当前位置: 仪器信息网 > 行业主题 > >

高分辨率细胞显微镜

仪器信息网高分辨率细胞显微镜专题为您提供2024年最新高分辨率细胞显微镜价格报价、厂家品牌的相关信息, 包括高分辨率细胞显微镜参数、型号等,不管是国产,还是进口品牌的高分辨率细胞显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率细胞显微镜相关的耗材配件、试剂标物,还有高分辨率细胞显微镜相关的最新资讯、资料,以及高分辨率细胞显微镜相关的解决方案。

高分辨率细胞显微镜相关的仪器

  • 产品简介蔡司晶格光切超高分辨率显微镜Lattice SIM 3利用晶格结构光照明的组织穿透力强的优势,针对组织样品对于分辨率、速度和灵敏度的三重需求进行光学设计,适用于细胞团、类器官、组织切片和小型模式动物等样品的超高分辨率成像,快速获取更精细的组织三维结构全貌,兼顾分辨率、成像速度、成像深度和灵敏度。产品特点&bull 低倍物镜下的大视野超高分辨率成像&bull 近各向同性分辨率的高质量光学切片&bull 以宽场成像的快速和低光毒性实现超高分辨率成像应用领域&bull 类器官发育&bull 组织切片&bull 3D细胞培养模型&bull 胚胎发育应用案例细胞球状体样品,利用25x物镜进行Lattice SIM成像,绿色标记线粒体 (MitoTracker Green),红色标记细胞核(NucRed Live 647)。果蝇胚胎 Fasciclin II (颜色深度编码) 和HRP (青色) 标记神经系统,样品来自英国约克大学Ines Hahn
    留言咨询
  • 产品简介蔡司晶格结构光超高分辨率显微镜Lattice SIM 5针对亚细胞结构成像进行优化,实现60nm分辨率高质量活细胞超高分辨率成像。在活细胞超高分辨率成像中不仅实现三维空间分辨率的全面提升,更能快速真实的捕获亚细胞结构的动态变化。产品特点&bull 60 nm的分辨率精确捕获快速动态过程&bull 灵活多样的物镜和成像方式,满足不同样品的需求&bull 高速图像采集模式,提高速度和实验效率应用领域&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos 7活细胞成像,Calreticulin-tdTomato 标记内质网(品红),EMTB-3xGFP标记微管(绿色),右图显示放大区域样品细节分辨率。
    留言咨询
  • 蔡司跨尺度超高分辨率显微镜Elyra 7以更丰富的成像模式满足您各种样品、各种尺度、各种分辨率的成像需求。无论是组织样品的快速光学切片成像,还是60nm活细胞超高分辨率成像,甚至是用于分子水平研究的TIRF和SMLM(单分子荧光定位,Single-Molecule Localization Microscopy)。您可以采用多种成像方式探索样品,并将多尺度的成像数据进行关联,获得从组织-细胞-亚细胞结构-蛋白的多尺度信息。产品特点&bull Lattice SIM成像解析低至 60 nm 的超微结构&bull 使用 SMLM 探索分子细节&bull 在同一设备上实现组织-细胞-亚细胞结构-蛋白图像的多尺度关联应用领域&bull 单分子荧光定位&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例小鼠小肠切片,在 A-ha 聚合物中标记血管(Alexa 488,橙色)和神经(Alexa 647,青色),以10x/0.3物镜拍摄样品全貌,以63x/1.4物镜拍摄局部细节。样品来自台湾国立清华大学生物科技研究所暨医学系 Shiue-Cheng (Tony) Tang 教授。固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos-7细胞双色2D STORM, 品红色标记微管(anti-tubulin-Alexa Fluor 647),黄色标记线粒体(anti-TOMM20-CF568).
    留言咨询
  • 日立高新超高分辨率场发射扫描电子显微镜SU9000是专门为电子束敏感样品和需最大300万倍稳定观察的先进半导体器件,高分辨成像所设计。新的电子枪和电子光学设计提高了低加速电压性能。0.4nm / 30kV(SE)0.7nm / 1kV(SE)0.34nm / 30kV(STEM)用改良的高真空性能和无与伦比的电子束稳定性来实现高效率截面观察。采用全新设计的Super E x B能量过滤技术,高效,灵活地收集SE / BSE/ STEM信号。
    留言咨询
  • 品牌: GATAN 名称型号:GATAN冷冻传输系统Alto2500制造商: GATAN公司经销商:欧波同有限公司 产品综合介绍: 产品功能介绍扫描电镜工作者都面临着一个不能回避的事实,就是所有生命科学、石油地质学以及许多材料科学的样品都含有液体成分。很多动植物组织含水量达到98%,这是扫描电镜工作者最难对付的样品问题。冷冻传输设备是一种将经过冷冻制样后的样品置入 SEM 样品室内,并维持样品低温状态的一种设备。它综合了制样、维持样品低温真空环境、在不破坏 SEM 真空前提下安全传送样品至SEM。是冷冻扫描电镜不可或缺的利器!品牌介绍美国GATAN公司成立于1964年并于70年代末进入中国市场。GATAN公司以其产品的高性能及技术的先进性在全球电镜界享有极高声誉。作为世界领先的设计和制造用于增强和拓展电子显微镜功能的附件厂商,其产品涵盖了从样品制备到成像、分析等所有步骤的需求。产品应用范围包括材料科学、生命科学、地球物理学、电子学,能源科学等领域, 客户范围涵盖全球的科研院所,高校,各类检测机构及大型工业企业实验室,并且在国际科学研究领域得到了广泛认同。经销商介绍欧波同有限公司是中国领先的微纳米技术服务供应商,是一家以外资企业作为投资背景的高新技术企业,总部位于香港,分别在北京、上海、辽宁、山东等地设有分公司和办事处。作为蔡司电子显微镜、GATAN扫描电子显微镜制样设备及附属分析设备在中国地区最重要的战略合作伙伴,公司秉承“打造国内最具影响力的仪器销售品牌”的经营理念,与蔡司,GATAN品牌强强联合,正在为数以万计的中国用户提供高品质的产品与国际尖端技术服务。产品主要技术特点: Alto 2500 是一款高分辨率的新一代冷冻传输系统,专为场发射扫描电镜(FE SEM)设计,是冷冻扫描电镜中的性能冠军。Alto 2500系统提供的制样技术包括快速冷冻(为了保持含水状态),真空传输(防止样品污染),冷冻断裂(展示内部微观结构),升华(净化非含水成分)和镀膜(允许高分辨表面成像和X-RAY分析)。Alto 2500冷冻前处理室 Alto 2500配备了专用的直接连在SEM上的前处理室。该高真空前处理室配有一个独立的且在工作中无振动产生的涡轮分子泵。前处理室高程度可视化有利于观察样品,同时室内装有灯管,配合双筒显微观察镜可以在处理样品过程中更好的观察样品。大容量一体式液氮冷肼设计,不仅保证看充足的低温供应和优异的低温环境,而且提供了无污染操作环境。冷肼上部装有一个冷台和防污染板,温度可分别达到-180℃和-190℃。利用样品台加热器可以使其升温,从而达到可控温度升华的目的。珀热电阻温度传感器能够灵敏的显示冷台和防污染板的温度。前处理室还配置了标准双功能冷冻断裂刀具,还可选配可控断裂深度的冷冻旋转断裂刀具。喷镀专为冷冻环境设计的磁控高性能喷镀单元,5nm的分辨率精度是获取高分辨率FEG-SEM图像的保证。该单元可选配互换式多点喷碳装置。真空传递装置 真空传递装置是一个紧凑而轻巧的装置,将经过快速冷冻工作台冷冻后的样品继续保持真空状态,并转移到前处理室和SEM样品室中。大面积玻璃窗保证了良好的可视性,可以让操作者顺利的将样品推送到冷台。 快速冷冻工作台冷冻工作台含有两个可制“液氮泥”的处理罐,不仅可以快速冷冻样品,而且还能装载预冷冻样品。可选配‘撞击式冻装置’。SEM冷台模块低温氮气高效冷却的冷台模块很易于SEM样品台楔合。利用内置可控温加热器和精确的温度感应器能轻易的控制温度在-185℃到+50℃之间。冷台模块冷气管具有一定的弯曲度,即使在通有冷却氮气的情况下冷台也可旋转一定的角度。在FIB+SEM中,可以设置最大倾斜角度。为了保证获得无污染的图像,在SEM样品室内配置了一个独立的根据不同SEM而定制的可显温度的防污染板。系统控制面板键盘控制器显示系统参数,只有手掌大小,操作简单。在使用过程中,控制器可以方便的放在任意方便的位置。安全特性整个系统提供了电子机械互锁,保证了操作者和显微镜的安全性。产品主要技术参数: 样品预处理装置液氮泥快速冷冻(-210℃);多功能液氮泥工作站,有装载样品座的铰链式装置,可将冷冻预处理后的样品很方便的对接至真空传输装置上。前处理室的冷台由直接嵌入的液氮杜瓦直接冷却,确保最佳制冷效率和最低制冷速度;通过减震装置将分子泵直接耦合到前处理室上,确保最佳的抽气效率和样品室真空;冷源4-2-1 冷冻前处理室采用一体式液氮冷阱制冷,扫描电镜冷台采用过冷氮气气冷,分体式液氮杜瓦只需6 L液氮,可连续提供扫描电镜冷台3 h连续工作时间;高真空冷冻制备腔室,包括:前级机械泵,涡轮分子泵(70 L/S),工作时前处理室真空度优于10-6 mbar量级;多角度样品观察窗,×10倍和 ×20倍双目显微观察镜,气锁阀门控制真空传递装置连接,;球阀与扫描电镜样品室连接,具有电动开关和电动机械安全锁;一体式液氮冷阱及防污染装置,防污染装置可设温度为 -190℃;样品制备腔室内部液氮冷冻台(-180℃ ~ +100℃)及防污染装置;样品处理包括断裂、升华、喷镀功能。标配冷冻断裂刀;可设定升华时间及温度,自动升华;标配Pt靶材磁控喷镀,可选其他靶材(Au/Pd, W , Ir 和 Cr),自动喷镀,提供高纯氩气供给连接组件;真空传输装置设计紧凑小巧,使用方便,密封效果好。扫描电镜冷台和防污染装置低温氮气气冷扫描电镜冷台(-185℃ ~ + 50℃),温度稳定度为1℃;根据扫描电镜类型定制防污染装置,可设温度为 -190℃或更低;扫描电镜样品室内配置LED照明灯。高集成按键式控制板,体积小,可方便的放置在触手可及的位置。 产品主要应用领域: ● 植物学、动物学和医学(如植物叶、根毛、花粉、冬虫夏草、动物器官组织等)● 食品原料(如牛奶、酵母等)● 脂类、聚合体、油漆和化妆品(如面霜、雪花膏、牙膏等)● 光束或电子束灵敏的材料(如:照相感光乳剂)● 石油地质学(泥、泥浆、油母岩等)● 液体、半液体和泡沫(啤酒花、冰淇淋、酸奶等)● 热敏半导体材料(如:低K材料)喷镀前 喷镀后 真菌感染后的叶片表面 硅藻绿霉菌 冰淇淋 酸奶
    留言咨询
  • 是一款模块化的多功能的单分子定位显微镜(SMLM)系统,它*的DASEY技术能够极大的提高定位精度的同时,还保持在较小的尺寸。该设备具有高度灵活性,能够搭载在绝大多数的倒置显微镜上,并且仅仅需要使用一个C-mount(CCD或CMOS所连接的部位)接口,即可将您的倒置显微镜直接升级为超分辨率显微镜并且改造过程不会破坏原有显微镜系统的光路和功能,不会与其它的显微镜改造相冲突。 本设备既在配置上的选择也十分灵活。它既可以作为显微镜的一个升级配件来改造您的显微镜,也拥有完整的超分辨系统。让用户在获得专业的图像质量的同时,享受到经济合理的超分辨升级方案。成像模式:PLAM、STORM、smFRET、PAINT、SPT&bull 光源模式:Epi、TIRF、HILO&bull 大视野3D超分辨模块&bull 光源模式:Epi、TIRF、HILO&bull 超高分辨率:25 nm的XY轴分辨率&bull 超大视野:200 × 200 μm2的视野&bull 全自动化控制&bull 无需高功率激光光源&bull 可升级SAFe 360&bull 具有SAFe 180的所有功能&bull 超高分辨率:15 nm的XYZ轴分辨率&bull 一次可同时采集1.2 μm深度图像信息&bull 超高图像深度:10 μm&bull 实时漂移矫正&bull 超高四色同时成像&bull 活细胞成像模式线粒体 网格蛋白 细胞足 肌动蛋白-配套试剂Smart kit&bull 10 doses per box&bull 200 µ L per dose&bull 30 sec prepartion&bull 2 months in a fridge&bull 2 weeks on sampleCompatible dyes &bull Phalloidin-AF 488, WGA-AF 488&bull AF 532, CF 532, Cy3b&bull AF 555, CF 555, AF 568, CF 568, Cy5, MemBrite&trade 568&bull AF 647, CF 647, AF 680, CF 680, MemBrite&trade 640 TIRFPALMSTORMSPTsmFRET......兼容ConfocalSpinning-DeskWidefieldSIMSTED
    留言咨询
  • 基于宽视野的徕卡超高分辨率系统Super Resolution Ground State Depletion可以帮您获得20纳米分辨率的图像.集成了多项功能的解决方案:Leica SR GSD 系统也能够完成高灵敏、高速、多通道荧光以及温度控制下的宽场和TIRF(全内反射荧光术)功能。 激光器选用了3个高能量激光(300-1000mW): 488nm, 532nm 和 642nm, 其中的405nm激光也可以用于标准的TIRF (全内反射荧光术)应用。 SuMo 高精度载物台选用压力运动技术, 可以使系统保持稳定在小于20nm/10min 的侧向漂移。 这保证了实验中精确的分子定位。 能够使用常规荧光染料, 用户不需要为了达到高分辨而改换原有的操作流程 ( 支持的染料有: Alexa Fluor® 488, Rhodamine-6G, Atto 532 and 488, Alexa Fluor® 532, Alexa Fluor® 546, Atto565 and 568, Alexa Fluor® 647,YFP) 在线高分辨成像投射: 用户可以实时看到图像采集的成果。 这项特性令用户可以完全地控制实验进度-可以随时选择停止或继续采图以达到令人满意的成像。使用GSDIM分辨率可达20nmGSDIM是一种经过科学证实的,可使用各种标准荧光探针的显微成像方法。 Leica Microsystems是开发超高清显微镜的先驱者。2007年推出了Leica TCS STED,它预示着分辨率突破衍射极限的新时代的到来。 Leica SR GSD以Leica AM TIRF MC 系统和Leica DMI6000 B倒置显微镜为基础,根据为基态损耗(GSDIM)技术研发而成。 Leica SR GSD系统 为您带来的优势 最大分辨率可达20nm以GSDIM技术为基础的Leica SR GSD,超越了以前其它超高清系统达到的分辨率极限。GSDIM和STED都是德国 Max Planck Institute Gottingen Stefan Hell的专利技术,并且授权给Leica Microsystems。上图: Ptk2-细胞。NPC-染色:抗NUP153/Alexa FLUOR 532微管染色:抗-β-/Alexa FLUOR 488致谢:Wernher Fouquet, Leica Microsystems与德国海德尔堡 欧洲分子生物学实验所Anna Szymborsak与Jan Ellenberg合作。 可以使用标准荧光剂 - 无需制定特殊操作流程GSD的工作流程。以标准免疫染色技术为基础,可以很好地纳入到现有的显微图像工作流程中。上图: MDCK细胞微管, Alexa FLUOR 642 (红色)和TyrMicrotubules, Alexa FLUOR 488 (绿色)。致谢:德国马尔堡菲利普大学Ralf Jacob.教授。 带有运动抑制技术的SuMo平台,最大程度减小了移动,增加了分子定位的准确性。Leica SR GSD带来了全新的载物台防漂移技术,在图像采集过程中,系统所产生的最大漂移小于物分辨能力。因此,在图像采集的过程中能够观察到超清的影像。 Leica SR GSD可以在超清的图像采集过程中实时显示采集的每一幅图。用户在采像过程中可以实时观察生成的图像。该特点可以使用户完全掌控试验 - 您可以决定终止或继续采像,从而达到满意的结果。 超清TIRF和落射荧光与多功能活细胞成像系统相结合,形成了广泛的应用灵活性。Leica SR GSD将高清晰图像与使用简便的系统,以及广泛的宽视野显微镜应用相结合。您使用该工作站除了可以完成从高速成像到TIRF的日常试验之外,还可以获得超清的影像。 RCC-FG1 cells,免疫荧光标记α-?tubulin with AlexaFluor® 647.图像提供: Prof. Ralf Jacob.Philipps University Marburg,Germany 高尔基体, B16 (小鼠黑色素细胞瘤株),Golgi targeting signal of β?1,4-galactosyltransferase,fused to EYFP.图像提供:Dr. Yasushi Okada,Department of Cell Biologyand Anatomy,Graduate School of Medicine,University of Tokyo, Japan最新技术带来的高性能表现: The SuMo 载物台使用最新的科技, 可以达到完美表现和极低的侧向漂移.
    留言咨询
  • 产品简介蔡司晶格结构光超高分辨率显微镜Lattice SIM 5针对亚细胞结构成像进行优化,实现60nm分辨率高质量活细胞超高分辨率成像。在活细胞超高分辨率成像中不仅实现三维空间分辨率的全面提升,更能快速真实的捕获亚细胞结构的动态变化。产品特点&bull 60 nm的分辨率精确捕获快速动态过程&bull 灵活多样的物镜和成像方式,满足不同样品的需求&bull 高速图像采集模式,提高速度和实验效率应用领域&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos 7活细胞成像,Calreticulin-tdTomato 标记内质网(品红),EMTB-3xGFP标记微管(绿色),右图显示放大区域样品细节分辨率。
    留言咨询
  • 蔡司跨尺度超高分辨率显微镜Elyra 7以更丰富的成像模式满足您各种样品、各种尺度、各种分辨率的成像需求。无论是组织样品的快速光学切片成像,还是60nm活细胞超高分辨率成像,甚至是用于分子水平研究的TIRF和SMLM(单分子荧光定位,Single-Molecule Localization Microscopy)。您可以采用多种成像方式探索样品,并将多尺度的成像数据进行关联,获得从组织-细胞-亚细胞结构-蛋白的多尺度信息。产品特点&bull Lattice SIM成像解析低至 60 nm 的超微结构&bull 使用 SMLM 探索分子细节&bull 在同一设备上实现组织-细胞-亚细胞结构-蛋白图像的多尺度关联应用领域&bull 单分子荧光定位&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例小鼠小肠切片,在 A-ha 聚合物中标记血管(Alexa 488,橙色)和神经(Alexa 647,青色),以10x/0.3物镜拍摄样品全貌,以63x/1.4物镜拍摄局部细节。样品来自台湾国立清华大学生物科技研究所暨医学系 Shiue-Cheng (Tony) Tang 教授。固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos-7细胞双色2D STORM, 品红色标记微管(anti-tubulin-Alexa Fluor 647),黄色标记线粒体(anti-TOMM20-CF568).
    留言咨询
  • 高分辨率磁光克尔显微镜产品负责人:姓名:谷工(Givin)电话:(微信同号)邮箱:当一束线偏振光照被磁性介质反射后,反射光的偏振面相对于入射光的偏振面有一个小的角度偏转(克尔旋转角),这一现象被称为磁光克尔效应。该效应与显微成像技术结合组成磁光克尔显微镜,被广泛应用于磁性材料磁性测量,磁畴观察等。 由于该设备可进行无损探测、灵敏度高、在极端环境下原位测量等优点是被越来越多的科研人员采用。为满足日益增长的市场需求昊量光电推出了高性价比的磁光克尔显微镜。其主要原理是:一束面光源经过起偏器,转变为线偏振光,照射到样品上,由于样品内磁畴的存在使样品各个区域内磁化强度和方向不同,因此不同区域对线偏振光,偏振面的改变各不相同。因此当反射光通过检偏器后光斑的强度分布不同,从而得到样品的磁畴结构。为了获得更高的灵敏度,优异的磁畴成像效果等该系统做了以下优化。1)采用高亮度窄带LED光源。尽管理论上磁光克尔效应的对比度可以无限高,但是多个波长偏振像差的组合通常会大大降低偏振的纯度。因此传统的克尔显微镜经常报道磁光克尔对比度几乎观察不到。一个主要的原因就是因为使用宽谱的照明光源。因为磁光效应引起的克尔旋转量与光源波长数量成反比,宽谱光源会产生相同宽谱的线偏振,也就是说,光偏振不是完美的线性,观察到的磁对比度也会降低。因此为了克服由于光源带来的相差,我们经过多组测试,选取了FWHM为50nm的超亮LED光源,可获得很强的对比度,并且拥有较高的使用寿命。2)图像自动校正功能通常为了获得较弱磁性材料的对比度,市面上磁畴观察设备通常会采用图像差分处理来获得较高对比度,即使用拍摄到的图像减去背底图片。该方法通常可以将信号增强10倍以上。但是由于在施加磁场的过程中样品的位置会发生偏移,会大大影响差分处理效果,甚至出现错误。为了消除样品的移动,设备会通过快速像素相位算法确定样品漂移,然后通过压电促动器实时校正位置。同时该帧位移的图像在软件中也会实时修正,校正后的图像位移量不大于0.2个像素(8nm)3)特殊设计的电磁铁通常磁畴观察显微镜中的电磁铁设计是一个具有挑战性的话题,必须要有一些取舍。为了获得较高的分辨率,因此要使用大倍率的物镜,放置在靠近样品的位置。这对电磁铁强加以一个空间限制,并限制了生产磁场的强度。其次,磁铁产生的磁通量会通过物镜,引起法拉第效应,从而降低成像对比度。我们通过革新的磁通量闭合式设计从而巧妙的解决了这两个问题。通过对电磁铁的磁场测量,我们可以发现,磁铁的磁场提高了4倍,但是通过物镜的磁场强度却降低了8倍。产生磁场的均匀性在4mm范围内也达到了0.5%的水平。4)高灵敏度,高分辨率成像相机对于磁光克尔显微镜,样品反射的光通过检偏器,仅仅只有百分之一的入射光达到相机传感器。因此对于磁畴成像系统,相机的灵敏度就体现的尤为重要。因此为了达到成像效果,我们选取了再该波段下量子效率高达78%,并且具有20兆像素的背照式相机。从而获得高分辨率,高信噪比的图像。此外该设备不但可以获得样品磁畴图片,还可以根据样品磁畴图像同时获得样品的磁滞回线分析。产品参数:Light source2200 Lumens ultrabright LED lampCamera6.4 Megapixel @ 60FPS 78% Quantum efficiencyResolution300nmMagnetic Field 1T(Perpendicular)/0.5T(Longitudina)Power Requirement230VAC ± 10%, 13Amp Single PhaseSize / WeightMain System: 60 x 50 x 1500px, 25kgPower Supply Tower: 60 x 60 x 750px, 10kg实例:1)1nm CoFeB磁性薄膜2)4种灰度:垂直磁化磁隧道结多级磁畴(4 shades of grey: Multilevel stripe domains on a perpendicularly magnetized magnetic tunnel junction stack)3)[Pt/Co/Fe/Ir]x2 堆栈手性磁畴(Chiral stripes (and skyrmions)on a [Pt/Co/Fe/Ir]x2 stack)4)Heusler 合金薄膜中的垂直磁化的磁畴反转(Domain reversal in a perpendicularly magnetized Heusler alloy thin film)5)同时施加磁场和电流6)电流诱导的磁畴远动的准实时观测7)CoFeB多层材料退磁过程的实时观测
    留言咨询
  • 基于结构光照明的超分辨显微成像系统,具备300Hz超分辨成像能力、“所见即所得”的实时超分辨成像能力、86nm的光学超分辨能力和60nm的计算超分辨能力。可以让您对苛刻实验条件下培养的活细胞进行实时超分辨图像重构,满足低光毒性的要求。主要特点:超高分辨率:X,Y横向分辨率(XY):86nm,计算分辨率达60nm。Z轴轴向分辨率(Z):270nm。超低光毒性:长时长活细胞连续拍摄,更低的激光功率获得更高的图像信噪比高速实时:实时超分辨,所见即所得多种成像模式:荧光宽场、TIRF宽场、2D SIM/2D SIM Stack、TIRF SIM、3D SIM/3D SIM Stack、上述模式多角度控制、实时SIM拍摄 超强适配性 :采用了标准显微镜镜体,并支持已有显微镜的升级 主要参数:G-SIM结构光超分辨显微成像系统激光器激光405nm(50mW)、488 nm(50mW)、561 nm(50mW)、640nm(50mW)可选白激光的激发光波长从440纳米到790纳米声光调制器(AOTF)每个激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度调节范围为0.01%-100%,最小调节步进精度为0.01%。超分辨模块SIM照明器SIM专用结构光照明器,通过条纹照明,获取两倍于传统显微镜的光学分辨率光学分辨率XY方向86nm,计算分辨率60nm,Z方向270nmSIM拍摄速度120 fps @512×512 pixels(2D-SIM & TIRF-SIM)208 fps @512×200 pixels(2D-SIM & TIRF-SIM)72 fps @512×512(3D-SIM)SIM成像视野1536×1536 pixels,94μm×94μm @ 100X 物镜SIM成像模式TIRF-SIM、2D-SIM、3D-SIM,多角度控制实时超分辨功能可单通道成像可四通道高速分时成像sCMOS相机Hamamatsu ORCA Flash 4.0分辨率:2304×2304,单像素大小:≥6.5×6.5μm,帧速≥89frame/s,峰值QE≥95% @ 550nm共聚焦模块1标准探测器波长:400-750nm,探测器:4个高灵敏度PMT透射探测器1个PMT图像尺寸8192 x 8192pixels扫描模式X-Y,X-Z ,Y-Z, X-Y-Z,X-Y-Z-T扫描速度4fps@512 x 512 pixels1. 共聚焦模块为选配项。
    留言咨询
  • 创新研究的最佳途径Park NX10为您带来最高纳米级分辨率的数据,值得您信赖、使用和拥有。无论是从样品设定还是到全扫描成像、测量与分析,Park NX10都可以在保证您专注于创新研究工作的同时提供高精度的数据。Park SmartScan 智能模式在SmartScan Auto独有的智能模式下,系统自动执行所有必要的成像操作,同时智能选择最佳的图像质量和扫描速度。这是通过Park的专利技术才得以实现的。它不仅可以为您节省时间和金钱,还可以给你您带来最好的研究结果。Park 消除串扰技术Park NX10为您带来最高纳米级分辨率的数据,值得您信赖、使用和拥有。它是全球唯一一个真正非接触式原子力显微镜,在延长探针使用寿命的同时,还能良好地保护您的样品不受损坏。可弯曲的独立XY扫描仪和Z扫描仪可带来无与伦比的精确度和分辨率。Park先进的原子力显微镜模式Park原子力显微镜具有综合性的扫描模式,因此您可以准确有效地收集各种数据类型。从使用世界上唯一的真非接触模式用来保持探针的尖锐度和样品的完整性,到先进的磁力显微镜, Park在原子力显微镜领域为您提供最具创新、精确的模式。Park NX10 扫描离子电导显微镜模块Park NX10扫描离子电导显微镜模块为广泛的应用,细胞生物学,分析化学,电生理学和神经科学提供纳米级成像。技术信息为通用研究提供精准的AFM解决方案低噪声Z检测器可进行精确的AFM测量Park NX10原子力显微镜的低噪声Z探测器NX平台的核心先进技术业界无可比拟的超低噪声默认的形貌信号Z轴探测器是全新NX系列原子力显微镜的核心技术之一。它是Park独创的新型应变传感器。凭借着0.2埃的超低噪声一跃成为行业内噪声最低的Z轴探测器。超低噪声让Z轴探测器可作为默认的形貌信号,全新的NX系列原子力显微镜与前几代的原子力显微镜的差异可轻易被观察到。如果Z轴探测器的噪声过高,用户是无法观察到蓝宝石晶片的原子台阶的。Park NX系列原子力显微镜的Z轴探测器所发出的高度信号,其噪声水平与Z轴电压形貌相同。真正的非接触式™ 模式进行准确的AFM扫描针尖磨损更低=高分率扫描更长久无损式探针-样品接触=样品受损最小化可满足各种条件下对各种样品进行非接触式扫描针尖磨损更快=模糊,低分辨率扫描破坏性的探针-样品接触=样品易受损参数高依赖性优秀的设计带来最佳的用户体验简单的探针和样品更换独有的设计能让您轻易地用手从侧面更换新的探针和样品。借助安装悬臂式探针夹头中预先对齐的悬臂,无需再进行繁杂的激光校准工作。闪电般快速的自动近针自动的探针样品进针功能能让用户无需进行干预操作。通过监测悬臂接近表面的反应,Park NX10能够在悬臂装载后十秒内开始并自动快速完成探针样品进针操作。高速Z轴扫描器的快速信息反馈和NX电子控制器的低噪声信号处理使得无需用户干预就能快速接触样品表面。快速精准的SLD光校准凭借我们先进的预校准悬臂架,悬臂在装载时SLD光便已聚焦完毕。此外,作为行内唯一一家可以提供自上而下的同轴视角可以让您轻松找到光点。由于SLD光垂直照在悬臂上,您可通过旋转两个定位按钮直观地在X轴Y轴移动光点。这样您可以在激光准直页面中轻易找到SLD光并将其定位在PSPD上。此时您只需要稍微调整到最大化信号,便可开始获取数据。Park NX10特点扫描范围为50 μm x 50 μm 的2D扫描器XY轴扫描器有对称的二维高强度压电叠堆。它可为进行精确的纳米级样品扫描,提供基本的面外高效正交运动和高响应能力。Park NX10的这种紧密刚硬的构造具备低噪声高速的伺服响应能力。低噪声XYZ位置传感器行业领先的低噪声Z轴探测器代替Z电压作为形貌信号。低噪声XY闭环扫描可将正向扫描和反向扫描间隙降至扫描范围的0.15%以下。自动步进扫描 借助驱动样品台,步进扫描可编程多区域成像,以下是它的工作流程:扫描成像抬起悬臂移动驱动平台到设定位置进针重复扫描滑动嵌入SLD镜头的自主固定方式您只需滑动嵌入燕尾导轨便可轻松更换原子力显微镜镜头。该设计可将镜头自动锁定至预对准的位置,同时与复位精度为几微米的电路系统相连接。借助于相关性低的SLD,显微镜可精确成像并可准确测定力-距离曲线。高级扫描探针显微镜模式和选项的扩展槽只需将可选模块插入扩展槽便可激活高级扫描探针显微镜模式。得益于NX系列原子力显微镜的模块设计,其生产线设备兼容性得到大大提高高速24位数字控制器所有NX系列的原子力显微镜都是由相同的NX电子控制器进行控制和处理。 该控制器是个全数字,24位高速控制器,可确保True Non-Contact™ 模式下的成像精度和速度。凭借着低噪声设计和高速处理单元,该控制器也是纳米成像和精确电压电流测量的绝佳选择。嵌入式数字信号处理为原子力显微镜带来更为丰富的功能,更好的解决方案,是高级研究员的最佳选择。XY和Z轴检测器的24位信号分辨率XY轴(50 μm)的分辨率为0.003nmZ轴(15 μm )的分辨率为0.001 μm嵌入式数字信号处理功能三通道数码锁相放大器弹簧系数校准(热方法)数据Q控制集成式信号端口专用可编程信号输入/输出端口7个输入端口和3个输出端口
    留言咨询
  • 超分辨率显微镜 400-860-5168转2045
    简介: N-SIM在结构照明显微术中,通过分析采用已知的高频条纹照明装置对标本照明所产生的莫尔纹,来看清楚位置的细胞超细结构。Nikon的结构照明显微(N-SIM)技术可实现高达85nm的多色炒高分辨率。此外,其还可以0.6秒/帧的时间分辨率连续捕捉超分辨率的影像,从而可帮助您研究活细胞的动态相互作用。主要特点: &bull 以两倍于传统光学显微镜的分辨率(约85nm)对活细胞进行观察 N-SIM超分辨率显微镜在&ldquo 结构照明显微&rdquo 技术中采用Nikon革命性的新方法。 通过将这一强大技术与Nikon著名的CFI Apo TIRF 100x油浸物镜(NA 1.49)结合在一起,N-SIM可实现 几乎两倍于传统光学显微镜的空间分辨率(约85nm),并能提供微小细胞内结构及其相互作用功能的细节 影像。 *在TIRF-SIM模式中采用488nm激光激发 &bull 0.6秒/帧的时间分辨率-超快超分辨率显微系统 N-SIM可提供用于结构照明技术的超快成像能力,时间分辨率最高可达0.6秒/帧,在活细胞成像中极为有效 (采用TIRF-SIM/2D-SIM模式;在3D-SIM模式中可实现最快1秒/帧左右的成像)。 &bull 提供多种观察模式 TIRF-SIM/2D-SIM模式 此模式可采用超高速、超高对比度捕捉超高分辨率的2D影像。TIRF-SIM采用分辨率为传统TIRF显微镜两倍的 全内反射荧光观察方式,能够帮助您对细胞表面的分子相互作用有更深入的了解。 3D-SIM模式 使用N-SIM系统的轴向超高分辨率观察可对最多20µ m厚度的标本细胞组织以300nm的分辨率进行光学断层显微 成像。另外,3D-SIM消除了焦外背景荧光,从而产生了极高的对比度。 &bull 激光多色超高分辨率 NIKON LU-5是一种最多可带有5个激光器的模块系统,可实现多光谱炒高分辨率。多光谱功能是研究分子级 多个蛋白质之间动态相互作用的必备功能。
    留言咨询
  • 在材料生产检测领域中,共聚焦显微镜在陶瓷、金属、半导体、芯片等材料科学及生产检测领域中也具有广泛的应用。VT6000高分辨率工业用共聚焦显微镜用于对各种精密器件及材料表面进行微纳米级测量。它是基于光学共轭共焦原理,结合精密纵向扫描,以在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,从而进行分析的精密光学仪器,一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;功能特点1、测量模式多样单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。VT6000高分辨率工业用共聚焦显微镜可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • P8共聚焦显微镜结合了全新的LIGHTNING(链接至LIGHTNING产品页面),全自动检测您样品中最细微的结构和信息,并对您提出的科学问题进行深入解惑。为您的研究打开了一扇通往新维度的大门。得益于从图像中收获取的无与伦比的重要信息,拥有SP8超高分辨率显微镜,您只需轻点鼠标,即可: 解析小至120nm的纳米结构 获取实时的结果,即便是在严苛的实验室条件下 保持多通道采集的分辨率和速度 采用超快并行GPU(NVIDIA)计算处理,节省您宝贵的研究时间 将z轴分辨率提高2倍棱镜色散和光谱检测。通过棱镜 (1) 的发射光分解成为光谱构成组分。可以通过机械缝隙插入(滑动镜片)(2) 来选择波长中光谱带宽。光谱的其余部分由高反射镜片反射到之后的检测器 (3)。高反射滑动镜片内置的机械狭缝级联结构能够实现同时记录多达五个通道,而不损失光子。明确区分样本中的发射光谱采用光谱探测器,同时检测无缝发射光谱带采用徕卡显微系统的 SP 探测器, 可以区分样本的不同发射光谱带。光谱检测系统作为每个SP8共聚焦系统的中心单元之一,能够同时记录多个通道。SP8光谱检测器可以通过棱镜的色散元件和可调滑动镜片的级联排布来同时检测五个不同的通道。高动态范围用于共聚焦成像的HyD 混合探测器即可覆盖从光子计数到成像的整个频率范围。一次成像即可包含完整信息。这意味着为您的共聚焦实验具有高度的灵活性,同时也减少了数据处理的假象。光子计数系统的采样率与信噪比密切相关。常规低采样率的光子计数系统(如15MHz),只能检测到少量光子,噪声水平相对较高。如采用更高的计数率,则其信号会过饱和,无法实现定量测定。然而,生物样品中的典型染料的光子发射率为 15 到 40 MHz。凭借其快速的采样率,Leica HyD 的光子检测效率高、成像噪声少,图像质量比光电倍增管(PMT)或雪崩光电二极管(APD)更好。在光子计数模式下,HyD 的线性采样率可达60MHz,在标准模式下,其线性采样率高达300MHz。在我们的 在线辅导中找到更多有关 HyD 功能和光子技术的信息。 光子计数可累计到任何统计学分析需要的信息量。通过光子计数实现最高动态分辨率卓越的信噪比获得我们进行统计分析所需的最大信息量。Leica HyD是唯一一款具有高时间分辨率的光电探测器,即使在通常成像所需的高光字计数率情况下,也可分辨到单个光子。采用HyD 从图像中获得的信息将比其他集成在共聚焦显微镜中的任何探测器都更为可靠。光子计数的信噪比远高于传统的强度平均。强度平均是市面上所有采用多碱阴极光电倍增管或磷砷化镓光电倍增管的商业化共聚焦显微镜的实际使用标准。采用LAS X导航器随时获取概览图LAS X增加了最新的功能,从一张张图像搜索转变为看到样本的整个图像。软件模块LAS X导航器就像是定位您疾病模式的GPS,为您开辟一条通往高质量数据的清晰路线图。快速生成您感兴趣区域的概览图,并立即识别最重要细节。LAS X导航器自动设置高分辨率图像摄取。LAS X导航器可以帮助您: 快速生成概览图 创建螺旋扫描,搜索当前位置的邻近区域 在标本夹模板中显示图像,进行快速定向 在相同工作空间中使用任何放大倍率、相机、检测器和反差方法 定义高分辨率扫描或多孔板成像项目的无限多个区域和位置 快速缩放标本 通过鼠标单击即可移动到载物台上的任何位置
    留言咨询
  • GATTA-荧光小球 / 超高分辨率STED显微镜测试工具SMALL, BRIGHT AND CUTTING-EDGE. EXPERIENCE THE HIGHEST BRIGHTNESS DENSITY IN THE WORLD. Fluorescent beads are important microscopy tools which can be used for calibration of microscopes, particle tracking or quantitative determination of point spread functions especially in STED microscopy. Particularly for the last point a small structure size keeping a high brightness is an immense advantage. Products from the GATTA-Bead series fulfill this requirement perfectly with a diameter of only 23nm. Additionally, they show a clearly improved homogeneity and flexibility compared to other beads. We offer GATTA-Beads in the colors red (ATTO 647N), orange (ATTO 594), green (ATTO 542) and blue (Oregon Green 488). Moreover, we offer alternative dyes which are indicated on the table below 应用范围: 系统设置校准 2D STED测量 3D STED PSF 反卷积 跟踪及漂移校准 优势: 大小: 直径 = 23 nm 亮度: 高亮,高密度 高度均一: 超级小的尺寸及强度分布 灵活性: 颜色修改或者增加化学成分 GATTA-荧光小球染料特性Bead RBead OBead GBead B颜色红色桔色绿色蓝色可用染料ATTO647NATTO 594ATTO 542Oregon Green 488可替代染料Abberior STAR 635P-Cy3 or Alexa Fluor 555Alexa Fluor 488 or ATTO 490LS推荐激光源630-650 nm565-610 nm515-540 nm480-505 nm尺寸23 nm23 nm23 nm23 nm表面密度≈ 1/μm2≈ 1/μm2≈ 1/μm2≈ 1/μm2FLUOROPHORE PROPERTIES荧光属性 荧光染料颜色定义激发光波长 / nm发射光波长 / nmATTO 647NR647664Abberior Star 635PR635651ATTO 594O594626ATTO 542G542562Cy3G554568Alexa Fluor 555G555580Oregon Green 488B488526Alexa Fluor 488B488525ATTO 490LSB490658
    留言咨询
  • 产品概述HR-SPM观察生动的纳米世界HR-SPM是采用频率检测方式(Frequency Modulation)的新一代扫描探针显微镜。不仅可在大气液体环境中实现超高分辨率的观察,还首次实现了固液界面的水化作用层(hydration)溶剂化作用层(solvation)的观察。HR-SPM:High Resolution Scanning Probe MicroscopeHR-SPM的特点●采用FM(频率调制)方式●大气液体环境中的噪声减少到以往的1/20●在大气液体环境中实现真空型SPM的性能水平!以往的SPM(扫描型探针显微镜)/AFM(原子力显微镜)是AM(振幅调制)方式,而FM(频率调制)方式从原理上就因为高灵敏度检测从而可实现更高的分辨率。SPM:Scanning Probe MicroseopeAFM:Atomic Force MicroscopeAM:Amplitude ModulationFM:Frequency Modulation和以往SPM/AFM相比的不同液体中原子分辨率观察图为在饱和溶液中观察NaCl表面的原子排列。以往AFM(AM方式:左)湮没在噪声中的原子通过FM方式(右)则可以清晰地观察到。FM方式可以得到真正的原子分辨率(True Atomic Resolution)。大气中Pt催化粒子的KPFM观察TiO2基板上的Pt催化粒子被识别了出来,并通过KPFM进行表面电势的测定。可以观察到数nm大小的Pt粒子和基板间的电荷交换。右图中,红色○区域是正电势,蓝色□区域是负电势。可见对于KPFM观察,分辨率也得到了大幅的提高。*KPFM(Keivin Probe Force Microscope)功能为特殊定制。
    留言咨询
  • VT6000材料表征测量高分辨率超景深共聚焦显微镜基于光学共轭共焦原理,主要采用3D捕获的成像技术显微成像测量,具有较高的三维图像分辨率。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000材料表征测量高分辨率超景深共聚焦显微镜可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中。可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。应用领域VT6000材料表征测量高分辨率超景深共聚焦显微镜对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:性能特色1、高精度、高重复性1)以转盘共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法,共同组成测量系统,保证仪器的高测量精度;2)隔震设计能够消减底面振动噪声,仪器在嘈杂的环境中稳定可靠,具有良好的测量重复性。2、一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程;4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能;6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。3、精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦等测量前工作。4、双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。功能特点1、测量模式多样单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。共聚焦显微镜可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 中图仪器VT6000高分辨率显微镜共聚焦光学测量系统以转盘共聚焦光学系统为基础,基于光学共轭共焦原理,结合高稳定性结构设计和3D重建算法,共同组成高精度测量系统。能在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,从而进行分析。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;功能特点1、测量模式多样VT6000高分辨率显微镜共聚焦光学测量系统单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。VT6000高分辨率显微镜共聚焦光学测量系统在材料生产检测领域中,能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,能够有效提高工作效率,更加快捷准确地完成日常任务。借助共聚焦显微镜,能有效提高工作效率,实现更准确的操作。一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程;4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能;6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • TESCAN UniTOM XL 这款高通量微米级 X射线显微镜具有超快的分析速度,适用于各类样品的无损分析,并提供了更灵活的研究方式。TESCAN UniTOM XL 为材料研究、失效分析和质量控制等领域提供高效且非破坏性的三维成像功能,该系统配置了高功率的发射源、高效的探测器和软件,可以提供最高效的工作效率和图像效果,时间分辨率可以达到10秒以下。 主要优势 ※ 原位和动态成像的X射线显微镜UniTOM 是一款配置灵活的高分辨 X 射线 显微镜,可根据用户的需求组合功能模块,最大限度的提高图像质量、分辨率和分析速度。※ 感兴趣区域的直观观测可在概览图上选择感兴趣区域进行实时缩放,获得孔隙结构和矿物的细节信息。※ 亚微米级分辨率UniTOM 可以获得 3um 的真实空间分辨率,并且适用于多种类型和尺寸的样品,可分析的样品最大直径为 50 cm, 最大高度115 cm。※ 模块化设置模块化设计,硬件模块(如可附加的X射线源或探测器)可以轻松集成到系统中,方便用户进行硬件升级或更换单个硬件,进而延长系统的使用寿命。 模块化灵活配置 UniTOM XL 模块化设计有助于用户可以随时添加、升级和拓展配件,尽可能减少受到系统自身性能的限制影响,系统中提供的“future-proof”平台能够帮助客户适应未来在发射源或探测器技术方面的创新发展。Acquila软件Acquila是一个用于断层图像采集和3维重构(GPU优化)的模块化软件,可以最大限度为集成设备后的复杂实验提供协助。Acquila软件能够运行在标准的、自动化的或定制的微型CT上,并实现图像采集、重建和外围实验设备(现场设备)之间的无缝集成。
    留言咨询
  • 全新的 Magellan&trade 400  SEM 是首款可在1-  30 kV 电子能量范围内提供亚纳米级分辨率的扫描电镜,有效建立被称为 XHR 扫描电镜的全新性能类别。非凡的低加速电压性能可提供其他技术根本无法实现的超高分辨率表面特定信息。在半导体和数据存储市场,Magellan    前所未有的性能可大幅扩展 SEM 的功能,提供基础研究、流程和材料开发、流程控制以及故障分析所需的全面解决方案。它可实现快速高衬度成像,并具备大样品或多样品的亚纳米级分辨率成像和全面分析能力,包括横截面。Magellan 400  具备业界领先的性能,但不削弱传统SEM 的高生产量、样品灵活性和易用性特征。在科学和工业研究开发领域,Magellan 具备形成高分辨率纳米级表面细节、颗粒和材料界面图像的独一无二的能力,开启全新的研究领域,享受大量取得下一项突破性发现的机会。它能使研究人员观察到催化剂颗粒、纳米管、生物体和其他纳米结构的基本属性,而这些是他们以往利用任何其他显微镜或成像技术从未观察到并且无法观察到的。Magellan 400  的卓越性能源自其融合了 FEI 新颖 UC 专利技术的独一无二的电子镜筒设计,以及高度稳定的平台设计和先进的 五 轴100mm 压电陶瓷样品台。整合式等离子清洁器和液氮冷阱可确保样品清洁。Magellan 400  具备独一无二的低能量性能,同时也具有更高能量条件下的高分辨率 STEM 成像性能,以及包括 EDS和 EBSD 分析在内的全面分析能力。
    留言咨询
  • 日立高新超高分辨率场发射扫描电子显微镜SU9000是专门为电子束敏感样品和需300万倍稳定观察的先进半导体器件,高分辨成像所设计。新的电子枪和电子光学设计提高了低加速电压性能。0.4nm / 30kV(SE)1.2nm / 1kV(SE)0.34nm / 30kV(STEM)用改良的高真空性能和无与伦比的电子束稳定性来实现高效率截面观察。采用全新设计的Super E x B能量过滤技术,高效,灵活地收集SE / BSE/ STEM信号。
    留言咨询
  • LABOMED-LABORMAI SCIENTIFIC RESEARCH AND MEDICAL MICROSCOPE PRODUCTS高分辨率专业显微成像相机(ATLAS)采用高性能高分辨率彩色CMOS芯片(分辨率4608x3542),该芯片中内置了ISP(图像信号处理器),对前端CMOS芯片输出的信号进行快速后处理,如降噪和HDR(高动态范围)补充校正。在图像传输工作中,由于具有FPGA(电场可编程逻辑闸阵列)以及DDR(双倍速率同步动态随机存储器)的优化和加速,使相机即使在极高的分辨率运行状态下,也能获得高速的图像输出性能。同时,相机具备以下突出性能:l高分辨率1600万像素(4608x3542)成像;l24 Bit RGB的A/D转换性能;l色温可调动态范围:1800-8000;l硬件式3维降噪;l高速USB3.0数据接口描述 美国LABOMED-莱博迈科研及医用显微镜系列产品
    留言咨询
  • 500万高分辨率冷CCD显微镜照相机产品技术特点1、2/3英寸的大面积芯片;2、简单的USB2.0接口;3、预览速度,5fps(2592*972);4、16Bit的Tiff//Raw输出;5、良好的信噪比,SNR达56dB以上;6、制冷温度在室温下30度;7、长达60分钟的最长曝光时间;8、抗边角光亮功能,在长时间曝光时消除器件红外发热造成的影响;9、动态切换晶振,减少图像噪声输出。 产品优势:TCC-5.0ICE冷CCD相机是TUCSEN公司最新开发的冷CCD相机,具有500万像素的极高分辨率。先进的半导体制冷技术制冷到室温下-30℃,有良好的信噪比,可长时间曝光,特别适用于暗场成像尤其是显微荧光成像高速图像预览TCC-5.0ICE冷CCD提供了预览和拍照两种模式,支持2*2的像素融合,使预览速度更快极佳的色彩还原TCC-5.0ICE冷CCD具有良好的色彩还原能力,从而获得极高的图像质量,实现与镜下相同的完美图像效果。 易于操作采用标准的C接口,易于与显微镜连接安装。USB输出数据线能够方便的和电脑连接。 500万像素高分辨率CCD显微镜相机 CCD芯片厂商SonyCCD扫描模式逐行预览CCD尺寸2/3英寸像素点3.4微米 x 3.4微米分辨率2580H x 1944V滤光片R, G, B 滤光片镜头接口标准C接口最大帧率3帧/秒(2580 x 1944) 10帧/秒(1280 x 932)低速读出可以模数转换12 bit半导体制冷室温下30℃电源3.5V外部电源曝光控制自动、手动曝光时间0.1毫秒-60分钟边角亮光抑制有白平衡自动、手动参数调整图像尺寸、亮度、增益、曝光、RGB等数据接口USB2.0/480Mb/sUSB 电缆1.8米USB 电源USB2.0整机尺寸130mm*111mm*54mm (HXBXT)重量920克操作温度0-60℃操作湿度45-85%保存温度-20-70℃ 500万像素高分辨率CCD显微镜相机包含: TCH-5.0ICE 数字相机1(标准C接口、1.8米USB线缆、半导体制冷线缆) 半导体制冷电源 1驱动、软件光盘 1说明书 1合格证 1铝箱1 500万高分辨率冷CCD显微镜相机应用:广泛应用与细胞学,病理学,组织学,血液学,荧光成像以及明、暗场显微成像等等更多关公司的产品,请点击: 公 司:福州鑫图光电有限公司地址:福州市仓山区盖山镇齐安路756号财茂城主楼6F邮编:350008电话: 传真: 邮箱: 中文网站:国际网站:
    留言咨询
  • 产品详情 HR-SPM: 高分辨原子力显微镜 使用调频模式空气和液体中的噪音降低到传统模式的二十分之一在空气和液体环境中也能达到高真空原子力显微镜的分辨率现有的扫描探针显微镜 (scanning probe microscopes)和原子力显微镜(atomic force microscopes) 通常使用调幅模式(amplitude modulation).从原理上, 调频模式(frequency modulation) 可以达到更高的分辨率。 SPM:扫描探针显微镜 AFM:原子力显微镜 AM:调幅模式 FM:调频模式 与现有SPM/AFM的区别 液体环境中原子分辨率观察 NaCl饱和溶液中观察固体表面的原子排列。使用调幅模式的传统原子力显微镜,图像完全被噪音遮盖(左图),但在调频模式下,原子排列清晰可见(右图)。调频模式实现了原子级分辨率。 空气中Pt催化剂颗粒的观察 TiO2基底上的Pt颗粒, 通过KPFM进行表面电势的测定,TiO2基版上的Pt催化粒子可被清晰识别。同时可以观察到数纳米大小的Pt粒子和基板间的电荷交换。右图中,红色区域是正电势,蓝色区域是负电势。对于PKFM观察,FM模式也大幅提高了分辨率。
    留言咨询
  • KSI-Nano型高分辨率表层缺陷超声波扫描显微镜系统声学显微成像系统和光学显微成像系统的完美结合 KSI Nano型超声波扫描显微镜是拥有高分辨率的声学显微成像系统,它能对实测器件的表层缺陷作超高分辨缺陷检测。在使用100MHz——2000MHz的超高频超声波时,这种分辨率得以实现。KSI nano 还包含一个倒置光学显微镜,在进行超声波检测前可利用它调整样品的位置。 KSI nano超声波扫描显微镜系统还应用于世界各地的生命和物质科学研究。- 换能器频率范围:100MHz——2000MHz频率实现高分辨率- 探测深度100nm- 特殊平均模式使信噪比更好- 同步光学成像和超声波成像使样品在结构上、生物化学性能上和机械性能上具有关联性。- 光声效应增强了对比性- 放大倍数:1000倍- 入射光显微镜和倒置光学显微镜可调节
    留言咨询
  • 超分辨率显微镜 400-860-5168转2045
    简介: 随机光学重建显微(STORM)技术通过探测显微标本内的各荧光团的精确定位信息重建超分辨率荧光影像。N-STORM利用NIKON的强大Ti-E倒置式显微镜应用3维高精度多通道分子定位和重建,从而实现了比传统显微镜高10倍(横向约20nm)的超高分辨率。此强大技术能够观察到纳米级分子相互作用,开启研究的全新境界。主要特点: &bull 比传统光学显微镜高10倍的超高分辨率(横向约20nm) N-STORM利用显微镜样本内部数以千计的离散荧光体分子,实现2D或3D高精度定位信息,展现无比壮观 的超高分辨率图像,与传统光学显微镜相比,空间分辨率可提高10倍。 &bull N-STORM还能提供比标准光学分辨率高10倍的纵向分辨率(约50nm) 除了侧向超高分辨率之外,N-STORM更运用专有技术,令轴向分辨率也同样提高十倍,有效提供纳米 级3D信息 &bull 使用各种荧光探针的多色成像 通过将各种&ldquo 活化&rdquo 探针和&ldquo 报告&rdquo 探针组合在一起,实现了多色超分辨率成像。从而能够对多个蛋白质 的共定位分析和相互作用进行重要的分子级研究。
    留言咨询
  • LSI系列激光片层扫描显微镜以前所未有的灵敏度,分辨 率以及成像速度帮助生物学家解读活体样品的三维动态 过程。LSI系列显微镜使用了最前沿的光学和工程技术来 产生一束超薄的线性贝塞尔片层光,并用它来实现对生 物样品的高精度光学层析。此项专利技术的应用不仅显 着提高了片层光显微系统的成像分辨率,而且允许系统 使用超弱的激发光便可从样品中获得足够的信号强度, 所以极大的减弱了样品在成像时承受的光毒性,延长了 样品的有效观测时间,以此帮助观测者获得更多高质量的成像数据。 超越激光共聚焦显微技术LSI系列显微镜将激发光的能量严格限制在中心厚度不到400纳米的片层光中。片层光与探测物镜的焦平面重合,用来激发仅在探测景深范围内的样品结构,因此在成像时不会产生任何的背景噪声。同时配合探测物镜具有超大数值孔,可以高效的接收样品发出的微弱荧光信号,且产生的图像可达光学极限分辨率。相较与共聚焦显微,LSI系列在以下方面具有显着优势: 高速活细胞成像 超低的光毒性★拍摄速度可达500幅每秒 ★相较共聚焦减弱1000倍! 高分辨率三维结构成像 LBS激光片层扫描显微系统★250nm横向分辨率 开创了五维活细胞生物成像的时代:★350nm轴向分辨率 ★3维空间+1维时间+1维颜色 LSI系列片层扫描显微系统的成像原理示意简图 超越传统激光片层扫描显微技术传统的片层光显微技术普遍通过扫描汇聚的高斯光束或者使用柱面镜压缩一个准直的高斯头束来产生片层光而这两种方式产生的片层光在厚度和长度皆被光的衍射特性限制。而LBS技术通过一系列光学手段则可以打破这一限制:产生更薄且更长的LSI系列片层光。因此LSI系列系统在保持传统片层扫描显微技术具有的高成像速度和低光毒性优势的同时,凭藉更精细的光学层析能力进一步显着地提高了成像分辨率和灵敏度。 通过扫描或者用柱面镜压缩一个高斯光束得到的薄(但长度不足)或者长(但过厚)的片层光LSI系列系统产生的超薄且长的LSI系列片层光 相较于传统片层光显微系统,LSI系列技术显着提高了成像系统的光学层析能力和图片的信噪比。比例尺:3微米 亚细胞分辨多维光片成像系统 高度集成的设计LSI系列片层扫描显微镜可立即用于活细胞成像实验:每台显微镜都集成的一套活细胞培养(灌注)系统,这一系统配有精确的温度/二氧化碳环境控制模块从而实现长时间活细胞成像;同时集成了一套具有大视野的EPI荧光显微模块用于定位拍摄目标;以及一套可达纳米精度的三维电动样品台,和最多可集成6通道的Solar2.0光纤激光模块作为光源 具有温度/C02控制的活细胞样品灌注池◆可注入2-5ml培养液或任何液体用于浸润样品◆可实现拍摄时更换培养液或加入药物◆集成了一个Epi荧光成像通道,可选配4x/10x/50x空气物镜 最大化的适用范围LSI系列激光片层扫描显微镜可适用于不同种类与大小的样品。可观测的样品范围包括了细胞爬片,酵母菌细胞或植物细胞组织等。加装大样品成像模块后可将应用扩展至胚胎、小型动物如线虫,果蝇幼虫或者斑马鱼的观测 应用实例 LSI系列片层扫描显微系统拍摄的细胞中微管(绿色)和线粒体(红色)结构的三维荧光显微图像
    留言咨询
  • 多功能高分辨率磁光克尔显微成像系统——眼见为实:让磁学测试可视化!致真精密仪器(青岛)有限公司生产的多功能高分辨率磁光克尔显微成像系统,以自主设计的光路结构及奥林巴斯、索莱博光电元件为基础制造,适用于磁性材料/ 自旋电子器件的磁畴成像和动力学研究。★ 多功能探针台,能够提供面内、垂直磁场及多对直流/ 高频探针- 磁光成像与自旋输运测试结合!★ 高达1.8T 垂直磁场,1 T 面内磁场,4K-800K 变温,可用于硬磁材料成像研究。多功能控制系统测试信号控制- 垂直/ 面内磁场/ 电流/ 微波等多路信号 μs 别同步施加;- 各信号的波形、幅度、频率、相对延时等参数轻松调节。图像处理- 实时作差消背底噪声;- 自动纠正震动漂移等。信号解析- 电流、磁场测试信号的实时显示;- 基于克尔图像分析,对样品局域 (300 nm) 或全局做磁滞回线扫描。磁场探针台面内磁场★ 高达1 T,反应速度50 ms,度0.1 mT。三路垂直磁铁任意切换★ 磁场1:高达1.8 T,反应速度50 ms,度0.1 mT;★ 磁场2:高达30 mT,反应速度50 μs,度0.01 mT;★ 磁场3:高达50 mT,反应速度1 μs, 度0.01 mT;★ 可配置6 个直流/ 高频探针,配置10 V,20 MHz任意波形信号源。成像效果★ 克尔成像分辨率300 nm (100 倍物镜);★ 视野:1.2 mm×1 mm (5 倍物镜);★ 能检测2 个原子层薄膜的磁性变化。CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5) 薄膜中的迷宫畴图像处理★ 以任意图像为背底,实时作差消噪声;★ 图像漂移校正,自动添加比例尺等功能。CoFeB(20 nm) 薄膜中,[ 面内磁场20mT] 驱动磁畴翻转CoTb 亚铁磁微米线中SOT 驱动的磁性翻转CoFeB/W/CoFeB薄膜中的微米大小的磁泡200 nm 宽的Ta/CoFeB/MgO 线中,[120 mT, 5 μs] 磁场脉冲驱动畴壁移动其他功能★ 分析全局或者局部 (300 nm) 克尔图像,获得磁滞回线;★ 磁滞回线的横轴可以为面内、垂直磁场或者电流等任意激励信号;★ 可配置变温系统:4K-800K 温度可调;★ 搭配ST-FMR,二次谐波等测试系统和软件;★ 预留各种接口,可根据实验需求自主改装。应用案例■ 局部磁本征参数表征克尔显微镜有一套表征几乎所有磁学本征参数的方法。与其它表征方法相比,优势是可以进行微小区域内(300 nm) 的局部性质表征,为各种磁性调控实验 (如辐照、压控、光控磁)、以及性质不均一的材料表征提供了可能性。局部饱和磁化强度MS表征由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下畴壁的距离,可以提取局部区域的饱和磁化强度MS。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(本公司技术顾问)在2014 年先提出并验证。与VSM 测量结果得到良好吻合[1]。局部各向异性能 K 的表征通过分析局域克尔图像明暗变化,可以获得磁滞回线,从而提取局部区域等效各向异性场强度。海森堡交换作用常数Aex用我们的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度[2]。退磁状态下的薄膜材料的磁畴结构Dzyaloshinskii-Moriya 作用( DMI) 的表征利用面内磁场和垂直磁场共同作用下的磁畴壁非对称性扩张,能够测量薄膜材料的DMI 作用强度。基于此款设备的得到的成果发表在Nanoscale 杂志[3]。 参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).[2] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011). [3] Anni Cao et al., Nanoscale 10, 12062 (2018).■ 磁畴壁动力学研究磁场、电流或者其它激励下磁畴壁的移动速度测量方法:施加幅度为B, 宽度为t 的磁场/ 电流脉冲,在脉冲前后分别拍摄克尔图像并作差,获得畴壁移动距离d,则速度v=d/t。备注:有限视野范围内,超快畴壁运动的测量需要超短信号脉冲。本系统配置的 μs 反应速度的磁场可实现200m/s畴壁速度的测量。10ms 力波磁场脉冲4 μs 超快磁场脉冲磁畴壁张力效应的观测利用微秒别超快磁场脉冲,可在微小样品中创造出磁泡。利用此款高分辨率克尔显微镜,次观察到了磁畴壁在自身张力作用下的自发收缩过程[1-3]。磁畴壁Hall bar 处的钉扎作用利用磁场脉冲,我们控制磁畴壁在纳米线中的位置。观察磁畴壁的钉扎过程并测量解钉扎磁场[1]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 9, 024032 (2018).[2] Xueying Zhang et al. Nanotechnology 29, 365502 (2018).[3] Anni Cao et al., IEEE Magn. Lett. 9, 1 (2018).■ 自旋输运性质测试+成像STT 电流驱动的磁畴壁运动通过配备的探针和主控系统的任意波形发生器,可向样品施加50 ns–s 别的方波,观察磁畴壁运动并测量速度。STT 电流与垂直磁场共同作用下的磁畴壁运动在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用此设备μs 别的超快磁场脉冲与电流同步,观测垂直磁场+ 电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应[1]。微秒同步的磁场和电流方波脉冲电流与面内磁场共同作用下的磁畴壁运动Hall 自旋流与面内磁场共同作用,诱导磁矩翻转,即所谓的SOT 翻转。本设备配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态[2]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 11, 054041 (2019). [2] Xiaoxuan Zhao et al., Nanotechnology 30, 335707 (2019).测试数据1. 检测磁性材料质量MgO/Co/Pt 样品:MgO 晶格错位导致的Co 薄膜缺陷。在微小磁场作用下,缺陷周围即出现磁性翻转。质量不好磁性薄膜,磁性翻转过程中出现雪花状磁畴。质量优良的磁性薄膜,磁畴结构均匀,边缘光滑。2. 检测缺陷位置缺陷处,磁畴壁运动变形,形成钉扎效。利用高分辨率物镜,可以直接观察缺陷位置(红圈)。3. 自旋电子器件损伤检测自旋电子器件中,在微加工过程中,样品边缘出现损伤,导致在磁场作用下稳定性下降,边缘先出现翻转[1]。4. 解析磁滞回线结果磁光克尔显微镜由于具有空间分辨优势,可以解析磁滞回线对应的磁畴状态。如右图,由于偶作用比各向异性占优势,样品出现自发退磁。参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).
    留言咨询
  • 纳米显微技术为亚细胞结构和动态研究带来了相当的变化,它正成为荧光成像新的标准 (该技术荣获 2014 年诺贝尔化学奖)。高度整合的 STED (STimulated Emission Depletion,受激发射损耗) 系统 Leica TCS SP8 STED 3X 和 Leica TCS SP8 STED ONE 满足日常研究的需求,并且以纯光学方式快速、直观地呈现远远突破衍射极限的结构细节。X、Y 和Z 轴上的分辨率都变得可调。不要让衍射模糊您的生物学研究!多色纳米显微技术:3 个 STED通道 + 1 个共聚焦通道。STED:波形蛋白-Alexa 647 (红色)、阿尔法-微管蛋白-Alexa 594 (绿色)、微丝-Alexa 488 (青绿色)。共聚焦:DNA-DAPI (蓝色)。特别感谢:荷兰乌特勒支大学,Eugene Katrukha。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制