当前位置: 仪器信息网 > 行业主题 > >

纺织纤维孔径分析仪

仪器信息网纺织纤维孔径分析仪专题为您提供2024年最新纺织纤维孔径分析仪价格报价、厂家品牌的相关信息, 包括纺织纤维孔径分析仪参数、型号等,不管是国产,还是进口品牌的纺织纤维孔径分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纺织纤维孔径分析仪相关的耗材配件、试剂标物,还有纺织纤维孔径分析仪相关的最新资讯、资料,以及纺织纤维孔径分析仪相关的解决方案。

纺织纤维孔径分析仪相关的论坛

  • 【分享】北京精微高博公司“高性能氮吸附比表面及孔径分析仪”项目喜获国家创新资金资助

    北京精微高博科学技术有限公司的“高性能氮吸附比表面及孔径分析仪”项目,喜获2011年国家中小企业创新基金的资助,这是精微高博公司产品在2010年4月获国家级技术鉴定之后,又一里程碑式的记录,这标志着精微高博公司自主研发创新能力达到了一个崭新的高度。当前,国际上先进的静态法比表面及孔径分析仪,正朝着高精密及微孔分析的方向发展,仪器的智能化,自动化程度也有了很大的提高,北京精微高博公司研制的高性能氮吸附比表面及孔径分析仪,已经在控制精度和测试精度上进入了世界先进行列,微孔测试下线可达到0.35nm,相对压力由10-7到10-1的等温吸附曲线测试压力点可>100点,0.35-2nm微孔孔径分布曲线得到的最可几孔径, 重复偏差<0.02nm,完全达到了国际先进水平,北京精微高博公司在国产比表面及孔径分析仪的研究与制造上取得了可喜的进步。

  • 【分享】精微高博高性能比表面及孔径分析仪荣获“2010科学仪器优秀新产品”奖

    精微高博高性能比表面及孔径分析仪荣获“2010科学仪器优秀新产品”奖2011年4月26日,由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网(www.instrument.com.cn)联合主办,中国分析测试协会协办的中国科学仪器行业目前最高级别峰会——“2011中国科学仪器发展年会(ACCSI 2011)” 在北京京仪大酒店隆重召开。年会主办方在大会现场对“2010中国科学仪器优秀新产品”举行了隆重的颁奖仪式。 “2010年科学仪器优秀新产品”评选活动于2010年3月份开始筹备,截止到2011年2月28日,共有234家国内外仪器厂申报了497台2010年度上市的仪器新品。经仪器信息网编辑初审、2011中国科学仪器发展年会新品组委会初评,在所有申报的仪器中仅有四分之一进入了入围名单。共有60位业内资深专家、20位资深用户参与了此次科学优秀新产品的评选,最终仅有28台仪器获得了“2010科学仪器优秀新产品”奖。其中,2010年度申报的33台物性测试仪器及设备中,仅有12台入围。北京粉体协会理事长胡荣泽研究员会上揭晓了物性测试和光学仪器类“2010科学仪器优秀新产品”获奖名单。入围的12台仪器中,仅有三家仪器新品榜上有名,与精微高博新品一道获此项殊荣的另外两台仪器都出自国际知名的跨国公司(如下)。精微高博自主创新的高性能比表面及孔径分析仪的脱颖而出,充分显示出JW系列分析仪器制造水平达到了国内领先水平,JW系列高性能比表面及孔径分析仪得到国内外客户的普遍认可。物性测试和光学仪器类“2010科学仪器优秀新产品”获奖名单 file:///C:/Program%20Files/Tencent/QQ/Users/498819089/Image/K83)}F12$W

  • 四站比表面及孔径分析?你要小心了

    最近从客户那里了解到,国内某家比表面孔径分析仪的厂家对外宣传的所谓四站式比表面及孔径分析仪居然是伪四站,虽然有四个测试位,但是每次只能进行两个样品的比表面及孔径分析,另外两个测试位只能进行比表面测试。这种极度不负责任,虚假的,欺瞒客户的行为大大伤害了广大客户对国产仪器的信任,沦为国产仪器的还群之马。技术上不行,可以通过研究,学习改进,但是弄虚作假就是品行问题,作为一个企业,更是不能让人接受,真是给我们国产仪器抹黑啊。

  • “比表面与孔径分析原理及应用”免费讲座福利包拿走不谢!

    [align=center][b][color=#ff0000]《比表面与孔径分析原理及应用》系列讲座之第一讲 [b]氮吸附法比表面及孔径分析原理[/b][/color][/b][/align][b][color=#ff0000]主讲人:[/color][/b]钟家湘,北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”。[b][color=#ff0000]开讲时间:[/color][/b]2018年7月5日 10:00[b][color=#ff0000]免费报名链接:[/color][/b][url]http://www.woyaoce.cn/webinar/meeting_3335.html[/url][b][color=#ff0000]课程简介:[/color][/b]本讲主要介绍超细粉体材料比表面及孔径分布的基本概念;吸附科学在比表面及孔径分析中的应用要点;氮吸附比表面测定原理;氮吸附孔径分布测定原理。比表面与孔径分析原理及应用专家系列讲座之课程目录第一讲 氮吸附法比表面及孔径分析原理第二讲 连续流动色谱法比表面仪原理及应用第三讲 超细粉体表面孔径分布的表征与测试原理第四讲 静态容量法比表面及孔径分析仪原理及应用第五讲 超微孔孔径分布的分析原理及方法第六讲 密度函数理论在孔径分析中的应用 这样的学习充电机会你舍得错过吗?[b][color=#ff0000]系列课程链接:[url]https://www.instrument.com.cn/ykt/video/106_0.html[/url][/color][/b][img]http://5b0988e595225.cdn.sohucs.com/images/20170916/a327e21777b4435893b261c0d2dea633.gif[/img]

  • 【国产好仪器讨论】之北京精微高博科学技术有限公司的全自动比表面及孔径分析仪(JW-BK132F)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C73677%2Ejpg&iwidth=200&iHeight=200 北京精微高博科学技术有限公司 的 全自动比表面及孔径分析仪(JW-BK132F)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 产品简介: 由我公司自主研发的国内首台研究型、高性能静态容量法微孔分析仪JW-BK132F诞生于2010年,该款仪器完全继承了BK系列孔径分析仪的所有技术特点,核心硬件全部采用国际先进品牌,并引入“涡轮分子泵高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。 仪器型号: JW-BK132F 原理方法: 气体吸附法,静态容量法; 测试功能: 等温吸脱附曲线;单点、多点BET比表面积;Langmuir比表面积;外表面积(STSA);单点吸附总孔体积、平均孔径;BJH介孔大孔孔容积及孔径分布分析;t-plot法、as- plot法、DR法、MP法微孔常规分析;HK法、SF法微孔精确分析;平均粒径估算; 特殊功能:NLDFT法孔径分布分析;真密度精确测试;气体吸附量、吸附热测试;质量输入法测试; 测试气体: 氮、氧、氢、氩、氪、二氧化碳、甲烷等; 测试范围: 比表面积0.005(m2/g)--至无上限;介孔、大孔分析2nm-500nm; 微孔分析0.35nm-2nm;总孔体积0.0001cc/g至无上限; 重复精度: 比表面积≤± 1.0%;外表面积≤± 1.5%;微孔最可几孔径≤0.01nm;真密度≤±0.04% 测试效率: 比表面积平均每样30min;介孔、大孔分析平均每样4-6小时;微孔分析平均每样10-15小时; 分析站: 2个样品测试位,可同时进行真空脱气预处理,原位交替测试;每个测试位原配单独的3L或1L真空玻璃内胆杜瓦瓶,共2个; P0位: 每个样品测试位设有独立的P0管,共2支,由单独的进口压力传感器控制,完全同分析位分开,可实时、准确测量氮气的饱和蒸汽压,并实时参与理论计算; 升降系统: 2个样品测试位原位设有2套独立的升降系统,电动控制、自动控制,且互不干扰; 真空系统: 全不锈钢多通路并联抽真空管路系统,真空抽速微调阀系统专利技术,可在2-200ml/s范围内自动调节; 真空泵: 外置式进口双级旋片式机械真空泵(自动防返油)+ 内置式进口涡轮分子泵,极....【了解更多此仪器设备的信息】

  • 【有奖点评】一句话说说精微高博TB系列比表面积及孔径同步分析仪怎么样?

    【有奖点评】一句话说说精微高博TB系列比表面积及孔径同步分析仪怎么样?

    [align=center][font='微软雅黑',sans-serif][color=black]使用过“[/color][/font][font='Arial',sans-serif][color=#333333]精微高博TB系列比表面积及孔径同步分析仪[/color][/font][font='微软雅黑',sans-serif][color=black]”的小伙伴,[/color][/font][/align][align=center][font='微软雅黑',sans-serif][color=black]一句话说说[/color][/font][font='Arial',sans-serif][color=#333333]精微高博TB系列比表面积及孔径同步分析仪[/color][/font][font='微软雅黑',sans-serif][color=black]怎么样?[/color][/font][/align][align=center][font='微软雅黑',sans-serif][color=red]欢迎回帖讨论[/color][/font][font='微软雅黑',sans-serif][color=black],凡有效参与的用户,[/color][/font][font='微软雅黑',sans-serif][color=red]奖励[/color][/font][font='Arial',sans-serif][color=red]200[/color][/font][font='微软雅黑',sans-serif][color=red]积分[/color][/font][font='Arial',sans-serif][color=red]/[/color][/font][font='微软雅黑',sans-serif][color=red]人[/color][/font][font='微软雅黑',sans-serif][color=black]。[img=,300,300]https://ng1.17img.cn/bbsfiles/images/2023/04/202304271038569285_4452_3237657_3.jpg!w300x300.jpg[/img][/color][/font][/align]

  • 【分享】比表面及孔径测定仪的分析方法

    [center]比表面及孔径测定仪的分析方法[/center] 表面积:颗粒的表面积包括内表面积和外表面积两部分。外表面积是指颗粒轮廓所包络的表面积,它由颗粒的尺寸、外部形貌等因素所决定。内表面积是指颗粒内部孔隙、裂纹等的表面积。 比表面积:单位体积(或单位质量)物体的表面积,称为该物体的比表面积或比表面。 常用的比表面分析方法: (1) BET吸附法 吸附法是在试样颗粒的表面上吸附截面积已知的吸附剂分子,根据吸附剂的单分子层吸附量计算出试样的比表面积,然后换算成颗粒的平均粒径。(2) 气体透过法 气体透过法的理论根据是kozeny Carman关于层流状态下气体通过固定颗粒层时透过流动速度与颗粒层阻力的关系气体透过法测定粉体比表面积应用最广泛的是Bline法(又称勃氏法)。(3) Bline法是测定水泥比表面积的常用方法,也可用于测定其他干燥细粉。 在同内的几家生产商中,北京彼奥德公司是唯一采用真空静态法进行比表面积及孔分析的厂家,并且测量过程为全部电脑控制,达到了真正的全自动化操作。 SSA-4200仪器的工作原理为国际通用的等温物理吸附的静态容量法。全程计算机自动控制无需人工监测。使用本方法的比表面积及孔隙度分析仪在国内只有我公司生产和销售,此项仪器技术我公司已经申请相关国家专利。SSA-4200全自动快速比表面积及孔隙度分析仪(氮单元系统),可同时进行两个样品的分析和两个样品的制备,仪器的操作软件为先进的“Windows”软件,仪器可进行单点、多点 BET比表面积、BJH中孔、孔分布、孔大小及总孔体积和面积、及平均孔大小等的多种数据分析,其比表面分析范围为0.1m2/g 至无上限,孔径的分析范围为0.35-200nm。[center][IMG]http://bbs.jixie.com/space/upload/2008/06/12/19573649372571.gif[/IMG][/center]

  • 【讨论】购买比表面及孔径分析仪器需谨慎!!!切勿听信谗言!

    最近公司来一客户,在我们这里谈好合同后,随便去看另外一家比表面仪器厂家,结果那家的技术员告诉他,静态的仪器测试孔隙度不如动态的。还好这个客户提前在我们公司了解了这方面的知识,知道了测试孔隙度这方面静态是主流,不管从测试精度上、测试范围方面、还是等温吸脱附曲线好坏,静态的都有它的优势。打个比方吧:静态的可以测试吸-脱附曲线,动态一般只能测试脱附曲线(不过我们公司的动态仪器可以做吸脱附曲线),吸脱附曲线的回滞环可以帮助我们分析样品的孔形状。吸脱附曲线可以分析样品孔径分步情况。以及最可几孔径。测试范围上:静态一般可以测试0.35nm微孔到500nm的大孔,而动态只能测试2nm到100nm之间的孔。我觉得作为一个好的采购员,为了避免不被一些骗子公司所忽悠。了解相关仪器的知识是很必要的,要不然,很容易被别人忽悠,到时候把自己公司给坑了都不知道。

  • 10月18日直播|《比表面与孔径分析原理及应用》系列讲座之第三讲开播啦!

    [b][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要详细介绍:超细粉体中孔径分布的氮吸附法的分析原理;孔径分布的表征方法,各种表征参数的正确含义;BJH法进行孔径分布的分析中,值得注意的若干问题。比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[b][color=#ff0000]免费报名链接:[/color][/b][url]https://www.instrument.com.cn/ykt/course/live/index?sid=115[/url][b][color=#ff0000]直播时间:[/color][/b]2018/10/18 10:00[b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],还有8个免费名额哦,先到先得![color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color][color=#ffffff]1.氮吸附法比表面及孔[/color][color=#ffffff]径分析原理[/color][color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color]

  • 【原创】动态色谱法比表面仪不适合做孔径测试原因分析

    [align=center][b][size=3][font=宋体]动态色谱法比表面仪不适合做孔径测试原因分析[/font][/size][/b][/align][size=3][font=宋体] 国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。[/font][/size][size=3][font=宋体]相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:[/font][/size][size=3][/size][b][size=3][font=宋体]一、[/font][/size][size=3][font=宋体]动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;[/font][/size][/b][size=3][font=楷体_GB2312]孔径分析时,通常要分析40个以上的分压点。[/font][/size][size=3][font=楷体_GB2312]动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; [/font][/size][size=3][font=楷体_GB2312]静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; [/font][/size][size=3][font=楷体_GB2312]1.[/font][/size][size=3][font=楷体_GB2312]没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;[/font][/size][size=3][font=楷体_GB2312]2.[/font][/size][size=3][font=楷体_GB2312]动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;[/font][/size][size=3][font=楷体_GB2312]所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;[/font][/size][size=3][font=楷体_GB2312]二、[/font][/size][b][size=3][font=宋体]由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。[/font][/size][/b][size=3][font=楷体_GB2312][/font][/size][size=3][font=楷体_GB2312]测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,[/font][/size][size=3][font=楷体_GB2312]而对于500mg比表面积为1m[sup]2[/sup]/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),[/font][/size][size=3][font=楷体_GB2312]所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;[/font][/size][size=3][font=楷体_GB2312]静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; [/font][/size][size=3][font=楷体_GB2312]而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;[/font][/size][size=3][font=楷体_GB2312]所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;[/font][/size][b][size=3][font=宋体]三、[/font][/size][size=3][font=宋体]动态色谱法仪器不能测试真正意义的脱附等温线;[/font][/size][/b][size=3][font=楷体_GB2312]动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;[/font][/size][b][size=3][font=宋体]四、[/font][/size][size=3][font=宋体]动态色谱法仪器测试范围窄;[/font][/size][/b][size=3][font=楷体_GB2312]若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm;[/font][/size][color=blue][size=3][font=宋体] [/font][/size][/color][size=3][font=宋体] [/font][/size][size=3][font=宋体]由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。[/font][/size]

  • 【有奖点评】一句话说说贝士德比表面及孔径分析仪怎么样?

    [align=center][font=Calibri][font=Calibri]使用过[/font][font=Calibri]“[/font][/font][font=微软雅黑][color=#333333][font=微软雅黑][/font]贝士德比表面及孔径分析仪[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][/color][/font][font=Calibri]”的小伙伴,[/font][font=微软雅黑][/font][/align][align=center][font=微软雅黑]一句话说说[/font][font=微软雅黑][color=#333333][font=微软雅黑][/font]贝士德比表面及孔径分析仪[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][/color][/font][font=微软雅黑]怎么样?[/font][font=微软雅黑][/font][/align][align=center][font=Calibri][color=#ff0000]欢迎回帖讨论[/color][/font][font=Calibri],凡有效参与的用户,[/font][font=Calibri][color=#ff0000][font=Calibri]奖励[/font]200积分/人[/color][/font][font=Calibri]。[/font][/align]

  • 【原创】为什么动态色谱法不适合做孔径测试分析?

    国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:一、动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;孔径分析时,通常要分析40个以上的分压点。动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; 静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; 1. 没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;2. 动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;二、由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; 而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;三、动态色谱法仪器不能测试真正意义的脱附等温线;动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;四、动态色谱法仪器测试范围窄;若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm; 由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。

  • 显微镜、数值孔径、浅显易懂!

    显微镜、数值孔径、浅显易懂!

    先来看看数值孔径的概念。 下面是平行光向上,经过物镜。http://ng1.17img.cn/bbsfiles/images/2014/03/201403050858_491892_2535415_3.jpg从以下公式看,数值孔径NA和两个因素有关,一个是介质折射率,一个是图中的锥角a(也称孔径角),且都是成正比的关系。NA=介质折射率Xsin1/2 的开口角先来说说孔径角:通俗点来说数值孔径的大小代表了一个物镜收集物体散射出来的光的能力的大小。上图中的物镜只能够收集锥角a之内的光线。我们知道,一个物体的细节越小(或者说他的空间频率越高),它散射的光的角度范围就越大。一个理想的物镜,应该能够收集所有角度的光线然后再在像面上还原出物体的像。但实际因为物理尺寸的限制,这个角度a总是有限并且小于90度的。也就是说那些包含在大于锥角a的散射光中的物体的高频细节信息损失掉了。那么能不能再改进一些呢?看下图: http://ng1.17img.cn/bbsfiles/images/2014/03/201403050858_491893_2535415_3.jpg如果照明光不像第一图中那样是平行光,而是一个由聚光镜4产生的光锥,那么有可能收集到大于角度a的等效散射光线,这时同样的物镜可以还原更多的物体细节。所以物镜的分辨率应该是:http://ng1.17img.cn/bbsfiles/images/2014/03/201403050858_491894_2535415_3.jpg 分辨率同时受到物镜和聚光镜数值孔径的限制,物镜的数值孔径越大分辨率越高。那么聚光镜的数值孔径是不是也越大越好呢?也不是,当聚光镜的NA和物镜的NA相同时,分辨率最高。为什么?因为当聚光镜的NA大于物镜时,超出的那部分大角度的光在物体上的零级散射(就是透射光)是不能被物镜收集的,只有大于零级的散射光能被收集,而这些光是不能有效的成像的(至少对明场成像是如此)。所以聚光镜的NA超过物镜时就没有实际意义了。我们从上面的图上还可以知道,最好物面1处每一点的照明都是这样的一个光锥,并且这个光锥的角度最好是可以根据不同物镜可调的。而这些正是科勒照明所能够满足的条件。 从上面的讨论可以知道,聚光镜在显微镜成像系统中也是一个限制因素,为了获得最佳的成像效果和发挥高NA物镜的能力,我们的显微镜上最好有一个高质量的聚光镜,并且要调整照明光路满足科勒照明条件。 在说说介质折射率: 而在显微镜系统中,对于给定的物镜,孔径角已经固定,若想增大其NA值,唯一的办法是增大介质折射率n值。因为空气的折射率永远都是小于1的,所以介质的折射率n值要大于1,就需要引入其他的介质比如油和水,NA值就可能大于1。数值孔径最大值为1.4(油),这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。不过NA大于1.4的,我暂时还没见过和用过。 再讲讲物镜的分辨率极限。通常的物镜口径总是有限的,不可能把物体散射的所有光都收集到。那么如果工程师能够造出一个接近理想的物镜,能收集到所有的远场散射光,是不是分辨率就可以无限小呢?也不是,还有一个物理原理上的限制,叫“衍射极限”。这个衍射极限是怎么回事呢?这个东西和物体对光的衍射能力(或散射能力)有关。前面已经说过了,物体的细节越小,衍射光的角度越大。还是以第一个图中例,如果物体1的细节处的空间频率和波长一样大,那么衍射光的角度a就是90度了。如果细节处的尺寸更小,会发生什么?这部分空间频率的成分失去了对光的衍射能力!入射光除了吸收和透射,不会有其它角度的散射。换句话说,就是如果物体的细节比波长小,那么这个物体其实是不散射光的,是透明的,也就是说光波“看”不到比它波长更小的物体的细节。如果考虑图二中有角度的入射光,这个极限大概是波长的一半。这就是衍射极限的来源。物镜的口径造得再大,也无法超越这个极限。

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【原创大赛】纺织纤维鉴别中显微镜的维护保养和注意事项

    【原创大赛】纺织纤维鉴别中显微镜的维护保养和注意事项

    纺织纤维鉴别中显微镜的维护保养和注意事项显微镜是纺织纤维成分定性分析中一个重要的方法,基本上纺织品实验室都有这么一个显微镜,有的简陋,有的甚至老古董,但也继续发挥这它的作用,我们的显微镜是去年新买的,用的系统名称是羊毛检测系统,此系统是新一代纺织品纤维检测设备,该系统由计算机,摄像机,显微镜及检测软件组成,系统采用先进的计算机数字图像处理技术,可以在计算机屏幕上观察纤维的形态、轻松、方便、快捷地完成纤维的检测工作 http://ng1.17img.cn/bbsfiles/images/2013/09/201309281107_468028_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/09/201309281128_468043_2154459_3.jpg1工作环境:①一般放在恒温恒湿室进行操作,恒温恒湿室国标温度20±2℃,相对湿度65%±3%,高温、高湿将导致显微镜生霉、结露、并损坏仪器。②避免将显微镜放在有粉尘的环境之中在显微镜不用时,应用塑料罩将其盖好。2.灯泡:显微镜灯泡是显微镜的发光点,很小,不算重要配件,但却至关重要,灯泡的好坏以及调节,直接关系到仪器能否使用,所以灯泡的检查是非常必要的①实验室插座的电压要和显微镜标明的电压一致,否则将导致显微镜严重损坏。首先是灯泡的损坏②灯泡:调节亮度控制钮/电源开关,直到获得所需亮度。照明时或刚结束照明时,灯泡及散热筋都非常烫,当心不要灼伤自己。③更换灯泡:灯泡一旦损坏,必须更换,更换的灯泡要与仪器所配备的灯泡相符。在更换灯泡前,拔掉仪器电源插头,待显微镜冷却后,将显微镜向后放倒,拉起灯盖的旋钮,翻起灯盖,并将灯泡的管脚安全牢固地嵌入插座孔,再将灯盖回归原处,不要用手接触灯泡的玻璃部分,安装时应戴手套或用保护罩套住灯泡,如有污迹可用清洁的布蘸上纯酒精擦去,因为这些在灯泡表面的东西会减弱其亮度并引起灯泡破裂。3.制样①纤维纵面标本片的制作:将载片放在干净的平面上,把准备好的试样斜角45℃进行剪碎,然后用镊子夹取一定量的试样放在玻片上,滴上一滴甘油,用镊子拨平,压上玻片用软纸擦去载片周围多余的甘油,将玻片沿水平方向放入视场②.纤维横截面标本片的制作:纤维梳理整齐,放入切片器的小孔中,放入量正好塞满小孔,用刀片沿金属板两边把突出部位切掉,再调整好定位螺丝。将精密螺丝转出少许,使纤维稍稍伸出金属板的平面,在伸出的纤维束表面薄薄地涂上一层火棉胶。火棉胶凝固后,切去第一片,弃去第一片,再将精密螺丝旋转1/4转,再涂上一层火棉胶,同上切去第二片、第三片、第四片,把切片平放在滴有甘油乙醇液的载玻片上,用小刀切去多余的火棉胶薄膜,盖上盖玻片后,可镜检4仪器①灯光照明:调节亮度控制钮/电源开关,直到获得所需亮度。照明亮度取决于各种条件。如标本衬度,物镜放大镜率,眼睛调节能力等等,太弱或太强的光都有不适宜。一般情况下,不要将照明亮度调至最强状态。否则会使灯泡在满载荷下工作,从而缩短灯泡寿命。 ②调焦:根据FZ/T01057.1-2007标准,将待测纤维做好样片,置于工作台中间,先用10X物镜和10X目镜,为防止样片和物镜相碰,操作者可先使载物台上升,使样片与物镜靠近,然后再使样片与物镜相离,在相离过程中达到调焦目的。操作者可先缓慢逆向旋转粗调手轮,使样片下降,同时10X目镜里搜索图象,最后用微调手轮精细调焦。此时转换至其他倍率物镜,可达到齐焦而无碰坏样片的危险。③聚光镜中心高低调节:聚光镜中心应与物镜光轴共轴,产品出厂时已校正好,用户不必自行调节。聚光镜上升到最高位置时,聚光镜顶端低于载物台表面0.03mm_–0.4mm,产品出厂时已调节好,用户不必自行调节。转动聚光镜调焦手轮可使聚光镜上下移动,高倍物镜时,聚光镜上升,低倍物镜时,聚光镜可下降。④再将调节螺钉拧紧,以便在最佳照明下进行观察。⑤孔径光栏的调节:孔径光栏是为数值孔径的调节而设计的,不是调亮度。通常,当孔径光栏开启到物镜出瞳的70-80%时,就可以得到足够对比度的良好图像。欲观察孔径光栏象,可取下目镜,从空目镜筒中往下看物镜出瞳。5.注意事项:①拿取显微镜必须一只手拿着镜臂,一只手托着镜座,并保持镜身的上下垂直,应避免震动,轻放台上。切不可一只手提起,以防显微镜、反光镜功目镜坠落。②使用前应将镜身擦拭一遍、用擦镜纸将镜头擦净(切不可用手指擦抹)。

  • 你所不注意的细节——色谱柱填料孔径对分析的影响~

    一般情况下,我们在购买色谱柱时,很少考虑色谱柱孔径方面的信息,其实,色谱柱填料孔径对分析也有些影响,具体如下:*HPLC吸附介质是多孔的颗粒,绝大多数的反应表面于孔内。因此,分析物必须进入孔内才能被吸附和分离*孔径小,含孔率高,则比表面积大,碳载量高,色谱柱分离性能也随之提高*另外,孔径大小必须和分子大小相匹配。一般情况下,分子量小于2000的分析物使用100 Å 或更小;分子量在2000-10000之间的分析物使用100-200 Å的填料;大于10000的包括多肽,蛋白质等需要选用300 Å或更大的孔径。为了达到最佳分离,一般要求孔径直径是分子直径的3倍以上

  • 纺织纤维拉曼光谱定性分析法

    摘要:针对当前纤维定性鉴别方法存在的不足,采用拉曼光谱分析法定性鉴别。通过对纺织纤维原始拉曼谱图的特性分析,经过光谱预处理得到信噪比更高的标准拉曼谱图,建立了拉曼谱图特征表数据库,实现了纺织纤维的定性鉴别。实验结果表明:拉曼光谱定性分析法可快速定性鉴别纺织纤维,尤其适合于合成纤维及其混纺织物,对环境温湿度无特殊要求,样品无需烘干处理及制样,具有简便、快速和环保的优点,含荧光的染料或部分黑色染料以及纤维熔点是影响拉曼光谱法定性分析的主要因素。 关键词:拉曼光谱;特征表;纺织纤维;合成纤维;定性分析 目前纺织纤维定性检测方法有显微镜观察法、燃烧法、化学溶解法、熔点试验法、红外光谱分析法等。这些方法都有一定的局限性和缺点。显微镜观察法和燃烧法对定性鉴别织物有一定的局限性,只能鉴别天然纤维或合成纤维大类。化学溶解法虽然能够鉴别合成纤维具体品种及与天然纤维的混纺产品,但使用的有机溶剂如苯酚、二甲基甲酰胺等,不仅对检测人员身体健康有影响,存在易燃易爆的危险,而且还严重污染环境。红外吸收光谱法虽然能较准确地定性鉴别纺织纤维,但是红外光谱分析仪对测试环境温湿度要求相当高,样品需进行干燥预处理,样品制作很麻烦,检测周期较长,不能满足快速检测的要求。 在拉曼光谱分析纺织纤维结构方面,近年的研究集中于以下几个方面:复合材料的界面和基体结构的测定;再生蚕丝制备过程中,分子链规整度和取向度变化的测定;丝素经酶处理后,高分子结构的变化研究以及羊绒和羊毛分子结构研究。而在纤维成分分析方面有如下研究:鉴别天然绿色棉和染色棉;研究聚丙烯、羊毛、聚酯和一些天然纤维的鉴别方法;对染色纤维中染料的分析以及比较红外光谱与拉曼光谱对染色纤维区分的效果。可见,国内外学者虽然对拉曼光谱应用于纤维分析作了大量研究,但是还没有学者提出拉曼光谱定性检测纺织纤维的系统方法。本文旨在通过分析纺织纤维拉曼光谱的特性及影响拉曼光谱分析纤维的因素,提出一套拉曼光谱定性分析纺织纤维的系统方法。

  • 用TEM分析活性炭的孔径

    偶有一活性炭样品做了TEM测试,希望能通过分析TEM图片看到样品中孔的大小,图片中的标尺为20nm。参考了一篇文献:Pore Structure and Fractal Characteristics of Activated Carbon Fibers Characterized by Using HRTEM”,主要操作就是对TEM图片做FFT,在得到的power spectrum中用mask选取一块区域后,进行IFFT,即可得到孔径在某一范围的孔的二维图。现在的问题是,用mask选择的区域是如何与孔径相关联的。电镜的型号是JEOL2011,图像分析软件是DigitalMicrograph。麻烦各位大虾帮忙解惑,不胜感激!

  • 压汞法测试孔径参数分析报告

    本材料检测中心主要从事石墨及碳素材料等分析,孔径分析测试主要是使用麦克莫瑞提克的压汞仪,型号为9500.今天主要谈谈孔径测试及压汞仪的了解。[font=宋体]一、[/font][font=宋体]对孔径测试及压汞仪的了解[/font][font=宋体]孔径测试[/font][font=宋体] [/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]二、[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体]三、[/font][font=宋体][font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体]四、[/font][font=宋体][font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体]五、[/font][font=宋体][font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]孔径测试[/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体] [font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体] [font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体] [font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]压汞仪了解[/font][font=宋体][font=宋体]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/font][font=Calibri]Washburn[/font][font=宋体]方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。[/font][/font][font=宋体][font=Calibri]Washburn[/font][font=宋体]方程了解: [/font][/font][font=宋体] [/font][font=宋体] [font=宋体]方程的作用:将压力与孔径间建立了关系;[/font][/font][font=宋体] [font=宋体]方程的基础:将所有孔都假设成理想的圆柱形孔模型;[/font][/font][font=宋体] [font=宋体]方程的不足:实际上孔的结构多种多样,存在以偏概全的问题;[/font][/font][font=宋体]压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息;[/font][font=宋体]压汞仪测试原理[/font][font=宋体][font=Calibri]Autopore IV9500[/font][font=宋体]压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试[/font][font=Calibri]0[/font][font=宋体]至[/font][font=Calibri]30psi[/font][font=宋体]的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试[/font][font=Calibri]30[/font][font=宋体]至[/font][font=Calibri]33000psi[/font][font=宋体]的压汞量,根据[/font][font=Calibri]Washburn[/font][font=宋体]方程得到对应于不同压力的孔径大小,并作出相应数据分析。[/font][/font][font=宋体][font=宋体]膨胀计的选择:[/font] [/font][font=宋体] [font=宋体]要求:样品孔体积应在[/font][font=Calibri]25%[/font][font=宋体]至[/font][font=Calibri]90%[/font][font=宋体]范围的毛细管体积;[/font][/font][font=宋体] [font=宋体]对不同孔隙率的样品在加工上及膨胀计选择上需合理。[/font][/font][font=宋体] [font=宋体]压汞仪低压测试原理[/font][/font][font=宋体] [/font][font=宋体]低压测试原理[/font][font=宋体] [font=宋体]一、使用真空泵将膨胀计抽真空至[/font][font=Calibri]20mg[/font][font=宋体]汞柱;[/font][/font][font=宋体] [font=宋体]二、通过真空效果,将汞压入膨胀计;[/font][/font][font=宋体] [font=宋体]三、通过外接的氮气压力进行压汞至[/font][font=Calibri]30psi[/font][font=宋体],过程中根据设定点位收集 压汞体积;[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]压汞仪高压测试原理[/font][font=宋体]高压测试原理[/font][font=宋体] [font=宋体]一、将做完低压已灌满汞的膨胀计装入高压装置;[/font][/font][font=宋体] [font=宋体]二、通过液压泵和倍增器进行加压至[/font][font=Calibri]33000psi[/font][font=宋体];[/font][/font][font=宋体] [font=宋体]三、过程中根据设定点位收集[/font] [font=宋体]压汞体积;[/font][/font][font=宋体] [/font][font=宋体]三、数据分析处理[/font][font=宋体] [/font][font=宋体] [font=宋体]常规参数分析[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]已知条件:样品质量[/font][font=Calibri]Ws[/font][font=宋体]:直接称量;[/font][/font][font=宋体] [font=宋体]空管体积[/font][font=Calibri]Vp[/font][font=宋体]:通过空管校准,系统内部计算得出;[/font][/font][font=宋体] [font=宋体]空管质量[/font][font=Calibri]Wp[/font][font=宋体]:直接称得;[/font][/font][font=宋体] [font=宋体]汞的密度[/font][font=宋体]ρ:根据控制室温直接给出;[/font][/font][font=宋体] [font=宋体]样品[/font][font=Calibri]+[/font][font=宋体]空管[/font][font=Calibri]+[/font][font=宋体]汞质量[/font][font=Calibri]Wpsm[/font][font=宋体]:直接称得;[/font][/font][font=宋体][font=宋体]累计压入体积:[/font][font=Calibri]Ii=Vi/Ws[/font][font=宋体],为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的;[/font][/font][font=宋体][font=宋体]总压入体积:[/font][font=Calibri]Itot=Vtot/Ws[/font][font=宋体],通过不同物质对比,可以很直观的看出不同物质的孔体积差异;[/font][/font][font=宋体][font=宋体]样品体积:[/font][font=Calibri]Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ [/font][font=宋体]ρ[/font][font=Calibri],[/font][font=宋体]样品体积是根据空管体积减去压入的汞体积计算得出。[/font][/font][font=宋体][font=宋体]孔隙率[/font][font=Calibri]%[/font][font=宋体]:[/font][font=Calibri]Ppc=100*Vtot/Vb[/font][font=宋体],孔隙率能总体看出样品的孔量。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]体密[/font][font=Calibri](0.51psi[/font][font=宋体]下[/font][font=Calibri])[/font][font=宋体]:[/font][font=Calibri]Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ [/font][font=宋体]ρ[/font][font=Calibri])[/font][font=宋体],该数据属于表观数据,将物质内的孔体积都算在密度内;[/font][/font][font=宋体][font=宋体]骨架密度([/font][font=Calibri]32983.86 psi[/font][font=宋体]):[/font][font=Calibri]Ys=Ws/Vs=Ws/(Vb-Vtot)[/font][font=宋体],该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在[/font][font=Calibri]32983.86 psi[/font][font=宋体]下所能测得的孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]V[/font][font=宋体]):先通过[/font][font=Calibri]Ik=Itot/2[/font][font=宋体],计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]A[/font][font=宋体]):先通过[/font][font=Calibri]Ak=Atot/2[/font][font=宋体],计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]平均孔径([/font][font=Calibri]4V/A[/font][font=宋体])[/font][font=Calibri]:[/font][font=宋体]以理想型圆柱体模型为基础,[/font][font=Calibri]Dav=4*Itot/Atot,[/font][font=宋体]从而算出其平均直径。[/font][/font][font=宋体][font=宋体]累计孔面积:[/font][font=Calibri]Ai=Aij+Aij-1+[/font][font=宋体]…[/font][font=Calibri].+Ai1[/font][font=宋体];而单孔面积计算是[/font][font=Calibri]Aij=4*Iij/Dmi[/font][font=宋体],从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/font][/font]END[font=宋体] [/font]

  • 【分享】警惕国内个别厂家孔径数据造假

    警惕国内个别厂家孔径数据造假,我们公司(精微高博)最近收到客户寄来的国内某个比表面公司的静态仪器做出来的孔径测试报告,发现其报告完全是造假,特别是高低点数据造假。希望各位采购孔径分析仪器的时候尽量选择国内外品牌企业:美国麦克、康塔、国内北京精微高博等。切勿贪图眼前小利益。

  • 【原创大赛】纺织纤维成分定性仪器的使用情况分析

    【原创大赛】纺织纤维成分定性仪器的使用情况分析

    [align=center][b]纺织纤维成分定性仪器的使用情况分析[/b][/align][align=center]李芳 (南京质检NQI)[/align][align=left] 目前市面上常用纺织服装面料都是由以下一种或其中几种纤维织成:棉、麻(苎麻、亚麻、黄麻、大麻)、丝(桑蚕丝、柞蚕丝)、毛(羊毛、羊绒、羊驼毛、兔毛、貉子毛、狐狸毛、牦牛毛、马海毛)、粘胶纤维、莫代尔、莱赛尔、铜氨纤维、醋酯纤维(二醋酯纤维、三醋酯纤维)、锦纶、腈纶、聚酯纤维、氨纶。天然纤维具有独特的纤维形态和性能,而化学纤维的形态和性能比较接近,尤其是改性之后的化学纤维就更难识别,这就需要技术员根据标准和经验综合多种分析方法进行成分定性。其中定性最主要的方法就是显微镜观察法(即依据各种纺织纤维的纵向和横截面形态特征来识别纤维种类的一种方法)。[/align] 现就实验室所用的两台成分定性仪器北京合众视野科技有限公司提供的CU6纤维细度分析仪A(见图1、2)和上海新纤仪器有限公司(东华大学)研制的XGD-1B羊毛羊绒分析仪B(见图3,4)做一下对比分析。 图1[img=,512,382]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221614_01_3048281_3.png[/img] 图2[img=,488,367]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221617_02_3048281_3.png[/img] 图3[img=,475,356]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221616_01_3048281_3.png[/img] 图4[img=,483,362]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221617_01_3048281_3.png[/img] 这两台仪器都是由光学显微镜、摄像头、计算机和拥有自主知识产权的软件组成,主要功能是通过测量不同纤维的直径然后根据软件储存的纤维数据信息和标准自动计算出最终的纤维含量。两台仪器都可以用来鉴别不同的纤维成分。 A仪器的显微镜无论是单手操作或两手操作都很方便。软件功能比较强大,能够测试的项目比较多,可以多人测试直接计算平均结果。但是含量实验操作界面模块比较多,看起来比较复杂。测量过程中容易出现直径划偏的现象(见图5),这样就会导致所测直径值偏大。对于某些深色的纤维还是不够清晰,难以辨别。当测量错误需要删除前面的测量结果时,要在数据显示窗口右键删除,如不小心鼠标移动,则数据就不显示,就需要到表格中找数据删除。 B仪器软件能够满足纺织服装成分分析的需要,测试界面一目了然,深色纤维形态特征比较明显,直径测量比较准确,如果划偏会利用三角形原理直接计算出直径的长度(见图6)。但是显微镜的载物台调节旋钮离载物台太近,操作不是很方便。对于某些棉粘织物鉴别起来有些困难,感觉清晰度不够。测量纤维时如果不按右键,前面测量线一直出现在视野中,不会自动消失。 图5 图6[img=,364,450]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221619_01_3048281_3.png[/img] [img=,365,438]http://ng1.17img.cn/bbsfiles/images/2017/08/201708221619_02_3048281_3.png[/img] 现用两台仪器对一块儿羊毛兔毛混纺织物进行测试,兔毛测试根数为300根,羊毛测试根数分别为121、109根,测试结果为:A仪器:兔毛60.99% 羊毛39.01%; B仪器:兔毛59.1% 羊毛40.9% 。由此可见,除去人为因素和系统误差,测试结果基本一致,都能满足测试需求。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制