当前位置: 仪器信息网 > 行业主题 > >

高端天文定制版相机

仪器信息网高端天文定制版相机专题为您提供2024年最新高端天文定制版相机价格报价、厂家品牌的相关信息, 包括高端天文定制版相机参数、型号等,不管是国产,还是进口品牌的高端天文定制版相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高端天文定制版相机相关的耗材配件、试剂标物,还有高端天文定制版相机相关的最新资讯、资料,以及高端天文定制版相机相关的解决方案。

高端天文定制版相机相关的资讯

  • 纳米制版印刷技术研发中心有望落户湖北
    由中科院发明的—项绿色印刷技术将有望替代激光照排技术,实现从活字印刷技术发明以来的第三次印刷革命。   这项被命名为“纳米材料绿色印刷制版技术”的新技术是由中科院化学研究所科学家发明的。今年初,这项技术已经开始中试。   白春礼指出,王选院士发明的汉字激光照排技术让中国印刷业“告别铅与火,迎来光与电”,但由于需要两次感光、显影、定影、冲洗等,这种印刷技术过程复杂。另外,因化学品清洗,也可引起严重的环境污染问题。   白春礼打了—个生动的比喻:汉字激光照排技术相当于胶片照相机,需要两步操作(装胶卷、洗相片) 纳米材料制版技术相当于数码照相机,操作更方便。这项技术摒弃了感光成像的技术思路,可直接在印版上打印图文,减少了图像转移次数,无须拼版、修版,印刷图文质量明显提高,而且无废液排放。   白春礼强调,更重要的是,我国自主研发的纳米材料制版技术,使得国内印刷企业能以较低的成本完成印刷技术升级。中科院准备在南方和北方各设—个纳米材料绿色印刷制版技术研发生产中心,北方中心可能设在北京,南方中心还没有候选城市,武汉有机会争取。
  • 搭配FLIR机器视觉相机,美国天文摄影师清晰拍摄“太阳黑子”~
    对于“太阳黑子”,古代的时候就有过记载,但是当时人们看到的“太阳黑子”是被理解为一些“神灵现象”。但科技的发展,让我们知道了太阳黑子即太阳表面的低温较暗区域,其每11年爆发一次,数量在太阳极大期增加,在太阳极小期减少,那么它到底长什么样子呢?众所周知人的肉眼不可以直视太阳但使用望远镜配合保护眼睛的特制太阳滤光镜就可以放心观察太阳啦~今天小菲就和大家一起揭秘太阳黑子的模样使用FLIR Grasshopper Express 6.0 MP Mono FireWire 1394b相机,内含 Sony ICX694 CCD 传感器拍摄的图片。Alan Friedman是一位天文爱好者和天文摄影师,他在位于纽约州布法罗市的自家后院中拍下了很多撼人心魄的太阳影像。他一直使用各种型号的相机(像素从30万到600万不等),并与采用氢α滤光镜 (656.3 nm) 的太阳望远镜组合进行拍照。以下照片是由不同曝光次数的太阳影像合并或叠加在一起制作而成,其中的细丝是日珥的最终形态。暗色区域是小太阳黑子,而较亮谱斑(点)是高度磁化区域。使用了以 Sony ICX274 CCD 传感器为特色的FLIR Grasshopper 2.0 MP Mono FireWire 1394b来拍摄大黑子群的拍摄使用了带Sony ICX618 CCD 的 FLIR Flea3 0.3 MP Mono FireWire 1394b 相机太阳黑子特写的拍摄使用了白光太阳滤光片。太阳黑子不是静止不动的,而是会在太阳表面游走,并可能持续数天到数周时间。太阳的这些低温区域具有强磁场,可以向太空发射质子和电子,从而触发地球上的北极光。太阳黑子是由太阳内部出现并通过光球层的强磁场而产生的。太阳黑子往往以相反磁极成对运动,太阳自转周期大约为25天。因此,我们可在大约一周时间内观测到相同的太阳黑子。拍摄到上面这样清晰的影像是非常困难的,因为大气升温造成的光反射还会使星光在夜晚忽明忽暗,因此选择合适的相机非常重要!为了获得如此清晰的影像,Alan拍摄了无数张照片,然后将图像叠加起来进行处理,以便保留到最清晰的图像。Alan拍摄多幅图像,然后再用各种程序进行处理。Alan为太阳望远镜配备了FLIR机器视觉相机,之所以选择FLIR,也是经过多方对比,FLIR相机性能卓越、尺寸小巧、重量轻且功耗低,非常适合天文拍摄。大气的易变性(尤其是在白天)是获得清晰影像的一个主要障碍。为了获得清晰影像,Alan拍摄了90秒流视频,然后从中选取最清晰的帧,最终拍摄到满意的图片。升级款:FLIR Blackfly® S随着FLIR技术的不断创新发展,相应的升级款也研发出来了,它们的性能更好,质量更高,比如FLIR Blackfly® S,它采用业内先进的冰块外形传感器,功能强大,让您可以轻松生成所需的精确图像,并加速您应用程序开发。Blackfly S提供GigE、USB3、套装和板级版本,您可以根据需要随心选择~FLIR Blackfly S USB3FLIR机器视觉相机不仅协助摄像师拍摄太阳黑子还去到火星拍摄过探测器着陆的精彩瞬间
  • ​500系列 X-RITE 爱色丽 制版业便携式分光密度仪
    500系列 X-RITE 爱色丽 制版业便携式分光密度仪,设备中文显示分光密度仪采用先进的光谱感应生产技术,提供精密度更高更准确的便携式分光密度仪。500系列特点是可同时测量四色和专用油墨,还备有多种密度、网点和色度功能,十分适合制版业和各类印刷工业,特别为包装印刷业带来超卓的色彩品质水平。每一部爱色丽生产的色彩测量仪都经过严格的质量检定。此外,仪器仍会自动提供校正指示,以便保持其稳定性或不同地点使用时,得到一致的读数。500系列 X-RITE 爱色丽 制版业便携式分光密度仪,产品应用:504型分光密度仪,可以迅速、可靠的测量密度水平,密度(值或减去纸张密度),密度参照。508型分光密度仪,拥有504的所有功能之外,还可以测量网点面积和网点增大的功能。518型分光密度仪,具有完备测量功能,包括密度、网点、叠印、印刷反差、色调误差和灰度。此外,还具有一种独特功能-自动选择功能,可以自动识别正在测量的实地、网点及叠印等。无需转换功能,便可将读数显示出来。518型适合各类型四色印刷使用,包括胶印、柯式、卷筒、杂志和报纸印刷,方便第一时间得知印刷生产情况。528型分光密度仪,除拥有518所有功能外,528更包括色度功能,例如:L*a*b*、L*c*h0等,是一部结合分光光度仪和密度仪的先进仪器,特别适合包装印刷监控四色及专色使用。530型分光密度仪,530加上完整的光谱功能,包括光谱曲线图、光谱密度数据等。530更配合油墨配色系统和色彩品质控制软件在实验室和质检部使用。500系列 X-RITE 爱色丽 制版业便携式分光密度仪,产品参数:光学系统 45°/0°等同于ANSI和ISO标准 测量直径 3.4mm直径(0.130英寸) 标准 2.0mm直径(0.078英寸)6.0mm直径(0.236英寸) 光源 脉冲式充气钨丝灯 色温 2856° 光谱范围 (适用于528及530型号)400nm—700nm 标准照明体 CIEA,C,D50,D55,D65,D75,F2,F7,F11,F12 标准观察角度 CIE2°及10° 响应方式 T,E,I,A,G,Tx,HIFI 测量范围密度 0.00D—2.500D 反射率:0—160% 测量时间 1.4秒 重复性 ±0.005D 0—2.0D* ±0.010D 2.0—2.5D* 配偏光滤色镜 ±0.010 0—1.8D 0.10△E以内 仪器台间差 0.01D或1%(传统印刷)0.40△Ecmc以内)测量12块BCRA系列色板) 要求电源 氢化金属镍充电电池,4.8V1520mAH 充电时间 约3小时 使用温度范围操作温度 10℃至35℃ 相对温度,30%—85% 体积 高81mm(3.2寸)宽76mm(3.0寸)长197mm(7.8寸) 重量 1050克(2.3磅) 注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
  • 新品上线立鼎光电短波红外相机仪器系列分享
    西安立鼎光电科技有限公司自成立以来,一直致力于短波红外成像技术开发与应用。结合市场需求,立鼎团队不断将产品迭代与优化,推出了一系列经典产品,性能可靠,价格合理,深受国内外行业用户的信赖。立鼎光电短波相机研发历程⏩ 2016年 组建团队,研发短波红外相机。⏩ 2017年 完成非制冷相机的研制并投入市场,反馈良好。⏩ 2018年 640×512(15μm)短波非制冷相机量产;同年,立鼎首版640一级制冷相机亮相深圳光博会,获得客户好评。⏩ 2019年 优化相机功能:增加GigE 、SDI接口,增加可供用户选择的跟踪功能;同年,完成高速短波红外相机的样机设计。⏩ 2020年 成功研发出第一代60Hz高速短波相机样机,并开始研发二级制冷科研级短波红外相机;同年,完成了320短波红外相机及扩展波段相机的研发及量产。⏩ 2021年 推出TE4深度制冷相机,制冷温度最低可达-80℃;同年推出1550nm激光通信专用短波红外相机。⏩ 2022年 研制多级深度制冷短波相机、全国产化短波红外相机、线阵短波红外相机、300/400Hz高速短波相机以及高光谱短波相机。立鼎光电短波红外相机系列分类经济型:采用非制冷铟镓砷探测器,结合专业散热结构,该型相机结构小、重量轻,方便集成在各类光电系统中。可以提供专业的定制化服务,旨在为用户提供小型化、轻量化、定制化产品解决方案。制冷型: 采用热电制冷铟镓砷探测器,能够很好的抑制芯片暗电流,从而提升成像质量,此系列可选配扩展型 InGaAs 焦平面探测器,可将探测范围扩展至1.1μm-2.2μm波段。旨在为用户提供更专业的高性能相机,以满足基础型相机无法达到的性能要求。科研型:采用了高性能的TE + air cool制冷设计,芯片温度最低可降至-80℃,在超长的曝光时间下工作,图像也能具有较高的信噪比。该型产品旨在满足高端用户或科研级用户在各种高要求/高精度场景下的应用。可提供集成多种图像算法的专用软件,为用户提供更好的使用体验。立鼎短波红外相机型号命名规则下图为立鼎短波相机命名规则。通过此规则,可以直观、快捷的了解到一型号产品的重要参数。或在选型中更方便快捷的选择项目所需对应规格的相机。立鼎短波相机的应用硅锭杂质检测液晶面板异型贴合半导体检测全息光学中的应用激光光斑捕获追踪海面观测透雾成像太阳能电池板检测生物成像激光光束质量分析晶圆切割获取更多信息可通过仪器信息网和我们取得联系400-860-5168转6159西安立鼎光电科技有限公司是一家专业从事红外、激光类产品及光电测试仪器设备的研发生产、系统集成、销售服务为一体的高新技术企业。公司专注于为客户提供从元件、组件、部件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外相机(系统)在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求定制的多款光电测试仪器设备,为用户产品的性能指标保证发挥了重要作用。
  • Greateyes国内首台定制款软X射线CCD相机成功安装
    5月29日,Greateyes国内首台定制款的软X射线CCD相机于上海同步辐射E-line线站成功安装。我司工程师在用户现场主导了相机的安装和调试工作。用户对相机安装调试工作的顺利进行表示肯定。这既是对我司工程师售后服务能力的肯定,也是对Greateyes公司产品的认可。 该款相机根据客户需求,对真空法兰的类型和sensor的位置进行了定制。具体表现在,相机采用可旋转的真空法兰,为安装提供了更大的调节灵活性。而突出的sensor位置(较法兰面前凸约25mm)使相机的可探测角度最大化,能够充分利用相机的靶面,从而更好的满足用户的实验需求。Greateyes GmbH成立于2008年的greateyes公司,以德国柏林洪堡大学的技术为基础,迅速发展成为了国际知名的科研级CCD相机生产企业。目前,其用户遍布全球多个国家的科研与工业领域,典型的用户如表一所示。自成立以来,Greateyes公司一直致力于科研级高性能CCD相机的研发、生产和销售,其产品被广泛应用于成像和谱学应用领域。同时,greateyes公司也为光伏企业提供基于电致发光与光致发光的成套检测系统和方案。基于独特的平台概念,greateyes公司可提供带真空接口的一系列相机,可用于真空紫外、极紫外以及软/硬X射线的成像和光谱应用。基于直接探测技术路线,能确保相机在真空紫外、极紫外以及软/硬X射线波段的良好响应。同时,在紫外、可见和近红外波段,也能提供性能优异的产品。作为Greateyes中国区授权总代的北京众星联恒科技有限公司,我们的工程师均经过原厂培训,拥有专业的售前产品知识和过硬的售后服务经验,从而能够为客户提供专业、及时的服务。目前,我司已成功将greateyes公司的科研级CCD相机产品推广到多个研究机构,这不仅让更多的科研用户了解到了性能优异的科研级CCD相机产品,为科研工作者的调研工作提供了更多选择,也增强了Greateyes公司在中国市场的品牌影响力。了解更多Greateyes产品:
  • 一眼就沦陷的定制首饰怎么做? EinScan带你揭秘高端定制的秘密!
    生活要有仪式感,当遇到特别的日子,需要选购一款项链送给自己或身边挚爱,你会怎么做呢?是购买网红大众款出门就“撞车“,还是选择专属定制讲述自己的故事?EinScan联合primerry jewelry,为独特的你送上格调满满的“bodymark”专属定制系列。该系列的特点是,通过3d扫描技术,将人手直接扫描成三维数据,数据可直接用于后期加工成为精致的挂件,特别适合情侣或亲子定制。先来看看几组成品照,是不是很特别?这位神仙颜值的模特,就是“bodymark“系列的设计师:杨心怡。她曾在英国攻读金融专业,硕士毕业后在英国、美国、香港等地工作生活。杨心怡在从事金融行业7年之后,毅然跨界投身到热爱的珠宝事业中。“珠宝设计不仅仅是工作,我更加希望将国外的高级定制品质带回中国”,本着这样一个想法,primerry jewelry 朴瑞珠宝工作室在杭州诞生了,专注于中高端珠宝定制服务。在与客户沟通的过程中,设计师一直也在思考,除了传统的款式之外,首饰外观还能有哪些突破呢?偶然间突发灵感,希望将自己小女儿的手做成模型佩戴在身上,于是,“bodymark”系列诞生了。先来康康这位可爱的小手模:用自己或爱人、宝宝的手做出手模,再通过3d技术将手模1:1还原在电脑中,甚至还可以在此基础上进行二次创意,有没有心动呢??在人们的眼中珠宝的制作过程是十分神秘的,以“小手”项链为例,让我们一起走进这个神秘的世界去看一看。 首饰定制的标准制作流程是:起版,雕蜡,打蜡,倒模,执模,抛光,镶嵌,电镀,qc,出货。起版是首饰设计完成后,开始制作的第一道工序,是起版师根据设计图做出原始模型的过程。目前起版方式主要有三种:雕蜡起版、制银版、3d打印起版。 正在雕琢的手工匠人由于传统起版过程,需要起版师根据设计图来手工制作出饰品的母版,母版要求各个部位结构合理,宝石镶嵌更是要精确无误,完美的演绎出设计理念。因此,起版这道工序对于工匠的技巧要求极高,有经验的起版师傅费用也是不菲。3d扫描技术的引用,打破了传统手工制造的局限,使用EinScan手持三维扫描仪可以直接扫描物体或人体外形,扫描完成后形成3d数据,设计师可以直接在软件中对数据进行修改或二次创意,也可以使用数据直接进行后续制作步骤,避免了复杂的前期起版过程。扫描过程是这样的:关于EinScan Pro 2X PlusEinScan Pro 2X Plus手持三维扫描仪,体积小巧,简单易用,模块化设计,满足不同尺寸实物的多重细节和精度要求的3d建模需求,适应更为广泛的应用场景。强劲的算法支持直观的工作流程展示,是快速高效获取中到大尺寸物体3d数据的理想选择。使用EinScan Pro 2X Plus手持快速模式,扫描速度快,拼接更流畅,扫描人体手部用时仅需2~3分钟。EinScan Pro 2X Plus扫描模式:手持快速扫描模式、手持精细扫描模式、固定全自动扫描模式以及固定自由扫描模式。2~3分钟就能完成手部扫描是什么概念呢?(好像每天早上泡咖啡好像也就花了2分钟)你以为这样就是全部了?3d扫描技术好玩的创意可多了呢!比如说,帮助德国设计师借助大自然的灵感,扫描树干纹理然后做成戒指:3d数字化颠覆首饰设计,助力德国设计师打造纯天然戒指或者与设计工作室玩跨界合作。先使用3d扫描仪扫描蝴蝶标本,再利用尼龙3d打印技术,打印出动态仿真蝴蝶,通过唯美梦幻的艺术作品传达人与自然共生的理念。跨界合作|蝴蝶翩翩,守护大自然的罗曼蒂克还有各类精彩的艺术品都可以使用3d扫描技术获得创新!只有想不到的精彩没有扫不出的创意看到这里是不是意犹未尽?如果恰好你也是一位珠宝设计师,那么EinScan手持三维扫描仪也会很适合你,因为它使用起来非常简单。我们的初衷就是设计出简单易用的三维扫描仪,因为我们相信三维扫描是未来大众都可以使用到的新技术。从我,到“我们”,你的想法由einscan来帮忙实现!
  • 满足GB/T 6545标准的纸板瓦楞破裂强度检测仪
    纸板瓦楞破裂强度检测仪 满足GB/T 6545标准的应用在现代包装行业中,纸板瓦楞的破裂强度是衡量其质量的关键指标之一。为了确保产品的运输安全和包装的可靠性,对纸板瓦楞的耐破性能进行精确检测显得尤为重要。三泉中石基于GB/T 6545标准研发的纸板瓦楞破裂强度检测仪NPD-3000S,正是为了满足这一需求而设计的专业设备。本文将详细介绍这款纸板瓦楞破裂强度检测仪的研发背景、试验原理、试样制备、试验步骤以及试验结果的表示方法。一、研发背景与标准依据GB/T 6545标准是我国针对纸板瓦楞破裂强度检测制定的国家标准,适用于耐破度在350~5500 kPa范围内的瓦楞纸板。该标准不仅规范了检测设备的性能要求,还详细规定了试验的具体步骤和数据处理方法,为纸板瓦楞的破裂强度检测提供了科学依据。三泉中石基于这一标准研发的纸板瓦楞破裂强度检测仪NPD-3000S,确保了检测结果的准确性和可靠性。二、试验原理纸板瓦楞破裂强度检测仪NPD-3000S的试验原理是将试样置于一层特制的胶膜之上,通过试样夹将其夹紧。然后,仪器以均匀的速度施加压力,使试样与胶膜一起自由凸起。随着压力的逐渐增加,试样最终达到破裂点。此时,施加液压的最大值即为试样的耐破度。三、试样制备试样的制备是确保试验结果准确性的关键环节。根据GB/T 6545标准的要求,试样的面积必须比耐破度测定仪的夹盘大,以确保试样在夹紧过程中不会因受力不均而提前破裂。同时,试样表面不得有水印、折痕或明显的损伤,这些缺陷都可能影响试验结果的准确性。此外,在试验中不得使用曾被夹盘压过的试样,以避免因试样变形而导致的误差。四、试验步骤试验步骤的规范性对于保证检测结果的准确性至关重要。在按规定的大气条件下进行裁样和试验,是确保试验条件一致性的基础。具体步骤如下:1.开启试样的夹盘,将制备好的试样夹紧在两试样夹盘的中间。2.开动纸板瓦楞破裂强度检测仪NPD-3000S,以(170±15)mL/min的速度逐渐增加压力。三泉中石表示这一速度控制有助于确保试样在受力过程中的均匀性和稳定性。3.在试样爆破时,立即读取压力表上指示的数值。这一数值即为试样的耐破度。4.松开夹盘,使读数指针退回到开始位置,为下一次试验做准备。5.如果在试验过程中发现试样有明显滑动,应将该数据舍弃,并重新进行试验。五、试验结果的表示为了确保试验结果的准确性和可靠性,GB/T 6545标准要求以正反面各10个贴向胶膜的试样进行测定。然后,计算所有测定值的算术平均值(kPa),作为试样的最终耐破度。这一表示方法不仅提高了试验结果的代表性,还有助于减少偶然误差对最终结果的影响。结语三泉中石的基于GB/T 6545标准研发的纸板瓦楞破裂强度检测仪NPD-3000S,以其精确的检测结果和可靠的试验性能,在包装行业中得到了广泛应用。通过规范的试样制备、严格的试验步骤和科学的试验结果表示方法,该检测仪为纸板瓦楞的破裂强度检测提供了有力的技术支持。
  • 瓦楞纸板边压强度测试仪 符合GB 6546标准
    瓦楞纸板边压强度测试仪 符合GB 6546标准瓦楞纸板作为一种广泛应用于包装行业的复合材料,由纸板和瓦楞芯纸通过特定工艺粘合而成。它不仅轻便,而且具有良好的抗压性能和缓冲效果,是保护商品免受运输和储存过程中损伤的理想选择。然而,瓦楞纸板的质量与强度直接关系到其保护性能,而边缘抗压性能(即边压强度)是评估瓦楞纸板质量的重要指标之一。为了准确测量这一性能,三泉中石的瓦楞纸板边压强度测试仪YSD-03应运而生。边压强度的定义与重要性边压强度指的是瓦楞纸饭试样受到沿瓦楞方向不断增大的压力.直至试榉压溃,单位长度试样所承受的最大力值。这一指标直接反映了瓦楞纸板在堆叠、运输等过程中的抗压能力,是评估其结构完整性和耐用性的关键参数。高边压强度意味着瓦楞纸板能更好地抵抗外界压力,从而更有效地保护内装物品。三泉中石的瓦楞纸板边压强度测试仪YSD-03的工作原理与标准依据GB 6546标准研发的瓦楞纸板边压强度测试仪,是专为测量瓦楞纸板边压强度设计的精密设备。该测试仪通过以下步骤进行测试:1.试样准备:在标准大气条件下,按照规范裁取矩形的瓦楞纸板试样。这一步骤确保了测试条件的一致性,排除了环境因素对测试结果的影响。2.试样放置:将裁好的试样置于测试仪的两压板之间,确保试样的瓦楞方向垂直于压板。使用导块支撑试样,使其端面与压板垂直,且两导块平行并垂直于试样表面,确保测试过程中的稳定性和准确性。3.施加压力:启动测试仪,开始施加压力。当压力接近50N时,移开导块,继续加压直至试样被压溃。这一过程中,测试仪会记录并显示试样所能承受的最大压力值,精确到1N。测试方法的严谨性整个测试过程不仅遵循GB 6546标准,还强调了测试条件的严格控制,包括试样尺寸、裁样方法、测试环境等,以确保测试结果的可靠性和可比性。通过这种方法获得的边压强度数据,为瓦楞纸板的生产商、使用方以及质量监管机构提供了客观、量化的质量评估依据。结语三泉中石的瓦楞纸板边压强度测试仪YSD-03的应用,不仅提升了瓦楞纸板行业的质量控制水平,也为优化产品设计和生产工艺提供了科学依据。随着包装行业对材料性能要求的不断提高,这一测试技术将发挥越来越重要的作用,推动瓦楞纸板及其包装产品的持续创新与升级。通过精确的边压强度测试,我们可以更好地确保瓦楞纸板在各种应用场景下的稳定性和可靠性,为商品的安全运输和存储保驾护航。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and BetterDetectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 国产追赶加速 高端光学显微镜助力光学制造业高质量发展
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题,并向国产光学显微镜企业广泛征稿,(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为永新光学股份有限公司供稿,永新光学作为国产光学显微镜前三甲企业之一,近几年在共聚焦显微镜、超分辨显微镜等高端光学显微镜方面取得一定成果。撰稿人:范靖琪 产品经理 永新光学股份有限公司仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。光学显微镜是一种精密的光学仪器,距今已有300多年的发展历史。永新光学承前启后,创造了多个中国显微镜的第一,如中国第一台大型天文望远镜、第一台航空摄影机等,被誉为“中国光学的摇篮”。1943年永新光学前身--江南光学仪器厂诞生了中国第一台生物显微镜,标志着我国光学显微镜事业的新起点。放眼未来,永新光学已有近80年的技术沉淀。从1980年研制了中国第一台天文望远镜、航测仪到2010-2019年由浙江大学设计、永新光学制造的多款光学镜头应用于嫦娥二号/三号/ 四号人造月球卫星。永新光学掌握超分辨显微镜等高端显微系统的关键技术,在定制化核心光学部件开发制造方面具有较强的竞争力,成为中国显微镜行业的龙头企业。公司致力于生命科学、AI智慧医疗和工业检测领域的科学仪器国产化替代,为物联网、自动驾驶、工业自动化、人工智能和专业影像设备等产业提供核心光学部件,年产10余万台光学显微镜和数千万件光学元件组件,是徕卡相机、德国蔡司、日本尼康等国际知名企业的核心供应商。宁波永新光学股份有限公司新厂鸟瞰图仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?目前,永新光学主推高端显微镜Nexcope品牌产品,包括NE900系列科研级正置生物显微镜、NIB600系列实验级倒置生物显微镜、NIB900系列科研级倒置生物显微镜、NSS-6数字切片成像系统等高端产品,并在今年重点研发推出NCF950科研级倒置激光共聚焦显微镜,陆续有科研机构及重点院校定制、安装并使用。目前公司在研超分辨显微镜,预计在不久的将来会和大家见面。在技术层面,永新光学独创多人共览显微镜系统,为多机型通用,可供多达10人共览,为所有观察者提供均匀的视野和最佳亮度;NOMIS Basic 图像处理系统实时采集图像和导入图像,可快速将小幅图进行拼接,形成高质量、高分辨率图像。对于我们的高端产品激光共聚焦显微镜而言,技术层次及性能上包含了高性能的平场复消色差物镜;调节精度可达到0.01%的高灵敏度4路激光器+声光调制器(AOTF);高量子效率探测器;4通道同时成像;扫描分辨率达到4K等优点,在保持永新光学独有的性能的同时发挥产品高效性、多样性及实用性的利益最大化,满足客户更高品质的需求。永新光学NCF950四色激光共聚焦显微镜机组永新光学激光共聚焦显微镜通过对细胞器的观察和测定,对溶酶体、线粒体等细胞内特异结构的组分进行特异性标记,对其细胞迁移、纳米高分子材料载体靶向定位传递、细胞凋亡等生理变化进行研究;细胞骨架方面,能标记细胞中的肌动蛋白Actin、微管蛋白Tubulin等特异蛋白、细胞内代谢物、核酸类似物、蛋白酶等特异性分子,追踪细胞生长情况;神经生物学方面,在一定厚度的组织样品中获取神经元精细结构和形态变化的清晰图像,可尽早发现普通光镜下未能发现的神经组织的细微病变;发育生物学方面,可获取模式生物(如:果蝇、线虫和斑马鱼胚胎)的三维结构细节和动态变化;实时定量检测细胞内离子变化;氧化应激检测,用以检测细胞中的活性氧类(ROS)物质,研究动脉粥样硬化、癌变、缺血再灌注损伤和神经退行性疾病等;活细胞成像可实时观察小鼠胚胎3D成像、甲基化DNA检测等。目前,我们的机组在国内多个高校、科研院所和医院试用并得到良好反馈,且已经实现销售。以下图片为客户使用反馈后的样品,仅供参考。 海拉细胞(分裂、自噬)海拉细胞三维成像仪器信息网:贵公司主推的光学显微镜技术发展现状如何?还有哪些亟待解决的问题?从整个行业角度看,激光共聚焦技术正在不断发展壮大,发挥其独特的优势。激光共聚焦技术使人们探索微观世界的范畴从二维平面迈向了三维空间。激光共聚焦还具有灵活多变的实时声光调控系统,一方面可以通过在激光整合器后加入声光调制滤片系统实现局部光操作,对图像上特定区域进行扫描成像,另一方面还可在激发过程中采用顺序扫描的模式,减少了波段叠加,实时多通道采集。但目前在现有阶段还存在一些亟待解决的问题,比如快速扫描与高分辨率之间的矛盾,要想提高扫描速度,通常需要牺牲图像分辨率;低光毒性与高分辨率之间的矛盾,提高图像分辨率需要加强荧光信号,增强激光照射功率和时间,加上这种光的强度很高,从而造成光漂白导致的光毒性,降低染料荧光寿命和样品的存活率。而降低光毒性意味着减少激光照射功率和时间,不利于信号收集;另外还有串色、扫描背景强及图像信噪比质量不高等问题待解决。目前,激光共聚焦显微技术还存在着其他一些不足,比如扫描速度及光毒性程度与分辨率之间的矛盾,制约了活体细胞和组织荧光成像观测的范围;设备价格昂贵、对操作人员技术要求高,同样限制了该技术的应用。仪器信息网:您如何评价目前高端光学显微镜的应用情况?总体来讲,激光共聚焦技术具有高分辨率、高灵敏度和灵活性空间结构观察的特点,是使其成为生命科学、医学以及材料科学相关的诸多重要分支领域的全新科研实验手段和必备研究工具之一,为许多研究者提供了有力的技术支持和新的探索思路。激光共聚焦显微镜在生物学及医学相关领域的应用越来越广泛和深入,已经渗透到分子生物学、基因组学、免疫学、病理学、流行病学、肿瘤等相关分支领域。通过它可以直接观测到细胞形态学应用的组织、细胞之间的相互作用、真菌感染、组织微环境、组织重建和药物扩散等现象。激光共聚焦显微镜可很好地补充或替代许多操作繁琐的实验观察。除了在生物及医学研究领域,激光共聚焦显微镜在金属、半导体、芯片等材料科学及生产检测领域中也具有广泛的应用。另外,人们还利用激光共聚焦显微镜研究了其与电镜技术的互补应用。由此看来,随着现代高科技技术的发展,激光扫描共焦显微技术将渗透并应用到科技发展的各个领域。客户使用永新光学激光共聚焦显微镜NCF950的现场图仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?高端光学显微镜的市场主要布局在德国和日本。德国以蔡司(Zeiss)和徕卡(Leica)公司为代表,日本以尼康(Nikon)和奥林巴斯(OlymPus)公司为代表,据统计,他们四家占据着世界显微镜市场 50% 以上的市场份额。国产光学显微镜生产商和进口品牌厂商有着较大的差距,但是这种差距在逐步缩短。国产高端光学显微镜仍面临一些挑战,首先,我国光学显微镜行业企业数量较少,海外厂商占主导地位且市场集中度较高,现有的竞争者之间的竞争激烈程度较高,致使国内厂商很难站稳脚跟;其次,高端光学显微镜产品的特殊性,单次采购量有限,且往往需要定制,故其无法批量采购;另外,高校与研究院所对高端光学显微镜的要求较高,多倾向于购置海外厂商的高分辨率产品。对于永新光学而言,高端显微镜发展也有好的一面。由于高端光学显微镜行业壁垒较高,替代品较少,行业在短时间内各厂商替代风险较低,且近年来,国产光学显微镜企业都在加大研发力度,加速追赶步伐,随着近几年国产替代进度的加速,国内显微镜龙头厂商优势显现,高性价比的高端显微镜将逐步进入原有海外巨头厂商垄断的市场,推动我国精密光学元器件制造、光学材料、精密加工等行业的发展。未来几年,技术、成本等优势将助力光学显微镜发展。光学显微镜与CCD的结合,成为光学显微镜的一种新的突破,生产厂商也逐渐将软件信息应用于光学显微镜中,甚至将人工智能技术应用于光学显微镜中,使得光学显微镜操作更加简单和高效。在发展趋势上,伴随着以日本、中国、印度等为代表的亚太地区在医疗、科研、生命科学等领域的快速发展,对光学显微镜的需求将会保持较快的增速发展。信息软件技术、AI人工智能技术将会进一步应用到光学显微镜的市场应用领域。
  • 短波红外相机在海洋监测中的应用
    海洋区域湿度大,昼夜温差大,极易形成雾、霾、水汽等特殊条件。可见光在正常条件下成像良好,但是受天气影响较大,在恶劣天气下会出现对比度变低,轮廓模糊,细节丢失的现象等问题,无法清晰的识别目标。热成像技术虽然透雾能力好,但是当目标和背景温度接近时,热成像细节丢失严重,不利于海洋区域的目标探测。而短波红外在海面恶劣天气下也可以实现远距离船只监测,由于具备对海雾的良好透过性,所以目标几乎很少受到海上雨雾天气的影响,具有较为明显的轮廓和纹理特征。图 1可见光和短波红外雾天成像对比短波红外成像和可见光类似,主要依靠场景物体反射的光信号成像,其波段范围大约在900nm~2300nm之间,因为光在遇到大气中的分子、粒子、气溶胶和大量的悬浮小水滴时都会发生散射,当大气中的散射粒子小于光波长时,可以按照瑞利散射处理,散射系数为式中,S为散射粒子的截面积,N为单位体积的粒子数,λ为光波波长,从公式中可以看出,波长越长,散射越弱,透雾能力越强,所以短波红外穿透雾霾能力比可见光强。如图2所示,分别为可见光和短波红外的成像情况,舰船在短波红外图像中的细节更丰富。图 2 雾中短波红外(左)与可见光成像(右)不仅如此,短波红外在海面微小目标识别方面也有很大的优势,由于海面拍摄距离远,微小目标在探测器上占据的像素小, 而且海面也在不断地变化,当海杂波干扰过大时,微弱目标的信号会被淹没,造成可见光探测困难。但是短波红外则不同,利用海水对短波红外具有强吸收这一特性,可以大大提高微弱目标的识别能力。海水几乎不反射短波红外,而微弱目标发射红外辐射,背景和目标的对比度增大,微弱目标更容易被观测到。所以当对海面浮冰、小船、蛙人、浮标、飞机残骸、海面漂浮物等这些声光电特性不明显的目标探测时,相比可见光,短波红外更适合观测。 此外,短波红外技术还具有在夜间和低光条件下提供高质量监控图像的能力,在海岸港口,夜间航行可能存在风险,而短波红外监控系统可以保证即使在黑暗中,港口和船只的活动也能被及时监测,从而提高港口的安全性。西安立鼎光电提供非制冷、制冷面阵以及线阵多款短波红外相机,现货供应,具体产品如下:01非制冷短波红外相机02宽谱段短波红外相机03制冷型短波红外相机04科研型短波红外相机05线阵短波红外相机06定制短波红外相机立鼎定制型短波红外相机是立鼎团队为保证各类客户的产品性能指标而推出的定制化服务。可根据用户不同需求进行产品定制,将客户重点关注的产品性能进行提升,以满足客户在不同领域的使用。目前,立鼎团队已为多家客户定制适合客户项目应用需求的多款相机,得到了众多用户的认可。更多信息请联系西安立鼎光电400-860-5168转6159西安立鼎光电科技有限公司成立于2016年4月,是一家专业从事短波红外成像系统及光电测试装备的研发生产、系统集成、销售服务为一体的国家级高新技术企业。公司专注于为客户提供从器部组件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外成像系统在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求研制的多款光电测试装备为用户产品的性能指标保证发挥了重要作用。
  • 雷尼绍RESOLUTE™光栅升级科研级天文望远镜的位置反馈性能
    背景Wise天文台是由以色列特拉维夫大学 (Tel Aviv University) 拥有并运营的天文研究机构。四十多年以来,该天文台始终致力于支持天文学领域的前沿研究。它位于以色列的内盖夫 (Negev) 沙漠中,距离最近的城镇也有五公里;这种独特的地理位置意味着,这里的夜空全年大多数时间晴朗无云,并且远离光污染的影响。凭借这些优势,该天文台的一米口径天文望远镜可以拍摄出高质量的天文照片,为全世界各大天文学和天体物理学研究机构提供理想的研究素材。特拉维夫大学的天文望远镜是全自动操作的,并且配有超高分辨率的光谱仪,用于发现已知恒星周围的新行星。该望远镜安装于1971年,自安装之后,它的结构基本保持不变。但是其中的一些内部组件, 例如电机和轴承,尤其是位置反馈光栅,已经逐渐接近设计使用寿命,而且研究人员也开始注意到一些性能问题。望远镜的运动轴上装有光栅,用于测量望远镜的移动位置。天文台的研究团队发现,原来的光栅有时会提供错误的信息,导致软件毫无预警地停止运行。因此,现场工程师最终决定更换光栅,并且开始联系光栅供应商报价。该研究团队咨询了其他天文台的同行,并且对供应商进行了在线审核,最终选择与一家以色列的运动技术供应商Soulutions合作,这家公司同时还是雷尼绍光栅产品的授权经销商。 挑战“由于天体沿着轨道不停运行,研究人员只有很小的机会窗口能拍摄特定星座的高质量照片,所以我们必须快速完成升级工作,从而将停机时间降至最短,”Soulutions公司的雷尼绍光栅业务经理Benny Naim解释道。Naim先生继续说道:“我们详细了解了天文望远镜的运动方式,包括它的精度和速度要求,以确定新光栅的最佳安装位置。综合考虑以上因素,我们认为必须进行定制设计。”“在为研究团队提供解决方案建议时,我们还考虑了天文台的地理位置,”Naim先生补充道。“在沙漠中,气温日变化剧烈,白天仿佛盛夏,到了夜晚温度却降到零度以下。温度变化会导致热胀冷缩,进而对 金属物体产生不利影响。因此,在设计用于将新光栅安装到望远镜上的定制安装支架时,我们必须考虑热膨胀效应,以确保气候状况不会影响望远镜的精度。” 解决方案Soulutions团队建议在望远镜上安装两个雷尼绍RESOLUTE™ 绝对式光栅。RESOLUTE系列能够使 直线光栅系统在高达100 m/s的速度下实现1 nm分辨率,使圆光栅系统在高达36,000转/分的速度下实现32位分辨率,这是世界上首款做到这一点的绝对式光栅。而且,RESOLUTE直线光栅系统的超低电子细分误差 (SDE) 和抖动使其从同类光栅中脱颖而出。该团队还搭配了RTLA30-S直线栅尺。这是一款轻薄小巧的不锈钢钢带栅尺,其安装选项考虑到了基体热膨胀的影响,又兼具钢带栅尺的便利性。雷尼绍光栅技术提供了无与伦比的坚固性、优异的运动控制性能、宽松的安装公差、更高的位置稳定性,以及低至±40 nm的电子细分误差,能够实现平稳的速度 控制。“在首次造访天文台进行现场调查之后,我们决定不从望远镜上拆下原来的光栅,因为这样需要拆解整个望远镜,从而增加研究团队的停工时间,”Naim先生说道。“相反,我们建议先断开旧光栅的连接,然后使用定制加工的机械支架安装新光栅,这样就能快速而高效地完成整个升级工作。”Soulutions团队在天文台进行了两次现场访问,并且在望远镜的每个运动轴上都安装了RESOLUTE直线光栅。横滚轴控制望远镜的方向,用于观测不同的天区;而俯仰轴控制物镜和摄像机的左右运动。“将光栅连接至望远镜的控制器之前,我们先使用雷尼绍的高级诊断工具 (ADTa-100) 测试了光栅的安装效果,”Naim先生说道。“我们使用软件验证了两个光栅均可提供良好反馈,并且检查了整个轴行程上的信号强度,从而确保了光栅能够实现优异的运动控制性能。在确定安装成功后,我们才将光栅系统与控制器相连。”ADTa-100可从RESOLUTE绝对式光栅中获取全面的实时数据,并将这些信息显示在ADT View软件的 用户友好型界面上。它不仅可以在复杂安装条件下报告光栅的性能,亦可辅助系统查错,从而避免机器发生长时间停机。结果“雷尼绍的先进技术与Soulutions经验丰富的本地专家团队强强联手,帮助我们快速找到了最适合的解决方案,”Wise天文台的Arie Blumenzweig表示。“望远镜的位置反馈子系统的精度、分辨率和可靠性均显著提升,性能焕然一新。现在,我们正在研究如何进一步改进观测方式,以充分利用新光栅系统的诸多功能。”Naim先生继续说道:“对于我们团队而言,这个项目既特别又充满挑战,但同时也收获颇丰。在运行了一个月之后,Wise天文台的研究人员向我们反馈说,新光栅系统的位置测量性能优异,并且希望我们继续升级天文台的其他望远镜。看到雷尼绍技术在天文学研究领域施展身手,我们感到非常激动。” Wise天文台简介Wise天文台是专业的天文研究机构,由特拉维夫大学拥有并运营。它位于内盖夫沙漠的米茨佩拉蒙镇 (Mitzpe Ramon) 附近,在特拉维夫以南约200 km的位置。这里部署有一架一米口径的Ritchey-Chrétien天文望远镜,多台小型自动天文望远镜,以及多种用于地质与大气科学研究的专业仪器。
  • 把国产科研仪器用起来 高端科研仪器研制是短板
    p   高端科研仪器的自主研制水平是自主创新能力的重要标志,要尽快弥补这方面的短板,除了注重研制,也要注重推广和使用 /p p   日前,由中科院西安光学与精密机械研究所自主研制的高性能条纹相机顺利通过验收。条纹相机是同时具备超高时间分辨率与高空间分辨率的唯一高端科学测量与诊断仪器。项目团队经过5年多的努力攻关,最终研制出了性能达到国际先进水平的高性能条纹相机。 /p p   高端科研仪器的研制往往是我国的短板,研发和生产水平与国际先进水平相比还有一定差距。此次高性能条纹相机能够研制成功,一方面得益于长时间的技术积累。据了解,从上世纪60年代至今,中科院西安光学与精密机械研究所的相关科研人员一直在高性能条纹相机技术领域不断探索、持续研发,即使在最困难的时期也没有中断。正是凭借这样的坚持和努力,高性能条纹相机才最终得以研制成功。 /p p   另一方面,高性能条纹相机能研制成功,也得益于国家政策和资金的大力支持。我国从1998年起就开始支持重大科研仪器的研发,发改委、财政部、教育部、科技部等部门相继设立了科研仪器设备研发的相关计划和专项。“高性能条纹相机研制”就是在中国科学院和财政部支持下启动的国家重大科研装备研制项目。 /p p   高端科研仪器的自主研制水平是一个国家自主创新能力的重要标志,不少重大科学发现都是科学家们在提高仪器性能或研制新原理仪器的过程中发现的。我国著名光学家王大珩先生曾经说过,机器是改造世界的工具,仪器是认识世界的工具。这些年来,在科研人员的努力和国家政策的扶持下,我国成功研制了一批高端科研仪器,为国家科研进步发挥了重要作用。但也必须看到,由于基础仍较为薄弱,高端科研仪器主要依赖进口的局面还没有改变。要尽快补上这块短板,除了在研发上给予稳定支持之外,还应在应用和产业化方面给予有力扶持。 /p p   目前国产科研仪器在实际推广和应用时还是会面临一些难题,往往较难得到用户信任。跟已经使用多年的国外成熟仪器相比,新研制的国产仪器也许会存在一些不足,但如果不多加使用,就得不到反馈意见,也就无法继续改进和完善。事实上,国际上那些先进的科研仪器也都是在多年应用中一代一代不断成熟和完善起来的。 /p p   科学仪器设备是科学研究和技术发展的基石,当前现代科技的重大突破越来越依赖于先进的科学仪器。掌握了最先进的科学仪器研发技术,往往意味着掌握了科技发展的主动权。相信在相关部门、科研人员的共同努力下,我国高端科研仪器的研制和应用之路会越走越宽。 /p p /p
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。   以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。   以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。   鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • DRK109 QB/T1057 纸与纸板触屏气动双头耐破度仪
    DRK109 QB/T1057 纸与纸板触屏气动双头耐破度仪,设备用于测定各种单层纸张及不高于2000kpa的薄纸板也可用于丝绸棉布等非纸制品的检测。是国际通用型缪纶(Mullen)式仪器是纸和纸板强度性能检测的基本仪器,本仪器操作简单、性能可靠、技术先进,是科研单位、造纸厂家、包装行业、质检部门的理想设备。DRK109 QB/T1057 纸与纸板触屏气动双头耐破度仪,产品参数:指标 纸张测试 纸板测试测试范围:50—2000kpa;250—6000kpa上、下夹盘间的夹持力:430 kpa; 690 kpa胶膜阻力:凸起高度10mm时,20-40kpa;凸起高度10mm时170-220kpa+18时25°~35°整机精度:1级 (分辨率:0.1 Kpa) ;1级 (分辨率:0.1 Kpa)示值准确度:±0.5%F.S;±0.5%F.S气源压力:0.7MPa (气源自备,可选购);气源压力液压系统密封性:在测量上限值,1分钟压降2. 全自动测量,智能演算功能。3. 自主研发软件,该纸张破裂强度试验仪|耐破仪自动测量、统计、打印测试结果,并具有数据保存功能;4. 高速微型打印机,打印高速,使用方便,故障低;5. 机电一体化现代设计理念,液压系统,功能强大,结构紧凑,外观美观大方,维修方便。DRK109 纸与纸板触屏气动双头耐破度仪,技术标准:ISO2759 《纸板耐破度的测定》QB/T1057 《纸与纸板耐破度仪》GB1539 《纸板耐破度测定法》GB/T 6545 《瓦楞纸板耐破强度的测定法》GB/T 454 《纸张耐破强度的测定法》注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
  • 我国大视场巡天望远镜 主焦相机研制取得进展
    4月10日,记者从中国科学技术大学了解到,由该校与中国科学院紫金山天文台组成的研制团队,顺利完成了大视场巡天望远镜的科学级电荷耦合器件(CCD)测试系统及其主焦相机——CCD290相机的验证工作,相关成果日前发表国在际著名天文仪器杂志《天文望远镜仪器与系统》上,为主焦相机的研制奠定了坚实的基础。据悉,大视场巡天望远镜主镜口径为2.5米,采用国际领先的主焦光学设计,能够提供大视场、高精度和宽波段的巡天能力,性能先进。望远镜配备大面阵7.2亿像素拼接CCD探测器,具备强大的巡天能力,能够每3夜巡天整个北天球一遍。该望远镜的主焦相机是望远镜的关键部件之一,预算占整个望远镜的三分之一,也是目前国内首个、国际领先的大视场主焦相机。由中国科学技术大学核探测与核电子学国家重点实验室王坚研究员带领的相机研制团队,对主焦相机的主要关键技术进行了攻关,其科学成像探测器由9片CCD290-99芯片拼接而成,同时具有用于主动光学的曲率传感器和导星传感器,是一个集“科学成像,波前探测,导星传感”的“三合一”功能强大的主焦相机。大视场巡天望远镜项目是中国科学技术大学与中国科学院紫金山天文台通过“科教融合”联合共建的重要天文装置,建成后将成为北半球巡天能力最强的光学时域巡天望远镜,填补国内乃至整个北半球大规模深度时域巡天专用监测设备空白,对发展大规模时域巡天新方向,提升我国天文图像巡天的观测能力起到重要作用。预期将在时域天文、太阳系天体和近邻宇宙结构研究方面率先取得重大突破性成果。
  • 德瑞克 大型 步入式 药品稳定性试验室 可非标定制
    药品稳定性试验箱主要用于模拟药品在实际储存和使用过程中的环境条件,以便对药品的稳定性进行评估。该设备具备温度控制、湿度控制、光照模拟、振动模拟、气体环境模拟、时间设定、数据记录和安全保护等功能。德瑞克 大型 步入式 药品稳定性试验室 可非标定制,是一款根据用户要求并参照GB/T10586-2006、GB/T10592-2008、GB4208-2008、GB4793.1-2007等有关条款设计、制造。主要用于制造和维持温度与湿度恒定的空间,该装置的制冷、加热等完全自动控制。德瑞克 大型 步入式 药品稳定性试验室 可非标定制,技术参数:1、温度范围:15℃&sim 50℃2、湿度范围:50%RH &sim 85%RH3、温湿度分辨率:温度:0.1℃;湿度:0.1%4、外箱尺寸:2700×5600×2200mm5、内部尺寸:2700×5000×2200mm6、冷冻系统:采用艾默生谷轮涡旋全封闭压缩机,两套制冷系统一备一用7、冷却方式:风冷式8、功率:20KW德瑞克 大型 步入式 药品稳定性试验室 可非标定制,产品特点:1、全新完美的造型设计,厚度为100MM聚氨酯保温库板,外部钢板烤漆,内部SUS 304不锈钢,内部可开安全门,和室内报警开关和独立超温报警系统,保证操作人员安全;2、中央控制系统采用日本进口优易控触摸屏温湿度控制器,控温精度高,备有USB接口,LAN网线接口,电脑操控软件实现远程监控,温湿度曲线查看,数据保存,数据打印机,故障手机短信报警等功能;3、控制信号采集采用奥地利E+E原装进口温湿度变送器;4、平衡调温控制系统(BTHC),以P.I.D.连续自动可调的方式控制SSR,使系统之加热量等于热损耗量,故能长期稳定使用;5、提供3Q认证方案:可以为客户提供IQ(安装确认)、OQ(运行确认)、PQ(性能确认)等一系列服务6、货架为不锈钢镀铬,隔栅式层板可调节。注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
  • 揭秘时间“魔盒”,定制化光学原子钟低温系统——全新超精细无液氦低温光学系统交付使用!
    日前,两套全新定制型Montana超精细多功能无液氦低温光学恒温器在国内完成安装,两套设备将用于低温光学原子钟的相关研究。这是Montana超精细多功能无液氦低温光学恒温器在国内的又一全新应用方向。超稳定的激光是现代高精度测量科学的重要手段之一。高度相干的稳定激光可以被应用于引力波探测、射电天文学、低相位噪声的微波合成器。近几年来,超稳定激光新的用途是用于精确记录时间流逝的原子钟。原则上原子钟的极限准确度仅受限于只有几个毫赫兹的激光带宽。然而这就要求了全新一代超稳定的激光器需要达到10-18的稳定度。近年来,人们研究发现在低温硅腔中的激光器具有非常高的稳定性,将工作温度降至4 K时可提供诸多优势。首先,涂层热噪声在4 K时显著降低,不稳定性降低至10&minus 18水平;其次热膨胀(CTE)在极低温时迅速减小,进一步减少了温度波动的影响。超精细多功能无液氦低温光学恒温系统中的光学腔尤其适用于超高精度的原子钟系统以及需要特殊超高稳定度的精密低温光学实验。自2017年科研人员基于Montana搭建了超稳定光学微腔并将重要的结果发表在PRL期刊以来,Montana超精细多功能无液氦低温光学恒温器在超稳定光学微腔方面的应用引起了全球科学家广泛的兴趣。光学微腔低温系统的样品腔结构示意图*用于光学微腔的Montana超稳定低温光学系统示意图*日前,由Montana Instruments公司根据我国用户的要求全新打造的两套超高稳定性光学微腔低温系统已完成安装并交付使用。系统将用于基于光学微腔的原子钟相关的超高精度科学实验。基于Montana S200型超精细低温光学系统定制的用于光学微腔低温系统外观图该系统可以实现优于mK级的温度稳定性和超低振动,为超精密的光学实验提供稳定的环境。系统可以设计多个光学窗口和多种电学通道,满足用户的各种光电测量需求。因此该系统不仅适用于光学微腔实验,还适用于多种需要超稳定低温环境的精密光学、电学实验。* Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K, PRL 119, 243601 (2017)Montana超精细多功能无液氦低温光学系统先进光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供高性能的光学恒温器而广受赞誉。作为低温光学恒温器的旗舰产品,Montana Instruments在S系列基础上推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域的研究更上一层楼。CryoAdvance 新特色☛ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。☛ 模块化设计:多种配置可选,快速满足各种实验需求,后续升级简单。☛ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。☛ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数☛ 低温极限:3.2K☛ 震动稳定性:☛ 水平光路高度:140 mm☛ 窗口材料:多种材质可选☛ 基本电学通道:20条直流通道。☛ 接口面板:双RF接口+25DC接口Cryostation® s200系统s200系统具有超大的样品腔,可满足多种低温光学实验方案和高度定制化的个性化实验方案。☛ 低温极限:3.6K☛ 震动稳定性:☛ 接口面板:多种接口可选相关产品1、超精细多功能无液氦低温光学恒温器
  • 读出噪声低至1个电子!Dhyana 400BSI 上市,超级信噪比科学相机时代来临!
    福州鑫图光电有限公司发布新一代超高灵敏度sCMOS科学相机--Dhyana 400BSI,该机型在灵敏度、像素尺寸和速度三个核心指标上均实现了对现有背照式sCMOS相机的全面超越。 两年前,鑫图基于背照式sCMOS技术开发的Dhyana95科学相机在560nm处实现了量子效率高达95%QE的重大的突破,由此开启了sCMOS科学相机的背照式时代,而最新发布的Dhyana 400BSI不仅具备相同的高量子效率,还实现了背照式sCMOS相机读出噪声小于1个电子的关键性突破,这将带来无可比拟的超级信噪比优势! 更重要的是,该相机使用了更小的6.5微米像素尺寸,这是显微成像中获得更多的细节信息的关键因素,可以让您在更多超高分辨应用领域,看到更多可能!! Dhyana系列sCMOS科学相机已经在生命科学、化学实验室、空间物理、天文观测等前沿科学研究领域得到了广泛应用,此次Dhyana 400BSI的光电参数更是由鑫图和武汉国家光电实验室联合测试确定,在经过多年的技术和应用积累后发布的Dhyana400BSI在关键性能指标的严谨性和质量稳定上将更值得信赖!
  • 食品接触用原纸板:挥发性有机物的表征与溯源分析
    近日,国家食品接触材料检测重点实验室(广东)(IQTC)联合华南理工大学制浆与造纸国家重点实验室以食品接触用原纸板及其原材料为研究对象,对其中的VOCs进行了表征和溯源研究,并在食品科技领域TOP期刊Food Packaging and Shelf Life (JCR Q1,IF=8.749)发表了题为“Characterization of volatile organic compounds in food contact paperboards and elucidation of their potential origins from the perspective of the raw materials”的研究论文。 IQTC李函珂博士为论文第一作者,IQTC李丹研究员和华南理工大学马彤梅教授为共同通讯作者。中山大学公共卫生学院医学统计学系和西班牙萨拉戈萨大学(University of Zaragoza)为本论文合作单位。该研究得到了国家重点研发计划项目2022YFF0607202、2022YFF0607201和广东省自然科学基金2022A1515010334的资助。 原文链接:https://doi.org/10.1016/j.fpsl.2023.10106201.研究背景 纸制品是使用最为广泛的食品接触材料之一,其安全问题一直广受关注,IQTC牵头修订的GB4806.8-2022即将于2023年6月30日起正式实施。由于纸制品所用原材料多为成分复杂的天然植物,如桉树、杨树、竹子、亚麻、棉花等,且其生产过程包括制浆、漂白、成型、施胶、干燥、涂布等多个步骤,期间会引入多种化学品,例如过程助剂、功能性添加剂、天然产物、自氧化产物、聚合物及其降解产物、污染物等,这就导致纸制品中含有的化学物质远比塑料、橡胶等材质的食品接触材料复杂[1]。 在可能导致纸制品安全问题的各种因素中,挥发性有机物(VOCs)更容易得到较高的关注度:一是由于VOCs会加速纤维素降解,从而破坏纸制品的结构并降低食品的保质期;二是由于VOCs相比于其他化合物更容易在消费者进食的过程中被吸入或摄入,故具有潜在风险的VOCs更容易对消费者健康造成负面影响;三是由于某些具有较低气味阈值的VOCs可能会影响所包装食品的感官特性(如气味或异味),从而影响消费者的消费体验和接受程度。鉴于此,食品接触用纸制品中的VOCs得到了较为广泛的研究[2-5]。然而,由于目前采用的VOCs表征技术仍以传统一维GC-MS技术为主,可定性化合物通常不超过40个,难以追溯这些VOCs的来源。02.IQTC的研究 IQTC近年来开展了多项食品接触用纸制品中安全因子表征的相关研究[6-8],并与国内多家造纸企业建立了良好的合作关系。在本研究中,IQTC从相关企业收集了23批次样品,包括9批次食品接触用原纸板(RPBs)、4批次漂白化学热磨机械浆(BCTMP)、6批次干浆板(DPSs)和4批次桉树木料(WCs),并采用顶空-固相微萃取-全二维气相色谱-四极杆飞行时间质谱(HS-SPME-GCxGC-qTOF-MS)技术对上述样品中的VOCs进行了系统表征。同时,还基于表征结果对食品接触用原纸板中检出的VOCs进行了溯源分析[9]。▲ 图1 食品接触用原纸板及其原材料中的VOCs分布情况 如图1所示,对于RPBs、BCTMP、DPSs和WCs这四种类型的样品,经HS-SPME-GC×GC-QTOF-MS分析,分别定性出331、154、295和191种VOCs,包括芳香烃类化合物、芳香族含氧化合物、萜类及其衍生物、脂肪族含氧化合物、非芳香烃类化合物和其他共6大类化合物,表明GC×GC-qTOF-MS技术在复杂样品的VOCs表征上比传统的GC-MS技术更具优势;另一方面,经进一步统计分析,上述化合物在不同样品中呈现出特异性分布,且检出频次存在较大差异,如:BCTMP中定性出比WCs更多的芳香族含氧化合物,表明桉树木料中的木质素在制浆和漂白过程中发生了解聚;DPSs中的脂肪族含氧化合物分布与RPBs相似,表明前者可能是后者中脂肪族含氧化合物的主要来源;RPBs中出现了较多的烷基苯类化合物(RI=1500~1900),而这些化合物在原材料中均未检出,表明其可能在后续的生产过程中引入。▲ 图2 食品接触用原纸板与其原材料中VOCs的相关性分析 进一步对食品接触用原纸板与其原材料中VOCs进行相关性分析。如图2所示,聚类分析和主成分分析均表明各类样品中检出的VOCs具有显著差异。欧式距离分析表明,WCs与BCTMP和WCs与DPSs的VOCs相似性具有显著差异,这表明DPSs与BCTMP或采用了不同的制浆工艺。此外,Jaccard指数分析表明,DPSs与RPBs比BCTMP与RPBs具有更高的VOCs相似性,表明DPSs或对RPBs中的VOCs贡献更大。▲ 图3 食品接触用原纸板中VOCs的溯源分析 在RPBs中检出的331个VOCs中,153个VOCs在BCTMP、DPSs或WCs中检出,表明这些VOCs可追溯至原材料;而其余178个VOCs仅在RPBs中检出,表明这些VOCs很可能在后续生产流程中产生,其来源包括但不限于涂布添加剂、施胶剂、大分子降解产物、表面活性剂、抗氧化剂、消泡剂、杀菌剂、环境污染物等。03.结论 上述研究表明,食品接触用原纸板及其原材料中的VOCs数量繁多且呈现样品特异性分布。特别值得关注的是,制浆和漂白过程对原纸板中的VOCs有显著影响,且对原纸板中VOCs贡献程度最大的原材料是干浆板。溯源分析表明,相当数量的VOCs是天然存在的化学物质,比如萜类和脂肪族含氧化合物,而亦有相当数量的VOCs与生产过程等人为因素相关,如烃类和芳香族含氧化合物。 IQTC的上述研究也得到了Food Packaging and Shelf Life审稿人的高度认可,其中一位审稿人指出该研究对纸和纸板的测试有很大贡献(The paper contributes highly to the testing of paper and paper boards)。上述研究阐明了食品接触用原纸板及其原材料中VOCs的种类和来源,为相关行业的从业人员提供了有价值的参考,有助于进一步提升纸质食品包装的质量并保障消费者健康。 IQTC也将继续与高校、科研院所和相关企业密切合作,深入研究与食品接触用纸制品中VOCs相关的问题,包括质量问题、安全性问题、感官异味问题等,致力于为行业提供切实可行的技术解决方案。参考文献[1] C.N. Lowe, K.A. Phillips, K.A. Favela, A.Y. Yau, J.F. Wambaugh, J.R. Sobus, A.J. Williams, A.J. Pfirrman, K.K. Isaacs, Chemical Characterization of Recycled Consumer Products Using Suspect Screening Analysis, Environ Sci Technol, 55 (2021) 11375-11387.[2] Ó. Ezquerro, B. Pons, M.a.T. Tena, Development of a headspace solid-phase microextraction–gas chromatography–mass spectrometry method for the identification of odour-causing volatile compounds in packaging materials, J Chromatogr A, 963 (2002) 381-392.[3] M. Czerny, A. Buettner, Odor-active compounds in cardboard, J Agric Food Chem, 57 (2009) 9979-9984.[4] T.V. Caelenberg, I.V. Leuven, P. Dirinck, An Analytical Approach for Fast Odour Evaluation of Recycled Food-Grade Paperboard Materials Using HS-SPME-MS-Nose Technology, Packag Technol Sci, 26 (2013) 161-172.[5] P. Vera, E. Canellas, C. Nerin, Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials, Food Chem, 309 (2020) 125792.[6] H.-n.Zhong, Y. Zeng, L. Zhu, J.-j. Pan, S.-l. Wu, D. Li, B. Dong, H.-k. Li, X.-h. Wang, H. Zhang, J.-g. Zheng, The occurrence of Mono/Di-Chloropropanol contaminants in food contact papers and their potential health risk, Food Packag Shelf Life, 34 (2022) 101002.[7] H.-n. Zhong, Y. Zeng, D.-y. Yang, Z.-c. Wu, D. Li, H.-x. Sui, J. Gao, Y.-f. Chen, C.-H. Mo, Investigation of factors influencing the release of chloropropanols (3-MCPD and 1,3-DCP) from food contact paper, Food Addit Contam A, 38 (2021) 2036-2044.[8] J.J. Pan, Y.F. Chen, J.G. Zheng, C. Hu, D. Li, H.N. Zhong, Migration of mineral oil hydrocarbons from food contact papers into food simulants and extraction from their raw materials, Food Addit Contam A, 38 (2021) 870-880.[9] H. Li, L. Chen, X. Wu, S. Wu, Q.-z. Su, B. Dong, D. Li, T. Ma, H. Zhong, X. Wang, J. Zheng, C. Nerín, Characterization of volatile organic compounds in food contact paperboards and elucidation of their potential origins from the perspectiveof the raw materials, Food Packag Shelf Life, 37 (2023), 101062.
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产 成果简介: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。 2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。 在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。 课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 应用前景: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 使用UPLC/Q-Tof液质仪对食品包装纸和纸板中潜在迁移物进行鉴别和结构分析
    使用UPLC/Q-Tof液质仪的MSE功能和MassFragment软件对食品包装纸和纸板中的潜在迁移物进行鉴别和结构分析 Malcolm Driffield、1 Antony Lloyd、1 Emma Bradley、1 Dominic Roberts2 1 食品与环境研究所(英国约克) 2 沃特世公司(英国曼彻斯特) 应用优势 ■ MSE数据采集模式,可以一次进样同时得到母离子及其碎片离子数据,从而提高化合物鉴定的可信度。此外它还具有数据溯源的功能。 ■ ChromaLynx&trade XS软件可以对复杂混合物中的所有组分进行快速检测、鉴定和确认。用户可以通过精确质量数信息确定化学式,然后,在化合物数据库中进行搜索、确认结构式。 ■ MassFragment&trade 是一种智能型软件工具,能够自动匹配碎片结构,极大简化了数据处理,并且可在无标准品的情况下进行确认。 沃特世解决方案 ACQUITY UPLC® 系统 ACQUITY UPLC HSS T3色谱柱 SYNAPT® G2 HDMS&trade 系统 ChromaLynx XS软件 MassFragment软件 关键词 飞行时间质谱筛查、数据库搜索、结构表征、纸、纸板、食品包装、邻苯二甲酸酯 简介 回收纸和纸板有利于环境清洁,还可以缓解森林资源的压力、降低废物处理量。目前,进入回收环节的纸和纸板类型具有一定的限用管制。回收的纸和纸板最终可以用于要求较低的应用领域,例如报纸和杂志、纸板箱和纸板盒,以及要求较高的应用领域,例如食品包装。近年来,科学文献和媒体报道过一些有关回收纸和纸板用于食品包装时出现的问题。食品中检测到来自回收纸和纸板的污染物。印刷报纸和杂志的油墨中发现了矿物烃类化合物,1-2以及邻苯二甲酸盐,例如目录和手册所用粘合剂中的邻苯二甲酸二异丁酯,3以及印刷在纸和纸板外表面的光引发剂和其它成分。4这些类型的化学物在经过回收处理后仍会存在。 本研究是一个大型研究项目中的一部分,此研究项目将调查用于再生型食品包装的纸和纸板来源。5实验检测了四种不同类型的纸来源(纯白色打印纸、报纸和杂志、瓦楞纸板和食品包装纸),并确定了潜在的污染物。配备有高分辨率质谱检测器的超高效液相色谱(UltraPerformanceLC® )(UPLC® /HR-MS)是一种有效的工具,有助于鉴定食品接触材料和其它领域中的未知化合物。6精确质量数、同位素谱图和碎片信息(如果存在)可用于预测元素组成,然后可将其与含有其潜在结构的数据库进行对比,如果结构匹配,鉴定结果将更加可信。所使用的仪器必须有足够的灵敏度和精确度以确保能够准确鉴定化合物。 本文介绍了如何使用ACQUITY UPLC/SYNAPT G2 HDMS系统以及相关软件检测色谱峰、确定精确质量数并获得元素组分。实验将获得的分析结果与用户准备的含6000多种食品接触材料组分和污染物的数据库进行对比,通过MSE获得的碎片信息,在未使用确证标准品的情况下确定了其中一个待分析的化合物的化学结构。 实验 样品描述 从当地超市采购一组用纸和纸板包装的食品,将食品从包装中取出,切成小块,并充分混合。样品包括早餐谷物、意大利面、冷冻鱼、蛋糕和其它烘焙产品。将一部分混合的样品(5 g)、内标物d10-苯甲酮(100 &mu L,1 mg/mL)和乙醇(20 mL)加入样品瓶中,盖好盖子并震摇过夜。取一部分上清液直接进行分析。 UPLC条件 系统: ACQUITY UPLC 色谱柱: ACQUITY UPLC HSS T3(部件号176001133)150× 2.1 mm,1.8 &mu m 柱温: 45 ℃ 流速: 0.45 mL/min 进样体积: 1 &mu L 流动相A: 水+0.1%甲酸 流动相B: 乙腈+0.1%甲酸 梯度: 时间(min) %A %B 0.0 90 10 15.0 0 100 18.0 0 100 18.1 90 10 20.0 90 10 MS条件 MS系统: SYNAPT G2 HDMS 采集模式: MSE电离模式: 电喷雾正离子 检测的质量数范围: 50至1200 Da 锥孔电压: 25 V 毛细管电压: 1.0 kV 脱溶剂气温度: 500 ℃ 源温度: 120 ℃ 碰撞能量: 低能量 CE = 6 eV, 高能量 CE = 15 - 35 eV 碰撞气体: 氩气 LockMass: 亮氨酸脑啡肽,m/z 566.2771 数据管理: ChromaLynx XS和MassFragment软件 结果与讨论 混合食品包装样品的乙醇提取物的基峰离子色谱图(BPI)如图1所示。 图1. 纸和纸板食品包装乙醇提取物的基峰离子色谱图(低能量电喷雾离子化正离子模式)。 ChromaLynx XS软件可以反卷积解析色谱图,检测出现的所有色谱组分,并为每种确认的组分生成精确的谱图。这些操作均在&ldquo 目标模式&rdquo 下进行,将生成一系列单个峰,然后软件会将这些峰与包含潜在结构的数据库进行对比。软件提取了1380个组分,比TIC图中目测到的要多。充分显示了该软件在极低浓度条件下检测组分的优势ChromaLynx XS将提取目标化合物的准确质谱图,确定它们是否存在。 用户的数据库包含食品接触材料中可能存在的6000多种已知成分、潜在污染物以及衍生和分解产物。列表包括化合物名称和化学式,软件将在其中进行搜索并报告匹配结果。如果具有用标准品进行过分析,则该化合物的保留时间和碎片离子信息也会包含在数据库中。图2为ChromaLynx XS处理数据的示例,包括:(A)总离子流图、(B)目标物列表、(C)提取离子色谱图和(D)13.6min处,峰的相关质谱图,这是一个完整的鉴定过程示例。本样品用含6000种化合物的库进行筛查,最终根据精确质量数总共鉴定出45种化合物。在没有分析标准品的条件下,这些鉴定结果由其同时采集的碎片信息确认。 图2. ChromaLynx XS在13.6min处输出的质谱图,与数据库中的对二甲氨基苯甲酸异辛酯的匹配。A) 总离子流色谱图、B) 目标物列表、C) 13.6min处的提取离子色谱图(m/z 278.2122)和D) 13.6min处色谱峰的质谱图(低能量)。 图3显示:其母离子的质荷比为278.2122,化学式为C17H27NO2。这与数据库中的对二甲氨基苯甲酸异辛酯相匹配,该化合物可以用作喷涂至纸和纸板底物的紫外光固化油墨中的胺助引发剂。[M+H]+母离子的理论精确质量数为m/z 278.2120,与检测结果之间仅存在0.7 ppm的差异。在分析食品包装样品时,并未分析对二甲氨基苯甲酸异辛酯的确证标准品进行鉴定确认。SYNAPTG2 HDMS的运行模式为MSE采集模式,可以一次进样,同时收集该化合物的母离子及碎片离子信息,从而提高了化合物鉴定的可信度。 图3所示为低能量和高能量质谱图,在较高能量下,母离子的强度降低,生成碎片离子。 图3. 13.6 min处色谱峰的质谱图。A) MSE高能量谱图:显示碎片离子,B) MSE低能量谱图:显示分子加合物[M+H]+。 与分子一样,碎片离子的精确质量数也可用于确定潜在的元素组成。MassFragment软件将利用这些潜在的元素组成,根据建议的化合物化学结构(例如对二甲氨基苯甲酸异辛酯)来确认该结构。该软件使用系统化的键断裂信息和一套计分系统,此系统以键断裂的类型和发生的可能性为基础,信息输入程序的过程简单。.mol文件可以从ChemSpider商业库中下载,也可从最常用的化学绘图包得到,然后将其与提供碎片离子信息的MSE质谱图一起导入即可。 根据用户的具体需要,可以对参数进行相应更改。质量数窗口的限值范围非常重要,使用的范围越小,结构匹配的可信度就越高。在本示例中,使用的值是+/- 1 mDa。图4是软件针对13.6min处色谱峰所生成的结果,系统建议的化合物为对二甲氨基苯甲酸异辛酯。 图4. MassFragment输出的报告,其中所示为五个碎片离子的建议结构,增加了鉴定结果的可信度。 所测的五个碎片离子均验证了建议的母体结构&mdash &mdash 对二甲氨基苯甲酸异辛酯中不同键断裂后所得的离子的可能结构,这一结果提高了13.6min处色谱峰鉴定的可信度。图5所示为标记有MassFragment结构的MSE质谱图。此化合物很可能来自纸和纸板上的油墨,7相似化学类型的化合物经过回收处理后也仍会存在。现在,碎片离子和保留时间均与此化合物匹配,它们被反馈到数据库中,从而使得后面的鉴定更加可信。 图5. 13.6 min处色谱峰的MSE质谱图,标记有MassFragment鉴定结果。 结论 本实验采用具有色谱分离、高分辨率地测定准确质量数功能的ACQUITY UPLC/SYNAPT G2 HDMS系统,对食品包装纸和纸板提取物进行分析。此分析可对之前未知的、可能会迁移到食品中的化合物作出值得信赖的鉴定。使用MSE数据采集模式,可以同时收集母离子和碎片离子的信息,采集的数据经过ChromaLynx XS和MassFragment软件的处理后,可获得具有高可信度的鉴定结果。 参考文献 1. Dima G, Verzera A , Grob K. Migration of mineral oil from party plates of recycled paperboard into foods:1. Is recycled paperboard fit for the purpose?2. Adequate testing procedure.Food Additives and Contaminants Part A.2011 28(11): 1619-1628. 2. Vollmer A, Biedermann M, Grundbock F, Ingenhoff JE, Biedermann-Brem S, Altkofer W, Grob K. European Food Research and Technology. 2011 232:175- 182. 3. Gartner S, Balski M, Koc h M, Nehls I. Analysis and migration of phthalates in infant food packed in recycled paperboard.Journal of Agricultural and Food Chemistry. 2009 57(22): 10675-10681. 4. Koivikko R, Pastorelli S, deQuiros ARB, Paseiro-Cerrato R, Paseiro-Losada P, Simoneau C. Food Additives and Contaminants Part A. 2010 27(10): 1478- 1486. 5. Driffield M, Lloyd AS, Lister L, Leak J, Speck D, Bradley EL.Manuscript in preparation. 2013. 6. Driffield M, Bradley EL, Castle L, Coulier L. Identification of unknown migrants from food contact materials.Mass Spectrometry in Food Safety, Methods and Protocols. 2011 357-372. 7. Food Standards Agency (2011) Food Survey Information Sheet 03/11. Migration of selected ink components from printed packaging materials into foodstuffs and screening of printed packaging for the presence of mineral oils.
  • 定制光纤品牌“飞博盖德”为双子南座望远镜设计顶级光纤阵列
    飞博盖德为双子南座天文望远镜制造光纤阵列。2016年2月18日,美国新泽西州的斯特灵市传来消息,英国豪迈的定制光纤品牌“飞博盖德”(www.fiberguide.com.cn)已经在新双子南座天文望远镜(GHOST)中制造光纤阵列。澳洲天文台(AAO)是该项目的建造商和领导机构。飞博盖德的光纤阵列采用了最先进的制造技术,此次项目中的光纤阵列采用的就是这项技术。由飞博盖德生产的高质量、高性能的光纤阵列成为该项目成功的关键。届时,双子南座天文望远镜将配备双目标大面积全波长光谱望远镜,其覆盖范围介于363~950 nm,分辨率介于50000~75000。新的双子南座天文望远镜由澳洲天文台建造。每根飞博盖德的光纤均携带一部分来自星体的光束,从而尽量减少了因大气模糊造成的损失。通过采用飞博盖德专有的制造技术,以及其在天文学、安全和数据通信类型光纤阵列的丰富经验,可以减少传统光纤的指向误差和插入损耗等问题。新的天文观测仪器可使观察者更高效地观测夜空。双子南座天文望远镜的项目负责人安德鲁?舍伊尼斯说:“双子南座望远镜是世界上最大也是最成功的世界级双子望远镜仪器,而飞博盖德的光纤一直是澳洲天文台在望远镜科技发展中不可或缺的组成部分。一旦该项目交付,双子南座望远镜将为我们提供更多了解宇宙的机会,例如发现与研究太阳系外行星”。双子南座天文望远镜能够为了解双子南座天空提供无与伦比的便利,并进一步加强认识宇宙的机会。欲详细了解飞博盖德的应用于天文的产品,或光纤阵列和光纤束建设的专门知识,请访问飞博盖德的中文官方网站。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂。欲了解更多公司信息,请关注英国豪迈官方微博(www.weibo.com/halma)和官方微信(HALMACHINA)。业务合作联系人:谈理(Teddy Tan)飞博盖德大中华区销售经理电话:021 - 60167698邮箱:ttan@fiberguide.com媒体联络联系人:陆瑶 (Lucas Lu)英国豪迈中国区公关经理电话:021 - 60167667电邮:lucas.lu@halma.cn
  • 关于征求《蜂窝纸板箱》国家标准草案意见的函
    各有关单位:   根据国家标准化管理委员会《关于下达2012年第一批国家标准制修订计划的通知》(国标委综合[2012]50号)要求,由全国包装标准化技术委员会归口的国家标准《蜂窝纸板箱》(计划编号:20120293-T-469),通过起草组专家的认真研讨、仔细修改,形成了征求意见稿,现在中国包装联合会网站上(http://www.cpf.org.cn)广泛征求意见。请各有关单位结合实际,对征求意见稿提出意见和建议,并于2013年11月23日前将意见以E-mail或传真的方式反馈到全国包装标准化技术委员会秘书处。   联系人:周琳   电话:010-65839067、13811837268   传真:010-65839070   E-mail:namelessbaby@sina.com 附件:《蜂窝纸板箱》(征求意见稿)国家标准.zip   二○一三年十月二十二日
  • 伊朗国家天文台望远镜首获观测图像
    天文学家近日在德黑兰宣布,耗资2500万美元伊朗国家天文台(INO)看到了“第一缕曙光”,其3.4米口径的世界级光学望远镜走出了去年的建设“阴霾”,正式投入运行,并获得了首张图像。这是伊朗科学界的一个重要里程碑。“这一刻,我们等了太久。”德黑兰基础科学研究所(IPM)天文学家Habib Khosroshahi说。INO位于伊朗中部3600米的加尔加什山上,其科学之旅始于20年前,当时面临着巨大的挑战。“项目刚开始时,似乎只是个梦。因为伊朗此前没有尝试过作这种规模的事情。”英国剑桥大学天文学家、INO国际咨询委员会主席Gerry Gilmore表示。去年,一些前INO的工作人员表达了对INO设计变更是否会影响其性能的担忧。“现在这些疑虑已经消除了。”INO国际咨询委员会委员Lorenzo Zago表示。据《科学》报道,INO于9月27日打开其穹顶进行校准,第二天晚上拍摄了一对距离地球约3.19亿光年的星系——Arp 282的图像。该图像分辨率为0.8角秒。第二张图像的分辨率则为0.65角秒,接近INO所在地大气条件的所能达到的分辨率极限。目前,工程师们还要完成诸如集成软件、微调主动学器件、安装第一台科学仪器——高质量成像相机等任务。Khosroshahi还希望与国际团队建立合作关系,给INO安装最先进的仪器。
  • Ready, 2024 国抽混标定制
    2024年的国家食品安全监督抽检即将开始!阿尔塔科技为您的国抽检测助力,提供定制混标解决方案,满足检测任务个性化需求,根据具体国抽实施计划,可选择不同组份、溶剂类型、浓度、包装规格,提供定制化服务!1)一针进样检测多种参数,高效便捷2)混标均在ISO17034质量管理体系下制备,保证所有组分的均匀性和稳定性,并有完整的数据支撑,可溯源3)证书包含浓度的测量不确定度以及溯源性信息4)400-6666-027热线,”007技术支持团队“,随时解答标品使用中的问题5)现货供应混标定制服务-定制混标组分 -用户可以根据自己的项目需求,并根据相应的检测方法列出所需的检测参数,阿尔塔会以用户实际需求组分提供定制服务。- 定制混标溶剂类型 -按照检测方法选择合适的溶剂类型,或参照化合物在不同溶剂中的溶解度和稳定性来进行方案定制与调整。- 定制特殊包装规格 -常规标液包装规格是1mL,定制的混标产品有多种规格供选择,包括:0.5mL*2、10mL等。- 定制不同浓度的混标组分产品 -满足不同的检测方法和化合物在仪器上的响应度对同一混标内各组分差异化浓度的个性化需求。了解更多定制详情,请联系我们关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 安捷伦科技针对新一代测序的定制靶向序列捕获试剂盒序列范围扩展5 倍,碱基覆盖可高
    安捷伦科技针对新一代测序的定制靶向序列捕获试剂盒序列范围扩展5 倍,碱基覆盖可高达34 Mb 2011 年4 月12 日,北京 安捷伦科技公司(纽约证交所:A)今日宣布推出用于新一代测序(NGS) SureSelect XT靶向序列捕获系统的最新定制试剂盒,该试剂盒可捕获高达34 Mb 的目标基因组区域。 新版定制试剂盒的序列覆盖范围比旧版扩展了5 倍,这使得研究人员能够将研究范围从人类外显子扩展到对动物、微生物、植物及其它生物体中较大的目标区域进行测序,目前尚没有针对此类研究的商业化预定义或目录版的靶向序列捕获试剂盒。 现在研究人员可以利用目录试剂盒或定制试剂盒对高达34 Mb 的序列进行研究,这种撒大网的方式有利于发现SNP、插入/缺失以及拷贝数变异。然后他们可以设计有针对性的自定义序列捕获文库,用于后续的大量样品研究。安捷伦提供eArray在线靶向序列捕获和芯片设计工具,可帮助用户设计并订购 SureSelect XT 定制版靶向序列捕获试剂盒(可选 10 到5000 次反应,及适用于各种主流 NGS 平台的格式)。 安捷伦SureSelect 平台市场总监Fred P. Ernani 博士说:&ldquo 安捷伦在定制长链寡核苷酸制造方面的出众能力再加上eArray 设计工具的强大功能,能够为研究人员带来卓越的具有高度灵活性且可定制的NGS 靶向序列捕获系统。现在,安捷伦能够为研究人员提供 200 Kb 到34 Mb 的大范围定制捕获试剂盒,几乎适用于任何规模的研究。&rdquo 随着测序结果的不断产生,研究人员可以不断采用 SureSelect 和eArray 工具反复进行快速设计和完善。现在,SureSelect XT 用户拥有全面的文库设计选择,从可直接使用的目录版试剂盒到结合了目录版和定制版内容的复合设计试剂盒,再到完全定制设计的试剂盒。 拥有DNA 靶向序列捕获和RNA 靶向序列捕获的SureSelect XT 产品线成为应用范围最广的新一代靶向测序技术平台。定制试剂盒的不断发展使得早期使用的客户能够捕获超过60 Mb 的序列。 靶向序列捕获工作流程 靶向序列捕获使研究人员可以仅对目标基因组区域(而非整个基因组)进行测序,从而简化NGS工作流程。结合领先的新一代测序系统的更高速度,SureSelect XT的多重检测支持功能使得研究人员在每次实验中都能更全面地认识更多样品的基因组,这在过去是难以实现的。文库制备和靶向序列捕获流程的瓶颈已经得到有效解决。 为进一步提高处理通量,安捷伦还提供了集成式工作站,用于自动化完成SureSelect XT文库制备和靶向序列捕获工作流程。可针对多重测序对样品进行索引,且所有试剂都适合自动化操作。不久之后,安捷伦的Bravo 自动化液体处理系统所支持的自动化方案将增加RNA 捕获自动化统包方案。 SureSelect 靶向序列捕获平台作为基因发现的核心工具,现已被50 多篇同行评审的论文所引用。《科学》杂志12 月17 日刊登的2010 年十大科学突破中,其中两项突破&ldquo Reading the Neandertal Genome&rdquo (解读尼安德特人基因组)和&ldquo Homing In on Errant Genes&rdquo (外显子组测序/罕见疾病基因)均采用了本系统。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500名员工为 100多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 国家天文台超大型CCD控制器研制技术取得进展
    p   经过三年努力和两轮流片试验,超大型电荷耦合元件(CCD)控制器研制的关键元件之一,CCD控制器偏压及时钟驱动电路ASIC,日前在中国科学院国家天文台天文光学与红外探测器实验室研制成功,使得国家天文台在CCD控制器的研制技术上位居国际先进水平,为我国独立研制超大规模的CCD系统奠定了基础。 /p p   随着光学望远镜向更大口径和更大视场发展,相应的CCD探测器的规模需求也提高到了十亿、数十亿像元甚至更大,这给其控制器的研制带来了巨大挑战。CCD探测器要达到天文观测要求的优良性能,除了CCD器件本身性能优异以外,其工作所必需的控制器的性能指标至关重要。经过各国天文探测器技术人员多年努力,天文观测使用的CCD控制器在图像像质指标上已经达到目前技术的极限。然而当CCD像元规模达到数十亿量级时,传统CCD控制器技术却遇到了困难。这是因为以传统技术完成数十亿像元的CCD控制器,仅其体积就将达到数十立方米,更遑论众多模拟量数据通道之间的串扰控制、巨大的功耗以及观测环境的温控等问题。因此,支持数十亿像元及更大规模的CCD控制器技术成为国际上天文光学探测器研制的最大技术难题和技术发展方向。增加电路的集成度以减小体积,是目前唯一的解决办法,国际上各大天文CCD实验室纷纷开始研制CCD控制器专用集成电路ASIC。 /p p   为了满足我国大型天文光学红外望远镜的需要,在国家自然基金和天文财政专项的支持下,在国际知名CCD控制器电子学专家魏名智的技术领导下,国家天文台光学与红外探测器实验室开展了CCD探测器ASIC技术的研究。研究方案是CCD控制器的主要电路研制成为两片ASIC芯片,即CCD控制器偏压及时钟驱动电路ASIC(CDA)和CCD信号处理电路ASIC(SPA)。自2014年经过三年的研究实验,日前新一轮的CDA流片经实验室测试已证明完全符合设计要求,从而表明国家天文台拥有自主知识产权的CCD控制器偏压及时钟驱动专用集成电路CDA研制成功。 /p p   CDA芯片提供CCD运行需要的所有电压和驱动脉冲,是CCD控制器的重要组成部分。此次研制的CDA芯片继承了天文CCD控制器中的经典——UCAM控制器的优良性能品质,也是通用性很强的芯片,其灵活性使得它适用于目前世界上绝大多数的CCD芯片和CCD控制器。它可以和正在研制的SPA组成大规模集成化的多CCD系统或超小型的单CCD控制器,也可作为一个部件单独集成到任何一个CCD系统中去。高度集成化使CCD控制器性能更可靠稳定,功耗体积更小,更易研制。目前,CDA芯片的版本已是可供批量生产的版本,易进行低成本的重复生产,为国内外科学级CCD系统的研制提供低成本、高性能、高集成度的专用芯片,开辟了新的研发手段。 /p p   CDA的研制是我国大型CCD控制器的研制技术的进步,为实现空间站光学巡天望远镜、大型光学红外望远镜(12米口径)、南极大视场光学红外望远镜、国际30米光学红外望远镜等大型CCD控制器的研制目标展开了光明前景。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/f99f6cb9-0b1a-43d1-bb01-87cd6aa202ed.jpg" / /p p style=" text-align: center " strong CDA2芯片及其性能测试电路 /strong /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201709/insimg/78734153-701e-4628-aacc-83d6dd1cb1e9.jpg" / /p p style=" text-align: center " strong CDA和SPA各一片即可替代图中的三块电路板 /strong /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制