当前位置: 仪器信息网 > 行业主题 > >

高分辨率在线分析仪

仪器信息网高分辨率在线分析仪专题为您提供2024年最新高分辨率在线分析仪价格报价、厂家品牌的相关信息, 包括高分辨率在线分析仪参数、型号等,不管是国产,还是进口品牌的高分辨率在线分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率在线分析仪相关的耗材配件、试剂标物,还有高分辨率在线分析仪相关的最新资讯、资料,以及高分辨率在线分析仪相关的解决方案。

高分辨率在线分析仪相关的论坛

  • 高分辨率光镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/picotweezers.html][b]高分辨率光镊系统[/b][/url]采用了德国picotweezers技术的细胞单分子力学捕获系统,是全球领先的超高分辨率激光光镊系统,是进口光镊品牌中具有超低光镊价格Optical Tweezers产品.[b]高分辨率光镊系统[/b]不仅具有光镊功能,还提供微视图像计算能力,非常方便单细胞生物力学分析.[b]高分辨率光镊系统通[/b]常与德国蔡司Axiovert、AxioA1或D1型显微镜配套使用,配备1W或5W的红外光纤激光器,提供激光捕获力高达400pN~2nN范围。高分辨率光镊系统配备压电定位位移台,在XYZ三轴三个方向具有200μm分辨率的扫描能力.[b]高分辨率光镊系统[/b]还具有视频分析功能,至少2.5nm的横向和轴向分辨率,其图像拍摄速率为200帧/秒,X、Y、Z互相成像速度为400赫兹,可对生物大分子进行0.1PN作用力分辨率的实时分析。[img=高分辨率光镊系统]http://www.f-lab.cn/Upload/ionovation-explorer.jpg[/img] [b]高分辨率光镊系统特色[/b]定量分析,在三维方向实现0.1 PN分辨率的生物为微力分析最大光阱捕获力可在1 W光纤激光器下达到400 PN通过光镊实现对捕获对象精度为纳米级别的操控 [b][b]高分辨率光镊系统[/b]应用[/b]单分子与活细胞的操控和分析 弹性模量分析、微流控分析 分子相互作用、纳米孔分析 [color=#666666][color=#000000]高分辨率光镊系统:[url]http://www.f-lab.cn/microscopes-system/picotweezers.html[/url][/color][/color]

  • 高分辨率质谱到拉

    [em02] 由国家环境分析测试中心承建的二垩英实验室的主要设备,高分辨率质谱已经吊装完毕拉!一台将近1.4吨重的东西被顺利的吊上了三楼的实验室,真是不容易呀![em02]

  • 请教个有关超高分辨率傅里叶光谱仪的问题

    各位论坛的老师你们好,学生刚接触此方向,请教个有关超高分辨率傅里叶光谱仪的问题:超高分辨率傅里叶红外光谱仪的意义在哪里?具体实现起来有哪些技术难度不能被攻克?

  • 高分辨率质谱的疑问

    [color=#444444]大家有没有遇到过 高分辨率质谱出现比分子离子峰的分子量还大的峰?[/color][color=#444444]这三个峰每相邻都差大概28,算了一下明显不是2M峰,【M+1】为479.9159, 3个大峰是683.5448, 711.5760, 739.6082.[/color][color=#444444]结构式一个喹啉环再连上一个 I 和1个1,2-二硫环戊4-烯-3-硫酮的片段。[/color][color=#444444]具体结构就不画啦![/color][color=#444444]谢谢大家啦[/color]

  • 【新闻】美国研制高分辨率光学显微镜

    美国科学家称,利用世界上最先进的高分辨率光学显微镜,他们观察到了H2AX蛋白质在细胞核内的团状分布情况,以及DNA受损后它们如何移动到所需地方对基因进行“急救”或修复。 目前,有许多生物过程都是无法用视觉观察到的,原因是高分辨率电子显微镜常常因样品制备问题出现偏差,而光学显微镜虽然容易制备且能观察活细胞,但其分辨率却比较低。然而,通过对光波进行适当的操作,生物科学家扩展了光学显微镜的能力,成功地研制出4Pi显微镜,并通过它观察到了细胞的成分,其中包括细胞核的内部结构。 在新出版的美国《国家科学院学报》上,美国杰克逊实验室分子生物物理学所研究人员乔尔格• 毕瓦斯多夫及其合作者联合发表文章介绍说,借助4Pi光学显微镜,他们观察到了DNA双螺旋结构断裂情况下细胞的反应,并发现了DNA双螺旋结构断裂(即遗传物质严重受损)后引发的细胞内H2AX蛋白质一系列验证和修复损伤动作。如果细胞成分在修复过程中出现缺陷,则存在着发生癌症和免疫问题的危险,因此细胞内的反应十分重要。 H2AX是一种组蛋白。作为结构蛋白质,它们能缠绕在受损的DNA上,同时它们具有基因管理和基因修复的功能。H2AX在DNA受损后能快速做出反应,转变成γ-H2AX,这对协调发信号和修复等极其重要。 利用选择性着色技术和4Pi显微镜,毕瓦斯多夫还观察到H2AX组蛋白成团状均匀地分布在细胞核内。他认为,这种团状结构或许决定了DNA发生断裂时,γ-H2AX进行对应扩散的边界。 毕瓦斯多夫说:“H2AX团状分布也许为迅速和有效地应对DNA受损提供了平台。下一步,我们将分析H2AX团的位置及与其他细胞核成分的关系。”

  • 关于高分辨率多功能XRF研发技术的问题

    本人目前正准备一项目,欲改良,开发设计一高分辨率的XRF仪器,能够实现对湿沉积物样品的直接测试,并且能够附加X射线照相\颜色反射率\密度等设备.急需要精通XRF研发技术的人员共同合作,有志者请与本人联系,共同探讨.可直接与本人联系,邮件地址:yangqh@gig.ac.cn

  • 【转帖】GE收购超高分辨率显微镜制造商Applied Precision

    上个月末,通用电气医疗集团(GE Healthcare)签署了一项协议,收购细胞成像产品制造商Applied Precision,具体收购金额不详。随着这次收购行动,GE Healthcare有望进入快速增长的细胞成像领域。  总部位于华盛顿西雅图郊外的Applied Precision开发并制造高分辨率以及超高分辨率的显微镜仪器,让研究人员能够以其他类型显微镜无法实现的规模来研究细胞过程。  一般显微镜所拥有的分辨率能让研究人员观察到200 nm及以上的物体。因此,对于大小在10 nm左右的胰岛素,一般的显微镜是无法看到的。然而,有了超高分辨率显微镜,研究人员就能看到。电镜的分辨率与超高分辨率显微镜相似,但它们不能活体观察细胞,而后者能做到。  GE Healthcare负责细胞技术的总经理Amr Abid向国外媒体透露,通过在此水平研究细胞功能,研究人员能够对功能异常细胞的机制有了更深入的了解。他举了一些例子,比如利用超高分辨率显微镜来研究HIV病毒如何穿透细胞,这为新药开发提供了信息。  几个世纪以来,科学家们都是利用光学显微镜对肉眼无法看到的结构进行观测,目前光学显微镜已经成为了实验室必备的实验器材之一,但是随着研究的深入,光学显微镜的分辨率已经无法达到科学家们的要求了。2008年,《Nature》杂志将超高分辨率显微技术评为年度技术。  Abid估计,如今整个显微镜市场大概在20亿-30亿美元。其中,超高分辨率显微镜占了约20%。Applied Precision和徕卡(Leica)是硬件方面的行业领先者,他们各自的市场份额大约为30%-35%。  GE目前不提供超高分辨率显微镜,也不曾开发它们。Applied Precision的产品是对GE细胞分析产品线的很好补充。GE也在探索一些方法,将其现有的细胞研究技术与Applied Precision的仪器捆绑起来。  目前,GE在细胞成像方面的旗舰产品是2009年上市的IN Cell平台。IN Cell Analyzer平台提供了一整套从自动化图像获取到数据的定量和深度分析以及可视化的强大工具,来协助整个高内涵分析过程。前不久,GE推出了最新版本的分析平台——IN Cell 6000。  据Abid透露,由于Applied Precision在高分辨率以及超高分辨率显微镜方面声名卓著,故GE打算保留其名称。该公司还计划保留全部130名员工,并在技术上继续投资。  GE还打算加大力度提高Applied Precision在亚太地区(如中国、印度和日本)的知名度,对于超高分辨率显微镜而言,这些区域是一个增长点,然而,Applied Precision目前的份额还很有限。

  • 德国开发出首台可观察活体细胞的超高分辨率生物显微镜

    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。 STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。 IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学推出了新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。http://halmapr.com/news/halmacn/files/2012/09/nirquest512_1_9_blog.jpg

  • 【原创大赛】高分辨率ICP-AES测定钕铁合金中钇、钪及稀土杂质的研究

    高分辨率ICP-AES测定钕铁合金中钇、钪及稀土杂质的研究江苏天瑞仪器股份有限公司,江苏昆山,215300摘要:利用高分辨率电感耦合等离子体发射光谱仪(ICP-AES),采用基体匹配法,对钕铁合金中的钇、钪及多种稀土杂质进行测定。选择合适的分析谱线及仪器工作参数,研究了酸度、基体组分、非稀土元素对测试结果的影响;并采用加标回收的方法确定方法的准确性。回收率、检出限及精密度均获得较满意结果。关键词:电感耦合等离子体发射光谱, 钕铁合金近年来,钕铁硼永磁材料占据了稀土永磁材料的主导地位,广泛用于CD/DVD ROM,移动电话等领域;今后将继续朝高端应用领域发展,如计算机硬盘,风力发电,核磁共振成像等。研究表明,稀土元素对钕铁硼的磁性能及耐蚀性具有重要影响。为保证钕铁硼材料优秀的磁性质,控制其中杂质元素的含量,对改善其性质具有实际的生产意义。目前国内外已有大量文献报道稀土氧化物、合金及矿样中痕量稀土杂质的测定方法,并分析了基体对待测元素的影响。为准确测定各稀土杂质的含量,采用痕量稀土富集法、基体预分离或卡尔曼滤波法已有报道。此外,采用高分辨率的ICP-AES光学系统也有利于排除谱线干扰。N. Daskalova等在报道中指出采用27.12MHz的ICP-AES分析痕量稀土元素无法满足高纯稀土氧化物中稀土杂质的分析要求,并利用40.68MHz、高分辨率的ICP-AES对Eu2O3及Lu2O3基体中各稀土杂质的分析谱线进行优化。本文利用高分辨率ICP-AES,采用基体匹配法,测定了稀土钕铁合金中钇、钪及稀土杂质的含量。对其基体组分、溶液酸度、非稀土元素干扰、加标回收等进行研究,确定合适的分析谱线及仪器工作条件。1 实验部分:1.1 试剂及仪器HCl(G.R.,江苏强盛化工有限公司),稀土标准储备溶液(1000μg/ml,国家有色金属及电子材料分析测试中心)电感耦合等离子体原子发射光谱仪(江苏天瑞仪器股份有限公司,型号ICP-2000)1.2 实验方法称取0.2000g试样于50ml烧杯中,加入8ml (1+1)HCl,盖上表面皿,低温加热,待分解完全后,取下冷却至室温,移入100ml容量瓶中,用水稀释至刻度,混匀。移取5ml于100ml容量瓶中,用水稀释至刻度,混匀。 在选定的工作条件下,采用与样品相同的基底配制0,1,2,5,10μg/ml标准溶液,绘制工作曲线,进行分析测定。2 结果与讨论2.1 谱线的选择稀土钕铁合金中,基体钕元素具有f高能级轨道,发射谱线复杂:既除了s-p轨道跃迁发射的强谱线外,

  • 高分辨率质谱技术在高质荷比离子分析方面的进展

    现代质谱(MS)面临的一个主要挑战是如何在高质荷比(m/z)区域实现高质量分辨率和高精度的分析。为了提高MS的实际应用能力,了解最新技术的局限性及其在应用科学中的地位至关重要。本综述总结了高分辨质谱(HRMS)中的重要仪器和相关的研究进展,这些仪器的前沿研究将其工作范围扩展到高m/z区域。[font=&][size=14px][color=#222222]高分辨质谱[/color][/size][/font] [font=&][size=14px][color=#222222](HRMS)[/color][/size][/font] [font=&][size=14px][color=#222222]在现代分析科学中具有不可或缺的作用,因为它具有精确识别未知化合物和定量样品中待测化合物的优越性能。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]质量分辨率[/color][/size][/font] [font=&][size=14px][color=#222222](MRP)[/color][/size][/font] [font=&][size=14px][color=#222222]、质量准确度、灵敏度和适用的质量范围是决定质谱仪性能最重要的属性。[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]是量化离子峰锐度的因子,人们将其定义为观察到的质量[/color][/size][/font] [font=&][size=14px][color=#222222](m)[/color][/size][/font] [font=&][size=14px][color=#222222]与最大峰高的特定分数之比,在谱图中通常用质谱离子峰的半峰宽[/color][/size][/font] [font=&][size=14px][color=#222222](FWHM)[/color][/size][/font] [font=&][size=14px][color=#222222]高度或[/color][/size][/font] [font=&][size=14px][color=#222222]δm[/color][/size][/font] [font=&][size=14px][color=#222222]表示。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]具有较高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪可以潜在地分辨更多的特征,因为它可以产生具有较高峰值容量的质谱图。[/color][/size][/font] [font=&][size=14px][color=#222222]另一方面,质量精度是指测定的[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]与其精确理论值的差值;[/color][/size][/font] [font=&][size=14px][color=#222222]质量精度可以代表测量结果的正确性。[/color][/size][/font] [font=&][size=14px][color=#222222]高质量精度可通过几个基本要求获得,例如仪器需要具有足够的电子分辨率、高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]、稳定的离子源和稳定的电气系统等。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]MS[/color][/size][/font] [font=&][size=14px][color=#222222]的灵敏度是高质量应用中的另一个关键问题。[/color][/size][/font] [font=&][size=14px][color=#222222]它依赖于合适的样品制备和电离方法,例如电喷雾电离[/color][/size][/font] [font=&][size=14px][color=#222222](ESI)[/color][/size][/font] [font=&][size=14px][color=#222222]可以从水溶性样品中产生多电荷分子,基质辅助激光解吸电离[/color][/size][/font] [font=&][size=14px][color=#222222](MALDI)[/color][/size][/font] [font=&][size=14px][color=#222222]主要从固体样品中产生单电荷分子。[/color][/size][/font] [font=&][size=14px][color=#222222]旨在提高电离效率的研究十分常见,在这里我们鼓励读者查阅相关文献和综述文章。[/color][/size][/font][font=&][size=14px][color=#222222]高分辨率仪器通常被认为是具有提供[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]以上[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的仪器。[/color][/size][/font] [font=&][size=14px][color=#222222]通过使用具有这种[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪,人们可以在低[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222] 1[/color][/size][/font] [font=&][size=14px][color=#222222],如图[/color][/size][/font] [font=&][size=14px][color=#222222]1[/color][/size][/font] [font=&][size=14px][color=#222222]所示。[/color][/size][/font] [font=&][size=14px][color=#222222]在高[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内,这种分辨能力可以区分初级离子[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即电离离子,如质子、钠离子等[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、同位素、修饰[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即翻译后修饰[/color][/size][/font] [font=&][size=14px][color=#222222][PTMs][/color][/size][/font] [font=&][size=14px][color=#222222]或标记[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、微小的结构变异或与小分子相关的复合物。[/color][/size][/font] [font=&][size=14px][color=#222222]然而,为了实现独特的元素成分分配,所需的[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]要高得多[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222]1/δm 100)[/color][/size][/font] [font=&][size=14px][color=#222222]。[/color][/size][/font] [font=&][size=14px][color=#222222]我们将在下文重点介绍[/color][/size][/font] [font=&][size=14px][color=#222222]HRMS[/color][/size][/font] [font=&][size=14px][color=#222222]在[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内实现[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]左右[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的关键技术。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352869.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图1 质量分辨率和相应分析能力的相关性[/size][/font][size=14px][color=#000000]高分辨技术[/color][/size][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]傅立叶变换(FT)和飞行时间(TOF)质谱是满足高m/z范围(MRP 10000和m/z 10000)中高MRP标准的两个主要质谱仪类别。[/color][/size][/font] [font=&][size=14px][color=#222222]离子回旋共振(ICR)和轨道阱(Orbitrap)质量分析器是FTMS系列的主要成员,而TOFMS系列由几个变体组成,包括线性分析仪、反射分析仪和多反射/多转分析仪。[/color][/size][/font] [font=&][size=14px][color=#222222]大多数FT和许多TOF质谱仪都是混合仪器,前面有四极杆质量过滤器(即Q-TOFMS),便于串联MS分析。[/color][/size][/font] [font=&][size=14px][color=#222222]本文不讨论磁质谱,因为它们主要用于低质量数化合物的检测,尽管它们也提供较高的MRP。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]大多数质谱仪的MRP随着m/z的增加而下降。[/color][/size][/font] [font=&][size=14px][color=#222222]例如,傅里叶变换离子回旋共振质谱(FT-ICRMS)的MRP随着m/z的增加而线性降低,而Orbitrap-MS的MRP与m/z平方根的倒数成比例。[/color][/size][/font] [font=&][size=14px][color=#222222]因此,尽管Orbitrap在m/z= 200时提供了140000的MRP,但在m/z在10000的范围内时,MRP会降低到16000。[/color][/size][/font] [font=&][size=14px][color=#222222]TOFMS与上述质谱仪呈现的规律不同,其MRP独立于m/z或在特定条件下随着m/z的增加而逐渐增加。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]图2显示了基于MRP的商业化质谱仪的经验规律。[/color][/size][/font] [font=&][size=14px][color=#222222]在过去的十年中,这些技术的最大MRP已经有了相当大的进步,研究人员将这些仪器的MRP推向了另一个高度。[/color][/size][/font] [font=&][size=14px][color=#222222]表1总结了重要的商业化HRMS或其改进版本的分析特性,这些特性决定了仪器在高m/z范围内的适用性。[/color][/size][/font] [font=&][size=14px][color=#222222]我们还列出了制造商报告的低质量范围(m/z 10000的低分辨率数据。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近的一项研究表明,在基于Orbitrap的单粒子电荷检测(CD)技术中,人们通过在低离子计数条件下确定了大量单个离子的电荷和接近理论预测的高MRP,而这一方法以更长的采集时间作为代价。[/size][/font] [font=&][size=14px]关于大分子检测中其它电荷检测质谱法(CDMS)细节的文章可以在别处找到,这里不做赘述。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352873.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图4 在Orbitrap质谱仪上实施源内离子捕获以提高高质量结构分析能力的示意图[/size][/font][font=&][size=14px]A,仪器的修改用红色标明;B,传输平台的示意图;C,正常/源内离子捕获模式中的相对电位。该仪器实现了更有效的去溶剂化和碰撞冷却,从而提高了MRP和质量传输效率。[/size][/font][font=&][size=14px]FTMS需要复杂的长时间镜像电流瞬态测量(通常从几秒到几分钟)来获得大蛋白质的同位素分辨率,这对高通量分析是不利的。[/size][/font] [font=&][size=14px]然而,高分辨率并不总是必要的,也就是说,电荷状态的分化需要比识别细微PTM分化(例如磷酸化)相对更低的MRP。[/size][/font] [font=&][size=14px]此外,仪器需要保持超高的真空度,以确保振荡离子有足够的平均自由程;[/size][/font] [font=&][size=14px]或者,TOFMS是另一种通用的选择。[/size][/font] [font=&][size=14px]关于高扫描速度和自由空间电荷效应,我们将在下一节讨论。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]3、飞行时间质谱[/color][/size][/font][font=&][size=14px]飞行时间质谱仪根据离子飞越无磁场区域的时间来分析离子,由此可以推断出它们的m/z。[/size][/font] [font=&][size=14px]在为离子提供势能(qU,其中U是离子源的电势)的电场下,离子源区域会产生离子。[/size][/font] [font=&][size=14px]在离子产生之后,离子被抽出并加速到封闭在飞行管内的无场区域。[/size][/font] [font=&][size=14px]加速过程将离子的势能转化为进入无场区域前的动能()。[/size][/font] [font=&][size=14px]在无场区域内,不同m/z的离子表现出不同的速度。[/size][/font] [font=&][size=14px]飞行时间(t)和离子质量(m)之间的简化关系为:[/size][/font][font=&][size=14px]其中L为无场区域的长度。[/size][/font] [font=&][size=14px]在TOFMS中,MRP可以转换为时间t/(2Δt)。[/size][/font] [font=&][size=14px]由于t随L呈线性变化,因此目前的共识是原则上飞行管长度越长,MRP越高。[/size][/font] [font=&][size=14px]根据定义,降低Δt可以实现更高的MRP。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]为了在飞行时间质谱中获得较高的MRP,电离时离子的能量和空间扩散需要最小化。[/size][/font] [font=&][size=14px]值得注意的是,能量扩散随着离子m/z的增加而增加。[/size][/font] [font=&][size=14px]提高飞行时间质谱仪MRP的两个最重要的技术是离子延迟引出和反射器技术。[/size][/font] [font=&][size=14px]离子延迟引出在Wiley和McLaren (1955)介绍的两级离子源中完成。[/size][/font] [font=&][size=14px]这种离子源的第一阶段是电离发生。[/size][/font] [font=&][size=14px]电离后,离子被引出,并被一个温和的电场推向第二阶段。[/size][/font] [font=&][size=14px]第二阶段用强电场将离子加速到它们朝向无场区域飞行的最终速度。[/size][/font] [font=&][size=14px]当进入无场区域时,不同m/z的离子通过它们到达检测器表面的时间而被分离。[/size][/font] [font=&][size=14px]延迟引出是在电离后的第一级施加较短的延迟电压,延迟范围在几十纳秒到低微秒之间的一种方法。[/size][/font] [font=&][size=14px]它有效地最小化了离子的初始能量扩散对到达时间的影响。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]另一方面,反射器使用飞行管中的环形电极堆来产生电场,以反射离子的轨迹。[/size][/font] [font=&][size=14px]反射器可以进一步补偿离子在反射过程中的能量差异,因为初始能量较高的离子会在反射器中传输更深,而初始能量较低的离子会传输更浅,如图5所示。[/size][/font] [font=&][size=14px]通过适当选择反射器后的飞行距离,具有相同m/z但不同初始能量的离子将同时到达探测器,实现飞行时间聚焦效果。[/size][/font] [font=&][size=14px]使用反射器的另一个优点是飞行距离的增加,这可以增加t和MRP。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352874.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图5 飞行时间质谱仪中反射器的示意图[/size][/font][font=&][size=14px]具有较高动能的离子在反射器中穿透得更深,促进了检测器的聚焦效果。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]自20世纪60年代以来,TOFMS一直是最受欢迎的技术之一。[/size][/font] [font=&][size=14px]在线性飞行时间质谱仪中,基本上不存在质量上限,因为离子经过电势加速后会沿着直线向检测器传输。[/size][/font] [font=&][size=14px]由于离子运动不受射频电场的控制,轨迹与m/z无关,常规线性模式飞行时间质量分析仪可以检测MDa水平的离子(即使用专用的基质分子,电荷检测器,或专门的低温离子探测器,如下所述),尽管其灵敏度和MRP都没有完全优化。[/size][/font] [font=&][size=14px]为了获得高分辨率光谱图,典型的TOF质谱仪是在反射模式下运行的,在低质量范围内提供大约10000–60000的MRP。[/size][/font] [font=&][size=14px]尽管其MRP在大多数质量范围内低于FTMS,但TOFMS的扫描速度比FTMS快2-3个数量级,可完美匹配联用分析系统。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS中有几个变化进一步增强了MRP。[/size][/font] [font=&][size=14px]最有吸引力的解决方案是安装静电扇区或多个反射器,以增加飞行距离。[/size][/font] [font=&][size=14px]一个例子是多圈或螺旋飞行时间质谱仪,它可以很容易地将飞行距离延长到几十米以上。[/size][/font] [font=&][size=14px]对于m/z约为10000的离子,这种仪器的最大MRP超过20000。[/size][/font] [font=&][size=14px]虽然飞行时间质谱基本上没有质量上限,但最大可观测m/z仍然受到一些关键因素的限制,包括样品制备、电离、离子轨迹、检测器特性等。[/size][/font] [font=&][size=14px]这种仪器方面的限制主要是指用于检测大分子的离子检测器的灵敏度。[/size][/font] [font=&][size=14px]例如,传统微通道板(MCP)检测器的灵敏度随着离子速度的降低而降低。[/size][/font] [font=&][size=14px]由于较高的m/z离子表现出较低的速度,这种检测器对于大分子分析是低效的。[/size][/font] [font=&][size=14px]为了克服这一问题,其中一个有效的解决方案是用更灵敏的替代物取代MCP检测器,例如通过能量感应撞击离子的能量敏感型低温检测器。[/size][/font] [font=&][size=14px]低温检测器可以将飞行时间质谱的质量上限提高到大约2 MDa。[/size][/font] [font=&][size=14px]低温探测器的缺点是响应时间长,通常在微秒范围内,这会导致较高的δt产生。[/size][/font] [font=&][size=14px]响应时间比传统的MCPs长两个数量级以上,无法产生高分辨率的质谱图。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个不可避免的问题是检测器偏向于检测低质量的离子,该问题主要是由于低质量离子导致的检测器饱和所致。[/size][/font] [font=&][size=14px]这种偏差源于MCP检测器在离子撞击表面后恢复其离子记录能力所需的时间。[/size][/font] [font=&][size=14px]在恢复时间窗口内,同一检测器区域的离子传输受到阻碍。[/size][/font] [font=&][size=14px]由于质谱通常存在低m/z的杂质离子,这些杂质离子可能是与基质相关的分子或较大离子的碎片,因此对高m/z离子的灵敏度要低得多。[/size][/font] [font=&][size=14px]人们可以通过改变检测器电压来调整增益效果,从而降低偏好程度;[/size][/font] [font=&][size=14px]也可以通过离子或检测器门控来使该问题最小化,以保持检测器在高m/z范围内的灵敏度。[/size][/font] [font=&][size=14px]有一种动态仪器优化方法被证明可以将灵敏度提高2-3倍。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个限制是,质谱仪存在离子损失现象,反射器不适合分析高m/z离子。[/size][/font] [font=&][size=14px]这种损失可能是由于离子在进入反射器之前在飞行管中的亚稳态衰减,因此它们在不同的时间到达检测器。[/size][/font] [font=&][size=14px]反射器的另一个可能的问题是较高的m/z离子具有较宽的发散角,使得离子轨迹在反射后偏离检测器轴。[/size][/font] [font=&][size=14px]为了进行高m/z离子的检测,人们通常通过商用化的TOF仪以线性模式进行实验,但这不可避免地会降低光谱的MRP。[/size][/font] [font=&][size=14px]人们发展了一种综合的计算方法来预测线性飞行时间质谱仪的最终构型,这表明离子源区域的尺寸以及引出电压和延迟的组合在MRP的改进中起着关键作用。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]4、正交和四极杆飞行时间质谱[/color][/size][/font][font=&][size=14px]串联质谱(MS[/size][/font] [font=&]n[/font] [font=&][size=14px])是一种技术,该技术在概念上集成了两个或多个质量分析器,可以提高质谱破译复杂化合物信息的能力。[/size][/font] [font=&][size=14px]最初开发于20世纪80年代初的四极杆-飞行时间(Q-TOF) MS已成为高分辨率和高质量应用中最常见的混合仪器之一。[/size][/font] [font=&][size=14px]四极质量分析器包括四个平行的双曲线或圆柱形杆状电极,并通过调节直流(DC)电压和RF电压的频率和幅度来传输或存储特定m/z的离子。[/size][/font] [font=&][size=14px]四极质量分析器通常设计紧凑,且需要低真空,并且具有很高的离子容量。[/size][/font] [font=&][size=14px]四极杆质量分析仪兼容各种电离技术(如ESI和MALDI)以及离子激活方法(例如电子激活解离和光诱导解离)。[/size][/font] [font=&][size=14px]四极杆质量分析器的主要缺点包括对离子传输、质量检测范围和质量分辨能力(通常为单位质量分辨率)的限制。[/size][/font] [font=&][size=14px]混合Q-TOFMS得到了广泛的认可,因为它保留了双方的优点(分别是选择性和高MRP ),而没有增加缺点。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]离子传输效率的提高使得在Q-TOFMS中检测大分子化合物成为可能。[/size][/font] [font=&][size=14px]根据RF频率和振幅以及杆组件的直径,传统的四极杆质量分析仪可以在高达4000的有限m/z下运行。[/size][/font] [font=&][size=14px]Q-TOFMS通过增加四极杆区内的压力进而促进对大分子径向运动的碰撞冷却,导致了离子传输效率的提高。[/size][/font] [font=&][size=14px]Q-TOFMS通过将四极杆的射频频率降低至300 kHz,实现了更宽的m/z范围至40000(一种蛋白质复合物,m/z为38150的GroEL伴侣蛋白)。[/size][/font] [font=&][size=14px]在这种情况下,不同的真空泵保持着高压,包括紧挨在取样锥后面的一个室(10 mbar)、六极周围的一个金属套筒(局部压力为8×10[/size][/font] [font=&]3[/font] [font=&][size=14px] mbar)和一个碰撞室(1.5×10[/size][/font] [font=&]2 [/font] [font=&][size=14px]mbar)。[/size][/font] [font=&][size=14px]正交TOF区域中的离子传输效率也通过在离子透镜上使用低计数网格和较低重复率的离子反射器(即加速前的传输时间为410 μs)而得到提高。[/size][/font] [font=&][size=14px]可检测的m/z超过85000(碘化铯簇),在m/z约为84000时信噪比(SNR)为5。[/size][/font] [font=&][size=14px]在串联MS模式下,四极杆具有窄带质量过滤器,因此只有窄m/z范围内的(前体)离子被传输到TOF区域,从而提高了检测动态范围和信噪比。[/size][/font] [font=&][size=14px]理论上,四极杆质量分析仪传输的离子比设定值高4-5倍:[/size][/font] [font=&][size=14px]将离子传输的m/z设置为32000应传输m/z为128000-160000的离子。[/size][/font] [font=&][size=14px]随着电离和检测效率的进一步提高,Q-TOFMS可以继续检测超过90000的m/z离子。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]此外,在Q-TOF质谱仪中,离子光学已得到改进,以实现更好的MRP以及质量相关传输。[/size][/font] [font=&][size=14px]低温度系数陶瓷垫片的使用可以减少温度引起的质量漂移,该瓷片可以利用对称屏蔽对所有电极进行更好的离子聚焦;[/size][/font] [font=&][size=14px]与之前的模型相比,MRP提高了约35%。[/size][/font] [font=&][size=14px]离子从四极杆通过正交TOF转移至检测器,这进一步改变了离子光学设计理念。[/size][/font] [font=&][size=14px]更详细地说, “步进式转移时间”可以调整不同m/z的离子从碰撞单元行进到正交加速单元的时间。[/size][/font] [font=&][size=14px]使用较大的入口孔径和较高的加速场,探测效率提高了30%。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近,离子淌度谱(IMS)是一种集成到飞行时间质谱中的一种技术。[/size][/font] [font=&][size=14px]IMS的加入为大分子分析提供了另一个分离维度,在电场的影响以及缓冲气体的存在下,具有不同迁移率或平均碰撞横截面的离子根据不同的淌度信息被分离开。[/size][/font] [font=&][size=14px]与四极杆质量分析仪类似,离子淌度池具有减少能量分布、降低化学噪音、提高检测动态范围和传导MS[/size][/font] [font=&]n[/font] [font=&][size=14px]的优势。[/size][/font] [font=&][size=14px]IMS的各种设计,例如行波离子迁移谱(TWIMS)、捕集离子迁移谱(TIMS)和环形离子淌度(cIM),都被证明可以增强淌度分离和离子传输。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]首个市售的IMS-Q-TOFMS于2006年推出(Waters,Synapt high definition MS[HDMS])。含有TW堆叠环形离子导向器的离子淌度池取代了六极杆,有效地将离子从离子源区域桥接至四极杆质量分析器,并消除了不需要的中性物质。在该系统中,位于四极杆和正交TOF之间的“TRIWAVE”系统(捕集、IM和转移池)不仅能实现淌度分离,还能激活离子,因此有利于定量结构分析。TIMS的工作原理是通过使用电场推动离子与逆流的中性漂移气体分子不断碰撞,从而分离离子。TIMS质谱于2016年才商业化,并因其对天然大分子组装体的结构解析能力而广受欢迎。现代的IMS-Q-TOFMS可以在m/z 10000以上提供平均50000的MRP[/size][/font] [font=&][size=14px]。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][size=14px][color=#000000]5、数据处理技术[/color][/size][font=&][size=14px]由于数据复杂性和分析要求的增加,数据处理是HRMS的另一个重要部分。[/size][/font] [font=&][size=14px]与仪器的重大发展相反,数据处理可能是提高数据质量的一种有效而方便的手段。[/size][/font] [font=&][size=14px]在傅立叶变换质谱(FTMS)中,数据处理尤为重要,因为在傅里叶变换之前对原始数据进行校正、滤波和变迹是获得谱图的常见做法。[/size][/font] [font=&][size=14px]例如,人们发现相位校正可以显著提高FT-ICRMS的光谱质量,包括SNR、MRP和质量准确度。[/size][/font] [font=&][size=14px]在其他质谱数据中,离线或采集后处理提高了分子鉴定的谱图质量。[/size][/font] [font=&][size=14px]例如,人们可以通过波变换、翘曲函数以及其他方法提高峰值检测和降噪的效率。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]研究表明,充分的校准可以将质量准确度提高一个数量级以上。[/size][/font] [font=&][size=14px]另一方面,采集后数据校准可以通过比较多个光谱以自校准方式进行。[/size][/font] [font=&][size=14px]复杂光谱中蛋白质的鉴定也可以通过使用多峰拟合和模拟技术提高蛋白含量来实现。[/size][/font] [font=&][size=14px]相比之下,人们通过使用简单的峰对齐算法(而不是使用复杂的校准函数),就可以实现在线的自校准[/size][/font]

  • 【在线讲座192期】TripleTOF技术— 同时实现高分辨率定性和定量分析,火热报名中……(2012年6月20日 14:30)

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647066_2507958_3.gif【在线讲座192期】TripleTOF技术— 同时实现高分辨率定性和定量分析主讲人:李春波 博士 AB SCIEX公司市场部 活动时间:2012年6月20日 下午 14:30http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647066_2507958_3.gif1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2012年6月20日下午14:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动:本次讲座采取网络讲堂直播模式,欢迎大家积极发言提问。 *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答*6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、提问时间:现在就可以在此帖提问啦,截至2012年6月20日8、会议进入:2012年6月20日14:00点就可以进入会议室9、开课时间:2012年6月20日14:3010、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》快来提问吧:我要提问》》》

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。http://ng1.17img.cn/bbsfiles/images/2012/12/201212191311_413838_2432394_3.jpgNIRQuest512-1.9配置具有很高的稳定性,512像素Hamamatsu InGaAs线阵探测器,适用于多种光栅和光具座,用以优化1100至1900纳米之间的性能。标准的NIRQuest512-1.9光栅常数为150线/毫米,25微米的入射狭缝,以及一个非荧光长波通滤光器配置,可传输1000纳米以上的波长。该滤光器有助于缓和二阶效应。NIRQuest512-1.9外部配有一个硬件,通过该硬件,在出现外部情况时,用户可以通过外部触发获取相应数据信息,或者在数据获得之后再次引起触发。光谱仪操作通过SpectraSuite软件来控制,该软件是一个基于Java的模块化光谱学平台。NIRQuest的低沉噪声让其具备集成光谱仪的潜力(或者将光谱仪中的探测器暴露在光线下),从而延长使用时间,这在光线暗的环境中非常有用。满信号条件下的信噪比在每100毫秒积分时间内大于15000:1。因此,在对敏感性要求极高的应用环境中可以实现高效操作模式。

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 中国科大实现世界最高分辨率单分子拉曼成像

    《自然》审稿人:“该领域迄今质量最高的顶级工作”2013年06月06日 来源: 科技日报 作者: 吴长锋 最新发现与创新 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130606/011370453619890_change_hzp3622_b.jpg 在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。 科技日报合肥6月5日电 (记者吴长锋)记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作“打破了所有的纪录,是该领域创建以来的最大进展”,“是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地”,“是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作”。 这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。 光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的“拉曼散射”。“拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的‘指纹’光谱。”论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。 上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。“迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。”董振超说。 微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元“天线”的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。 “可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。”董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。 《科技日报》(2013-06-06 二版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制