当前位置: 仪器信息网 > 行业主题 > >

飞秒激光微加工系统

仪器信息网飞秒激光微加工系统专题为您提供2024年最新飞秒激光微加工系统价格报价、厂家品牌的相关信息, 包括飞秒激光微加工系统参数、型号等,不管是国产,还是进口品牌的飞秒激光微加工系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合飞秒激光微加工系统相关的耗材配件、试剂标物,还有飞秒激光微加工系统相关的最新资讯、资料,以及飞秒激光微加工系统相关的解决方案。

飞秒激光微加工系统相关的资讯

  • 飞秒激光结合自组装复合加工技术获突破
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。/pp style="text-indent: 2em "手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。/pp style="text-indent: 2em "在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。/pp style="text-indent: 2em "此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋)/p
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • 中国科大实现飞秒激光复合材料加工多关节微机械
    近年来,飞秒激光双光子聚合技术作为一种具有纳米精度的真三维加工方式已被广泛应用于制造各种功能微结构,这些微结构在微纳光学,微传感器和微机器系统等领域展现出广阔的应用前景。然而,如何利用飞秒激光实现复合多材料加工,并进一步构建具有多模态的微纳机械仍极具挑战。鉴于此,中国科学技术大学微纳米工程实验室吴东教授团队提出了一种飞秒激光二合一写入多材料的加工策略,制造了由温敏水凝胶和金属纳米颗粒组成的微机械关节,随后开发出具有多种变形模式(10)的多关节人形微机械。该工作于7月17日以“Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing”为题发表于Nature Communications。 图1. 受人类多关节变形启发,利用飞秒激光二合一多材料加工策略构建多关节人形微机械。   飞秒激光二合一加工策略包括使用不对称双光子聚合构建水凝胶关节以及在关节局部区域激光还原沉积银纳米颗粒(Ag NPs)(图1)。其中,非对称光聚合技术使水凝胶微关节局部区域的交联密度产生各向异性,最终使其可以实现方向和角度可控的弯曲变形。原位激光还原沉积可以在水凝胶关节上精确加工银纳米颗粒,这些银纳米颗粒具有很强的光热转换效应,使多关节微机械的模态切换表现出超短响应时间(30 ms)和超低驱动功率(10 mW)的优异特性。 图2. 基于空间多焦点光束刺激,多关节人形微机械展现出多个变形模态。   作为一个典型的示例,八个微关节被集成在一个人形微机械上。随后,利用空间光调制技术在3D空间内实现多焦点光束,进而精确地刺激每一个微关节。多个关节之间的协同变形促使人形微机械手完成多个可重构的变形模态。最终,在微米尺度下实现了“舞动的微机器人”(图2)。   最后,作为概念验证,通过设计微关节的分布和变形方向,双关节微型机械臂可以对同向和异向的多个微颗粒进行收集(图 3)。总之,飞秒激光二合一加工策略可以在各种三维微结构局部区域构建可变形的微关节,实现多种可重构的变形模态。未来,具有多种变形模态的微机械手将在微型货物收集、微流体操作和细胞操纵方面展现广阔的应用前景。 图3. 通过设计微关节的位置和变形方向,双关节微机械臂能够收集不同位置和方向的多个微货物。   辛晨博士和任中国博士为该工作的共同第一作者,通讯作者为吴东教授。论文的合作者还包括中科大的褚家如教授、胡衍雷教授、李家文副教授、香港中文大学的张立教授等。该项研究工作得到了国家自然科学基金、科技部国家重点研发计划等基金的支持。
  • 西安光机所成功推出三维光纤激光加工系统
    近日,西安光机所瞬态光学与光子技术国家重点实验室成功进行了三维光纤激光加工系统的演示试验,得到在场专家的好评。该系统所使用的500W光纤激光器是由中科院西安光机所新孵化企业西安中科梅曼激光科技有限公司研制。该企业致力于高功率光纤激光器的研发、生产和销售,并可为光纤激光加工系统提供全套的解决方案。现已具备200W~1000W光纤激光器的生产能力,所推出的光纤激光器在切割速度、切割质量等方面与国外同类产品相比具有较强的竞争优势。  三维光纤激光加工系统  500W光纤激光器
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• 400 fs标准脉冲宽度• 5 W / 75 μJ @ 1030nm• 2.5 W / 40 μJ @ 515 nm• 1 W / 20 μJ @ 343nm• 单发(Single-shot)和按需脉冲(Pulse-on-Demand)• 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 飞秒激光直写双刺激协同响应的水凝胶微致动器研究获进展
    在自然界中生物能够对外界刺激做出反应并产生特定的形状变化,这种响应行为对生物体的生存和繁衍至关重要。在众多材料中,水凝胶因其模量适中,刺激响应条件多样以及生物相容性好等因素而引起了广泛关注。随着仿生学以及材料科学的发展,能够感知和响应外部刺激的智能水凝胶致动器在软体机器人、传感和远程操控等领域显示出良好的应用前景。目前,微加工技术已经将响应型水凝胶致动器的尺寸缩小到微米级。然而,如何在微尺度下构建能够对复杂的微环境进行多重响应的水凝胶微致动器仍然是一个挑战。   近日,中国科学院理化技术研究所研究员郑美玲团队在双刺激协同响应的水凝胶微致动器的研究工作中取得进展。团队通过非对称飞秒激光直写加工制备了一种双刺激协同响应的水凝胶微致动器。该水凝胶微结构对pH/温度的双重协同响应是通过添加功能单体2-(二甲基氨基)乙基甲基丙烯酸酯实现的。通过水凝胶微结构的拉曼光谱分析,解释了不同pH和温度下协同响应的产生机制,并且展示了由pH或温度控制的聚苯乙烯微球的捕获。该研究为设计和制造可控的微尺度致动器提供了一种策略,并在微机器人和微流体中具有应用前景。研究成果发表于Small 。   飞秒激光直写加工技术由于具有超高的空间分辨率、三维加工能力和无需实体掩膜等特点,被广泛用于制备各种三维微结构。研究人员利用含有功能单体的光刻胶,通过调整激光功率、扫描速度和扫描策略实现了具有不对称交联密度的双重响应水凝胶微结构的制备(图1)。   进一步地,研究人员制备了含有三个不对称微臂的微致动器来提高对不同环境的刺激响应能力。该微致动器由三个交联密度交替分布的微臂组成。为了更加方便地展示水凝胶微致动器在不同温度及pH条件下的可控性,研究还使用了直径10微米的聚苯乙烯微球作为目标颗粒在不同条件下进行捕获(图2)。   此外,研究人员还描述了一种具有双刺激协同响应特性的微致动器(图3),其具有的更为丰富的形状变化是由温度升高时的氢键断裂与酸性条件下叔胺基的质子化同时作用产生的。该研究提出的双重刺激协同响应特性相较于单一响应刺激赋予了微制动器更大的可操控性,这一特性使其在微操纵和微型软体机器人方面具有潜在应用。图1 双刺激协同响应型水凝胶微致动器的制备与响应机制图2 双重刺激响应型水凝胶微致动器的捕获行为图3 水凝胶微致动器的双重刺激协同响应特性
  • 上海凯来助力学术研究,国产飞秒激光剥蚀系统再现科技魅力
    点击蓝字 关注我们在刚刚结束的第十三届全国同位素地质年代学与同位素地球化学学术讨论会上,上海凯来仪器有限公司携带国产自研的GenesisGEO新型飞秒激光剥蚀系统大放异彩!这款新品凭借其尖端科技和卓越性能,一经亮相便成为全场焦点。在展示过程中,专家老师们亲自上手体验,通过对石英等具有挑战性的样品进行操作,专家老师们均可以轻松打出了圆形或矩形平顶坑。与传统飞秒激光和193nm相比,GenesisGEO新型飞秒激光剥蚀系统显示出绝对的领先优势,极大拓展了飞秒激光剥蚀的应用领域,为同位素地质年代学和同位素地球化学领域的研究提供更加高效、精确的工具。专家们纷纷围绕GenesisGEO展开热烈讨论,探索其在地质年代学与地球化学领域的深远应用。无疑,它已成为推动学科进步的重要力量。分享汇报,助力科研上海凯来在专题五上进行了精彩的分享汇报,主题为"国产新型飞秒激光剥蚀系统的最新研究进展及其应用领域"。传统飞秒存在非平底坑、光斑范围小、光斑类型有限等瓶颈;而193nm激光在剥蚀过程中存在明显热效应。两者限制了激光剥蚀技术在地学研究中的应用范围。上海凯来完全自主研发的GenesisGEO新型飞秒激光剥蚀系统通过全新的技术路线,实现了关键突破:平底坑、束斑范围广(1~500μm)、矩形/圆形光斑任选、高能量密度≥50J/cm2等,为地学研究工作提供了新型的科研利器和新的视角与方法。本次报告不仅为我们带来了最新的技术进展,也为地质等相关领域的研究和应用提供了更多的思路和可能性。在汇报中的提问环节,大家响应热烈,许多专家老师听了汇报后前往上海凯来展台进行参观,积极交流新型飞秒激光前沿应用。GenesisGEO新型飞秒激光剥蚀系统的优异性能获得了众多专家的一致认可,认为GenesisGEO是国产仪器的翘楚,为国争光!从上世纪90年代中期至今,中国学者见证了激光剥蚀与质谱联用技术在地学领域的蓬勃发展。上海凯来自成立至今已20余年的时间,随着凯来自研新型飞秒的顺利落地,相信国产新型飞秒将给用户提供更强大、有效的分析工具。我们坚信中国人可以制造出自己的完全自主创新研发的分析仪器,助力相关领域的蓬勃发展,再次感谢各位专家学者及新老用户的关注和支持!专业认可,品质保证GenesisGEO新型飞秒激光剥蚀系统“ 开拓性的设备感受高质量剥蚀效果 ”GenesisGEO新型飞秒激光剥蚀系统为上海凯来全自研自主创新技术,无美国技术,无卡脖子风险。其全新的技术理念颠覆了人们对传统激光剥蚀技术的认知,即将带来全新的激光剥蚀技术革新,很快将在地球化学、环境科学、生命科学、新材料及半导体等关键领域的核心技术重点突破。仪器特点:平底坑,低分馏超大范围光斑,1-500μm无需ArF气体,光路无需N2保护全中文界面,无人值守操作3D动态变焦No Defocussing!左为不变焦剥蚀,右为变焦剥蚀,变焦速率可自定义样品类型:玻璃新型飞秒剥蚀坑形貌钠钙玻璃样品,从左向右尺寸依次为10μm, 20μm, 30μm, 40μm, 50μm, 60μm, 70μm, 80μm, 90μm, 100μm, 200μm, 300μm, 400μm, 500μm微量打点分析石英样本打点信号曲线GenesisGEO新型飞秒激光剥蚀系统采用高功率飞秒激光源,能够提供更高的能量密度,能够对花岗岩类石英轻松剥蚀,检出限≤3ppb。其产生的热效应更小,基体效应弱且脉冲宽度极短,可以实现更高的时间分辨率和更精确的样品剥蚀。碳酸盐岩定年分析Tarim下交点年龄:211.5±3.1Ma(参考年龄:208.5±0.6Ma)GenesisGEO飞秒激光剥蚀系统与Agilent8900三重四级杆联用,对Tarim样品进行碳酸盐岩定年分析,光斑大小为100μm,数据结果与参考年龄一致。流体包裹体分析单个流体包裹体分析GenesisGEO飞秒激光剥蚀系统具有新型观察系统,可清晰观察单个包裹体10μm,采用低温冷冻附件(冷冻池),目前最低温度可稳定在-160℃。高空间分辨率成像分辨率down to 500nm!鲕粒样品成像锆石成像光斑大小1-500μm连续可调,最低可至500nm!可实现高空间分辨率成像。关于凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,深圳,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。END
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿200ns)上海昊量光电作为Spark Lasers在中国地区独家代理商,为您提供专业的选型以及技术服务。对于Spark Lasers有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 正业科技:超快激光技术,为FPC精密加工增添新动力!
    时代在发展技术在进步20世纪60年代第一台红宝石激光器诞生制造业进入“光”时代从纳秒、皮秒到飞秒人们对激光技术的探索未曾止步 时间换算:1秒=109纳秒=1012皮秒=1015飞秒时间越短,激光作用在材料表面的时间越短,对材料表面的影响越小,加工效果也更好,因此超快激光技术已成为制造业精密加工领域的热点话题。 在精密加工领域,传统纳秒激光加工设备仍占据了大部分市场。但是就加工效果而言,飞秒及皮秒激光加工更具优势与前景,可飞秒激光器由于自身的可靠性低、价格昂贵等原因,从科研到工业应用,还需一段时间。与纳秒激光相比较,皮秒激光加工具有更短的脉冲宽度、更高的峰值功率,能够达到更好更精细的加工效果,实现真正冷加工,基本无炭化,逐步成为主流选择。 ▲正业激光切割效果图(皮秒VS纳秒) 正业皮秒激光切割机 正业科技研发生产的皮秒激光切割机应用超快激光技术,适用于覆盖膜(CVL)、柔性板(FPC)、软硬结合板(RF)和薄多层板的切割成形。 01切割实例 02独特优势 1、真正冷加工,基本无炭化:激光脉宽小于10ps,炭化范围极小,基本看不到炭化现象。 2、切割效果更精细:采用小单脉冲能量,高频加工,精雕细作,加工面更加精细光滑,综合加工精度高达±20μm。 3、双台面,零上下料时间,效率高,速度更快:皮秒的重复频率非常高,可达兆赫兹,大幅度提升加工效率。 4、加工前预览功能:避免切板报废。 正业激光 正业科技在PCB行业历经22载,始终认为技术创新才是企业的立足之本,是企业长久生存和可持续发展的不竭动力,不断攻克激光技术难题,探索超快激光技术奥秘。 目前,正业科技承担的激光类国家重点计划项目有典型硬脆构件的超快激光精密智造技术及装备、激光高性能连接技术与装备和激光高精度快速复合制造工艺与装备。 未来,正业科技将不断增强核心竞争力,积极拓展激光技术应用产业链,满足市场及广大客户需求,通过做强“激光”助力制造业转型升级发展。
  • 清华团队探微揭秘!飞秒激光改写材料“基因”
    光与物质的相互作用是探究低维量子材料微观物理机制的重要探测手段,并且其中超短、超强脉冲激光还可作为电子结构及物态的有效调控手段,实现平衡态所不具有的新物态、新效应。周树云研究组和合作者首次在半导体材料黑磷中实现了脉冲激光诱导的弗洛凯瞬时能带调控,并发现其与黑磷的赝自旋具有独特的耦合作用及光学选择定则,研究工作以“Pseudospin-selective Floquet band engineering in black phosphorus”为题,于2023年2月2日发表在Nature杂志。半导体材料弗洛凯能带调控示意图给黑磷中的电子“拍电影”低维量子材料包括碳纳米管、石墨烯、过渡金属硫族化合物等,以其新奇的物理特性和全新的器件应用而广受关注。例如,相比于石墨的三维立体结构而言,石墨烯以其单原子级厚度可以被视作“二维”这样的低维材料,其中的电子结构也会因为维度的降低而发生剧烈的变化。“我们研究的电子能带结构可以通俗地理解成这些材料的DNA,它决定了材料的各种属性,清华大学“水木学者”鲍昌华解释道,“而我们所做的就是利用飞秒激光来调控这些材料的DNA,从而获得我们想要得到的一些性质。”当前学界的研究主要聚焦在材料的平衡态特性,而对其非平衡态物理及超快动力学的研究尚处于发展阶段。周树云团队利用脉冲激光,将时间精度控制到万亿分之一秒,迈出了实现瞬时调控材料特性的坚实一步。在超快时间尺度(皮秒甚至飞秒)上实现电子结构和物理特性的测量和调控,不仅能够拓展非平衡态物理知识的前沿,还将为未来新型、高速器件的开发和应用奠定重要的科学基础。在非平衡态超快动力学和瞬时物态调控研究中,一个备受关注的重要研究方向是通过周期振荡的势场诱导量子物态的变化,进而实现对其电子结构的调控,该方案被称为弗洛凯工程(Floquet engineering)。从材料的晶格结构出发,电子受到空间中周期性变化晶格的影响,形成在动量空间具有周期性的能带结构,导致整个材料呈现出金属、绝缘体、半导体乃至超导体的多种性质的可能。与之相类比,外加的周期振荡势场将导致电子在能量空间出现能带结构的周期性复制,进而形成弗洛凯态。进一步地,通过电子与周期势场的相互作用对低维量子材料的能带结构、对称性及拓扑性质的瞬时调控,可实现平衡态所不具有的新物态,例如,将拓扑平庸的材料转变为拓扑材料,实现远离平衡态的拓扑超导态等。“目前,国际上这方面的研究还刚开始。一方面,我们希望弗洛凯能带工程可以在更加广泛的材料体系中被实现,从而为更加自由地调控材料的性质提供一种新的途径,”对于该研究领域的发展前景和可能的应用,清华大学物理系2017级博士生周绍华介绍,“另一方面则是在未来飞秒激光在材料物性调控作用上的应用,如在超快时间尺度上实现材料的非平庸拓扑、超导拓扑物态等。”弗洛凯态的概念自上个世纪初被提出后就引起了物理学家的广泛关注,并被应用于凝聚态物理、冷原子物理和光晶格等领域。近十年来,弗洛凯瞬时能带和物性调控已经发展成为国际上凝聚态物理和材料科学的一个重要科学前沿。然而,尽管理论方面涌现出丰富的预言,与之形成鲜明对比的是凝聚态体系中的实验进展非常少。很多关键的科学问题,例如,能否在常规材料(例如半导体)中实现能带结构的瞬时调控,仍然有待实验的证实。利用超快时间分辨角分辨光电子能谱在黑磷中实现弗洛凯瞬时能带调控周树云研究组多年来致力于低维量子材料的电子能谱和非平衡态超快动力学的研究,尤其是弗洛凯能带及物态调控的实验研究。这一过程并不简单,需要研发具有能够实现弗洛凯调控工程所需的极端实验条件的先进科学仪器。由于弗洛凯调控要求激发光源具有低光子能量、强峰值电场等极端实验条件,研究组针对领域难点投入了大量的精力,攻克了中红外强场脉冲激发光源以及与角分辨光电子能谱仪结合方面的困难,研制出具有前沿技术指标的超快时间分辨角分辨光电子能谱(TrARPES)系统。在材料体系方面,周树云研究组独创一格,巧妙地选取了黑磷这个具有小带隙、高迁移率的经典半导体材料。通过精细调节中红外激发光源的光子能量,研究组发现当光子能量与带隙接近共振时,黑磷的电子结构从平衡态的抛物线形状演化为在带顶打开能隙的“墨西哥帽”形状,并观察到了复制的弗洛凯边带。在研究其中的弗洛凯瞬时能带调控时,研究组使用了类似“给电子拍电影”的方法:在飞秒尺度上去记录它在光的激发下,从光到来之前、刚好到达时以及光离开以后整个动态过程中的关键时刻,从而观察它是怎样演化的。在此基础上,他们通过系统性地探究该瞬时能隙对时间、光强和电子掺杂等变量的响应等,确认了所观测到的瞬时能隙是由弗洛凯能带工程所导致。更有意思的是,研究组发现黑磷中的弗洛凯能带工程对激发光源的偏振具有强烈的选择性:只有当泵浦光偏振沿着黑磷的扶手椅型(armchair)方向时,才会出现瞬时能隙,揭示出弗洛凯能带工程调控具有特定的光学选择定则。结合理论分析,研究组指出这一奇特的偏振选择效应来源于黑磷的赝自旋自由度(黑磷元胞中含有两个子晶格,对应的两能级系统可类比自旋)。这些研究结果不仅为弗洛凯能带调控提供了重要的思路,同时,飞秒激光调控的迅速“开关”特点也为进一步探索拓扑物态、关联物态(磁性、超导等)的瞬时调控奠定了重要的基础。此外,这一独特的偏振选择效应未来也有望应用于光学偏振相关的光电器件应用中。参与项目研究的实验团队成员坚持“一步一个脚印”这个研究课题自周树云2012年入职清华大学就已列入她的研究计划,是她在清华最想解决的科学挑战之一。该实验涉及多种精密实验技术的结合,没有现成的仪器设备可以开展此类实验,也缺乏可供借鉴的研究经验,研究过程充满了挑战。课题组通过多年的技术研发和多方筹集资源,克服重重困难,不断朝着目标努力,并最终在2018年完成了仪器平台的建设,使该系统在能量分辨率、时间分辨率、中红外泵浦光源等多方面指标具有国际领先水平。最近,他们利用这一设备成功攻克了超快时间尺度下,光与半导体材料相互作用导致的弗洛凯工程这一重要科学问题。该实验所需的实验条件十分苛刻,研究成果来之不易。例如,在实现弗洛凯瞬时能带调控的过程中,需要调控两束飞秒激光在时间和空间上完全重合,才有可能观测到该效应。这就需要不仅在时间上要使它们在飞秒尺度上重合,还要使它们在空间上聚焦到空间上同一个几十微米尺度的点。此外,激光光源的能量范围以及极端峰值电场强度也给实验带来了很多技术上的挑战。最困难的是,对于这样的未知领域,什么样的实验条件有利于弗洛凯瞬时能带调控的观测,在这方面并没有可供借鉴的经验,只能是摸着石头过河,通过大量实验逐渐积攒经验。在研究过程中,研究组成员通过长年累月的坚持、严谨求实的态度最终攻克了一个又一个难关,从最初开始该实验时遭遇不断失败到观察到最终实验结果时的豁然开朗,他们用专精的实力诠释了科研的态度和决心。“清华大学为我们提供了优质的科研环境,为青年学者的成长提供了助力。”在清华园学习生活的第 11 个年头,鲍昌华一步步从清华物理学堂班学生、获得研究生特奖成长为今年的 “水木学者”,对科研有他自己深刻的体会。“我们在做科研的过程中,需要不忘初心,始终坚持一步一个脚印。只有把每一步都做到完美,厚积薄发,最后才有希望摘取到最重要的科研成果。”周绍华也有这样的深切体会:“除了优秀的学术环境和科研平台以外,清华自强不息的文化传统也使我们受益匪浅。在科研的道路上,只有坚持自强不息,不断追求卓越,才能取得科研上的重大突破。”论文通讯作者是周树云,论文共同第一作者为周绍华和鲍昌华。合作者包括清华大学物理系段文晖院士、于浦教授,北京航空航天大学汤沛哲教授,中科院物理所孟胜研究员等。该研究工作主要受到科技部国家重点研发计划、自然科学基金委国家杰出青年科学基金项目、重点项目和重大科研仪器研制项目的支持。此外,该研究工作还受到国家自然科学基金委基础科学中心项目和中国科学院项目的支持。
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。  飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。  在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。  该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展  我国飞秒脉冲激光参数准确度国际领先  日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。  该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。  据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 全球创新性飞秒激光蓝宝石切片机和蓝宝石划片机研发成功
    孚光精仪公司联合德国,俄罗斯和立陶宛合作伙伴历时2年研发的新一代飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机成功问世,将大幅度提高智能手机蓝宝石屏的加工效果和效率,据悉,这一新技术将在10月份向全球推广。这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机采用全球领先的工业级飞秒激光,突破飞秒激光成本高,效率低的缺点,革命性地提高蓝宝石划片和切割效果,没有毛刺,没有熔融问题产生。经过评估,这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机达到了预定研发目标,具有如下优势:不仅适合蓝宝石划片切割,还适合不同玻璃的加工满足不同形状切割需求高速划片切割,划片速度高达800mm/s光滑切片,粗糙度Ra1微米蓝宝石切片上无碎屑不需要化学蚀刻详情浏览: http://www.f-opt.cn/weinajiagong.htmlEmail: info@felles.cn 或 felleschina@outlook.com Web: www.felles.cn (激光光学精密仪器官网) www.f-opt.cn Tel: 021-51300728, 4006-118-227
  • 飞秒激光烧蚀制备大面积均匀纳米结构进展
    最近,在中国科学院院士徐至展领导下,中山大学光电材料与技术国家重点实验室与中国科学院上海光机所强场激光物理国家重点实验室展开合作研究,在飞秒激光烧蚀制备大面积均匀纳米结构方面取得重要进展,相关成果发表在《光学快报》(Optics Express) (2008, 16, 19354-19365))。纳米科技领域国际著名期刊Small (2008, 4, No. 12, 2099)在News from the micro-nano world栏目以“大面积均匀纳米结构”(Large-area Uniform Nanostructures)为题专门报道了这项研究成果,并将它与美国科学家近期实现的“大面积组装单壁碳纳米管三维结构”并列为微纳结构合成制备新方法 另外,自然中国网站于2008年12月10日在Research Highlights栏目中也专栏推荐并重点介绍了该成果。  飞秒激光烧蚀具有低的破坏阈值及小的热扩散区的特点,可实现对材料的“非热”微加工,从而大大减小传统长脉冲激光加工中热效应带来的负面影响,显著提高加工精度,在光电器件微加工领域具有广阔的应用前景。但是由于传统激光直写方法的效率较低,目前飞秒激光烧蚀制备微纳结构在实际应用中尚不具备高的经济性。因此,探索如何直接用飞秒激光烧蚀高效地制备大面积均匀纳米结构是当前飞秒激光微加工领域的一个研究热点。  博士生黄敏及其导师徐至展等采用飞秒激光辐照自诱导亚波长纳米结构的途径,通过调控飞秒激光脉冲的波长、能量、偏振等条件并采用新颖的快速非相干调制技术,成功地在氧化锌、硒化锌等宽带隙材料及石墨表面实现了纳米光栅、纳米颗粒及纳米方块结构的大面积制备。这种利用飞秒激光烧蚀直接制备纳米结构的方法具有均匀性好,效率高,热效应小,通用性高,环保等优点,并克服了以往飞秒激光烧蚀制备纳米结构过程中的二度污染问题。更为重要的是,经过这种方法处理后,材料表面的光电特性发生了显著的改变,并可随纳米结构的改变而呈现不同的光谱特征。这种方法在新型光电器件等方面具有重要的潜在应用价值,有望提高LED照明器件的发光效率和增加太阳能电池的吸收效率。(来源:中科院上海分院)  (《光学快报》(Optics Express ),Vol. 16, Issue 23, pp. 19354-19365,Min Huang,Zhizhan Xu)
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p  近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong中标项目/strong/span/pp style="text-align: center "strong干式激光成像仪/strong/pp  项目编号:HYEZ2J2018007/pp  项目名称:干式激光成像仪采购/pp  总成交金额:6.97 万元(人民币)/pp  采购单位名称:北海市华侨医院/pp  中标单位名称:江西伟晨医疗设备有限公司/pp style="text-align: center "strong密封式同轴送粉激光增材制造系统/strong/pp  项目编号:HBT-15170140-173892/pp  项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目/pp  总成交金额:208.85 万元/pp  采购单位名称:武汉理工大学/pp  中标单位名称:南京中科煜宸激光技术有限公司/pp style="text-align: center "strong原子吸收分光光度计及涡度相关系统/strong/pp  项目编号:CEIECZB03-17ZL144/pp  项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目/pp  中标金额:54.43万元/pp  中标供应商名称、地址及成交金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title="1.jpg"//pp style="text-align: center "strong大连工业大学信息学院光电实验室建设/strong/pp  项目编号:LNZC20171001868/pp  项目名称:大连工业大学信息学院光电实验室建设采购项目/pp  中标金额:54.18万元/pp  中标单位:大连万慧科技有限公司/pp  主要成交标的:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title="2.jpg"/  br//pcenter/centerp style="text-align: center "strong激光治疗系统/strong/pp  项目编号:Q5300000000617001570/pp  项目名称:昆明医科大学附属医院购置激光治疗系统采购项目/pp  中标金额:129万元/pp  中标供应商名称:贵州邦建医疗科技设备有限公司/pp  主要成交标的:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title="3.jpg"//pp style="text-align: center "strong193nm 激光剥蚀进样系统等/strong/pp  项目名称:中国海洋大学/pp  项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目/pp  采购单位名称:中国海洋大学/pp  中标金额:1367.93612 万元/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title="4.jpg"/  br//pcenter/centerp style="text-align: center "strong激光雷达项目/strong/pp  项目编号:JXBJ2017-J28802/pp  项目名称:南昌大学空间科学与技术研究院激光雷达采购项目/pp  采购单位:南昌大学/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title="5.jpg"//pp style="text-align: center "strong308准分子光治疗系统和激光光子工作站/strong/pp  项目编号:[350823]SHHY[GK]2017015-1/pp  项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目/pp  中标金额:169.9万元/pp  中标供应商:厦门海辰天泽仪器有限公司/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title="6.jpg"//pp style="text-align: center "strong复杂曲面三维激光扫描系统/strong/pp  项目编号:LNZC20171201441/pp  项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目/pp  中标金额:58.9万元/pp  中标单位:北京金鹰腾飞科技有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title="7.jpg"//pp style="text-align: center "strong双光子激光共聚焦显微镜采购项目/strong/pp  项目编号:中大招(货)[2017]993号/pp  采购单位名称:中山大学/pp  中标金额:489.803430万元/pp  中标供应商名称:广州市诚屹进出口有限公司/pp  中标标的名称、规格型号、数量、单价、服务要求:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title="8.jpg"/  br//pcenter/centerp style="text-align: center "strong超短强激光微纳制造实验室项目/strong/pp  飞秒激光放大器/pp  项目号:17A51870611-BZ1700401866AH/pp  项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购/pp  中标总金额:145.9万元/pp  中标供应商:相干(北京)商业有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title="9.jpg"//pp style="text-align: center "strong便携式高分辨测风激光雷达/strong/pp  项目编号:OITC-G170321151/pp  项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目/pp  中标总金额:280.0 万元(人民币)/pp  中标供应商名称:西南技术物理研究所/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title="10.jpg"//pp style="text-align: center "strong激光共聚焦拉曼光谱仪、数字综合试验箱/strong/pp  项目编号:ZX2017-12-13/pp  项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目/pp  中标金额:115.30万元/pp  中标单位:西安共进光电技术有限责任公司/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title="11.jpg"//pcenter/centerp style="text-align: center "strong激光共聚焦拉曼光谱仪/strong/pp  项目编号:OITC-G17031833/pp  项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目/pp  采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所/pp  总中标金额:155.7781万元/pp  中标供应商:雷尼绍(上海)贸易有限公司/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title="12.jpg"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong还有一个招标大单,注意关注哦!/strong/span/pp  招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器/pp  项目编号:0811-184DSITC0089/pp  项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次)/pp  采购单位:华东师范大学/pp  预算金额:230.0 万元(人民币)/pp  采购内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title="2018-02-07_091003.jpg"//pp  购买标书时间:2018年01月26日-02月02日/pp  投标截止时间:2018年02月28日/pp  联系方式:冯东海 ,021-62231151/p
  • 硬核| 观测激光加工边缘浮渣及残留异物实力派!
    背景 通过常规的冲孔和冲压加工零件可能会在样品表面残留渣滓,因为该过程通常会在冲头侧产生光滑表面的剪切下垂和在模具侧产生锯齿表面的毛刺。如果工件较厚或材料(如不锈钢或钛)难以加工,这将使后续加工变得困难。此外,冲孔和冲压加工的速度和精度数十年来没有大的提升。由于这些问题的存在,越来越多的厂家开始使用激光切割工艺。激光切割有如下优势,它能应对多种材质,且加工精度高。然而,虽然激光切割不会产生剪切下垂或毛刺,但激光的热量有时会导致余料在工件表面熔化并粘附在表面。虽然可以使用辅助气体去除余料,但有时部分余料会再次凝固粘附,成为残余的“浮渣”。为了确保激光切割的准确性和成品的质量,必须仔细测量浮渣的数量和尺寸。(参考图1和图2)____来自Olympus的解决方案奥林巴斯LEXT三维激光测量显微镜让您能够轻松进行非接触,高精度的三维测量,以评估浮渣的大小和形状。显微镜高的倾角灵敏度使其能够精确测量具有复杂几何形状和陡峭角度的浮渣。产品特征奥林巴斯LEXT能够快速表征样品的三维微观形貌,进行非接触测量。该显微镜具有超高分辨率测量能力和高像素密度,以确保准确性。LEXT高的倾角灵敏度是精确测量复杂形状的微小浮渣和边缘翘曲异物的不二之选。图像图1: 工件入射激光侧的高分辨率图像及其测量轮廓线图 2: 工件输出激光侧的高分辨率图像及显示浮渣的相关测量____应用所使用的产品使用奥林巴斯 LEXT OLS5000 激光扫描共焦显微镜,能够通过非接触、非破坏的观察方式轻松实现 3D 观察和测量。仅需按下“Start(开始)”按钮,用户就能在亚微米级进行精细的形貌测量。该产品不仅易于使用,更具备先进功能,能够提供四倍于上一代型号的采集速度。对于需要观察大型样品的客户,LEXT 的长工作距离物镜和选配的扩展机架使得系统能够适用于最大高度为 210mm 的样品。
  • 理化所飞秒激光双光子聚合水凝胶3D微结构分辨率研究获进展
    水凝胶具有类似于细胞外基质的理化性质,具备良好力学性能、自愈合能力和响应性,可用于构建组织再生的微纳米仿生结构,并提供微米尺度的表面形态来调节细胞行为,如细胞粘附、迁移或生存增殖分化因子的释放。因此,水凝胶被广泛应用于组织工程和药物递送等领域。然而,制备高精度的三维(3D)任意生物相容性水凝胶支架颇具挑战性。为了适应未来生物医学领域的发展,亟需开发具有精细3D几何结构的新型水凝胶材料。   近日,中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室研究员郑美玲团队在《ACS应用材料与界面》(ACS Applied Materials & Interfaces)上,发表了题为22 nm Resolution Achieved by Femtosecond Laser Two-Photon Polymerization of a Hyaluronic Acid Vinyl Ester Hydrogel的研究成果。该研究提出了真3D高精细任意可设计拓扑结构调控单细胞的新策略。   科研人员采用飞秒激光双光子聚合技术,以乙烯基酯透明质酸(HAVE)水凝胶作为单体材料,P2CK作为高效水溶性双光子引发剂,二硫苏糖醇(DTT)作为硫醇-烯点击化学交联剂和PBS缓冲溶液配制了HAVE前驱体,通过配方优化和激光焦点调控在水凝胶结构分辨率上取得了重要进展即最高分辨率达22 nm,制备了与细胞尺寸相当的水凝胶3D微支架并验证了材料与结构的生物相容性,表明HAVE水凝胶细胞支架可进一步用于研究细胞迁移和操作等行为。   该团队开展了配方优化实验,通过改变单体和引发剂的质量比及控制硫醇-烯官能团比例筛选出溶解性好、易于加工和聚合性能良好的HAVE前驱体配方。   在几十纳米尺度的分辨率中,体素相对于基底的位置是不可忽略的影响因素。为了进一步提高结构分辨率,该团队根据激光焦点体素理论调控焦点与基底相对位置从而获得更高分辨率的线结构。如图2所示,大功率激光焦点光斑明亮,且体素体积较大,不易得到最佳焦点位置,而小功率激光焦点光斑较弱,体素体积更小,更易获得最佳焦点位置,基于此方法获得了更高分辨率的线结构。   通过上述配方优化和焦点调控,科研人员开展了HAVE前驱体C配方的分辨率研究。当扫描速度为6 μm/s时,线结构的质量得到了显著提高(图3a),结构完整致密。研究利用HAVE前驱体C配方实现了22 nm的分辨率(图3c)。   进一步,研究对HAVE前驱体配方进行了3D水凝胶微结构的双光子聚合加工,利用原子力显微镜测量了3D细胞支架的杨氏模量,平均值94 kPa接近体内组织的力学性能。研究对配方中水溶性引发剂P2CK和3D细胞支架进行了生物相容性测试,验证了该材料和结构具有良好的生物相容性。   综上,该团队全面研究了HAVE水凝胶光刻胶的双光子聚合性能,通过优化光刻胶前驱体的配方和调节焦点位置获得了22 nm的特征线宽,并验证了材料和3D水凝胶细胞支架的生物相容性。本研究提出的方案,有望创建复杂的生物相容性3D水凝胶结构,并探索其在个性化微环境调控、组织工程、生物医学和仿生科学领域的潜在应用。   上述成果是该团队前期一系列仿生水凝胶工作的拓展。研究工作得到国家重点研发计划“纳米科技”重点专项、国家自然科学面上基金、中国科学院国际伙伴计划等的支持。图1.3D水凝胶的制备示意图表1 A-E系列HAVE前驱体配方优化及性能比较图2.体素形态和相对基底位置对大功率变化(a)和小功率变化(b)聚合线结构分辨率的影图3.HAVE前驱体C配方双光子聚合性能研究图4.A和C配方制备的3D细胞支架结构的SEM对比图以及水凝胶支架上共培养L929细胞的共聚焦荧光显微镜图像
  • 欧波同应邀参加中国激光微纳加工技术大会
    2016 年 9 月 21-23 日,“中国激光微纳加工技术大会”在苏州召开。国内著名激光专家集结于此,共同商讨微纳加工,为推动苏州乃至全国的激光产业发展贡献力量。欧波同有限公司应邀出席了此次盛会并带来了报告分享,为激光行业注入了国际尖端的科技力量。 本次会议的三大主题分别为“激光微纳加工前沿技术”、“集成电路 IC、光伏、电子芯片等的激光处理”、“激光在电子产品、移动终端的工艺解决方案”。 欧波同高级工程师为与会专家学者带来了“欧波同微纳米结构显微分析系统解决方案”的精彩分享。介绍了欧波同旗下微纳米分析产品线,从光学微观形貌观察到电子光学纳米形貌的分析,以及能谱、背散射、背散射衍射、波谱、阴极荧光等一系列电镜辅助分析手段,为与会专家提供了一套完整的微纳米全系统实验室解决方案,充分拓展了蔡司显微镜在微纳米研究中的功能。 工程师还为与会专家学者现场展示了蔡司的显微镜设备,并与许多参会专家纷纷就自己在实际工作中遇到的问题进行了深入的交流探讨。 目前,微纳加工技术已成为国家科学技术发展水平的重要标志。近年来,微纳技术的出现促使微纳加工向其极限加工精度——原子级加工进行挑战。 未来,激光微纳加工技术市场前景将更加广阔,此次论坛的开展将有利于激光微加工技术的普及推广,帮助客户找到最适用的显微镜分析系统解决方案一直是欧波同所追求的方向,作为将国际尖端显微镜检测技术引进到中国的先驱,提高中国激光微纳加工技术的整体质量控制水平是我们的责任。希望通过我们的技术与服务,不断为中国各领域的质量检测和科研创新带来全新的视野!
  • 630万!山东大学原位3D折射率成像及激光纳米加工系统采购项目
    项目编号:SDDX-SDLC-GK-2022014项目名称:山东大学原位3D折射率成像及激光纳米加工系统购置预算金额:630.0000000 万元(人民币)最高限价(如有):630.0000000 万元(人民币)采购需求:原位3D折射率成像及激光纳米加工系统,亟需购置,具体内容详见招标文件。标段划分:划分为1包合同履行期限:质保期:国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。20230205山东大学原位3D折射率成像及激光纳米加工系统购置招标文件(定稿).doc
  • 160万!清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目
    项目编号:BIECC-22ZB1133/清设招第20221251号项目名称:清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:该设备用于为生物样本研究的多光子显微镜系统提供激光光源,针对多光子显微成像, 提供(680 nm - 1300 nm)宽的波长调谐范围,全波长全自动调谐,适宜于各种生物活体成像,广泛应用于神经科学/光遗传学,胚胎学,免疫学等多个生物领域研究。具体要求详见第四章。包号名称数量01超宽调谐飞秒激光器1套合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 科学家利用玻璃造出飞秒激光器
    科学家在玻璃基板上制造了千兆飞秒激光器。图片来源:瑞士洛桑联邦理工学院商业飞秒激光器是通过将光学元件及其安装座放置在基板上制造的,这需要对光学器件进行严格对准。那么,是否有可能完全用玻璃制造飞秒激光器?据最新一期《光学》杂志报道,瑞士洛桑联邦理工学院的科学家成功做到了这一点,其激光器大小不超过信用卡,且更容易对准。研究人员表示,由于玻璃的热膨胀比传统基板低,是一种稳定的材料,因此他们选择了玻璃作为衬底,并使用商用飞秒激光器在玻璃上蚀刻出特殊的凹槽,以便精确放置激光器的基本组件。即使在微米级的精密制造中,凹槽和部件本身也不够精确,无法达到激光质量的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。于是,研究人员进一步设计蚀刻,使一个镜子位于一个带有微机械弯曲的凹槽中,凹槽在飞秒激光照射时局部可扭动镜子。通过这种方式对准镜子后,他们最终创造出稳定的、小规模的飞秒激光器。尽管尺寸很小,但该激光器的峰值功率约为1千瓦,发射脉冲的时间不到200飞秒,这个时间短到光都无法穿过人类的头发。这种通过激光与物质相互作用来永久对准自由空间光学元件的方法可扩展到各种光学电路,具有低至亚纳米级的极端对准分辨率。
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 天津地勘院研发移动式三维激光扫描系统
    近期,天津市地质工程勘测设计院研发了一套移动式三维激光扫描系统,最高运行速度可达5公里每小时,点云分辨率最高可达2 mm,具备开展轨道交通结构大范围快速检测的技术能力,技术水平全国领先。同时,基于移动式三维激光扫描系统,科研团队联合外部技术团队研发了一种非接触式快速检测技术,可快速获取地铁隧道、车站、轻轨高架等结构表面的海量点云数据。根据点云数据所包含的坐标数据、图像灰度值等信息进行深入的处理、分析,能够获得诸如隧道内壁影像、隧道收敛直径、管片错台、限界入侵、渗漏水、结构裂缝等有效信息,实现对目标区间的结构尺寸、变形大小、病害点位等进行检测目的。检测区域隧道点云漫游图目前,移动式三维激光检测技术已成功用于工程项目中,累计检测里程达5公里,实现了目标区域全要素点云数据获取,完成了对隧道结构尺寸、病害分布、管片状态的检测分析。
  • 东隆应邀参加2016年华南(广州)先进激光及加工应用技术展览会
    2016年12月7日,东隆科技应邀参加首届华南(广州)先进激光及加工应用技术展览会在广州琶洲保利世贸博览馆盛大开幕!图丨展会入口为期三天的展会,集中展示了国际最新的激光器件、激光加工设备及产品,推动广东省及珠三角地区激光技术的发展及其应用。在现场,我们展示了国内外知名厂商的高功率、高能量的皮秒、飞秒激光器,光束品质检测设备及超快激光精加工平台样品等等……图丨现场咨询本次展会从高端装备上看,不但有目前最实用畅销的激光切割机设备,还有各种激光打标、焊接、全自动化成套设备;从展出的激光器上看,有超快、光纤激光器、紫外、二氧化碳、固体、半导体激光器等全面内容;从应用理念上看,展示了如何用一台激光器同时解决八个应用。2017年,期待我们再次相聚!
  • 三维激光扫描技术,给古建筑做个“透视”
    在山西五台山南台西麓的树林中,千年古刹佛光寺静静矗立。作为国务院公布的第一批全国重点文物保护单位,佛光寺已列入世界遗产目录。其中,建于公元857年的佛光寺东大殿是我国现存最为完整、体量最大的唐代木结构建筑,也是研究唐代木结构建筑最为重要的“标准器”。  据清华大学建筑设计研究院文化遗产保护研究所等编写出版的《佛光寺东大殿勘察研究报告》描述,佛光寺东大殿背靠陡崖,50年代曾由于崖体倒塌使大殿后墙局部遭到破坏,同时存在局部基础不均匀下沉和木构建糟朽、断裂等问题。  “清华大学文化遗产保护研究所承担了佛光寺东大殿精确测绘等工作。我们希望对东大殿用三维激光扫描的精确测量方法,来确定建筑结构变形,通过对变形的量化分析,得到东大殿结构是否安全的结论。”清华大学建筑学院副院长吕舟教授说。  20世纪30年代,梁思成、林徽因根据敦煌第61窟中的“大五台山图”发现了佛光寺东大殿,作为至今国内已知的唯一唐朝木建筑,这座珍贵的建筑对我国建筑史研究具有极重要的意义。  自梁思成开展佛光寺调研的1937年至今70多年里,建筑历史界多次踏勘、测量东大殿。但测量手段基本以皮尺、钢尺的手工测量为主,数据取舍到0.5厘米。  吕舟说,前人所做的测绘已取得巨大成果,但由于以往测量工具和测绘手段的限制,难以达到更高精度,误差量也难以控制,测量结果不一。在本次勘察中,使用了三维激光扫描配合全站型电子速测仪定位,全站仪可给出控制点的空间相对坐标,为扫描结果的三维空间形象提供坐标 再加上局部的手工测量,从而得到一套精确、客观的东大殿数据。如今,在古代建筑测绘领域,三维激光扫描已是一项常用的技术。  据介绍,与传统测绘技术相比,三维激光扫描的优势在于数据全面性和准确性,可以在电脑中像做透视一样进行切片测量,从而测量无法直接测量的位置,完成实测不可能完成的工作,并尽可能测量到所有数据,再通过数理统计推断出最符合的原始设计尺寸 全站仪所获得数据精确,角度误差为秒级,测距误差为毫米级 观测速度快,采集单个点仅需几秒钟 工作距离最远可达数百米等。  吕舟说,“通过三维激光扫描获得东大殿精确测绘数据后,东大殿一些法式制度上的规律开始清楚地呈现在我们面前,使重建或复原东大殿,消除结构变形影响的标准形态成为可能。”通过对三维激光扫描点云切片与复原的东大殿标准结构剖面相比较,就可得到东大殿准确的结构变形情况,对东大殿结构安全做出判断。这也是我国第一次把三维激光扫描应用于木结构文物建筑的结构安全评估。  以文物保护为目的的测绘要求准确地反映文物建筑的现状,包括残损、构件错置、改动、变形的情况,手工测绘中难以准确、清晰地表现出文物建筑现状,或有可能在测绘过程中被忽略。“三维激光扫描为解决这一问题提供了可能性。”吕舟说。  东大殿被称为我国古代建筑遗存中最为珍稀的一座,其所蕴含的设计思想、结构尺度和加工做法在非物质遗存方面具有非凡价值。因此,吕舟表示,以精密测绘入手,通过运用精密测量工具与传统测绘相结合的方法,取长补短,力求在使用目前最先进的技术条件下,得到尽可能精确而全面的测绘结果等。在该结果基础上,绘制东大殿复原理想设计图。  “在上述工作的基础上,我们才能提出了东大殿保护工作计划以及初步的修缮建议等。”吕舟说。  据国家“指南针计划—中国古代发明创造的价值挖掘与展示”专项,在“古代著名的遗址、墓葬、古建筑和土木工程设计、建造材料技术等方面”,“进行系统的专项调查、整理挖掘、研究展示、抢救传承”。  文物建筑测绘国家文物局重点科研基地(天津大学)主任吴葱教授说,除三维激光扫描技术和全站仪外,他们还将多基线数字近景摄影测量系统、固定翼无人机、无人直升机等新技术应用于古建筑测量中,精确测绘了柬埔寨吴哥古迹、天坛、故宫、颐和园、山西应县木塔、辽宁义县奉国寺等20多处古建筑。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 物理所利用高对比度飞秒激光产生超强极短X射线源
    中科院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室张杰研究组的陈黎明研究员等,与日本原子力研究所合作在激光硬X射线源研究方面取得重要进展。研究成果发表在Physical Review Letters 104, 215004(2010)上。  飞秒脉冲强激光与靶物质相互作用时,产生的超热电子通过K壳层电离辐射和轫致辐射产生硬X射线。由于此种X射线源在理论上具超快的特点,非常适合对物质进行飞秒时间分辨的动力学探针,加上其微小的X射线发射源尺寸,极低的建造成本,比拟甚至高于同步辐射源的源峰值亮度,成为第三代同步辐射光源之外的最具应用价值的补充光源,具有在医学、生物学和材料学等方面的极大的应用前景,因此成为国际上相关领域研究热点之一。  但是实际应用中现有的激光X射线源都表现出信噪比差等缺点,造成能实际利用的K光子总额较少,大量的能量包含在连续的轫致辐射本底中,极大地降低了成像的对比度 同时由于电子在靶材料中反复多次震荡或长程输运和碰撞,使产生的X射线辐射的时间宽度都在皮秒甚至纳秒量级,造成这些激光X射线源在原子分子学和材料学中的应用受到极大限制,基于激光的硬X射线源的实际应用价值大打折扣。因此,如何有效控制和优化激光硬X射线的产生效率、单色性和脉冲宽度是一个值得研究、亟待突破的课题。  陈黎明研究员及其合作者继利用高对比度激光与固体靶相互作用产生了低本底、高转换效率的Ka射线源【Physical Review Letters 100, 045004(2008)】之后, 为了进一步提高上述各种参数以产生更强,单色性更好的X射线源,采用了高对比度的飞秒激光脉冲与小尺寸气体团簇相互作用。这项工作是基于前期的实验观察【Applied Physics Letters 90, 211501(2007)】之上的,最新的结果将光子产额有提高了一个量级。  目前国际上利用团簇的研究均普遍采用普通对比度的激光,由于这类激光脉冲有强的预脉冲,为保持团簇在主脉冲到来时依然具有能引起线性共振的临界密度,往往采用大尺度的团簇。这样,在团簇中产生的超热电子在团簇中多次碰撞产生大量的连续本底,并且由于大尺度团簇膨胀的整体不均匀性,使K壳层X射线的能量转换效率很低(~10-6)。最新研究在实验中利用了高对比度的激光防止了团簇的先期膨胀,再利用激光强电场驱动纳米级尺寸的团簇在相互作用中的非线性共振机制,这种机制的特点是团簇电子只在激光电场和电荷分离场的共同作用下运动,这些电子的共振将只在脉冲的前几个周期内激发,激光脉冲过后电子能量迅速消失,所产生的X射线源具有10飞秒量级的时间分辨 同时,共振加热的电子是和纳米尺度的团簇碰撞,不会产生高能轫致辐射本底 另外,研究人员还在实验中成功地实现了团簇的非线性共振和线性共振加热之间的相互转换,得到清晰的相互作用物理图像。  由于他们在实验中产生了高信噪比、极短的K壳层X射线源,比较彻底地克服了前述激光X射线源的不利因素。这将极大地推动此领域的发展并确立基于激光的X射线源在超快研究中真正的实际应用价值和地位。  本项目得到中科院、国家自然科学基金、973国家基础研究计划和863高技术研究计划的支持。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制