当前位置: 仪器信息网 > 行业主题 > >

菲涅尔衍射实验装置

仪器信息网菲涅尔衍射实验装置专题为您提供2024年最新菲涅尔衍射实验装置价格报价、厂家品牌的相关信息, 包括菲涅尔衍射实验装置参数、型号等,不管是国产,还是进口品牌的菲涅尔衍射实验装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合菲涅尔衍射实验装置相关的耗材配件、试剂标物,还有菲涅尔衍射实验装置相关的最新资讯、资料,以及菲涅尔衍射实验装置相关的解决方案。

菲涅尔衍射实验装置相关的论坛

  • 关于菲涅尔衍射图象

    我在看书时,想到一个问题,为什么小孔的欠焦像出现白边,过焦时是黑边呢?好象白边在孔的几何影内,黑边在孔个几何影外。具体也不太肯定。一般用考纽图来解释菲涅尔衍射图象。但欠焦与过焦的差别在哪里呢?问题可能讲得不太清楚。不知哪位能给个解释?谢谢!

  • 测量材料动态的3D形貌,效果请看视频,基于菲涅尔衍射的数字全息重建技术

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=薄膜形变实时测量,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_01_1546_3.gif!w384x216.jpg[/img][img=MEMS面内面外运动测量,201,220]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_02_1546_3.gif!w201x220.jpg[/img][/td][/tr][/table]

  • 一组衍射值的分析

    我得到一组电子衍射算出的d值,急于分析结果。日以继夜闭关忙忽了好几天,下载试验了n种软件,还是没能找出结构,别无它法,只能在这里求高人赐教,如有回复,万分感谢!样品是极小结晶的硫化镍,SEM测试原子比例大概是: Ni:S=1.1:1,但很不精确.这些d值是好几张相似多晶衍射图的平均值。我贴了其中一张衍射图在下面。如有高人帮忙,万分感谢!2.243强1.972很强1.8483很强1.5433弱1.3709宽线1.1654弱1.05强0.9673很弱0.8568很弱

  • 【讨论】X射线衍射仪的搬迁及实验室布置?

    单位要搬迁,于是设备也要迁移,实验室要重新布置,想一想,对于衍射仪及其实验室来说这真是个问题,不知大伙有没有这方面的经验,在此互相学习一下。 X射线衍射仪的整套设备我觉的可以分成三大部分:1、冷却部分:我使用的是压缩机水冷却,又噪音,而且会产生热,唉,说了几次换分体式(如分体空调一样),可惜没成行。2、衍射仪部分:嘻嘻,大家都知道,会有X光。3、计算机部分:我们主要在此工作。 此外,还要有样品制备处理。 以上,对于一个试验室,应该怎样划分空间,尤其计算机部分和衍射部分的安全距离最好是多少呢? 对于衍射仪搬迁要注意什么,设备要怎样包装?

  • 【讨论】衍射实验技术接龙游戏[每位有效回复者将得到本人赠送的10个积分,两位回复者每人已经得到10分]

    系统地表述知识也是学习的一种方法。我们不妨一起来做一个主题。大家来说衍射仪和衍射技术。只要你找到一个可以说话的主题,把你的知识,经历,经验,教训说出来,你就可以接上一段。比如你对衍射仪某个部分的了解,用衍射方法解决了你的某个问题。一种特殊的操作方法。如果你实在没话说,就不说好了,不要说“顶”,“好”之类的空话。好吗?为了鼓励大家的积极性,将从本人的积分中赠送每位参与者10个积分。先已放进来100分了,如果有更多的参加,将继续增加奖励分。我先来:一 衍射光源X射线管就象一个真空二极管,一头是阴极,另一头是阳极。阴极就是金属钨丝,阳极也是一块金属,最常用的就是铜,也有用铁,钴,钼的。如果给钨丝通上电流,就会产生电子。如果在阴极和阳极之间加上一个高电压,阴极产生的电子就会作定向运动,从阴极飞向阳极。电子在运动过程中在电场的作用下加速。当碰到阳极后,电子的动能损失。一方面使阳极发热,另一方面会产生X射线。X射线的产生效率非常低,一般只有1%的电子能量能转换成射线。99%的能量变成了热量,使得阳极在极短的时间内能被熔化掉。所以,我们得给阳极通水冷却。记得原来有一台60年的菲利普衍射仪。因为年纪有点大了,老是缺牙少胳膊的。但人家就是还能用。水压报警坏了,干脆拆掉,装个门铃来报警。但是,门铃只能报告是不是停水了,不能自动关高压。所以得有个人守着。有一天,一个研究生做实验时要如厕了。如厕回来的路上正好碰到个人说上了两句。回到实验室时,发现光管不亮了。因为正好这会停了一下水。如果阳极固定不动,电子老射到阳极的同一个地方,冷却水的冷却效果不是很理想。反之,如果阳极转动,电子则在不同的时候射到阳极的位置是不同的。有一个冷却时间来接受下一次电子轰击。因此,就有了固定靶和转动靶两种光管。转动靶的光管功率因此可以提高很多。目前,固定靶的功率大约是2KW,而转动靶的功率一般是18KW。因为转动靶不能在出厂时做成真空密封,因此,衍射仪上就多出来一个部件,即真空系统。需要给光管不断地抽真空。真空系统一般由两级真空来维持,即机械泵和分子泵。分子泵的转速可高了。如果突然让它停下来,比如说突然停电,可不好。弄不好会让分子泵的叶片损坏,转不动了。使用高功率光管的好处有很多。一个是因为功率高,光强度大,一般计数都在几万或几十万以上,图谱可好看了。因为线条光滑得多。二是对于微量相的考察会好一些。如果使用较慢的扫描速度,加上高功率光管。衍射强度计数高。微量相会有明显的衍射峰出现。X射线衍射方法并不能证明某个相的不存在。这是因为含量太低时,物相的衍射峰就可能不出现。一般衍射仪要求含量在10%左右或更高。高功率的衍射仪会好一些。比如,对于硅,含量在1%左右是可以看到衍射峰的。三是不用换光管。一般光管只能用个三年,一支进口的光管也是几万人民钞。弄坏了个可心痛了。转动靶的光管只需要揭开盖子,换根灯丝(阴极)就好了。四是数据质量可好了。现在有很多人在做全谱拟合,需要高精度高稳定度高强度的衍射数据。使用高功率的衍射仪完全可以达到要求。如果使用固定靶测量的数据。可靠性可不高。为了获得相同的效果,必须延长收谱时间。可费心了。还有一种更高功率的真空,当然不是光管。是同步辐射装置。功率同X射线管可不是同一数量级的。大得没法比。它可以直接穿透涂层(比薄膜厚多了),可以测量好深好深位置的东西。真是太好了。我们国家现在已经有好几个地方可以申请做实验了。如果选题好,说不定不但不要你的实验费,帮你出车马费,还会请你吃饭呢。除了X射线可以做衍射外,电子衍射大家肯定都知道。TEM不是可以打斑点吗?另外还有中子衍射。方法与X射线衍射差不多。但是,功率不高。不过,人家可以测磁矩呀。我说完了,下面谁来?讲完了,记得给下面的人出题目。下一主题可选:1)样品制备2)光路3)辐射损伤与防护

  • 【求助】如何分析非晶衍射图

    【求助】如何分析非晶衍射图

    附件图中几个为非晶衍射图,可是它们之间有区别(有的只有漫散的中心斑点,有的有弥散的一个或多个衍射环),是什么原因产生的?反应到结构上有什么区别?[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807141058_97947_1698256_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807141058_97948_1698256_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807141059_97949_1698256_3.jpg[/img]还有两张图,不知道是非晶还是多晶[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807141100_97950_1698256_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807141100_97951_1698256_3.jpg[/img]如果是多晶(比上面那几幅非晶衍射图衍射环要好看多了),可以通过衍射环的半径平方比确定结构,并计算面间距,但明显衍射环宽化了。如果是非晶,那些衍射环的半径有什么意义,和前3张非晶衍射图又有什么区别。没做过非晶衍射,书上关于这方面的好像没有,请大侠帮忙解释一下,或者推荐点相关的书籍资料。谢谢了!

  • 推荐X射线粉末衍射仪等招标

    X射线粉末衍射仪等招标公告 (权限申请中)1 自动X射线粉末衍射仪 X射线粉末衍射仪主要用于研究物质晶体结构、物相分析、测定点阵参数等。主要技术规格1.高稳定X射线发生器1.1 额定功率:3KW, 最大管电压:60KV, 最大管电流:50mA1.2 稳定度:≤±0.01%(电源电压浮动10%)1.3 管电压和电流升降由计算机自动控制1.4 高压电缆:100KV介电强度,长度2米1.5 保护及报警装置KV过高,KV过低保护 整机过电流保护:20AX射线管功率超限保护 冷却水断水保护整机机柜全部安全防辐射保护,带窗口连锁,在防辐射外罩外射线剂量低于2.5μSv/小时2.X射线管2.1Cu 靶(国产),2.0KW,1×10mm焦点3.测角仪测角仪方式:卧式,水平扫描扫描半径:180mm准确度:±0.01° 狭缝:发散狭缝,接收狭缝,防散射狭缝 滤片:Ni、Fe4.X射线强度测量系统检测器:闪烁计数器 计算机自动控制 线性脉冲放大幅度分析器高压稳压电源5操作控制系统5.1 微型计算机:品牌PC机,17’彩显。5.2 打印机: A4 HP激光打印机5.3 前级控制机,计算机串行接口,RS485通讯6.操作分析系统及应用分析软件(Windows版本)BD2000衍射仪操作系统 BD2000衍射图谱分析系统图谱分析 数据查询6.1 粉末衍射分析应用软件定性物相分析及PDF卡片库(1—89集) 定量物相分析未知衍射图指标化 晶胞参数精密修正6.1.1 多重峰分离(峰形分析)衍射峰Kα2扣除7.冷却水循环系统分体式结构:压缩机壁挂室外 制冷量每小时3200W 1 台 2 光斑分析仪 1. M2因子测量系统光谱范围:250-2400nm • 分析激光束的传输特性,预测激光束的聚焦能力• 可测量脉冲或连续激光• 高精确度、高稳定性、全自动快速测量• 可直观地目视检测不同位置光束外形变化• 直接得到M2因子、光束发散角、束腰半径和位置、光斑分布、对称性等参数• M2-200-ACC-BB2. LBA-710PC-D 光束分析系统• 含图像采集板卡和测试分析软件,齐全的软件功能和强大的数据处理能力• 可测量连续和脉冲激光• 二维/三维显示光束横模(光束轮廓和能量分布)• 峰值功率及峰值位置 光斑大小及光斑椭圆度• 光束发射稳定性和均匀性 与高斯光束匹配情况分析• 光束发散角测量• LBA-710PC-D 附件:1)数字硅CCD-6612摄像仪及数据线光谱范围:190-1100nm 像素数:650×494 像素大小:9.9×9.9μm2)光束采样/分析系统 10位数字采集卡及光束质量分析测试软件3)光采集与可调光束衰减器 石英分束衰减器及不同衰减程度的中性密度滤波片组 工作波长:400-2400nm 1 台 3 单光子计数实验系统 主要技术指标 光谱采集范围: 360-650 nm积分时间:0-30 min(1ms/档,可调) 最大计数:≥107域值电压:0-2.56 V(10mV/档,可调)暗 计 数:≤30CPS/S (探测器CR125 -20℃) 2 套顺祝 商棋刘飞------------------------------------------------------------北京智诚风信网络科技有限公司地址:北京海淀区五道口华清商务会馆1606室邮编:100084电话:86-010-82863476-25 13521383769传真:86-010-82863479Email: liufei@bidchance.com网址: http://www.bidchance.com

  • 怎样区分二次衍射一次衍射斑点呢?

    怎样区分二次衍射一次衍射斑点呢?

    对镁铝合金样品做传统的电子衍射时,要获得取向关系时,就要设法拍摄同时含有基体和析出相的两套衍射普,这时候,可能由于析出相与基体的交互作用、样品厚度过厚、样品表面氧化等问题,往往伴随着二次衍射的发生,这对我正确标定衍射斑带来了一些问题。衍射普里面不仅有镁基体的一次衍射,析出相的一次衍射,也有以镁基体较强的一次衍射作为析出相的入射束而产生的二次衍射。造成衍射普异常复杂。 问题是,我们在对析出相进行标定的过程中,该如何去鉴别哪些是析出相的衍射斑点,哪些又是由于二次衍射而带来的斑点呢? 看过清华的张文征老师的文章讲到过关于二次衍射的模拟,进而对衍射普进行合理解释。如果要模拟的话,需不需要哪款软件来模拟呢?关于二次衍射模拟事例详情见下图。(取自张文征教授,Philosophical Magazine Letters,2013)http://ng1.17img.cn/bbsfiles/images/2015/01/201501122123_532042_2762168_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/01/201501122124_532043_2762168_3.png

  • 【求助】电子衍射确定未知布拉斐点阵

    题目1:由选区电子衍射实验测定未知晶体的Bravais点阵类型和点阵参数,并标定衍射斑点的晶面指数。选区电子衍射实验结果如下图所示, 测量结果如下表所列,相机常数=20.11 mm.nm。Table 1: Measured values about distances and azimuths of SADPNo.R1(mm)A1( 。)R2(mm)A2( 。)R3(mm)A3( 。)x(。 )y(。 )G与H相同7.27.8H45.3421.5745.25143.2444.5882.507.29J44.7122.2644.60141.7545.0081.89-3.786.05K44.3821.9445.40140.8445.6682.60-143.8L49.4123.5746.93147.9045.2782.991123.87M45.2020.8944.67138.6346.6979.26-10.1713.91T49.1623.2548.47149.2044.3885.14-20.05-20.35V50.0022.4053.69151.1944.7390.90-31.2-19.6前面是已知条件 要用编程的方法完成去顶布拉斐点阵 我就是不明白 下面的衍射斑点的方位角不知道该如何应用。请高手指教[~90608~]

  • 关于二次衍射

    我想请问下,如图所示,我感觉D1的衍射束相当于就是第二相的透射束,然后发生二次衍射形成D3,所以D3的斑点应该是以D1斑点为中心,在D1斑点四周吧?怎么看图是以D2斑点为中心形成的二次衍射斑点呢?[img=,690,558]https://ng1.17img.cn/bbsfiles/images/2021/04/202104280948020285_6173_5253538_3.png[/img]

  • 激光粒度分析中的二次衍射

    激光粒度分析中的二次衍射

    激光粒度分析中的二次衍射任中京(山东建材学院,济南,250022) 摘要本文计论了双层颗粒群产生的二次衍射,并给出了二次衍射复场分布的表达式,同时讨论了二次衍射与颗粒浓度之间的关系,找到了抑制二次衍射的最佳浓度。本文结论对于提高激光粒度仪的测量准确度具有重要意义。关键词激光:粒度分析;二次衍射引言各种激光粒度分析仅均是通过检测颗粒群的衍射谱来分析颗粒大小及其分布的。为获得正确的衍射谱。需要颗粒群散布在同一平面上。而事实上,颗粒群在检测区内很难呈二维分布。对于动态颗粒群更是如此。只要颗粒群不满足二维分布的要求,那么经颗粒衍射的光,就有可能再次发生衍射.我们把此种衍射称为二次衍射。在激光粒度分析中,二次衍射是测量误差的主要来源。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441910_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441911_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441912_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441913_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441914_388_3.jpg我们注意到衍射谱归一化总能量恰好等于入射光强度I0,这是物空间与频谱空间能量守恒的结果。 (18)式定量地给出了衍射谱中各种成分之间的比例关系,为我们研究抑制二次衍射的途径提供了依据。3 抑制二次衍射的最佳浓度从(18)式可见,在衍射谱中有三种成分同时共存,它们对粒度分析的作用各不相同:透射项对粒度分析没有贡献,应尽量减少;一次衍射谱是粒度分析的依据,要尽可能增强;二次衍射谱的作为一种宽带噪声叠加在之上,应尽力抑制。此三者在谱面上的分布如图 4所示。为了找到一个抑制二次衍射的最佳比例,我们把各项强度随 K值变化的规律及典型值列于表2,取I0=I,并绘出曲线。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281101_441915_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281101_441916_388_3.jpg4 结论综上所述,二次衍射谱是一次衍射谱的卷积,是叠加在一次衍射谱上的宽带噪声。二次衍射强度正等于颗粒在光轴方向重叠的几率。理论分析表明:当颗粒在分散介质中的体积浓度C0=0.17时,二次衍射可以得到有效地抑。本文讨论仅限于二次衍射,对于三维分布题粒产生的高次衍射,有待进一步研究。参考文献l J.W.顾德门.付立叶光学导论。北京:科学出版社,19792 REN,Z.J.eta1.PARTICUOIAJGY,1988

  • FEI的镜子图像与衍射有90度旋转角

    我校有两台Fei的透射电镜,图像和衍射图都有90度的旋转角,这个可以调回来吗?我不是管理人员,只是在上面操作过,开始不知道情况,做出实验结果疑惑了半天,现在就这样用着,很别扭。对日本电子的电镜做的多些。

  • 【分享】X射线衍射分析的实验方法及其应用

    【分享】X射线衍射分析的实验方法及其应用

    自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在 各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。[B]1、 X射线衍射原理[/B]  1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理 。衍射线空间方位与晶体结构的关系可用布拉格方程表示:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191408_119327_1703280_3.jpg[/img]

  • 如何做第二相衍射

    两相材料中,基体相尺寸约为0.4μm, 第二相的尺寸小于20nm,怎么样获得第二相衍射?操作中基体相衍射容易获得,但看不到第二相是不是和光阑的选择有关?

  • 【资料】X-射线衍射法进行物相分析实验

    学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。学习和掌握用X射线衍射谱计算多晶体的晶格常数

  • 【转帖】DNA衍射图谱?

    用X射线照射DNA分子,观察射线在照相底片上产生的点子(衍射花样),计算点子的分散角度等(每一点子的分散角度代表DNA分子的一个原子的位置或若干原子团的位置)推测分子排列。 最关键的第51号图谱是下图,1952年5月拍摄。 照片中心X射线反射(使X射线底片变黑)的图象是交叉的,说明它是螺旋形的,顶部和底部最浓黑的部分,说明嘌呤碱和嘧啶碱垂直于螺旋轴,每隔3.4埃规律出现一对。 对A型DNA、B型DNA拍了好多张X射线衍射图谱,这两张是截面的,也有丝状(链形态的),可以得到34埃的数据。富兰克林还发现在翻转180度之后看起来还是一样,沃森与克里克在得到这一信息后,意识到两条链是反向的。 在得到51号图时,还得到的了一些数据。 1953年2月24日富兰克林经过计算分析得出双股螺旋的结论,而沃森与克里克则是尝试以双螺旋模型与这些数据信息吻合。当时自然杂志同时发表了三篇论文,另二篇是威尔金斯的和富兰克林与蓝道夫的。 解读DNA晶体X射线衍射图谱,要用到很复杂的数学计算。 X射线衍射原理: 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理 。

  • 【讨论】标定 二次衍射

    定两相位向关系的时候,出现了很多二次衍射的斑点,请教各位大侠如何确定哪个是析出相的斑点,哪个是由于二次衍射造成的,如何标定?

  • 【求助】X射线衍射仪检测问题?

    用于理学大功率X射线衍射仪冷却水装置的净水阴阳离子树脂, 型号是什么呀。是不是只要是阴阳离子树脂就可以?水冷机是众合BLK-25FF型水冷机组

  • 【讨论】分光光度计入射狭缝的衍射对仪器性能有影响吗?

    【讨论】分光光度计入射狭缝的衍射对仪器性能有影响吗?

    前几天与祥子讨论了比色皿的界面反射与光强损失问题,虽然在搞专业光学仪器人员看来,这可能只是简单的问题,但是对于我们这些“未入流”的人来说,也算是有点深度的基础问题了。讨论过程中感到祥子确实认真,善于查阅/运用资料,很有见地,真是受益良多啊!近两天,与一位搞等离子体物理方面研究的老师讨论问题,顺便到他实验室看看,见到一个演示狭缝衍射的简易装置,大概是上实验课用的。那装置里的狭缝与分光光度计单色器里的狭缝好像也差不多。回来后不由想到,我们使用的分光光度计从来没人提到过衍射问题,这会有什么问题吗?回家想试试,就随手拿张比较薄的名片纸用剪刀剪了个细缝,大约0.3mm宽度(大约相当于一些分光光度计上0.5-1nm狭缝宽度吧),用电熨斗熨平整,作为狭缝。光源要单色光,就用激光笔吧,图像就投射到墙上。一试可试出疑问来了,以下是当场用相机拍下的两个图像。狭缝是垂直放的,距离墙约80cm,因为激光是良好的平行光,因此光源与狭缝距离没什么影响:红色激光笔,波长650nmhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012012306_263697_1633752_3.jpg绿色激光笔,波长523nmhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012012309_263698_1633752_3.jpg图中,主光斑两边的衍射斑都非常明显,只是由于自剪的狭缝质量较差,其中有一些纤毛,散射了部分光线,因此上下方都能看到不少散射光。在室内灯光下,可以明显看到的衍射斑总的宽度约有5cm,关了灯看大约有7cm以上。如果将狭缝与投影墙的距离缩小到10cm,看得见的总宽度也有1cm左右。10cm距离,这个长度在分光光度计的狭缝到比色皿算个中等距离吧,有些双样品室的距离约有30cm。一般比色皿架窗口宽度大约8mm。这样问题就来了:1. 投射到比色皿上的光束是不是也有这样衍射斑,或者太暗了看不出1、2、3级衍射?我想应该有衍射。2. 被比色皿架挡住的部分衍射光是不是会增加杂散光?是不是仪器设计者应该尽可能将狭缝、比色皿、检测器距离设置得近些,减少被挡住的衍射光?3. 比色皿架位置的定位是不是变得非常重要了,因为少许定位不准,就可能造成衍射斑被阻挡情况变化,这是不是导致测试偏差大的因素?不知道各位版友,特别是熟悉仪器的版友如何看这个问题。

  • 【转帖】X射线衍射原理

    特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。   当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。  X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。   X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 爱心捐助

  • 在电子衍射中,非消光斑点有没有不可见的可能?

    按照结构消光条件计算,某些斑点应该是可见的(即非结构消光),但在实际采集的衍射谱中,在某些带轴方向上,这些斑点是可见的,而在另外的一些带轴方向上,这些斑点却不可见?满足衍射条件(即非结构消光)是否是衍射斑点可见的充要条件?还是只是必要条件呢?是否存在满足衍射条件却不可见的情况存在呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制