当前位置: 仪器信息网 > 行业主题 > >

非对称场流色谱系统

仪器信息网非对称场流色谱系统专题为您提供2024年最新非对称场流色谱系统价格报价、厂家品牌的相关信息, 包括非对称场流色谱系统参数、型号等,不管是国产,还是进口品牌的非对称场流色谱系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非对称场流色谱系统相关的耗材配件、试剂标物,还有非对称场流色谱系统相关的最新资讯、资料,以及非对称场流色谱系统相关的解决方案。

非对称场流色谱系统相关的论坛

  • 非对称流动场在环境科学领域的应用简介

    各位新老朋友,大家好!我们开辟这个论坛的目的,就是在产品推广过程中,深刻感到许多用户对场流分离仪的认识非常浅显,对于什么是场流分离技术,其原理、主要应用等了解非常少,更为严重的是,随着这几年我们在中国市场逐步打开局面,特别是中科院、国家计量院等具有影响力的科研单位采购了我们的仪器,引来了竞争对手的恶意竞争,他们的不实之词使得原本就心存疑虑的客户更加拿不定主意了、迷茫了、糊涂了。我们觉得特别有必要向广大用户宣传介绍什么是真正的场流分离技术及其应用,避免因为混乱的市场竞争、不正当的商业行为,把场流分离仪技术这么一个具有相当高科技水平的分析仪器的好名声给毁了,就像竞争对手已经毁了多检测器GPC的好名声一样。从近期开始,我们将根据场流分离技术的不同典型应用,向大家介绍场流分离技术。我们首先选择了较为容易接受的、比较通俗易懂的环境科学领域的应用,也就是类似液质联用的场流与元素质谱仪联用FFF-ICP-MS,简称场-质联用,作为我们这个论坛的第一个系统的产品与应用的宣传介绍。稍后,我们还将推出:离心场在纳米材料领域的应用介绍、热场在聚合物分子量分布分析中的应用、高温非对称流动场HAT AF4在聚烯烃分子量分布测试中的应用、非对称流动场在生物大分子材料领域的应用等几个介绍板块。并陆续上传相关的PPT文件供大家参考。场-质联用,在国内用户来说好像是挺陌生的,其实在国外早已不是什么新鲜事儿了,德国巴登符腾堡州的卡尔斯鲁厄大学的环境科学研究中心,有三套场-质联用仪。奥地利维也纳大学,也是欧洲著名的环境科学研究机构,其场质联用技术的实践也是傲视群雄的。可以说,场流分离仪在环境保护领域的污染物的形态分析方面做出了相当大的贡献。基本组成:非对称流动场(室温型或中温型)+紫外-二极管阵列检测器+DLS激光粒度仪+ICP-MS分析目标样品:江河湖海中的水、沉积物中的大分子/大尺寸样品,如:腐殖酸、凝胶微球、粘土颗粒,及其附着的重金属元素腐殖酸、粘土颗粒和凝胶微球,都是尺寸较大、分子密度较小、特性粘度较大、在色谱柱中的压力下很容易被破坏的样品,因此不适合用色谱柱的方法 分析其尺寸和尺寸分布以及其附着物重金属,而没有固定相填料的场流分离通道就是最佳选择!其空心的分离通道,保持了样品的原貌。由于这类样品具有很大的表面积和化学不活泼性,使其很容易附着重金属离子等弱电性离子,这恰恰是重金属元素实际的存在方式。过去,人们常用离子色谱-元素质谱连用分析水中金属元素,这种方法往往不易检测到重金属,因为重金属元素大多数是弱电性的,往往不是以离子形式单独存在。而对于土壤、沉积物等固体样品,则往往采用多种样品前处理方法浓缩、富集等,然后再用色谱-质谱联用仪分析,这样做,一来实际测试中的重复性、重现性不佳,二来破坏了样品原貌,无法通过形态分析追根溯源。而场质联用,则完全没有了上述这些问题。参看附件的文献。

  • 非对称流场流分离技术的现状及发展趋势

    [color=#333333]场流分离是生物分析领域一项成熟的技术,将流体与外场联合作用于待分离物质,利用分析物某些理化参数上的差异进行分离。非对称流场流是其重要的分支之一,所施加的外力场为垂直方向的液流,分离过程于开放型的通道中在某种组成的载液迁移推动下进行,主要根据分析物与垂直施加的第二维液流之间的相互作用完成分离。非对称流场流在蛋白质、蛋白质复合物、衍生纳米级/微米级粒子、亚细胞单元和聚合物等分离中的应用日益广泛,主要归功于其直接应用于生物样品时可进行无损分离,因此生物分析物如蛋白质可以在生物友好型的环境中完成分离而不改变其构型,也无需使用降解载液。分离设备便于保持无菌状态,分析物可在生物友好的环境中维持其自然状态。该文简要描述了场流分离原理并罗列出其在生物分析领域一些卓越的发展和应用。 [/color]

  • postnova最新推出电场流与非对称流动场组合的场流仪EAF4

    近日,德国postnova分析仪器公司最新推出了EAF4仪器,即:电场流与非对称流动场组合的场流分离仪,既可以是一套新仪器,也可以在现有的AF2000AT/MT型仪器基础之上,升级PN2410电场流模块,同时还需要升级软件、新的电场流+非对称流动场的分离通道。电场流的应用,主要是在生物大分子领域的蛋白质类样品、聚电解质型的聚合物、聚合物纳米-微米颗粒等等。很快,我们这边还会有进一步的资料,我会第一时间发布出来,供大家参考。

  • postnova的非对称流动场场流分离仪与竞争对手的技术对比

    介绍场流分离技术,我们在外商提供的与竞争对手的技术对比文件的基础上,将其翻译成中文,并在此上传以供大家了解、学习。让大家认识到什么是真正的非对称流动场场流分离仪AF4。在附件的文件中,几个关键地方请大家注意:1 样品聚集:这是场流分离仪与HPLC/GPC的明显不同之处,而样品聚集技术的好坏,几乎就关系着非对称流动场场流分离仪的使用效果的好坏!竞争对手采用手动调节样品聚集,是非常落后的,也是非常困难的,因为绝大多数用户都不熟悉场流分离技术,更谈不上有什么使用经验了,也没有时间和精力去通过长时间的使用来总结出经验,而往往是通过使用这台仪器来尽快地做出科研成果来。这就要求实现自动化!postnova公司的非对称流动场场流分离仪采用了最先进的自动样品聚集技术,无需操作人员手动调节!2 化学兼容性:postnova产品采用了完全适应多种溶剂体系的仪器,包括:交叉流泵、溶剂输送泵、样品聚集泵、自动进样器、馏分收集器、智能分流泵等等全部硬件设备,都是分成几种溶剂体系的,以适应不同的应用,保证化学兼容性不会影响分析效果和仪器寿命。而竞争对手则完全没有这方面的设计和技术,其交叉流调节器,也不是完全采用了PEEK管路以适应水相应用,因此其中的金属部件在盐水溶液浸泡下会发生腐蚀!而有机相的应用,就更无法真正实现了——采用塑料材质的部分管路,会与有机溶剂发生溶胀,段时间使用也会产生表面张力的不良影响。

  • 高温非对称流动场HT AF4在聚烯烃分子量分布测试的应用

    2006年、2007年前后,postnova公司与美国陶氏化学聚烯烃研发中心合作开发出来高温非对称流动场场流分离仪HTAF4,很快,postnova公司在此基础上持续研展了高温的分离通道膜和过滤膜,并且与英国PL公司合作,从而实现了高温场流仪的商业化生产。该产品主要针对聚烯烃样品的分子量分布测试,可补充高温凝胶渗透色谱仪HT GPC 的不足,在超高分子量聚烯烃领域甚至可以完全替代HT GPC 。在稀溶液(分散态)——牛顿流体——条件下,聚烯烃样品的分子尺寸/流体力学体积非常大,至少是同等分子量的聚苯乙烯的两倍以上,甚至更大些。而同时,其特性粘度也非常大,稀溶液状态下的分子密度非常小。所以,聚烯烃样品分子很容易在GPC柱子里面发生堵塞(体积大、超过了GPC柱子的分离上限)、剪切甚至降解(分子密度小、分子密实性差),再加上含有的超大分子量组分尺寸太大,GPC柱子无法分离而引起的共馏出等等,都使得聚烯烃样品不适合高温凝胶渗透色谱柱的分离分析。而HT AF4采用的没有固定相填料的分离通道则很适合聚烯烃这类大尺寸、低密度样品。此外,聚烯烃类样品往往含有凝胶物质,这部分组分与橡胶中的凝胶物质一样,也是部分交联、但是尚且能够溶解的超大分子量组分。这部分组分在GPC柱子里往往会与凝胶填料发生吸附作用,使得GPC的分子量分布数据中看不到他们。而这部分组分其实分子量非常大,对材料加工性能影响也非常大,即使其含量往往非常微小。附件中的论文,就介绍了一个标样,其含有的0.45%的超千万Dalton的超大分子量组分,就完全改变了这个样品的材料加工性,而HT GPC的分离分辨率不如高温场流仪,因此根本无法测出来这部分组分,当然也就无法计算出正确的分子量数据和分布数据了。所以,在聚烯烃的HT GPC分析中,出现分子量数据与流变仪等材料试验仪器拟合的分子量数据偏差很大、小很多的情况,是经常发生的。但是当采用HT AF4之后,这种情况就好多了,用户可以完整的、真实地看到聚烯烃的分子量分布,包括了凝胶物质。如果结合多检测器技术,那么分析测试的信息量将是非常大的。可用于HT AF4的多检测器,包括:示差、四毛细管粘度、多角激光散射、红外和红外光谱,可组成五检测器串联/并联方式的HT AF4+HT GPC并联仪,通过内置的电磁阀实现分析系统在高温场流分离通道与高温GPC柱子之间的自动切换,无需降温至室温! 附件的论文中,我用黄色标注了这些内容,大家可以特别注意一下。近年来,postnova公司持续不断研发新型高温过滤膜,使HT AF4对聚乙烯样品的分离下限已经降至了大约1000Dalton,这已经非常接近HT GPC的分离下限了,基本上可以做到保证样品分子全部被分离并被检测了。另外,补充一下,有人看到高温场流仪包含一个PL220高温GPC的主机箱子,就误认为PL220是主机,这其实是个误会。所有的流动场场流仪——包含室温型、中温型和高温型,都是以交叉流泵为主机的,全部数据都是从交叉流泵传输到控制电脑上的。在HT AF4中,PL220的机箱实际上只是自动进样器和柱温箱的作用。

  • 非对称流动场场流仪在生物大分子领域的应用

    生物大分子材料,主要是指:蛋白质类、多糖类、组织细胞、血液及其替代品等大分子量、大尺寸/大体积样品。蛋白质集聚体的研究,以及其它生物大分子材料的分离与分析,是非对称流动场AF4MT的重要应用领域。postnova公司的中温型流动场AF4MT,主要应用之一就是生物大分子材料,特别是利用其优异的半导体制冷的柱箱对场流分离通道盒进行低于室温、高于0摄氏度的精确控温,实现蛋白质样品的高效分离,取得了很好的应用效果。再结合多角激光散射检测器、静态/动态激光粒度仪和生物质谱仪等在线定性检测技术,可以获得生物大分子材料的大量构型信息。也可结合馏分收集器,将样品组分收集下来,再进行其它分析检测,如:MALDI-TOF、NMR、AMF等等。附件的文件,介绍了AF4MT 对蛋白质混合物的分离并结合光散射检测器对其进行分析。近年,postnova公司又推出了中空纤维流动场 Hollow Fiber Flow FFF,简称HF5,这项技术主要针对生物大分子材料,分离通道是一次性使用的,具有很好的分离效果。

  • 非对称流动场AF4的分离通道过滤膜种类与型号

    Postnova公司的非对称流动场场流分离仪上配用的分离通道过滤膜,简称:通道膜,主要分为:水相 和 有机相 两大系列。水相,又进一步分为适用于纳米材料、聚合物、蛋白质等三个应用方向的。参看附件的英文文件。此外,分离通道本身也可以分为:有机相、水相 两大类。水相的AF4仪器,也可以用轻质有机相溶剂和有机相的分离通道,但是重质溶剂则不适用于水相的AF4仪器,如:DMF、DMAC、DMSO、甲酸、六氟异丙醇、三氯苯、十氢萘、二甲苯等等。

  • 是非对称场流分离仪吗?

    场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。场流分离技术可以提供快捷,温和以及高分辨率的分离,它可以分离任何液体介质中的从1纳米至100微米的颗粒物。积利公司生产的是哪一类场流分离仪呢?

  • 2010F 物镜是对称的还是非对称的?还有3010呢?

    多谢,刚看到一本书上提到对称非对称透镜问题,说是非对称的又被称为高衬度透镜,在jeol电镜中物镜光栏常被称为高衬度光栏,是否与透镜排布有关?还有fei的系列电镜中,s-twin, u-twin透镜什么区别?

  • 非对称PCR

    非对称[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增条件,一般分为两个步骤,第二步骤的循环设置条件95℃,72℃,20个循环是否可以呢?引物浓度比例设置为50:1?

  • 【资料】-高效液相色谱系统适用性试验设计的变化趋势

    [b]高效液相色谱系统适用性试验设计的变化趋势[/b][i]周晓源,李雪茹[/i]高效液相色谱法(HPLC 法)是药物分析中常用的一种定性、定量色谱分析方法。具有较强的专属性,相对较高的检测灵敏度和良好的量化功能。2005版《中国药典》使用 HPLC 法的品种中,色谱系统适用性试验设计有了较大的变化:指标更加细致、周到,检测更重实效,色谱系统适用性的试验用溶液的制备方法也呈现多样化,体现出一些变化趋势。 1. 色谱系统适用性试验的设计与实验目的更加匹配 系统适用性试验的严格细腻程度取决于实验目的。首先应考虑色谱系统被用于何种实验,根据实验目的来设计系统适用性试验。如果一个 HPLC 方法仅用于定性鉴别,就其色谱系统的适用性试验而言可以相对简单宽松,只要可以确保被测成分峰与其他色谱峰有一定的分离度,具有适宜的出峰时间即可达到实验目的。 如果用于定量分析(如含量测定),则除要保证被测成分峰具有适宜的出峰时间外,还需检验系统是否能够保证被测成分峰与其他色谱峰完全分离,分离度一般应在1.5以上,同时还应测试被测成分峰峰面积的重复性是否良好,对照品溶液连续进样5针的峰面积相对标准偏差应不大于2%,被测成分峰的峰型也应基本对称,以保证分离效果和测量精度。对于小峰(如占总面积10%以下的色谱峰)峰面积的定量,或用峰高法定量时,就应对拖尾因子或对称因子加以严格的规定,一般来说,拖尾因子应在 0.95~1.05之间,因为峰的对称性对测量结果影响较大。 如果检查某种药品的有关物质,且还需要分别检查单个杂质和杂质总量,那么系统适用性试验还应有一个重点,就是要有常见杂质难分离物质对分离度的测定指标。此外系统的检测灵敏度试验也就相对比较重要。如盐酸二甲双胍的有关物质检查项下要求: 盐酸二甲双胍与双氰胺的分离度应大于1.5,检测灵敏度要求调节双氰胺峰高为满量程的10%。 如 果色谱系统是一个梯度洗脱系统,有时一个难分离物质对分离度的测试也不能完全达到实验目的。如果在梯度变化的前后均有需要检测的杂质,分离度的测定指标一般应根据需要在梯度变化之前和之后都可加以制订。在梯度洗脱系统中某个成分峰的保留时间也经常用来做系统适用性检测的指标,给出吐峰时间范围,如头孢地尼,主成分头孢地尼峰的保留时间要求22分钟,E-异构体峰保留时间约为33分钟,理论板数按头孢地尼峰计算应不低于 7000。 在2000年版《中国药典》中,有些标准色谱系统适用性试验的要求就与其色谱系统的实验目的不完全匹配。如有些品种含量测定与有关物质共用一套色谱系统,且有关物质还需要分别检查单个杂质和杂质总量,但系统适用性试验指标仅有一个理论板数的要求,或对分离度的设计为“被测成分峰与相邻杂质峰间的分离度应符合规定”这样一个对系统性能缓冲空间很大的一个指标要求。在2005年版《中国药典》中,这种实属很虚的指标开始减少。如2000年版头孢曲松反式异构体(光降解产物)峰的保留时间应为头孢曲松峰保留时间的1.3倍,两峰之间的分离度应不小于3.0,理论板数按头孢曲松峰计算应不低于1500,2005年版修订为头孢曲松峰和头孢曲松反式异构体峰间的分离度应不小于6.0。2.系统适用性试验用溶液的制备更加注重方便性、实用性和可操作性系统适用性试验用溶液的配制方法,最简单的莫过于用主成分对照品与杂质对照品混合配制,但有些杂质对照品不能得到,如性质不稳定或与主成分理化性质太接近,分离提取技术要求太高,成本太大等,但这些杂质峰恰恰又是与主成分峰最难分离的色谱峰,且较常存在于 药 品中需要检查的,在2005年版《中国药典》中,这一问题得到了较好的解决。如喹诺酮类药物中较常出现光降解产物,而此光降解产物是引起这类药物不良反应的主要因素,所以需要在有关物质检查中做为重点检测的杂质之一。 因 此 ,在2005年 版 《 中 国 药 典 》中,这些药物系统适用性试验用溶液的制备就通 过把对照 品溶液进行 光 照 处理,得到能产生明显光降解产物色谱峰的溶液。 3.实验过程、操作步骤趋于严谨规范 色谱系统适用性试验设计、规定的完备、灵敏度检测试验的规范,溶剂的选择、溶解制备方式等各方面均体现出对实验目的的理解更加明确,对实验细节考虑更加严谨周到,标准的书写格式均更 加规范 、统 一 ,如2005年 版《中 国 药典》收载的 β-内酰胺类抗生素中检查高分子聚合物的品种将原来收载的8个品种的色谱条件与系统适用性试验均修订与新增 13个品种项下书写格式相同,系统适用性试验统一为理论板数以蓝色葡聚糖2000峰计算均不低于……。拖尾因子均应小于2.0,在两种流动相系统中蓝色葡聚糖 2000峰保留时间比值均应在0.93~1.07之间,对照品溶液主峰与供试品溶液中聚合物峰与相应色谱系统中蓝色葡聚糖 2000峰保留时间的比值均应在0.93~1.07之间。

  • 色谱系统故障诊断的基本步骤

    [align=center][font=宋体]色谱系统故障诊断的基本步骤[/font][/align][font=宋体] [/font][align=center][font=宋体]概述[/font][/align][font=Calibri] [/font][font=宋体][font=宋体]随着现代科学技术的发展,色谱仪分析系统逐渐成为复杂的化学[/font][font=Calibri]-[/font][font=宋体]电子[/font][font=Calibri]-[/font][font=宋体]机械[/font][font=Calibri]-[/font][font=宋体]计算机技术集合体,色谱系统出异常状态之后的诊断和故障排除变得更加困难,色谱维修和诊断工作变得日益专业化。对于普通色谱工作者或者色谱维修工作者而言,建议掌握基本的系统诊断原则是十分必要的。[/font][/font][align=center][font=宋体]简述[/font][/align][font=宋体]对色谱操作者而言,日常色谱分析工作中总会接触到各种异常现象,例如定量结果偏差大、重复性不良、基线不良、色谱硬件系统报警等。随着现代科学结束的发展,色谱系统的硬件结构日益变得复杂,色谱系统的异常状态诊断和维修工作日益变得专业化,普通用户面临发生异常状态的分析系统往往束手无策。但是对于普通色谱工作站而言,此项工作总有规律可循,建议按照下文提供的步骤对色谱系统进行逐步考察。[/font][font=宋体] [/font][font=宋体][font=宋体]第一[/font] [font=宋体]确认是否存在明显工作疏失或缺陷[/font][/font][font=宋体]当出现色谱系统故障时,建议首先确定实验室工作环境或者色谱工作者的操作是否存在明显缺陷或者明显疏失。[/font][font=宋体]例如实验室电源质量明显不良(包括电压、接地、屏蔽等)、温湿度明显偏离色谱仪工作要求的范围、实验室或试验台存在明显机械振动、实验室空气存在明显污染、实验室灰尘较为严重、实验中使用的试剂或者标准物质使用错误或者存在明显质量缺陷。[/font][font=宋体]流动相明显泄漏、余量不足或者其他不稳定问题。例如[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]流动相耗尽、流动相配置错误、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统载气或者辅助气严重泄漏、耗尽、压力调节不足、压力存在明显不稳定等现象。[/font][font=宋体]色谱系统的连接异常,例如色谱系统某些电气线路、流动相管路、色谱柱等连接存在不牢固或者连接明显错误的现象。例如色谱柱安装错误,使用了错误的进样器、进样口或者检测器。[/font][font=宋体]数据处理机、色谱数据工作站和配套的电脑明显存在故障。[/font][font=Calibri] [/font][font=宋体][font=宋体]第二[/font] [font=宋体]异常状态确认[/font][/font][font=宋体][font=宋体]即某些色谱工作者认为色谱系统的[/font][font=宋体]“异常”的现象,是否实际应当为系统的“正常”现象。[/font][/font][font=宋体]例如[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统的梯度洗脱,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的程序升温条件下,色谱系统输出的基线一般情况下会存在一定程度的基线漂移。一般情况下,最高使用柱温越低的色谱柱,程序升温的范围越宽,基线漂移的幅度越大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪的色谱柱总会出现一定程度的柱流失和空白测定中出现流失峰等现象。如果流失信号稳定重复,一般不需要进行处理。[/font][font=宋体]某些型号的检测器或者色谱系统需要较长时间才可以达到平衡状态。[/font][font=宋体][font=宋体]某些特殊分析系统使用特殊检测器、特殊色谱柱时、特殊分析条件时存在水平较高的基线噪声,例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]使用的[/font][font=Calibri]FPD[/font][font=宋体]、[/font][font=Calibri]FTD[/font][font=宋体]检测器、色谱柱耐受温度较低等。[/font][/font][font=宋体]某些分析色谱图中存在的不对称色谱峰,与待测物质化学性质或者色谱柱的分离特性有关。例如高浓度分析中出现的色谱峰前伸、气固色谱中出现的色谱峰拖尾、酸碱类物质出峰对称性差、某些组分检出限较差等现象。[/font][font=宋体] [/font][font=宋体][font=宋体]第三[/font] [font=宋体]色谱系统正常状态和考察和色谱系统本身特性的考察[/font][/font][font=宋体]色谱运行时,正常情况下,声音、光、电气、机械、水雾的正确动作和提示需要熟记在心。例如某些进样器进样动作时存在电磁阀或者气缸的发声、进样后工作站的提示信息,检测器出口可以探测到的水雾等。[/font][font=宋体]其次需要考察色谱分析系统本身的特性,对可能存在的故障特征或者隐患作出准备,对工作环境提出更高的要求。[/font][font=宋体]例如色谱系统需要进行微量挥发性组分的测定,那么分析结果容易受到实验室空气、试剂、样品和系统密封性等问题的干扰。如果分析工作中使用强极性色谱柱,需要注意色谱柱寿命,色谱柱容易受到不良的载气、不良样品的干扰。如果分析过程中使用高灵敏度检测器,需要注意载气、色谱柱、样品的干扰。如果分析不稳定物质,需要特别注意控制实验室环境和分析系统、前处理系统的惰性。[/font][font=Calibri] [/font][font=宋体][font=宋体]第四[/font] [font=宋体]故障现象特征考察[/font][/font][font=宋体]故障出现是否存在周期性,周期大概多长;故障是可以重现的还是不能重现的,该故障故障现象是否明显与某些因素相关;另外考察故障发生的频率,是偶尔发生还是频繁发生,根据实际情况给予不同的应对。[/font][font=宋体]周期性出现的故障,一般情况下与色谱仪工作环境有关。例如实验室温度的周期性变化可能造成色谱基线发生周期性扰动,气源发生器的周期性启动可能造成色谱基线周期性的波动或者出现周期性脉冲干扰等。[/font][font=宋体]不能重复出现或者偶发性的色谱系统异常现象,可能与偶发性的因素或者电气接触不良有关,例如[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]自动进样器偶发性的重复性不良,可能与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统中偶发的气泡有关。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]第五[/font] [font=宋体]故障是如何发生的[/font][/font][font=宋体]故障发生的时间,故障发生之前,仪器是否长期闲置或者是否操作者对色谱分析系统进行了某些操作。[/font][font=宋体]例如仪器经过位置移动、常规维护或者拆解之后,出现了某些故障,那么就需要考虑此类操作中可能存在安装错误、维护导致污染或者电气连接问题。[/font][font=Calibri] [/font][font=宋体][font=宋体]第六[/font] [font=宋体]故障定位,缩小诊断范围。[/font][/font][font=宋体]判定问题来自于色谱仪工作环境、色谱仪硬件或者与样品特性有关。色谱仪系统的电气故障、流量控制器故障、温度控制器故障均属于硬件故障。[/font][font=Calibri] [/font][font=Calibri] [/font]

  • 制备型高效液相色谱系统的应用领域

    制备型高效液相色谱系统的应用领域制备型高效液相色谱系统主要应用在植化、合成、制药、生物及生化等领域的产品的提取及纯化工作中。在不同的工作领域中,组份的提取和纯化量的差异是很大的。在生物技术领域中,酶的分离是微克级;在植化和合成化学领域中,为了鉴别未知成份并进行结构测定,需要得到一至若干毫克的纯品;在药品和医药学测试中,需要克级的标准品和对照品;在当今的工业级提纯中,制药成份往往需要千克级的提取。制备型高效液相的应用领域可以归纳在下表中。 成份量:所在领域 微克: 生物技术领域的酶的分离、生物学和生化学测试 毫克: 结构描述和特征鉴定,包括:生产中的副产品、生物矩阵的新陈代谢产物、天然产物 克级: 对照品(分析标准)毒物学分析所需组份:高纯品中的主要成份、副产品的分离提取 千克级:工业规模生产,活性成份,药物 制备方法的发展和扩大规模的计算  在分析液相中色谱柱的典型进样量是微克级,甚至更低。样品量和固定相之比有的甚至小于1:100000。进样体积一般来说都大大小于色谱柱体积(小于1:100)。 在这种条件下,会达到很好的分离效果,峰形尖锐并且很对称。而在制备液相中,最大的区别就是超量进样。其结果,超量进样的方法和分析方法的放大将在下章内介绍。 吸附变化线  分析液相的目的是给一种组份定性、定量。重要的色谱参数有溶解度、峰宽和峰的对称性。如果进样量越来越多,峰高和峰面积会增加,但峰的对称性和容量因子保持不变。如下图。   在分析液相中,最佳的峰形应是一条高斯曲线。峰的标准背离 бV 描述了其对称性和与高斯曲线的相似性。容量因子是与一种不保留物质的保留时间t0相关的保留时间。  如果将超过一定量的样品注射进色谱柱,吸附变化线就会成非线性。这意味着峰形会变的不再对称,表现为严重的拖尾和容量因子的缩小。如下图。在制备液相中,这种效果称作浓缩超量进样。在一些情况中,根据进样量的增加,容量因子也相应变大,并造成很强的前峰。既然吸附变化线取决于组份的多少,那么液相色谱柱的载样能力就必须根据不同的制备液相实验来决定。 色谱柱载样和超量载样  大样品量的纯化有两种可行的方法:分析系统的放大或色谱柱超量载样。分析系统的放大意味着使用直径更大的制备柱、更高的流速和根据色谱柱的长度增加进样量并保持样品浓度不变。峰形仍会保持尖锐而对称。这种方法需要大型的色谱柱和大量的溶剂来分离较少的样品,因此这种方法是不经济的。 因此色谱柱超量载样,暨在相同的分析条件下超量进样通常是一种很好的选择。使用色谱柱超量载样的方法,在分析柱上甚至可以进行毫克级的分离。但更大 量的样品分离就需要整个系统的放大。色谱柱超量载样可以通过两钟方法进行— 浓缩法和体积超载法。 在浓缩法中,样品的浓度会提高,但进样体积保持不变。容量因子k’降低,同时峰形从高斯曲线变为矩形。如下图。浓缩法超量载样只有在样品组份在流动相中具有良好的溶解性的条件下才有可能采用。   如果样品组份的溶解性很差,浓缩法超量载样不能使用。同时更多的样品体积注射到色谱柱中,这种技术称作体积法超量载样。超过一定的进样体积,峰高不变,但峰变宽并且呈矩形。在制备液相中浓缩法超量载样比体积法超量载样更受欢迎,因为可被分离的样品量更高。既然组份的溶解性通常是一个限制因素,所以两钟超量载样技术通常被结合起来使用。两种技术的概览浓缩法超量载样   体积法超量载样 取决于组份在流动相中的溶解性   取决于进样体积 吸附变化线的制备部分   吸附变化线的分析部分 生产效率决定于选择性   生产效率决定于制备柱直径 受固定相粒度大小的影响不大   需要小颗粒填料 方法的放大 浓缩法超量载样和体积法超量载样都会导致组份溶解性的降低。既然组份的分离需要一定的溶解性,那么在放大分析方法的时候,优化溶解性、特别是选择性就是一项很重要的工作。   因为选择性和超量载样潜力是相互依靠的,选择性的提高会提高一次运行中所分离的样品量,因此从分析方法到制备方法的放大和方法的优化需要三个步骤。 1. 优化分析方法的选择性。2. 在分析柱上进行超量载样。3. 放大到制备柱 制备型高效液相色谱的目的  判断制备型高效液相色谱使用的结果有三个重要参数:产品的纯度、产量和生产效率。三个参数之间是相对独立的,因此很难同时使用这三个参数来优化制备型高效液相色谱方法。见图形6。 色谱图1显示在制备型高效液相色谱的使用中有很高的生产效率,但是两种组份的分离效果却是很差的。这种方法很可能得到两种组份的高纯品,但是产量和收率却是很低的。  在色谱图2中峰有很好的分离,因此这种方法可以得到两种组份的高纯品和高产量,但是生产效率却很低。  色谱图3中的情况是三个参数综合后得到的最优化的结果。峰在基线上被完全分开,这使得产品纯度、产量和生产效率都达到最高。  在实际应用中,每个参数的重要性都是不同的。如为了进行活性或药物测试,某种组份必须被完全单独提取,那么组份的纯度是最重要的参数,产量和生产效率是其次的。如果某种合成中间体必须被纯化,并且需要有足够的量为下一步合成作准备,那么纯度就不是最重要的了。而生产效率在这种情况下就是个首先需要解决的问题,因为其直接关系到完成整个合成工作的进程和速度。同时产量也是很重要的,因为高价值组份的损失需要控制在最少的范围内。

  • 什么是色谱系统反压?影响色谱系统反压的因素有哪些?

    关于色谱系统的反压什么是反压(Back Pressure)?流动相流经管路及色谱柱时会有阻力,即,所谓的反压, 又称,系统压力Waters习惯用的压力单位是Psi(磅/平方英吋)其它单位有:Bar,Mpa(1Bar=0.1Mpa=14.5Psi)影响色谱系统反压的因素:流动相的粘度是产生反压的主要原因,粘度越大,反压越高;流速对反压的影响是线性关系,流速越大,反压越高;温度对反压的影响是反比关系,温度升高,反压降低;反压与色谱柱长度成正比;反压与填料颗粒度的平方成反比;3.5μm填料比5μm填料反压高;反压与管路直径的四次方成反比(1/D4);反压与管路的长度成正比;HPLC系统压力问题分析(1)问题:系统压力高可能的原因:温度太低流速太高流动相粘度大管路堵塞仪器或色谱柱堵塞压力传感器问题HPLC系统压力问题分析(2)问题:压力低或没有压力可能原因:温度太高;流速太低泵关闭或保险丝断了泵未输送流动相系统内有渗漏处所用溶剂不正确自动进样器在Purge时卡住HPLC系统压力问题分析(3)问题:压力不稳可能原因:压力传感器问题;泵排气不充分;泵失效;流动相未正确脱气;所用溶剂不混溶或易挥发;

  • 【讨论液相潜力】仪器篇之色谱系统

    液相色谱经历了几十年的快速发展,色谱系统从20世纪60年代后期出现新型柱填料、高压输液泵和高灵敏度检测器到现在高效液相色谱。可谓是发生了巨大变化。色谱系统更是从经典的高效液相色谱发展到了超高效液相色谱、快速液相色谱。我原来问Waters的工程师:液相色谱到超高效液相色谱后还会推出什么样的色谱系统?他说差不多已经到顶了。[color=#DC143C][B]我们的液相色谱系统还能走多远,出现超高效液相色谱系统后还能研究出更好的色谱系统吗?[/B][/color]

  • 【原创】色谱系统堵塞的问题交流

    第一条1、最让自己头疼的液相部件是哪个或哪些?流动相的滤头2、为什么那么头疼?流动相的PH值接近中性,容易长菌造成滤头堵塞,流动相上不去3、最后通过什么办法解决了?是不是过了一段时间又来了?每两天拆下滤头碱洗,超声。问题不会出现了第二 用含无机盐的流动相的时候,泵有异响 新买的1525系统,用含无机盐的流动相的时候,泵有异响,泵头有盐析出。 原因是买的时候为了省钱,没有买洗泵头的管路,后来对泵进行清洗,买了洗泵头的管路问题得到解决 强烈建议买色谱系统的时候一定要考虑对泵在线清洗。第三 泵到柱子这段管路用盐的时候容易堵塞 我用的最高的是100mmol的无机盐流动相,我看有的版友用250mmol的 譬如说,色谱系统先用的磷酸盐,要换到柠檬酸盐,中间一定要用水过渡,因为存在盐析效应,可能会有盐析出,造成堵塞。抛砖引玉,请大家多多分享自己的经验

  • 安捷伦科技推出最新一代液相色谱系统

    1月23日,安捷伦科技推出了该公司最新一代Agilent 1200系列液相色谱系统,该系列将是安捷伦科技著名的1100系列液相色谱的换代产品。作为一种常规的分析测试手段,全球有超过250,000家的用户在使用液相色谱产品,其市场规模约为二十亿美金,这也是安捷伦科技LSCA部收入的主要来源之一。 自从1995年1100系列液相色谱问世以来,安捷伦总计售出了大约60,000套液相色谱系统(如果按单个系统模块计算,则超过400,000),使得1100系列成为液相色谱市场最为成功的产品之一。最新推出的1200和现在的1100具有良好的兼容性,从而最大限度地保障了用户单位在资金和时间方面的投入不受损失。用户单位可以根据自己的需要,选择新的模块和现有的模块进行组合,也可以继续使用已有的分析方法而无需花费资金去开发新的方法以及重新培训操作人员。对于那些暂时使用非安捷伦操作软件的用户,安捷伦科技还可以专门为他们提供一种1100仿真模拟模式。 据安捷伦科技有关人士介绍,Agilent 1200是一款功能极其完善的液相色谱系统,其可选的仪器模块数量超过60个,可以灵活组合以满足液相色谱不同应用领域的需要,包括:快速分离液相(最新推出)、制备液相、标准液相、窄柱液相、毛细管液相、纳升级液相以及安捷伦科技开创性的芯片液相等。目前,芯片液相技术既可以用于小分子领域也可用于大分子领域,即可用于色谱分离,也可作为进样装置。而采用纳流喷雾离子化的HPLC-Chip/MS技术,其灵敏度较之常规的LC/MS提高了1000倍。

  • 沃特世推出新色谱系统APC,难道又是一个色谱神器?

    美国时间2013年3月18日,沃特世宣布推出一个新的聚合物分析色谱系统ACQUITY® APC™,该系统可以改善聚合物的分子量信息,并且速度比以往任何时候都更快。该系统提供了显着改善的聚合物峰的分辨率,特别是对于低分子量的聚合物和低聚物,可以比传统的凝胶渗透色谱(GPC)快至多20倍。http://bimg.instrument.com.cn/lib/editor/UploadFile/20133/2013319104418889.jpg难道APC就类似沃特世出品UPLC改变普通液相色谱一样,改变了传统GPC吗?沃特世推出新色谱系统APC,难道又是一个色谱神器?

  • 【讨论】液相色谱系统故障之逻辑推理!

    对液相色谱系统的故障作逻辑推理是快速纠正毛病的关键。某些一目了然的故障,如接头漏液紧紧螺丝就可以。有些故障一时难以捉摸,如峰拖尾的问题一时找不到原因。遵循有规则的模式解决问题十分重要,而不是胡乱地逐一检查每个部件。1 粗看一遍。第一,故障发生后要给系统做一次快速的检查。沿着流动相贮存器经系统到放空这条流路看一遍,有什么问题一般都能发现;泵的入口处有无气泡,接头漏无,压力是否比平常高?还有无其他的反常现象?第二,确证所设定的条件是否合适。检查流动相,流速,压力,柱子种类,检测器和记录器,调整这些方面对方法的适应性。这两步检查仅仅需要几分钟的时间,但能事半功倍。2 系统有什么新变化?例如开机后进行过维修,更换零部件,加入新流动相,分析过特殊样品,改变方法,停过电等。如有其他操作者在实验室中可询问一下他们是否动过仪器,或随手按过什么按钮。最后认真归纳一下系统发生的每一个变化,这样一般能解决问题。3 对照参考比条件。系统出了问题在色谱图上都有反应,再做一次试验参考色谱图。如果参考色谱图是好的,是否样品出了问题;如果参考色谱图不好,那么系统有了故障。也有问题不在色谱图中反映出来,如压力变化。这时应弄清流动相及其流速是否对头,不必做试验参考色谱图。4 逐步分析并解决问题。如果上述尝试无效,可将系统做一次做一种变化,并同时记录下来。变化无效的一般无问题,有效的应做上记号,然后根据情况,做出调整整个或局部部件的决定。

  • 【分享】HPLC色谱柱和色谱系统的故障检修

    HPLC色谱柱和色谱系统的故障检修[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=52190]HPLC色谱柱和色谱系统的故障检修[/url]不错的资料,与大家分享!

  • 液相色谱系统高压问题排除

    液相色谱系统高压问题排除

    [align=center][b]液相色谱系统高压问题排除 [/b][/align]小序:五一长假过后,打开液相色谱仪,准备测样,结果系统压力居高不下,开始一一进行排查,终于找到原因恢复正常。1 引起系统压力升高首先想到的是色谱柱堵塞引起,将色谱柱卸下来换成两通进行冲洗,压力依然很高,排除色谱柱的问题。[align=center][img=,592,453]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081659023354_9406_1858223_3.png!w592x453.jpg[/img][/align]2 怀疑是六通阀和管道有问题,对其进行排查,将六通阀上的接口从1号依次分别取下,发现5号接口是堵的,然后对其进行拆卸清洗。[align=center][img=,542,483]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081700150684_651_1858223_3.png!w542x483.jpg[/img][/align]3 拆卸六通阀并用色谱甲醇超声清洗卸下来的筛板(30min),然后风干,待用。[align=center][img=,449,390]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081705538364_2915_1858223_3.png!w449x390.jpg[/img][/align][align=center][img=,528,494]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081706248324_3945_1858223_3.png!w528x494.jpg[/img][/align][align=left][/align]4 按照顺序重新安装,进行系统压力测试,压力正常。小结:1 、对于液相体系进样之前一定要对流动相进行过滤膜抽滤、超声排气; 2、样品溶液均要过0.45微米滤膜,防止样品中的微粒阻塞进样阀,减少进样阀的磨损; 3、流动相中如果含有磷酸盐,防止缓冲盐盐析出堵塞六通阀,一定要在样品测定结束后,用高比例水缓冲40-60min,然后再用有机相冲洗系统。技术人员一定不要存在侥幸心理,为了省时间,减少抽滤,过膜,排气这些步骤,严谨操作才能保护好仪器。

  • 色谱柱和色谱系统故障,图片教学!

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14722]色谱柱和色谱系统故障,图片教学![/url]希望对你有用,有所帮助!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制