多事情等着我们去做。”对于卓有成绩的青年科学家来说,这是难能可贵的。
  • 美国海军高能自由电子激光器项目取得进展
    据海军研究署2011年1月19日报道,位于新墨西哥州的洛斯阿拉莫斯国家实验室科学家们在美国海军自由电子激光器项目上取得重大突破:12月20日演示了一台能够生成海军新一代武器系统兆瓦级激光束所需的电子的电子束注入器,这个里程碑式的突破比原计划提前了数月,并于1月20号至21日经过了初步设计评审会的审查。   “电子束注入器按我们所预计的情况运行,”自由电子激光项目的实验室高级项目负责人Dinh Nguyen博士表示。“但到目前为止我们没有足够的证据来支持我们的模式。现在我们非常高兴地看到我们的设计、制造和测试工作终于有结果。现在我们正在开展连续电子束质量的测量工作,希望能创出电子平均电流的世界纪录。”   海军研究署的FEL项目经理Quentin Saulter说,自由电子激光的进步影响巨大。“这是该项目的一个飞跃,也是海军自由电子激光技术的重大飞跃,”索尔特说。 “实际上该小组比进度提前了9个月,为我们在2011年底实现我们的目标提供了充足的时间。”   该项研究是美国海军部未来部署兆瓦级自由电子激光武器系统的重要一步,将革新舰艇防御。Saulter说,“FEL有望为未来美国海军在全球任何海事环境中提供近瞬时的舰艇防御能力。”   美国海军研究署的FEL项目开始于20世纪80年代,是一项基础科学和技术项目,逐渐成熟为一个14千瓦的样机。2010财年,它从基础科研项目转变成创新的海军样机(INP),赢得高级海军官员的支持,以确保其发展成为先进的技术和潜在的采购项目。   激光的工作原理是:从注入器中产生高能电子束,通过一系列强大的磁场,电子束生成强烈的激光。海军研究署希望最早在2018年能在海洋环境中测试100千瓦自由电子激光的能力。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 高能量密度、长寿命锌碘液流电池研究新进展
    p   近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋、张华民领导的研究团队在高能量密度、长寿命锌碘液流电池研究方面取得新进展。研究成果作为“Very Important Paper”在线发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。 /p p   大规模储能技术是实现可再生能源普及应用的关键核心技术,液流电池由于具有安全性高、储能规模大、效率高、寿命长等特点,在大规模储能领域具有很好的应用前景。锌碘液流电池由于电化学活性好,电解质溶解度高,能量密度高(理论能量密度可达250.59Wh/L)等优势,具有很好的研究和应用前景。但是目前锌碘液流电池存在循环寿命短,功率密度低的问题。 /p p   为解决以上问题,该研究团队提出利用廉价的聚烯烃多孔膜(15美金/m2)替代昂贵的全氟磺酸离子交换膜,大大降低了电池成本。此外,该体系使用KI和ZnBr2的混合溶液作为电池的正负极电解质,大大提高了中性环境下电解质的电导率和稳定性。由于聚烯烃多孔膜的多孔结构在中性环境下表现出优异的离子传导能力,电池的工作电流密度大幅度提高。实验结果表明,在80mA/cm2下运行,单电池能量效率达82%,较之前报道的锌碘体系提高了8倍,能量密度达80Wh/L 在180mA/cm2运行条件下,电池的能量效率超过70%,表现出很好的功率特性。更为重要的是,聚烯烃多孔结构中充满的氧化态电解液I3-可以与锌枝晶反应,解决了由于锌枝晶导致的电池循环寿命差的问题。即便是电池因为锌枝晶发生短路,电池性能也能够通过膜孔中I3-对锌枝晶的溶解作用实现自恢复。该体系单电池在80mA/cm2下连续运行超过1000圈,性能无明显衰减,表现出很好的稳定性。为进一步证实该体系的实用性,研究团队成功集成出kW级电堆,该电堆在80mA/cm2下稳定运行超过300个循环,能量效率稳定在80%,表现出很好的可靠性。该电池目前仍处于研究初期阶段,需进一步提高其高电流密度下的可靠性,推进其实用化和产业化。 /p p   上述工作为开发新一代高性能的液流电池新体系提供了很好的借鉴,也为其他锌基液流电池的研发提供了新的思路。 /p p img title=" v183344_b1526963928105.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ac1d0392-cdeb-44ed-937f-f9f31f657397.jpg" / /p p   大连化物所高能量密度、长寿命锌碘液流电池研究取得新进展 /p p /p p /p
  • NSI最新高能量X射线工业CT系统即将来临!
    北极星成像(NSI)美国西海岸设备及检测服务中心正式搬迁至加州亚里索维耶荷市(Aliso Viejo)以满足日益增长的全球高能X射线工业CT检测服务美国北极星成像(North Star Imaging)荣幸地宣布将其位于美国西海岸的X射线设备和检测服务中心搬迁至位于加利福尼亚州亚里索维耶荷市(Aliso Viejo)拥有更大区域的检测服务地址。该新办公地点和实验室将为NSI的北美X射线业务提供更大的扩展空间,同时顺应更多的客户要求,其更大的仓储区域可放置更多的X射线扫描部件。相信随着X射线检测服务业务的持续增长,更多的创新科技将会在这广阔的区域开发和引入。“我们知道,由于新冠疫情(COVID-19),今年对于每个人来说都是非常艰难的一年。NSI美国检测服务业务经理David Nokk表示: “作为一家企业,我们对这一举动非常兴奋,这意味着NSI的母公司ITW(伊利诺伊工具制品公司)对我们在西海岸的业务增长充满信心。”NSI西海岸办公室位于加州亚里索维耶荷市(Aliso Viejo),现拥有X3000™ ,X5000™ 和一台450kV的X5000型X射线检测系统。这意味着NSI美国西海岸实验室已具有扫描从小到几微米到大到50加仑水桶般物品的检测能力,且可以最快的速度进行单次或多次的批量扫描。NSI美国西海岸业务发展经理Kevin Bresnahan说: “现在我们的团队可以进行2D,3D和4D扫描。很快,我们还将拥有一台高能X射线系统,这将成为北美航空航天和国防企业的重要资产投入。我们将在今年推出此新系统,我非常高兴NSI美国西海岸的客户将率先体验它的强大功能与能力。”“我们非常高兴高能量X射线系统正式加入NSI产品系列中,以更好地为我们的客户提供服务,进一步增强提供安全,可靠产品的行业能力。是我们的客户不断推动着NSI的进步,我们的目标是为需要对关键项目进行最具挑战性检测的世界一流企业提供优质的服务。感谢NSI的所有客户和朋友使之成为可能。” 北极星成像总经理Seth Taylor说道。北极星成像美国西海岸办公室。地址:25 Journey Street, Aliso Viejo, California. USA.关于美国北极星成像公司(North Star Imaging)美国北极星成像公司(NSI)是全球知名的工业2D数字成像(DR)和3D计算机断层扫描(CT)X射线设备的制造商。工业X射线扫描通常用于研发,失效分析,质量控制,内部尺寸测量和高速3D扫描等。X射线扫描使用户可以更清楚地查看和检测零件的内外部结构而不破坏它。 NSI的efX® CT集成了全球最强大的CT重建和可视化软件,包括用于校准,测量,实时密度切片和表面提取的模块。NSI在其位于美国明尼苏达州,加利福尼亚州,马萨诸塞州和法国,英国,中国的6个全球公司提供X射线检测服务,24/7技术支持和NDT无损检测基础和高级培训课程。 NSI已通过ISO 9001:2015认证。如欲了解更多请关注NSI官方微信:NSIChina
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界      经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。   开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • 欧盟拟制造史上最强激光器
    据英国《新科学家》杂志4月25日报道,欧盟通过了一项研究计划——极光基础设施(ELI),支持科学家建造三台可合起来使用的激光器,其中每台激光器都会让现有激光器相形见绌。这三台激光器有望于2015年问世,该计划的成功将会为建造更强的激光器(其能将“虚拟”粒子从时空空白处中拉出)奠定基础。   这三台新激光器将于2015年分别建在捷克、匈牙利和罗马尼亚。每台激光器将发出强度高达10拍瓦(petawatt,1拍瓦=1015瓦)的脉冲,其强度是现有激光脉冲的几百倍。   这种激光脉冲的持续时长仅为1.5×10-14秒,比光通过发丝直径的长度距离所需时间的十分之一还少。因为这种脉冲如此短暂,它们所包含的能量少于美国国家点火装置(NIF)的激光脉冲(其持续时长为2.0×10-8)所拥有的能量。但在这稍纵即逝的瞬间,ELI脉冲产生的能量却是NIF的20倍。   《激光世界》杂志报道称,每台激光器的造价约为4亿美元,由于设计细节各有不同,因而可用于进行不同的高能物理实验,包括使用激光脉冲给粒子加速、研究原子核以及产生更短暂的脉冲来研究原子内部极快事件的动力学原理等。   如果一切进展顺利,第四台激光器将“应运而生”。该项目协调人、法国超快光学研究所所长杰拉德莫瑞希望,第四台激光系统最终能达到的强度能使“虚拟”粒子出现在现实中。
  • 爱丁堡发布英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5新品
    产品介绍:RM5是爱丁堡全新推出适用于科研及分析工作的高端显微拉曼光谱仪!这是一款紧凑型全自动显微拉曼光谱仪,可满足高端科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。产品特点:1. 独特的真共聚焦设计—可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;2. 集成式窄带宽拉曼激光器—多至三个软件自动控制的激光器,使用方便,稳定性高,占用面积小;3. 5位光栅塔轮—具有无与伦比的光谱分辨率1.4cm-1 (FWHM),可在50cm-1-4000cm-1 的全光谱范围内进行优化;4. 集成式探测器—可同时配置两个探测器,包括高效CCD、EMCCD和InGaAs阵列检测器,用于降低噪声,加快扫描速度、提高灵敏度和拓展光谱范围;5. 内置标准物质和自动校准功能—确保该系统始终可以获得高质量数据6. 4位拉曼滤光片塔轮—全自动陷波滤光片和边缘滤光片,自动匹配不同的拉曼光谱范围和激光波长;7. Ramacle?软件—功能强大的软件包,包含所有的系统控制、数据采集和分析,且易于升级;8. 高性能显微镜—兼容所有最新附件RM5配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。核心技术参数:1. 光谱分辨率1.4cm-12. 光谱覆盖范围:50cm-1-4000cm-13. 焦长:225cm4. 空间分辨率低至1μm5. 最低波数:<50cm-1应用领域:生命科学化学制药高分子材料纳米材料化妆品半导体艺术文物法医学地质学等创新点:RM5是一款拓展性及灵活性最强的紧凑型显微拉曼光谱仪: -具有独特的真共聚焦设计,可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;共焦针孔有超过10档以上可供选择, 全电脑控制,使系统针对不同样品具有更高的灵活性 -最多可配置5块不同光谱色散的光栅,用户可以根据样品散射波数范围以及分辨率要求不同,具有更多的光栅选择。 -最多可配置3个激光器,匹配自动切换4位激光滤波器,除了常规低波数斯托克斯拉曼散射测试之外,还可同时配置限波滤光片,进行反斯托克拉曼散射测试。 -最多可配置2个探测器,在标配一个探测器的前提下,RM5预留第二个检测器端口,根据需求灵活选择EMCCD、InGaAs等探测器,实现快速拉曼成像及近红外区拉曼散射测试。 -自动化程度高,所有光学元件均为软件控制切换,无需手动切换。 -使用一体式光学底板设计,可以更好地保证仪器整体的稳定性。 英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5
  • 无锡中科光电“基于激光光散射谱技术的智能传感器的产业化”项目 入选国家火炬计划
    近期,科技部印发了2014年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项清单。无锡中科光电技术有限公司的“基于激光光散射谱技术的智能传感器的产业化”成功入围国家火炬计划创新性产业集群项目。 本项目产品创新采用双波长三通道探测技术,发射20mJ高能量双波长激光,其中355nm激光因波长与细颗粒物直径相仿,散射截面大,回波信号强,特别适合灰霾等细颗粒物的探测;同时,532nm波长是人眼最敏感的波段,这一波长的颗粒物消光与大气能见度息息相关,其测量结果与视觉主观感受基本一致。接收望远镜收集颗粒物和云等对激光的后向散射回波,通过355nm回波信号以及532nm的垂直和平行偏振信号,分析颗粒物消光和退偏振特性,再结合其它信息,反演出颗粒物质量浓度的空间分布和边界输送通量。解决了微脉冲雷达霾层穿透能力差、回波信号弱、反演精度低的缺点,同时提高了对细颗粒物的探测能力,最小可探测粒径达5nm。 注:国家火炬计划项目,是以国内外市场需求为导向,以国家、地方和行业的科技攻关计划、高新技术研究开发计划成果及其他科研成果为依托,以发展高新技术产品、 形成产业为目标,择优评选并组织开发的具有先进水平和广阔的国内外市场及较好经济效益的高科技项目。其重点发展领域是:新材料、生物技术、电子与信息、光 机电一体化、新能源、高效节能与环保。
  • 存储器和高能激光芯片设备有新突破!
    近日,《nature》杂志更新了两则最新研究,明尼苏达大学团队研究出计算随机存取存储器CRAM,可以极大地减少人工智能(AI)处理所需的能量消耗;斯坦福大学的研究人员则在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,可用于未来的量子计算机、神经科学等领域。明尼苏达大学研究出计算随机存取存储器CRAM近期,《nature》杂志的同行评议科学期刊《npj Unconventional Computing》发布了一项名为计算随机存取存储器(Computational Random-Access Memory, CRAM)的最新研究,该新技术能够极大地减少人工智能(AI)处理所需的能量消耗。图片来源:《nature》截图据悉,这项技术由明尼苏达大学双城分校的一组工程研究人员开发,该校电气与计算机工程系博士后研究员、论文第一作者杨吕表示,这项工作是 CRAM 的首次实验演示,其中数据可以完全在存储器阵列内处理,而无需离开计算机存储信息的网格。国际能源署(IEA)于2024年3月发布了全球能源使用预测,预测人工智能的能源消耗可能会从2022年的460太瓦时(TWh)增加一倍至2026年的1,000 TWh。这大致相当于日本整个国家的电力消耗。目前,随着人工智能应用需求的不断增长,许多研究人员一直在寻找方法来创建更节能的流程,同时保持高性能和低成本。通常机器或人工智能流程在逻辑和内存之间传输数据会消耗大量的电力和能源。据悉,这项研究已经进行了二十多年,其最早可以追溯到电气与计算机工程系教授王建平在使用MTJ(磁隧道结)纳米设备进行计算方面的开创性工作。“我们20年前直接使用存储单元进行计算的最初想法被认为是疯狂的”,该论文的资深作者、明尼苏达大学电气与计算机工程系杰出 McKnight 教授兼 Robert F. Hartmann主席王建平 (Jian-Ping Wang) 表示。2022年1月3日,明尼苏达大学理工学院宣布,明大“Distinguished McKnight University Professor”王建平博士当选美国国家发明家科学院(National Academy of Inventors - NAI)院士。MTJ器件是一种纳米结构器件,这是一种利用磁性材料实现存储的新兴技术。在王建平的专利 MTJ研究的基础上,这个团队开发出了磁性RAM (MRAM),目前这种技术已用于智能手表和其他嵌入式系统。在CRAM中,MTJ不仅仅用于存储数据,还被用来执行计算任务。通过精确控制MTJ的状态,可以实现诸如AND、OR、NAND、NOR和多数逻辑运算等基本逻辑操作。CRAM技术采用了高密度、可重构的自旋电子(spintronic)计算基底,直接嵌入到内存单元中。与三星的PIM技术相比,CRAM技术使数据无需离开内存即可进行处理,消除了数据在内存单元与处理单元之间的长距离传输。CRAM通过消除数据在内存和处理单元之间的移动,显著降低了能耗。此外,由于CRAM的计算直接发生在内存中,它还提供了更好的随机访问能力、可重构性以及大规模并行处理能力。CRAM 架构实现了真正的在内存中进行计算,打破了传统冯诺依曼架构中计算与内存之间的瓶颈——冯诺依曼架构是一种存储程序计算机的理论设计,是几乎所有现代计算机的基础。CRAM技术展现了巨大的潜力,尤其是在机器学习、生物信息学、图像处理、信号处理、神经网络和边缘计算等领域。例如,一项基于CRAM的机器学习推理加速器的研究表明,它在能量延迟乘积方面的性能比现有技术提高了大约1000倍。此外,CRAM在执行MNIST手写数字分类任务时,能耗和时间分别降低了2500倍和1700倍。当下CRAM技术展现出巨大的潜力,但其真实计算能力的局限在于连续CRAM数组内部。任何需要跨越不同CRAM数组的数据访问和计算都会增加额外的数据移动开销。未来,研究人员仍需应对可扩展性、制造和与现有硅片集成方面的挑战。他们已计划与半导体行业领导者进行演示合作,以帮助将CRAM变成商业现实。高能激光芯片设备研究有新突破!近日,斯坦福大学的研究人员在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,相关研究已于6月26日更新在《nature》杂志上。原型机的体积仅为传统传统钛宝石激光器的万分之一,而生产成本也仅有原来的千分之一。总体而言,新设备同时解决了体积大、价格高等挑战,而且在规模效率方面也具有优势。目前传统激光器成本高达10万美元。但科学家认为,采用杂志上提及的最新方法,每台激光器的成本可能会降至100美元。他们还声称,未来可以在一块四英寸晶圆上安装数千台激光器,而每台激光器的成本将降至最低。这些小型激光器可用于未来的量子计算机、神经科学,甚至微观手术。图片来源:《nature》截图实验性激光依赖于两个关键过程。首先,他们将蓝宝石晶体研磨成厚度仅为几百纳米的一层。然后,他们制作出一个由微小脊线组成的旋涡,并用绿色激光笔照射其中。随着旋涡的每次旋转,激光的强度都会增加。“最棘手的部分之一是平台的生产,”这项研究的共同第一作者、斯坦福大学博士生Joshua Yang告诉《生活科学》。“蓝宝石是一种非常坚硬的材料。当你研磨它时,它常常不喜欢它,它会破裂,或者损坏你用来研磨的东西。”激光的强度通过晶体表面的一系列涡流增加(图源:Joshua Lang 等人,《自然》杂志)该学术团队对这项技术十分看好,主要原因在于这台最新激光器可以调节到不同的波长;具体来说,从 700 到 1,000 纳米,或从红光到红外光。杨教授以固态量子比特为例,指出这对于原子研究人员来说至关重要。“这些原子系统需要不同的能量(才能从一种状态过渡到另一种状态),”他说。“如果你购买的激光器增益带宽较小,而另一种过渡超出了该带宽,那么你就必须购买另一种激光器来解决该问题。”目前, Joshua Yang和他的同事已创建了一家名为Brightlight Photonics 的公司,以实现这项技术商业化。
  • 海尔欣发布DFB-2000 半导体激光器屏显驱动新品
    DFB-2000是海尔欣推出的新一代DFB激光器驱动控制器,整合了全新设计的触摸屏UI界面,激光电流源,以及温度控制功能,极大的方便了用户的操作、使用及测量。海尔欣自主研发的电路,具有极低的电流噪声与极低的温度漂移,最适合精密光学测量。驱动器包含散热单元,TEC温度控制电路和低噪声电流驱动,支持外部任意波形的模拟信号调制,并将状态监控实时显示于驱动器触摸屏上。与QC750-TouchTM量子级联激光驱动器类似,考虑到激光器芯片的昂贵成本,海尔欣特殊设计的最大电流软钳制功能,可有效规避异常情况下大电流对激光管造成的损伤。除此以外,DFB-2000同时具备多种安全保护机制,zui大限度保证激光器的安全。该产品可被广泛使用在基于实验室和现场部署的多种近红外光谱测量系统,集成度高,稳定可靠。产品特色• 一体化集成电流源及温控驱动,功能完备• 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命• 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等• 最大电流软钳制功能,避免误操作大电流损坏激光管• 全液晶触控UI界面,便于用户操作使用及数据观测• 全自主研发,集成度高,性价比高参数指标电流源驱动性能 输出电流范围 10 ~ 250mA 漂移24hr(@25℃) 5V 模拟调制带宽 DC - 100kHz 缓启动时间 3 ~ 4s 电流噪声密度 (10kHz~100kHz@250mA) TEC最大控制电流 ±2A TEC最大控制电压 5V 最大热功率耗散 12W 设置温度范围 10 ~ 50℃ 控温范围 10 ~ 50℃ 控温稳定度 0.01℃(环境温度25℃恒温) 0.05℃(室温环境) 温度传感器类型 适用10 kΩ或20kΩ热敏电阻模拟外调制 输入阻抗 10 kΩ 调制系数 100mA/V ±1% 3dB带宽 DC -100kHz 调制电压范围 ±2.5V通用参数 供电电源 5V DC,15W (含电源适配器) 工作环境温度 10 ~ 40℃ 储存环境温度 -10 ~ 85℃ 输出接口 RS232通讯(含模块通讯线缆) 人机界面(含触控笔) 全液晶触摸屏显示与控制,报警,日志记录功能 尺寸(长*宽*高) 16.2×11.56×5.37 cm3 重量 <1.5kg结构尺寸(单位:mm)接口定义序号名称备注1. 液晶显示屏 显示界面,详见用户手册3. 旋转编码器微调电流、温度、快速开机等,详见用户手册232 通讯接口6. 电源接口供电输入8. 触控笔 方便进行屏幕操作 表1 壳体面板说明(部分)1. TEC+14. TEC-2. Thermistor13. Case3. NC12. NC4. NC11. LD Cathode5. Thermistor10. LD Anode6. NC9. NC7. NC8. NC注:可根据客户实际需要更改引脚定义。 表2 DFB发射模块接口说明(部分)界面视图(部分)图1 主界面1)激光器电流:显示了实际的激光器电流值。2)TEC温度:显示了实际的TEC温度值。3)激光器电流和TEC温度左边的选择按钮:一旦选中相应的选项可以用旋转按钮进行微调。4)激光器开关:控制激光器电流源开启/关闭。开启状态时开关为橙色,关闭状态时为灰色。图2 设备连接创新点:• 一体化集成电流源及温控驱动,功能完备 • 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命 • 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等 • 最大电流软钳制功能,避免误操作大电流损坏激光管 • 全液晶触控UI界面,便于用户操作使用及数据观测 • 全自主研发,集成度高,性价比高 DFB-2000 半导体激光器屏显驱动
  • 收藏!史上最全的电镜-拉曼一体化系统应用案例集!
    TESCAN电镜-拉曼一体化系统(RISE显微镜)是一款革命性的产品,是世界上第一台真正实用化的扫描电镜-拉曼光谱仪一体化系统,通过实现原位、快速、方便和高性能的拉曼分析,弥补了传统电镜和能谱的分析能力的不足。尤其是针对有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域实现了重大突破,扩展了扫描电镜的分析应用领域(如地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定),一下子变成全方位的分析,应用前途豁然开朗。引领变革,全方位拓展分析电镜-拉曼的联用概念并不新鲜,早在十年多前,就有拉曼厂商开始在扫描电镜上安装拉曼光谱仪,实现SEM-Raman的初步联用。不过由于技术和适用性的限制,拉曼联用技术未能像EDS那样获得成功,在电镜上配备拉曼联用的寥寥无几,甚至很多人都未知晓SEM和拉曼的联用,究其根本原因,还在于传统的拉曼联用技术有着非常严重的技术障碍。TESCAN电镜-拉曼一体化系统RISE显微镜是一款新颖的显微镜技术,在一个集成的显微镜系统中结合了共焦拉曼成像和扫描电子显微镜技术,这种独特的组合为显微镜用户对样品进行综合表征,提供了明显的优势。TESCAN电镜-拉曼(SEM-Raman)一体化系统RISE电镜-拉曼一体化系统有别于传统的联用系统,它并不是简单的将两个独立的仪器拼凑到一起,要使得它具有较高的实用性,需要对原来各自的仪器的硬件和软件都进行改进和新的设计。传统电镜-拉曼联用的共轴式设计有太多的缺点,很难在实用性上达到令人满意的要求,所以在设计开发全新的电镜-拉曼一体化系统RISE显微镜时摒弃了共轴式设计的方案,而采用了平行轴式设计,即电子束和激光束不重合,而是两者相平行。传统的电镜-拉曼联用系统设计方案TESCAN电镜-拉曼一体化系统设计方案这样做首先不影响电镜各种探测器工作的需要,如BSE、CL、EDS等;而拉曼也保留了包括物镜在内的全部光学装置,这样和普通独立的拉曼在硬件上保持一致,也保证了拉曼信号的采集效果。TESCAN专门设计了特殊的样品台,它负责试样在电子束下和激光束下的切换传输。该样品台定位极其精准,可以确保试样能够在两个分析束下的精准定位。此外,为了确保电子束和拉曼激光束的绝对重合,还专门开发了相关校准技术。TESCAN高精度样品台全新设计,独一无二的应用优势扫描电子显微镜是一个很好的表征纳米范围内样品表面结构的可视化技术,而共焦拉曼成像是表征样品化学和分子组成的成熟光谱方法。RISE电镜-拉曼一体化系统还可以同时得到样品的2D、3D图像,以及样品中分子化合物组成的可视化分布结果。鉴于TESCAN电镜-拉曼一体化系统RISE全新的设计和工作方式,相比于传统电镜-拉曼联用的优势自然就不言而喻了。1. 对试样的体积限制:RISE显微镜是基于TESCAN常规级最大仓室GM的平台,有着丰富的接口和很大的空间,此外对试样高度和重量还具备极强的承载能力。2. 定位:传统的联用只能通过电镜进行定位,视野小,且没有色彩信息;传统的拉曼只能进行光学显微镜定位,分辨率和景深受到限制。所以各自都有较大的缺憾。而RISE显微镜同时具备电镜和光镜,电镜具有5cm-10cm的超大无畸变视场,再配合TESCAN的X-Position功能,可以和任意其他的光学照片(如手机相机、体式镜照片等)或者Mapping数据(如EDS、EBSD、AFM等)进行联用,更加容易进行感兴区域的定位。3. 对电镜使用的影响:传统联用方案,拉曼探测器需要移到极靴下方,且有严格的工作距离限制,所以电镜的很多探测器及附件,如BSE、Cl、EDS等都不能使用,而在RISE显微镜上由于采用平行轴设计,电镜的各种探测器和附件在使用联用功能时没有任何影响。4. 拉曼图像功能:这是RISE显微镜最大的优势所在。传统联用均只有单点拉曼光谱数据,而RISE可以进行点、线、面的分析和共聚焦3D分析,可以用各种方式进行拉曼成像。从单点数据,到图像数据是一个质的飞跃。很多单点数据无法表达和分析的问题,可以通过图像轻易的得到答案。RISE整合了单独拉曼光谱的软件系统,拥有极其强大的功能,除了常规的拉曼光谱操作,如标定、扣除背底外,在拉曼成像上更是功能强大。用户可以对面扫描区域的成千上万个点数据自动进行识别和归类,可以用拉曼峰的积分强度、半高宽、峰的位移、光谱匹配度,以及光谱各类特征的数据计算(比如石墨烯2D和G的比例)等进行拉曼光谱成像。并且把拉曼图像和光镜、电镜、EDS等图像进行混合叠加,得到信息量极其丰富的数据。5. 拉曼图像分辨率:传统拉曼由于没有光学物镜,所以分辨率受限于激光束斑大小,难以达到理论上的衍射极限,处于几μm的水平。而RISE不但拥有高数值孔径的光学物镜聚焦激光束斑,还通过束斑的扫描运动来进行成像,最终的拉曼图像分辨率突破了传统的衍射极限,达到了360nm(532nm激光)。6. 共聚焦的优势:RISE显微镜上配备的拉曼光谱是一个共聚焦拉曼系统。共聚焦系统可以不接收垂直方向非焦点处的拉曼信号,使得信号更加的纯粹,有助于减少背底,提高分辨率;另外共聚焦功能还可以通过光学物镜的三维逐层扫描,进行三维拉曼光谱的成像。7. 拉曼光谱性能:RISE虽然是一个电镜-拉曼一体化系统,但是在硬件上,基本完全和一个独立的拉曼光谱没有差别,所以其拉曼部分的性能相对于任何一个普通的拉曼也丝毫没有减弱。可以配备多种波长的激光器,并且功率连续可调,拉曼光谱范围、光谱分辨率也都是主流配置。8. 1 (SEM) + 1 (Raman) = 3(SEM, Raman, RISE)RISE可以打开仓门,不抽真空,直接当一个独立的拉曼光谱仪使用;RISE本身也可以作为独立的扫描电镜使用,也包括电镜附件;当然,更强大的是将电镜和附件的图像数据和拉曼光谱图像非常方便的进行完全重合的联用。所以RISE显微镜是一个非常好的将SEM和Raman硬件一体化,却获得了1+1=3的功能上的设计。? 对比RISE电镜-拉曼一体化系统和传统联用方案,在任何一个性能上都是领先很多。? 相比与传统的拉曼光谱,电镜的引入直接将分辨率从微米提升至纳米。? 相比传统的SEM-EDS,RISE更是将电镜系统的分析能力向前突破了一大步。 无论哪个领域,RISE显微镜都会给您提供独特的方案RISE电镜-拉曼一体化系统特别适合于有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域的分析应用。目前,RISE显微镜在地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定等领域均有了非常丰富的应用。碳材料分析应用案例集(关注微信获取)有机材料分析应用案例集(关注微信获取)二维材料分析应用案例集(关注微信获取)无机材料分析应用案例集(关注微信获取)共聚焦分析应用案例集(关注微信获取) TESCAN RISE电镜-拉曼一体化系统进入中国市场后,其出色的性能、革命性的应用拓展、结合TESCAN“All-In-One”的显微综合分析解决方案,已经受到越来越多的市场认可。目前在国内已经有了多个用户,比如国家核安保技术中心、中石油勘探开发研究院、中国地质大学(武汉)、上海交通大学先后采购了该台设备。为了向国内用户更好地展示电镜-拉曼一体化系统的最新应用,TESCAN今年在上海交通大学分析测试中心安装了一台DEMO机,在这半年期间,诸多单位都来对RISE系统进行过现场考察,都对RISE显微镜的功能给予高度肯定。RISE电镜-拉曼一体化系统也给上海交通大学校内很多课题组提供了非常有价值的数据,这为科学研究带来了极大的便利。相信随着RISE显微镜用户的增多,有一天扫描电镜加载拉曼光谱也会像现在加能谱一样普遍。RISE电镜-拉曼一体化系统,将不负您的期待,您准备好了吗?如果文章太长,收藏了还是记不住,这里有一首诗,送给大家:《永遇乐 RISE电镜》 作者:李威万千材料,百十元素,分子排布。百年光学,瑞丽判据,解析力不足。阴极射线,电磁透镜,汇聚电子束。众厂商,各显神通,令人折舌瞠目。形貌成分,相与取向,异结构结晶度。不得出路,分辨?分析?瓶颈在何处?能谱电镜,似有不足,还需拉曼光谱。必原位,RISE成图,方知缘故。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。更多拉曼-电镜一体化系统应用文章,请关注微信公众号“TESCAN公司”获取 ↓高碳材料带来低碳生活,TESCAN带你了解“神器”的神奇有机结构解析难?RISE显微镜给你新方法在扫描电镜下衬度较低的二维材料,如何准确表征?"拉曼-电镜-能谱 +",SEM Plus带你玩转无机材料分析电镜-拉曼一体化技术—共聚焦分析应用篇
  • 史上最强激光器或落户英国 有望破解宇宙奥秘
    史上最强激光器能撕裂真空 超高场激光器有望帮助人类解答一系列关于宇宙空间的难题   据英国《每日电讯报》10月30日报道,一座能撕开真空的激光发射器有望在英国问世,它将帮助科学家破解宇宙的未解之谜。   史上最强激光发射器的正式称谓是“超强激光构造计划超高场激光器”(Extreme Light Infrastructure Ultra-High Field Facility),它是继大型强子对撞机(Large Hadron Collider)之后物理学界的又一个重大实验项目,英国卢瑟福 阿普尔顿实验室高级激光技术与应用中心的科学家目前正在研制实验所需的相关技术。   欧盟委员会今年早些时候已经批准了在捷克、匈牙利和罗马尼亚分别建立三座激光发射器的计划。这三座激光发射器总造价约2亿欧元(约合17.6亿元人民币),预计2015年正式启用,将作为超高场激光器的组成部分,并为其提供原始激光束。整个超高场激光器将于2020年前后问世,总造价约10亿欧元(约合88亿元人民币),运转后将能在百万兆分之一秒内制造出总能量相当于全世界全部电能输出10万多倍的强大激光,全部激光束汇聚为一点后将产生比太阳核心还极端的超高温高热状态。   科学家希望利用超高场激光器“撕破”宇宙中的真空,探索宇宙空间的构成和所谓“暗物质”的真相。与人们通常的认识不同,宇宙中所谓的“真空”其实并非空无一物。根据科学家推测,所谓的真空是在物质与反物质的相互抵消作用下形成的 由于构成真空的所谓“鬼粒子”转瞬即逝,因此一直未能被人类所认识。超高场激光器的出现有望改变这一局面,甚至可以帮助科学家验证“额外维度”(extra-dimension)的存在。德国物理学会主席沃尔夫冈桑德纳教授表示:“我们往往认为真空中没有任何物质,但事实上,真空似乎是由存在时间极短的成对分子组成的。高能激光射线能将这些分子拉开,并延长它们存在的时间。”   此外,超强激光还有望催生癌症激光疗法和新的医学诊断方法。普利茅斯大学理论物理学副教授托马斯 海因茨尔接受采访时称:“超强激光构造计划将引领我们进入前所未知的物理学新领域,必将有许多令人惊讶的发现等待着我们。”   超高场激光器的最终落户地址将于明年公布,目前除英国外,俄罗斯、法国、匈牙利、罗马尼亚和捷克的研究机构也都在积极申请。
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p   近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。 /p p   今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。 /p p   据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。 /p p   受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。 /p p   从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。 /p p   未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。 /p p br/ /p
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 半导体所成功研制太赫兹量子级联激光器产品
    中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。   太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干极化THz辐射的新型太赫兹光源。半导体材料科学重点实验室经过多年的基础研究和技术开发,目前推出系列太赫兹量子级联激光器产品。频率覆盖2.9~3.3 THz,工作温度10~90 K,功率5~120mW。   太赫兹波介于中红外和微波之间,是一种安全的具有非离化特征的电磁波。它能够穿透大多数非导电材料同时又是许多分子光学吸收的特征指纹光谱范围。它的光子能量低(1 THz对应的能量大约4meV),穿透生物组织时不会产生有害的光电离和破坏,在应用到对生物组织的活体检验时,比X光更具优势。它的波长比微波短,能够被用于更高分辨率成像。THz波在分子指纹探测、诊断成像、安全反恐、宽带通讯、天文研究等方面具有重大的科学价值和广阔的应用前景。 半导体研究所制备成功太赫兹量子级联激光器系列产品
  • 迈向量子电子显微镜!香港城大研发小型“脉冲空心锥扫描与透射一体化电子显微镜”
    电子显微镜一直是尖端科学研究中不可或缺的重要工具,它提供了无与伦比的高解像度和放大能力,帮助人类探索无限的微观世界。然而,现有的电子显微镜科技面临著高成本、大体积,以及因为电子与研究样本会产生作用并导致辐照损伤而需要极度低温环境等不同限制。为突破上述技术樽颈,香港城市大学(香港城大)科研团队正在致力于研发电子束和样本产生“零作用”的未来“量子电子显微镜”。团队现阶段把量子电子显微镜的部分零组件设计成一款可以在室温下操作的紧凑型扫描与透射一体化电子显微镜,开创了电子显微镜的新纪元。他们计划在三年内把这革命性的高倍电子显微镜创新技术商品化,把它制造成产品推出市场及量产。这项目名为“脉冲空心锥扫描与透射一体化电子显微镜的商业化计划”,由香港城大材料科学及工程学系讲座教授陈福荣教授领导,最近获得香港特别行政区政府创新科技署的“产学研1+计划”(RAISe+计划)拨款资助。该计划旨在释放本地大学在研究成果转化和商品化方面的潜力。香港城大陈福荣教授(左二)与他的研究团队成员,包括薛又峻教授(左一)、陈岩博士(右二)和陈宇驰先生(右一),早前出席“产学研1+计划”签署仪式。(图片来源:香港城市大学)透射电子显微镜(transmission electron microscopes,TEM)和扫描电子显微镜(scanning electron microscopes,SEM)是许多现代科研工作中必不可少的工具。从生物样本到纳米结构,TEM及SEM电子显微镜都能提供超高放大率及解像度的图像,帮助科研人员研究各种材料既复杂又精密的细节。然而,无论是透射还是扫描电子显微镜使用的高能量电子束,均会对脆弱的生物样本造成严重的辐射损伤。故此,在结构生物学领域,科研人员便采用冷冻透射电子显微镜(cryo-TEM)技术,即是先把蛋白质置于玻璃态冰层中,然后才进行观测,以减少高能量电子束造成的辐射损伤。但缺点是冰层的引入,会对显微成像带来图像杂讯,导致解像度下降。为应对这些挑战,陈福荣教授及其香港城大科研团队基于他们在香港城大福田研究院(现更名为“香港城市大学物质科学研究院(福田)”)研发出的尖端技术,创制了“脉冲电子空心锥照明混合TEM/SEM电子显微镜”。这创新的显微镜系统在多方面克服及解决了现有电子显微镜的技术限制。首先,新系统的脉冲电子源减少了对软材料样本的辐射损伤,这对于保护生物样本尤其重要;其次,透过空心锥照明技术产生的样本放大图像,其“对比度”是传统透射电子显微镜模式所产生的明场图像的四倍,遂能够更详细及清晰地对样本进行成像。此外,香港城大团队亦将利用它之前已开发出的色差和球面像差校正器(CS/SS)技术,进一步提高显微影像的空间解像度。而这套混合TEM及SEM的电子显微镜系统是座台型,比传统的TEM/SEM电子显微镜体积细小得多,而且更具成本效益。它可以在15-30 keV的低电压范围内操作,亦能够在普通室温下进行3D蛋白分子重建和纳米材料研究,较冷冻电子显微镜更佳。团队亦展示了新的电子显微镜系统在多种不同的应用场景中,均能提供极高解像度的成像,包括可以优于10nm的超高表面解像度,对印刷电路板上的金属接触点、纳米颗粒和其他生物样本进行成像。团队相信,新设计的电子显微镜最终可以做到在透射模式下观测蛋白质和分子的3D立体结构,以及在扫描模式下观测纳米材料并应用于半导体和晶片检测。“与现有的桌上型扫描电子显微镜(SEM)系统相比,我们最新研发的脉冲电子空心锥系统提供了优异的SEM电子显微成像质数,能够与市场上最好的桌上型系统媲美。”陈福荣教授续说:“此外,现时市场上并没有电子显微镜产品的质量,达致我们新系统的同等高质量。我们的脉冲空心锥照明系统具有独一无二的卓越性能,能够使用透射电子显微境(TEM)模式进行3D立体蛋白质重建,这是现时桌上型SEM所无法做到的。”香港城大陈福荣教授(左)和薛又峻教授(右)于2023年4月分享了他们在“高时间分辨电子显微镜”研究的最新成果及突破,这崭新的电子显微镜系统结合了扫描和透射电子显微镜模式,体积小巧,又兼具高效能。(图片来源:香港城市大学)“在RAISe+计划提供资金以及我们业界伙伴的支持下,我们计划在三年内为这款创新、小巧而又功能强大的混合模式电子显微镜建成生产线,以便把高质电子显微镜商业化及量产。”陈教授补充说。陈教授长期从事材料科学和电子显微镜的尖端研究,是相关研究领域的翘楚。2023年4月,他和香港城大的科研团队率先创建了一款结合了扫描和透射电子显微镜模式的“高时间分辨率电子显微镜”,成为全球首个达成这一重大突破及成就的大学研究团队。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 聚焦半导体激光器,华光光电获兴证资本投资
    9月29日,兴证创新资本发布消息称,兴证资本旗下基金近日完成了对山东华光光电子股份有限公司(以下简称“华光光电”)的投资,投资细节未披露。华光光电成立于1999年,是国内规模较大的半导体激光外延材料生长、芯片制备及器件封装为核心产品的高新技术企业。作为国内较早引进生产型MOCVD设备进行半导体激光器研发和生产的高新技术企业,华光光电拥有国内规模较大的激光外延片、芯片、器件、模组及应用产品一条龙生产线,产品从毫瓦级到千瓦级,波长覆盖紫光波段到近红外波段,多项成果达到世界领先水平,是国际上极少数具有研发实力、并能量产高功率半导体激光器芯片及器件的公司之一。随着研发实力的不断提升,华光光电自2008年以来,先后获批山东省重点实验室、山东省工程实验室、山东省工程技术中心、山东省企业技术中心、山东省协同创新中心等一系列省级研发创新平台、国家级企业技术中心,并在今年8月份凭借在半导体激光器领域的领先技术、行业专业定位及发展潜力等优势,获批2022年度国家级专精特新“小巨人”企业。
  • “卓立造,中国芯”卓立汉光重磅发布十余款仪器新品
    仪器信息网讯 2024年1月26日, “卓立造,中国芯”——2024年度新品发布会暨卓立汉光25周年系列活动(第一辑)在北辰五洲皇冠国际酒店召开。100余位专家、用户及卓立汉光的相关领导、技术专家等出席活动。特别值得一提的是,该活动在仪器信息网3i讲堂、视频号等多渠道全球同步直播。据不完全统计,超万人次线上参与,引发热烈讨论与交流。新品发布会现场北京卓立汉光仪器有限公司总经理 张志涛致辞苏州惟光探真科技有限公司创始人 刘争晖致辞卓立汉光成立于1999年,以精密位移控制以及光谱仪模块和光谱仪系统为核心,并且为广大的科研和工业客户提供相应的产品和服务。卓立汉光总经理张志涛在致辞中讲到:“今年是卓立汉光成立的25周年,非常感谢在过去的发展历程当中,所有客户对卓立汉光的支持与帮助,以及所有员工对卓立汉光的贡献。未来我们将会继续加大在技术研发和市场应用端的投入,实现卓立汉光下一个腾飞的25年。”苏州惟光探真科技有限公司创始人刘争晖在致辞中谈到了国产仪器目前面临的问题,并就国产科学仪器如何发展壮大与大家进行了探讨。其介绍说,“国产仪器要发展壮大就要欢迎竞争和内卷,关注核心技术,关注软件和应用体验等。”此外,致辞中,刘争晖还就科学仪器转移转化的方式谈了自己的看法。重磅新品揭幕据张志涛介绍,本次发布会推出了十余款新品,主要分成两大类,核心配件及应用系统。其中,核心配件重点突破关键技术,为客户及卓立汉光自身系统开发提供基础保障。比如 Hipers 光谱仪,实现了全球领先的光谱成像效果,将在科研及生命科学应用发挥重大作用;应用系统以解决客户需求为目的,提供最终解决方案。比如高光谱系列智能一体机,实现数据的收集、分析、输出的一体化设计,方便客户使用。接下来的会议日程依次为大家揭晓了本次发布会的新产品和相关解决方案,包括HiperS-320i全焦面影像校正光栅单色仪/光栅光谱仪、Image-λ-RT系列可见-近红外高光谱相机、FI-RIR便携式红外拉曼一体机、2μm 掺铥光纤激光器、高能量连续可调衰减器、TL-900 热释光测试系统、T-lab系列通用型条纹相机、可见光分幅相机、CS系列30mm笼式组件、无线温振传感器等,并在现场进行了真机展示。一直以来,卓立汉光深耕科学仪器行业,而此次新品的集中发布就特别彰显了科学仪器的“中国力量”!据介绍,本次发布会推出的HiperS-320i全焦面影像校正光栅单色仪/光栅光谱仪、Image-λ-RT系列可见-近红外高光谱相机等已经实现国产替代,甚至超越国外品牌。Image-λ-RT系列可见-近红外高光谱相机(左)、HiperS-320i全焦面影像校正光栅单色仪/光栅光谱仪(右)第一排:Omni-λ300s”影像谱王”光栅光谱仪/光谱仪(左)、FI-RIR便携式红外拉曼一体机(右);第二排:超快时间分辨光谱测试系统(左)、超快高速成像-分幅相机(右)第一排:GaiaSmart系列高光谱成像仪(左)、高光谱激光雷达热红外一体机-GaiaSky-Lidar(中)、无人机载日光诱导叶绿素荧光系统GaiaSky-Fluo(右);第二排: 像素级控光影像整机(左)、高能量连续可变偏振分光器(中)、CS系列30mm笼式组件(右)第一排:无线分体式温振传感器VA350_ICP(左)、无线温振传感器VA325(中)、NB-loT无线温振传感器VA525(右);第二排:无线网关BS910、BS913(左)、VT108无线温湿度监控器和VT112温湿度监控终端(中)、全自动微区光电系统(右)第一排:北京必创科技股份有限公司产品经理 邱航(左)、无锡必创测控科技有限公司副总经理及研发负责人 姚先华(右);第二排:北京清智元视科技有限公司首席执行官 胡成洋(左)、北京卓立汉光仪器有限公司光谱应用专家 覃冰(右)北京必创科技股份有限公司产品经理邱航分享了设备状态监测产品及解决方案;无锡必创测控科技有限公司副总经理及研发负责人姚先华介绍了实验室冷链安全监测产品及方案;北京清智元视科技有限公司首席执行官胡成洋对新品“像素级控光影像整机”—MetaCam进行详细讲解;北京卓立汉光仪器有限公司光谱应用专家覃冰对TL-900热释光测试系统和基于振镜的FLIM系统进行详细介绍。北京卓立汉光仪器有限公司光谱应用专家 吴京航(左)、湖北众韦光电科技有限公司 蔡梦豪(中)、江苏双利合谱科技有限公司总经理 张永强(右)北京卓立汉光仪器有限公司光谱应用专家吴京航介绍了超快时间分辨光谱与高速成像产品;湖北众韦光电科技有限公司蔡梦豪分享了全自动微区光电系统;江苏双利合谱科技有限公司总经理张永强详细讲解了多种类高光谱智能一体机系统。北京卓立汉光仪器有限公司项目经理 佟飞(左)、无锡中镭光电科技有限公司研发总监 王旭(中)、北京卓立汉光仪器有限公司激光产品服务部总经理 张瑞宝(右)北京卓立汉光仪器有限公司项目经理佟飞介绍了全焦面影像校正光谱仪;无锡中镭光电科技有限公司研发总监王旭介绍了2μm波段光纤激光器新品;北京卓立汉光仪器有限公司激光产品服务部总经理张瑞宝分享了高能量连续可调衰减器。北京卓立汉光仪器有限公司工业分析仪器事业部总经理 李敏(左)、北京卓立汉光仪器有限公司光机机械工程师 曹佳宝(中)、北京卓立汉光仪器有限公司光色测量事业部总经理 韩莉(右)北京卓立汉光仪器有限公司工业分析仪器事业部总经理李敏讲解了便携式红外-拉曼检测系统;北京卓立汉光仪器有限公司光机机械工程师曹佳宝讲解了CS系列30mm笼式结构组件;北京卓立汉光仪器有限公司光色测量事业部总经理韩莉带来了发光材料及器件光色电综合测试方案。相关新产品的详细特点和性能优势请查看仪器信息网的视频回放。北京大学副研究员 洪浩(左)、中国科学院化学研究所研究员 张贞(中)、中国海洋大学副教授 夏呈辉(右)除了优秀产品重磅推出与技术干货倾情分享外,本次活动还诚邀业内重要专家现场分享,共话光电新品与未来。其中,北京大学副研究员洪浩以《二维材料界面非线性光学调控》为题进行报告分享;中国科学院化学研究所研究员张贞以《复杂界面分子结构非线性光谱研究》为题展开讨论;中国海洋大学副教授夏呈辉进行《多功能半导体铜基疏化物纳米晶体的精准制备及光电性质研究》的主题报告。北京卓立汉光仪器有限公司销售经理 刘沫主持活动合影留念25年的积累、25年的沉淀,25年的风雨兼程,卓立汉光在国产替代的道路上砥砺前行。25周年,也必将是一个新起点,就像张志涛在致辞中介绍的:2024年不光是卓立汉光成立25周年的重要时刻,也将定义为卓立汉光进军国际市场、打造国际知名品牌的元年。据悉,本次发布会是卓立汉光25周年庆典的一个开端,后面将展开卓立25周年的质量万里行回馈客户活动、逐梦光电﹣卓立汉光25周年特别用户研讨会、贯穿全年度的线上名师讲堂活动、线下区域性的用户交流活动等一系列的市场宣传和客户回馈活动,敬请期待!虎啸龙吟展宏图,2024甲辰龙年是卓立汉光的25周年,也是卓立汉光和仪器信息网携手同行的16年,更是品牌合作伙伴加深合作的新一年,期待双方强强联手,合作共赢!活动直播过程中,仪器信息网的3i讲堂和视频号分别为参会代表准备了有奖问答、红包雨等系列惊喜,现场氛围热烈非凡,更多精彩内容请查看:
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。   激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。   2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。   半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?   半导体市场:黯然神伤   虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。   “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。   “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”   ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”   相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。   作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。   Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。   “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”   随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:   1 激光技术在晶片/芯片加工领域的应用   1.1在划片方面的应用   划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。   目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。   1.2在晶片割圆方面的应用   割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。   传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。   2 激光打标技术   激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。   激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:   (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。   在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。   3 激光测试技术   3.1激光三角测量术   微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。   在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。   3.2颗粒测试   颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。   对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。   4 激光脉冲退火(LSA)技术   该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。   该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制