当前位置: 仪器信息网 > 行业主题 > >

反射模式样品进样器

仪器信息网反射模式样品进样器专题为您提供2024年最新反射模式样品进样器价格报价、厂家品牌的相关信息, 包括反射模式样品进样器参数、型号等,不管是国产,还是进口品牌的反射模式样品进样器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反射模式样品进样器相关的耗材配件、试剂标物,还有反射模式样品进样器相关的最新资讯、资料,以及反射模式样品进样器相关的解决方案。

反射模式样品进样器相关的资讯

  • 镀膜片基底背面反射的影响——低反射率样品表征
    当光线照射到两种介质的分界面上时,一部分光线改变了传播方向返回原来的媒介中继续传播,这种现象称为光的反射。在自然界中,光的反射存在着镜面反射、漫反射和逆反射三种现象。光的反射示意图镜面反射是在光线入射到一个非常光滑或有光泽的表面上时发生的。光线在物体表面反射的角度和入射的角度,度数相同但方向相反。如果物体的表面和光源成精确的直角,那么反射光线会完整地反射回光源方向。光的漫反射是一种最常见的反射形式。漫反射发生在光线入射到任何粗糙表面上, 由于各点的法线方向不一致,造成反射光线无规则地向不同的方向反射。只有很少一部分光线可以被反射回光源方向,所以漫反射材料只能给人眼提供很少的可视性。逆反射(背面反射)是指反射光线从靠近入射光线的反方向,向光源返回的反射。当入射光线在较大范围内变化时,仍能保持这一特性。当石英片上镀膜后,石英片的逆反射会对镜面反射的结果有明显的影响。本文采用日立的UH4150紫外可见近红外分光光度计、5°绝对反射附件和60mm积分球测试分析逆反射的影响。 下面是2种不同工艺需求的测试数据图:左图为同一批次的2个镀膜样品,变量为基底是否进行了涂黑处理。通过数据可以明显的发现:涂黑处理后的反射率明显降低,在1370nm附近的反射率约为0.3%,这是因为涂黑处理使得基底的背面反射(逆反射)尽可能地消除。 右图为另一种工艺的产品,直接对样品进行测试,不需要额外的处理,可以得到1300 ~ 1600 nm范围内反射率低于0.2%的效果,符合产品的预期。一般遇到测试反射率低于0.5%的指标需求时,建议使用标准片测试。×总结根据测试的目的需求,基底是否处理对实际的测试结果有很大影响。样品的反射率测试,需要考虑背面反射的影响。日立的紫外可见近红外分光光度计UH4150结合镜面反射附件,可以准确的表征低反射率的样品性能。——the end——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。图6 膜系设计验证样品45度反射率测试双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,自动可变角附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示:图7 BRDF和BTDF测试如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。图8 样品不同波长下BSDF(BRDF+BTDF)测试窄带滤光片测试Lambda系列光谱仪为双样品仓设计,自动可变角测试附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。图9 用于生物识别的滤光片透射和OD值测试数据图10 用于激光雷达的镀膜镜片透射和OD值测试数据综上,采用Lambda系列紫外/可见/近红外分光谱仪,搭配自动可变角测试附件、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷地得到样品的光学检测数据。
  • 定制高反射样品测定附件
    1. 为什么需要定制高反射样品测定附件?一些光学镜,DVD或蓝光光碟,相机等的光学组件,反射率接近100 %,测定这类样品时,使用VN法得到的测量结果会超过100 %,不能得到样品的实际反射率。定制高反射率测定附件则可以解决这个问题,测定结果不会超过100 %,而且重现性高,这是光学薄膜领域进行研究的有利工具。使用VN法45度镜面反射附件和定制高反射样品测定附件对同一高反射样品重复测量五次,结果如图所示。可以看到定制高反射样品测定附件得到了高重现性和高精度的数据。 数据对比2. 定制的高反射样品测定附件是什么样的呢?这款附件是日立工程师和客户一起研发的,是只有日立才有的测量技术。入射光的角度为固定45度角,使用两个样品进行测量,光在两个样品之间进行多次反射。 附件详细信息猛戳以下链接: https://www.instrument.com.cn/netshow/sh102446/s926991.htm 有任何关于定制附件的问题,请拨打电话:400-630-5821
  • 《中国药典》红外光谱法增订漫反射和显微模式
    2024年02月20日,药典委发布《红外光谱法草案公示稿(第一次)》(详见附件)。红外光谱法(亦称红外分光光度法)是在 4000~400cm-1 波数范围(2.5~25µm波长范围)内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法。在中红外谱区,吸收带反映了官能团的分子振动信息,其中 1500cm-1以下区域称为“指纹区”,信息丰富且复杂。除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析;化合物对红外辐射的吸收程度与其浓度的关系在一定条件下符合朗伯-比尔定律,是红外光谱法定量分析的依据。红外光谱法在制药领域被广泛应用于实验室的化学和物理分析,同时也是过程分析技术(PAT)的有效工具。其中,化学分析方面包括原辅料、剂型、生产中间体和包装材料的鉴别和确认;药物中药物活性成分的定量;以及气体、无机物中的杂质定量;化学合成的反应监测等。物理分析方面主要应用于固态性质的测定,如药物多晶型鉴别或检查。本草案在《中国药典》0402 红外分光光度法的基础上修订了如下内容:1. 对通则结构做了调整;2. 增订了红外光谱法的应用范围、谱图表示单位;3. 测量模式部分补充了原理,并增加了漫反射和红外显微镜的内容; 4. 仪器部分提出仪器校验的要求及系统适用性方案; 5. 定性定量方法部分对原描述进行了精简概括,并补充了必要内容;增订了“谱图比对和结果判断方法”,补充了定量分析的具体方法并给出方法验证方案等。附件:0402 红外光谱法草案公示稿(第一次).pdf
  • 太阳能材料反射率测定方法
    材料的表面反射率是目前太阳能行业中最常关注的测试项目之一。这类测试所涉及到的样品种类繁多,包括金属反射涂层、半导体材料与涂层以及防护玻璃上面的防反膜等。很多材料的反射同时包含了镜面反射和漫反射两种类型,这对测试方法是否能将光谱干扰降到最低、获得准确的反射率数据提出了挑战。材料表面的反射类型:A.镜面反射;B.漫反射镜面反射镜面反射率可以用不同类型的镜面反射附件(例如VW型反射附件、VN型反射附件和通用反射附件URA)进行测量。VN型反射附件(单次样品反射)和VW型反射附件(两次样品反射)是根据背景(V)和样品(N和W)测量模式的几何光路而命名。背景和样品测量模式切换过程中镜子的移动是手动操作的。URA是一种可变角度、单次样品反射的VN型附件,其中镜子的移动和入射角度的选择完全由软件控制电子步进马达自动调节。PerkinElmer的通用反射附件URA漫反射漫反射率可以用积分球进行测量。测试光线分别经过参比光路和样品光路中的光学元件,通过Spectralon积分球表面开口,进入球体内部的参比窗口和样品反射窗口。积分球体积越大,开口率越小,测试准确率越高。PerkinElmer 150mm积分球内部检测器前面安装了具有Spectralon涂层的挡板,避免了样品初次反射光线进入检测器。PerkinElmer的150mm积分球及光路示意图■ 测试样品 样品描述1镜面反射成分很少的漫反射材料2反射强度较低的镜面涂层3中等反射强度的镜面涂层4反射强度较高的镜面半导体材料■ 光谱结果 样品1(左上)、2(右上)、3(左下)、4(右下)的光谱。黑色曲线为150mm积分球测量结果,红色曲线为60mm积分球测量结果,绿色光谱曲线为URA测量结果。样品1:150mm积分球测量的光谱强度更高,因为该积分球的窗口面积比例低于60mm积分球。因此更多的样品漫反射光线可以被收集起来,更接近准确值。样品2:150mm积分球测量结果与URA附件测量结果非常接近。60mm积分球测量结果的反射率偏高,这是因为热点区域主导并且富集了检测器所测量的光线。此外,积分球内部的漫反射光线很少,因此基本没有光线通过开放窗口逃离。样品3:60mm积分球测量的光谱存在波长漂移和强度平移的问题。150mm积分球与URA附件测量的光谱之间存在一些不规则的差异。样品4:60mm积分球和URA附件的测试结果差异明显(5%R),150mm积分球与URA附件所测量的样品光谱也不再重叠。结论镜面反射非常强或者完全是镜面反射的样品需要使用URA、VN或者VW等绝对镜面反射率附件进行测量。太阳能行业的一些材料具有很强的镜面反射,但是也含有少量的漫反射成分。对于这种类型的样品,可以使用150mm积分球来测量。通过测量铝镜消除热点产生的光谱干扰,获得可以接受的绝对反射率数据。如果样品与参比铝镜的反射率比较接近,可以获得最佳的测试结果。更多详情,请扫描二维码下载完整应用报告。
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 日立应用|平板液晶电视中反射膜的光学评估
    液晶电视给我们的生活增添了更多光彩,几乎每家每户都在使用液晶电视获取信息或娱乐消遣。其中增亮膜、反射膜、扩散膜、导光板等是液晶模组的重要组成部分。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍平板液晶电视中反射膜的评估。液晶模组内部结构液晶模组中的反射膜通过将光从导光板反射到正面来提高亮度。因此要求反射膜具有极好的反射特性,从而对光进行有效的利用。反射膜使用日立紫外-可见-近红外分光光度计UH4150搭配5°绝对反射附件、积分球检测器评估液晶显示屏中的反射膜。实验测量了三种反射膜的反射率,结果如图4所示。5°绝对反射附件 三种反射膜的反射光谱各反射膜的光反射率光源:D65视角:2°结果表明,样品C有最高的反射率,可以更好的利用光,增加显示的亮度和效果。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,满足液晶模组中不同组件的评估。 UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 安捷伦推出多模式气相色谱进样口
    2009年3月20日,北京—安捷伦科技公司(NYSE:A)今天推出多模式气相色谱(GC)进样口,具有分流、不分流和程序升温气化(PTV)功能,价格比过去更低,维护需求更少。  除分流/不分流操作外,该进样口的程序升温功能还具有进样体积广泛、能分析热不稳定样品,以及通过减少样品制备步骤提高效率等优势。该进样口结合安捷伦的扳转顶盖功能,可在几秒钟之内更换衬管,不需要使用特殊工具或经过培训。通过大体积进样可以提高灵敏度,并可降低高分子量组分的进样口歧视效应。  新的安捷伦多模式进样口的价格低于原来的程序升温进样口,可与Agilent 7890A GC、 5975C GC/MS、7683和7693自动进样器,以及CTC Combi PAL自动进样器匹配。  “新一代进样器给7890A气相色谱仪增添了非常有用的功能,而价格则比以前的产品更低”安捷伦气相色谱和工作流程自动化营销经理Michael Feeney 说。“用户一直在努力提高仪器能力,减少仪器维护,这款新的多模式进样口正好满足了这些需求。这是安捷伦致力于提高实验室效率的又一个实例。”  PTV和反吹: 强强结合  采用PTV的一个主要优势就是不需要或者很少需要净化,即可注射高基质样品。在Agilent 7890A GC和5975C GC/MS上与反吹功能结合在一起,将提高效率,并减少维护。  “脏”的样品可以进样到GC或GC/MS中。当待测化合物到达检测器时,将气流反向,预柱中的高沸点化合物可从进样口反吹走,使其不能进入分析柱。从而延长色谱柱的使用寿命,减少维护需求。  在模拟蒸馏这类应用中,因为不需要将高沸点化合物烘烤出来,样品通量可以提高5倍。  微板流路控制是安捷伦的开创性技术,能实现气体流路在气相色谱柱箱内可靠的联结并实现精确的气流方向改变。它使许多有用的功能得到了实现,如,反吹、GC x GC、分流使用多个检测器,以及连接质谱检测器时不用释放真空即可更换色谱柱等。  新进样口和标准进样口一样,使用标准的衬管、隔垫、垫圈、螺母和O形圈,因此不需要为其储备特殊备件。  如需进一步了解新的安捷伦多模式PTV进样口,请访问www.agilent.com/chem/multimode  安捷伦长期致力于GC和GC/MS的创新开发,在制造耐用的仪器方面享有盛誉。安捷伦的前身,惠普公司,于1958年进入气相色谱市场,从那时起就一直是GC和GC/MS产品的领导者。1973年第一次引入微处理器控制,1975年推出世界第一台台式GC/MS系统。1996年,HP 5973推出石英镀金双曲面四极杆质量分析器,实现了仪器稳定性和性能上的突破。1999年安捷伦从惠普分离出来,直至今日,仍在GC和GC/MS的硬件和软件方面不断开拓创新。  关于安捷伦科技  安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/ 。
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置
    Hello,好久不见距离上次更新已有时日,这段时间小编没密集更新是因为知道大家在忙着立新年flag!但2018年的计划一定不能少的是跟随tescan电镜学堂持续输入电镜知识,稳定输出科研成果! 这里是TESCAN电镜学堂第7期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 特殊试样的处理对于一些特殊的试样,除了常规制样方法外,可能还需要一定的特殊处理。§1. 金相试样金相试样要经过严格的抛光程序,为了在电镜下观察能有更好的衬度,需要进行一定的腐蚀处理。不同的金属需要不同的腐蚀剂以及腐蚀时间,这需要去慢慢摸索。腐蚀不能过度,否则表面会有太多的腐蚀坑,此外,腐蚀剂要清洗干净。§2. 生物试样对于生物样品,为了保证在电镜样品室的高真空下不发生变形而保持原貌,需要对试样进行一系列的处理,需要经过清洗、固定、脱水、干燥等步骤。① 清洗:试样取材好后可用生理盐水或缓冲液清洗,或用5%的苏打水清洗;用超声震荡或酶消化的方法进行处理。② 固定:常用戊二醛及锇酸双固定。③ 脱水:样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。④ 干燥:可用空气干燥法、临界点干燥、冷冻干燥等方法。§3. 石墨烯试样石墨烯是近年特别火热的样品,不过利用扫描电镜进行石墨烯的观察需要一定的技巧,否则难以有很好的说服力。理论上石墨烯厚度非常小,在扫描电镜下难以有很好的衬度。而那些铺展的很平整,却有着很好的明暗衬度的试样,本人觉得只能算是石墨薄片而不能算石墨烯。扫描电镜分辨率还不足以观察到石墨烯的碳原子结构,也没有探测器能证明其碳结构,不过扫描电镜可以定性判断其膜层的厚薄,当然这需要特殊的制样。我们可先对硅片这种平整基底镀上一层较厚的金膜,然后将石墨烯分散镀金硅片上。我们对镀金的形貌有着非常清晰的认识,如果表面有一层石墨烯的话,金膜就会像蒙了一层纱一样。石墨烯膜层越薄,金颗粒越清楚;反之如果金颗粒越不清楚,则膜层越厚;当完全看不见金颗粒时,则膜层已经相当厚,完全不算是石墨烯了,这点可以通过蒙特卡罗模拟来得到印证。之所以选择先镀金,就是让被覆盖的与未被覆盖的区域进行一个对比,这样可以定性判断石墨烯的膜厚。图4-9 石墨烯分散在硅片和镀金硅片上的对比如图4-9,左边四张图片是石墨烯直接分散在硅片上,因为没有参照物,只能判断出不同区域的厚薄,而这些厚薄是否能达到石墨烯要求的水准则难以判断;而右边六张图片是分散在镀金硅片上的图片,我们很容易通过与空白处金颗粒的对比来大致判断其膜层厚度是否符合石墨烯的要求。第三节 试样的放置问题 试样在放入电镜室中需要满足一定的几何条件。首先,一次性放置多个样品时,尽量保持高度一致。遇到高度不等的情况,可以将较矮的样品放置在加高台上,如图4-10。将不同高度的样品垫平。 图4-10gm-163-r样品台其次,样品如果表面凹凸不平,如断口材料或楔形样品,在放置样品的时候尽量将要观察的区域的朝着eds或etd的方向,避免在电镜观察时,因为观察面背向探测器而有强烈的阴影或者没有eds信号。还有,对于截面样品观察,有时候并非在90度的绝对垂直下效果最好。特别是对于一些膜面质量不是很好有点撕裂的薄膜,有时候倾转一点的角度,在非正入射的条件下有更好的立体感和景深,有时候更能观察到膜面和基体的结合情况。不过在进行测量的时候要记住需要进行倾斜修正。如图4-11上图,在正90度下虽然能观察到膜面,但是膜面质量的好坏及整体情况却无法判断,而在70度下则能看出膜层的整体情况。将倍数放大后,也可看到70度下有更好的景深和立体感,也更有助于进行膜面和基底结合的判断。 图4-11 膜的截面在90度和70度倾转下的对比再如图4-12,试样为两层同样成分的薄膜,如果在正90度下进行观察,膜之间的界线很不明显,而如果旋转到55度,可以发现膜在断裂过程中有发生“错位”地方,这个角度的观察使得对膜层的观察更加清楚。图4-12 双层膜的截面在90度和55度倾转下的对比特别是一些半导体的截面样品,时常都是先在非正入射的情况下进行观察,再转到90度的情况下进行测量。?福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。?奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】截面样品观察,是否一定是在90°的绝对垂直下效果最好,为什么?(快去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息: TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统
  • 这21类常见分析仪器对测试样品的要求有什么不同?
    什么样的样品适合什么样的仪器?这个话题看似简单,却经常被大家忽略掉。一不小心,您辛辛苦苦做出的样品,送到仪器旁边却发现不符合要求,时间、成本,一把辛酸泪......  不同分析仪器原理不同,对测试样品的要求也不一样。整天奔波于实验室的朋友们,您是否了解不同仪器对样品的要求?今天特别为大家收集了实验室常见的21种分析仪器对于测试样品的要求,相信对你的科研工作会有很大的帮助。  核磁共振波谱仪  (1)送检样品纯度一般应95%,无铁屑、灰尘、滤纸毛等杂质。一般有机物须提供的样品量:1H谱5mg,13C谱15mg,对聚合物所需的样品量应适当增加。  (2)仪器配置仅能进行液体样品分析,要求样品在某种氘代溶剂中有良好的溶解性能,送样者应先选好所用溶剂。常备的氘代溶剂有氯仿、重水、甲醇、丙酮、DMSO、苯、邻二氯苯、乙腈、吡啶、醋酸、三氟乙酸。  (3)尽量提供样品的可能结构或来源。如有特殊要求(如检测温度、谱宽等)  红外光谱仪  为了保护仪器和保证样品红外谱图的质量,分析的样品,必须做到:  (1)样品必须预先纯化,以保证有足够的纯度   (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰   (3)易潮解的样品,干燥器放置   (4)对易挥发、升华、对热不稳定的样品,用带密封盖或塞子的容器盛装并盖紧,需要同实验室说明情况   (5)对于有毒性和腐蚀性的样品,必须用密封容器装好。送分别在样品瓶标签的明显位置和分析任务单上注明。  有机质谱仪  适合分析相对分子质量为50~2000u的液体、固体有机化合物样品,试样应尽可能为纯净的单一组分。  气相色谱-质谱联用仪  气相色谱仪均使用毛细管柱,进入气相色谱炉的样品,必须是在色谱柱的工作温度范围内能够完全汽化。  液相色谱-质谱联用仪  (1)易燃、易爆、毒害、腐蚀性样品必须注明。  (2)确保分析结果准确、可靠,要求样品完全溶解,不得有机械杂质 未配成溶液的样品要注明溶剂。  (3)尽可能提供样品的结构式、分子量或所含官能团,以便选择电离方式   (4)液相色谱–质谱联用时,所有缓冲体系一律用易挥发性缓冲剂,如乙酸、醋酸铵、氢氧化四丁基铵等配成。  飞行时间质谱仪  (1)试样的种类、组分及样品量本仪器适用测定多肽、蛋白质,也可以测定其它生物大分子如多糖、核酸和高分子聚合物、合成寡聚物以及一些相对分子质量较小的有机物,如C60或C60的接枝物等。被测样品可以是单一组分也可以是多组分的,但样品组分越多,谱图就越复杂,谱图分析的难度也越大 如果电离过程中组分之间存在相互抑制作用,则不一定能保证每个组分都出峰。常规测定的样品量约为1~10皮摩尔/微升。  (2)样品的溶解性:被测样品必须能够溶于适当的溶剂、最好是未溶解的固体或纯液体。若样品为溶液,需要提供样品的溶剂、浓度或含量等信息。  (3)纯度:为取得高质量的质谱图,多肽和蛋白质样品应避免含氯化钠、氯化钙、磷酸氢钾、三硝基甲苯、二甲亚砜、尿素、甘油、吐温、十二烷基硫酸钠等。如果被测样品在预处理过程中不能避免使用上述试剂,则必须用透析法和高效液相色谱法对样品进行纯化。水、碳酸氢铵、醋酸铵、甲酸铵、乙腈、三氟乙酸等都是用于纯化样品的合适试剂。蛋白质样品纯化后,应尽可能冻干。样品中的盐可通过离子交换法祛除。  紫外-可见吸收光谱仪  (1)样品溶液的浓度必须适当,且必须清澈透明,不能有气泡或悬浮物质存在   (2)固体样品量0.2g,液体样品量2ml。  气相色谱仪  能直接分析的样品应是可挥发、且是热稳定的,沸点一般不超过300℃,不能直接进样的,需经前处理。  液相色谱仪  样品要干燥,最好能提供要检测组份的结构 对于复杂样品,尽可能提供样品中可能还有其它哪些成分。  元素分析仪  (1)尽可能提供分子式和元素的理论含量或其它相关信息   (2)样品必须是不含吸附水的均匀固体微粒或液体,并经过提纯。如样品不纯(含吸附水、有机溶剂、无机盐或其它杂质)会影响分析结果,使测试值与计算值不符   (3)样品应有足够的量,以满足方法和仪器的线性和灵敏度。  离子色谱仪  送检样品可以溶于水,或稀酸、稀碱,所用的酸碱不能含有待测离子。对于样品中含有待测元素,但在水、酸、碱溶液中以非离子状态存在的化合物,需要进行相应的样品前处理。  等离子体原子发射光谱仪  (1)对送检样品(检测条件)的要求:提供品来源、种类、属性(如矿石、合金、硅酸盐、特种固熔体、高聚物等)。尽可能列出主要成份、杂质成份及其(估计)含量 待检元素中最低(估计)含量是多少?  (2)对于溶液,写明介质成份(溶剂、酸碱的种类及其(估计)含量)、含氟(F-)与否?因为氟(F-)将严重腐蚀雾化器!)固体样品要制成不含任何有机物的溶液,其最终酸度控制为1mol,样品量:5-50ml。如含悬浮物或沉淀,务必过滤 另请同时测试试剂空白溶液用作扣除空白   原子荧光光谱仪  (1)样品分析一般要求  原子荧光光谱仪分析的对象是以离子态存在的砷(As)、硒(Se)、锗(Ge)、碲(Te)等及汞(Hg)原子,样品必须是水溶液或能溶于酸。  (2)固体样品  ①无机固体样品样品经简单溶解后保持适当酸度。  检测砷(As)、硒(Se)、碲(Te)、汞(Hg),介质为盐酸(5%,v/v)   检测锗(Ge),介质为硫酸(5%,v/v)   检测汞(Hg),介质也可为硝酸(5%,v/v),检测(As)介质也可为硫酸(2%v/v)。  由于铜、银、金、铂等金属对待测元素的干扰较大,因此该几类合金样品中的砷、硒、碲、汞不宜采用本仪器测定。  ②有机或生物固体样品  样品经硝化处理为溶液并保持适当酸度,其介质酸度与无机样品同。  (3)样品中待测元素限量要求  由仪器灵敏度及分析方法决定,样品含待测元素上下限为0.05μ g/g~500μ g/g,不在此含量范围内的样品使用本仪器检测将无法保证检测结果的准确可靠。  (4)样品量  每检测1个元素,要求固体样品量不少于2g,液体样品量不少于20mL,水样不少于100mL。  差示扫描量热仪  固体样品,在所检测的温度范围内不会分解或升华,也无挥发物产生。样品量:  单次检测无机或有机材料不少于20mg,药物不少于5mg。注明检测条件(包括检测温度范围,升、降温速率,恒温时间等)。  热重分析仪  样品量:不少于30mg。送样时请注明检测温度范围,实验气氛(空气、N2或Ar),升温速率,气体流量等。  X射线粉末衍射仪  送检样品可为粉末状、块状、薄膜及其它形状。粉末样品需要量约为0.2g(视其密度和衍射能力而定) 块状样品要求具有一个面积小于45pxx45px的近似平面 薄膜样品要求有一定的厚度,面积小于45pxx45px   X射单晶末衍射仪  送检样品必须为单晶。选择晶体时要注意所选晶体表面光洁、颜色和透明度一致。不附着小晶体,没有缺损重叠、解理破坏、裂缝等缺陷。晶体长、宽、高的尺寸均为0.1~0.4mm,即晶体对角线长度不超过0.5mm(大晶体可用切割方法取样,小晶体则要考虑其衍射能力)。  透射电子显微镜  由于受电镜高压限制,透射电子束一般只能穿透厚度为几十纳米以下的薄层样品。除微细粒状样品可以通过介质分散法并直接滴样外,其它样品的制备方法主要有物理减薄(离子和双喷减薄等)和超薄切片法。超薄切片样品的制备,需经样品前处理、包埋、切片等复杂工序,周期较长   场发射扫描电子显微镜  送检样品必须为干燥固体、块状、片状、纤维状及粉末状均可。应有一定的化学、物理稳定性,在真空中及电子束轰击下不会挥发或变形 无磁性、放射性和腐蚀性。含水分较多的生物软组织的样品制备,要求用户自己进行临界点干燥之前的固定、清洗、脱水及用醋酸(异)戊酯置换等处理,最后由本室进行临界点干燥处理。观察图像样品应预先喷金膜。一般情况下,样品尽量小块些(≤ 10x10x5mm较方便)。粉末样品每个需1克左右。纳米样品一般需超声波分散,并喷涂超细微金膜。  扫描电子显微镜-X射线能谱仪  送检样品必须为干燥固体,块状、片状、纤维状、颗粒或粉末状均可。应有一定的化学、物理稳定性,在真空中及电子束轰击下不会挥发或变形 无磁性、放射性和腐蚀性。对含水份较多的生物软组织样品,要求预先进行临界点干燥前的固定、清洗、脱水及用醋酸(异)戊酯置换等处理。最后进行临界点干燥处理。图像观察样品应预先镀金膜,成份分析样品必需镀碳膜。一般情况下,样品体积不宜太大(≤ 5x5x2mm较适合)。  电子探针  定量分析的样品必须磨平抛光、清洗干净。若样品不能进行表面磨平抛光(将影响分析精度)处理应事先说明。样品应要切成小薄片,不能切割制样,必须先与测试人员确定。应先标记好分析面上的测试点,无标记测试位置时,测试时只选有代表性、较平整位置测试。液体样必须先浓缩干燥。分析的样品必须是在高能电子轰击下物理和化学性能稳定的固体、不分解、不爆炸、不挥发、无放射性、无磁性。
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 博赛德成功完成双GCMS模式CTC自动进样器安装
    ?? 2016年5月17日,北京博赛德科技有限公司的工程师在浙江省医学院成功完成了CTC PAL RTC自动进样器双GCMS模式的安装,用户主要使用该仪器进行血样和尿样中的人体代谢产物等的研究。经测试,CTC PAL RTC自动进样器完全兼容安捷伦7890A和热电1300 GCMS,信号控制完全正常。 瑞士CTC公司是全球BCT专注色谱自动进样与前处理平台系统的公司。浙江省医学院此次安装使用的PAL RTC是CTCBCT新一代的真正称得上全自动的多功能自动进样器,其灵活的模块化设计适应众多需求,应用于环保,食品,职业卫生、企业实验室等众多领域。与其他自动进样器相比,PAL RTCBCT大的不同在于可以自动切换液体/顶空/SPME进样模块,完成不同种类的自动进样,除此之外,PAL RTC还能完成很多实验室里通过手工完成的一系列前处理工作,如:混合、稀释、标准添加、衍生化、液液萃取等,甚BCT连实验室里GC常做的标准曲线校准工作,都能够通过PAL RTC自动完成。正是因为从样品前处理到样品进样,整个工作都通过RTC自动实现,所以不但大大提高了整个的工作效率,还增加了分析工作的重现性。 瑞士的制造工艺,造BCT了PAL RTCBCT的准确性和重现性。 北京博赛德科技有限公司作为瑞士CTC及全球众多知名前处理分析仪器生产厂商在华的BCT代理及合作伙伴将会一如既往的支持新技术,引进新科研,传达新理念,全方位为中国客户搭建通向世界前沿科技的桥梁。瑞士CTC公司介绍:创立于1987年的瑞士CTC公司,是全球BCT专注色谱自动进样与前处理平台系统的公司。其产品品牌“PAL” 寓意为样品前处理与注入(Prep and Load Platform),以XYZ三维轨道获得精确定位,以灵活的模块化设计适应众多需求,以其瑞士制造的优良品质,获得了全球众多厂商和用户的青睐。瑞士CTC PAL平台自1998年到现在已经发展到了第3代PAL3。 PAL RTC (液体、顶空、SPME/SPME ARROW、ITEX、uSPE进样)BCT的准确性和重现性实现液体、顶空和SPME进样的自动切满足稀释、衍生化和进样过程中对不同体积进样针的需要自动更换多种SPME纤维针的使用,便于方法开发和优化通过不同型号进样针的使用满足宽范围的进样体积的需求自动实现多样化的样品前处理操作:混合、稀释、标准添加、衍生化、液液萃取等;超大的样品容量:162个2 ml 样品瓶、60个10/20ml样品瓶、3个微通道板等;瓶底感应功能允许实现少量体积进样;可为2台气相或1台气相和1台液相同时进样。????????????????????????
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • 中国计量院成功研制材料逆反射系数测量仪器
    4月9日15时左右,青海省西宁市纺织品大楼发生火灾。大火又一次为我们敲响了预防火灾的警钟。在火灾现场,除了消防队员的及时救助,建筑物内的逃生指示标志格外重要。尤其是在现场断电、一片黑暗的情况下,具有高强度反光性能的指示标志能够指引人们按照安全路线迅速逃离危险。可以说,用于制造逃生指示标志的逆反射材料,其质量好坏直接关系到人们生命的安危。  逆反射材料是一种用玻璃微珠或微棱镜采用光学折射与反射原理制成的薄膜材料,是一种新型的被动照明的无源光学器件。这种材料具有将照射到其上的入射光按原入射方向大部分返回,提高自身能见度的功能,具有反光强度高、节能和防爆等明显优点,因而被广泛应用于道路交通、航空管理和矿山坑道,在避免爆炸和应急逃生方面都发挥着重要作用。  据中国计量科学研究院光学所郑春第介绍,根据国外一项统计,鲜明的道路标志和行人着装给司机良好的条件反射,使用反光材料设置醒目的交通标志,车辆牌照,穿戴装饰有反光材料的服装,可使交通事故率下降30%~40%。“可以说逆反射材料性能的优劣与生产、交通安全息息相关。”  据介绍,我国是逆反射材料生产大国和出口大国,年产值近6亿元人民币。随着政府对安全工作力度的加大和人们安全意识的提高,逆反射材料的应用已不仅限于道路交通,在矿山、消防、抢险、救援、环卫、市政、建筑等行业也开始广泛使用。据郑春第介绍,我国对不同级别公路的道路指示标志采用逆反射材料的反射强度有不同的标准要求。“例如,当车速为每小时100公里时,驾驶者通常需要至少380米的距离来准确识别交通标志,并迅速做出相应反应。如果制作交通标志的逆反射材料的反射强度不够,质量不达标,驾驶者可能在100米距离时才能看清交通标志,就有可能导致交通事故的发生。” 因此,人们在对道路警示标志材料的高反射能力提出更高要求的同时,也格外关注如何实现材料逆反射系数的准确测量,使之能够在相关领域发挥出显著的安全警示作用。  据介绍,国内相关行业通过各自不同的方式建立了测量逆反射材料性能参数的装置,但仪器的稳定性和测量准确度水平参差不齐,甚至出现不同实验室对同一样本的测试结果不一致的情况。由于缺乏全国统一的逆反射系数测量标准和测量装置,导致生产企业对产品的性能评价和测量准确度无法确定,容易引起国际贸易争端,为企业带来不必要的损失。  郑春第带领的中国计量院研究团队历经4年,终于完成了“逆反射系数测量装置的建立与研究”。该项目研制的逆反射系数测量装置,成功实现了我国材料逆反射系数的高准确度测量和校准,测量结果不确定度达3.6%(k=2) 该装置采用光强标准灯组对测量系统进行量值溯源,研究并实现了逆反射系数的照度测量方法 项目组同时还研制出了100mm×100mm和200mm×200mm两种规格逆反射标准样品,样品的均匀性达到了1%。生产企业或用户可以利用逆反射标准样品直接快速、便捷地进行量值传递和仪器校准,极大地提高了企业的生产效率。  有关人士评价说,该装置的建立为我国检验逆反射器件的产品质量控制和合格评定提供了准确可靠的量值溯源保证,解决了长期以来我国对逆反射材料测量和性能评价不统一的问题 同时,该院将通过开展国际比对,使得我国的检测结果、检验报告和证书得到国际同行的一致认可,为我国逆反射材料进出口贸易提供有效的技术保障,进一步提高我国逆反射产品的国际竞争力。
  • 反射高能电子衍射仪
    反射高能电子衍射仪(Reflection High-Energy Electron Diffraction)是观察晶体生长最重要的实时监测工具。它可以通过非常小的掠射角将能量为10~30KeV的单能电子掠射到晶体表面,通过衍射斑点获得薄膜厚度,组分以及晶体生长机制等重要信息。因此反射高能电子衍射仪已成为MBE系统中监测薄膜表面形貌的一种标准化技术。  R-DEC公司生产的反射式高能电子衍射仪,以便于操作者使用的人性化设计,稳定性和耐久性以及拥有高亮度的衍射斑点等特长得到日本国内及海外各研究机构的一致好评和认可。特长 ◆可远程控制调节电压,束流强度,聚焦位置以及光束偏转◆带有安全闭锁装置◆镍铁高导磁合金磁屏蔽罩◆拥有高亮度衍射斑点◆电子枪内表面经特殊处理,能实现极低放气率◆经久耐用,稳定可靠◆符合欧盟RoHS指令   低电流反射高能电子衍射仪(Low Emission Reflection High-Energy Electron Diffraction)是利用微通道板技术,大幅减少对样品损伤的同时,并且保证明亮反射电子衍射图像的新一代低电流反射高能电子衍射仪。可以用于有机薄膜材料等结晶结构的分析研究。特长◆大幅度减少电子束对样品的损伤(相当于普通RHEED的1/500-1/2800)◆带有安全闭锁装置◆搭载高亮度微通道板荧光屏◆可搭载差动抽气系统◆kSA400 RHEED分析系统兼容◆符合欧盟RoHS指令
  • 岛津推出新一代气相色谱质谱联用仪多模式进样口
    岛津公司近期最新推出了可应对各种形态样品的新一代进样口OPTIC-4。OPTIC-4是用于GCMS进样系统的具有世界领先水平的进样口。 适用于多种样品检测的新一代进样口OPTIC-4 OPTIC-4配备多种进样模式,适合不同样品分析,是GC-MS样品进样系统的极好选择。GCMS-QP2010 Ultra与OPTIC-4联用可使其表现更出色。进样流程(wmv13.3MB) OPTIC-4卓越的基本性能可提供多种进样模式 除了分流/不分流进样模式,以下的模式均可通过一个进样口实现:大体积进样模式进样口衍生模式热解析模式热萃取模式热分解模式DMI(复杂基质导入)模式 迅速升温可达60 ℃/秒 OPTIC-4采用直接加热的方法以达到最快的加热速度。因此,在热分解分析中色谱峰展宽现象得以充分抑制。理想的流路设计 OPTIC-4不采用切换阀或者传输线。因此,化合物由于冷点吸附造成的影响会大大减小。这使得对高沸点化合物、及易吸附和易分解的化合物的分析达到理想效果。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 最新综述:热反射表征技术在宽禁带半导体领域应用进展
    近日,武汉大学工业科学研究院袁超课题组在国际权威期刊《Journal of Applied Physics》上,以“A review of thermoreflectance techniques for characterizing wide bandgap semiconductors‘ thermal properties and devices’ temperatures”为题总结讨论了热反射表征技术(Thermoreflectance techniques)在宽禁带半导体材料和器件领域的应用进展。随着宽禁带和超宽禁带半导体器件的功率日益增大,器件散热问题逐渐成为工业界的巨大挑战。半导体材料热物性是反映器件散热能力最直接的参数,而器件结温是评估热可靠性和寿命的关键参数,因此,热物性和结温检测成为宽禁带半导体器件研发和生产中不可缺少的环节。宽禁带半导体器件普遍由薄膜异质结构组成,薄膜尺寸几十纳米到几微米 ( 如图1),因此,要求热物性检测技术具有纳微米级分辨率。传统的检测方法如稳态热板法、瞬态热线法、激光闪射法等,都不能满足分辨率的要求。3-omega方法虽然达到了分辨率的要求,但是需要在材料表面进行复杂的微加工,使得测试流程复杂且对材料表面质量要求过高。另一方面,宽禁带半导体器件沟道尺寸小(亚微米级)且常常在高频工况下(GHz级)运行,要求结温测试方法需满足高空间分辨率和高时间分辨率。图1:几种典型的宽禁带器件结构:(a) 氮化镓高电子迁移率晶体管(GaN HEMT) (b) 氧化镓场效应管(β-Ga2O3 FET) 以上典型结构说明器件内存在大量微纳结构和异质界面近几十年,以热反射(Thermoreflectance)为测试原理,国际上开发并发展了多种泵浦-探测热反射技术(Pump-probe thermorefletance), 实现了纳微米级分辨率测试能力,广泛应用于宽禁带半导体材料的热物性检测。基于相同原理,国际上同期开发了一种热反射成像技术(Transient thermoreflectance imaging),实现了纳秒级时间分辨率和纳米级空间分辨率的测温能力,同样广泛应用于宽禁带半导体器件的稳态和瞬态结温检测。本文重点介绍了热反射现象和原理,在此基础之上,总结和讨论了多种泵浦-探测热反射技术,包括时域热反射法(Time-domain thermoreflectance), 频域热反射法(Frequency-domain thermoreflectance), 瞬态热反射法(Transient thermoreflectance)和稳态热反射法(Steady-state thermoreflectance)。总结了这些方法针对常见宽禁带半导体材料的检测应用,包括氮化镓薄膜异质结构(GaN-based structure)、氧化镓薄膜异质结构(β-Ga2O3-based structure)、金刚石薄膜、合金材料(如钪掺氮化铝ScAlN, 铝掺氮化镓AlGaN)以及宽禁带二维材料(如六方氮化硼h-BN)等,并全面总结了所有材料的热物性报道值(部分结果见本报道图2,详细结果见全文)。本文还重点比较了不同泵浦-探测热反射技术的特点。在所有方法中,时域热反射法发展最早且较为成熟,当前应用较为广泛;而频域热反射法和瞬态热反射法因具有和时域热反射法相似的分辨率和测试精度,也逐渐被认可,且已实现了广泛应用。值得注意的是,瞬态热反射法(如图3),相比时域热反射法,搭建成本大幅度减低,测试分析速度更快,操作更为简便,因而具有在半导体产线上的应用潜力。另外,本文也总结讨论了热反射成像技术以及它在宽禁带器件测温方面的应用。图2:氮化镓薄膜的热导率报道值;全文中还详细总结了氮化镓异质结构、氧化镓异质结构、金刚石薄膜和宽禁带合金材料的热物性报道值(热导率、界面热阻)图3:传统的瞬态热反射法(TTR)系统示意图常规的泵浦-探测热反射技术和热反射成像技术需要借助金属薄膜进行测试。对于泵浦-探测热反射技术,在检测之前需在材料表面镀一层薄膜金属(如金、铝),使得材料破坏,属于破坏性检测;对于热反射成像技术,温度检测区域集中在器件金属电极,而不是器件沟道处,导致温度测试结果往往低估真实器件结温。本文介绍了近几年一些学者(包括袁超研究员)对传统泵浦-探测热反射技术的改进,发展了免金属镀膜的泵浦-探测热反射技术(Transducer-less thermoreflectance),以实现在氮化镓外延、硅等材料的无损测试,为材料研发提供快速反馈,提升研发和生产效率、降低成本,并有望为半导体产线提供实时监测,使“边生长,边观测,边调控”成为可能。此外,介绍了热反射沟道结温直接测试技术以及它在氮化镓HEMTs器件上的应用。图4:免金属镀膜的瞬态热反射法(TTR)系统示意图论文详情:Chao Yuan*, Riley Hanus, Samuel Graham, A review of thermoreflectance techniques for characterizing wide bandgap semiconductors thermal properties and devices temperatures, Journal of Applied Physics, 132(22):220701, 2022. 论文第一作者和通讯作者为袁超研究员,合作作者来自美国佐治亚理工学院的Riley Hanus博士和 美国马里兰大学的Samuel Graham教授。通讯作者简介袁超研究员长期从事宽禁带半导体热表征和热管理研究工作。曾先后加入英、美知名大学宽禁带研究团队从事科学研究。在薄膜尺度热反射表征方法、声子热输运理论、以及(超)宽禁带半导体器件设计等领域具有一定的技术优势和科研特色,并致力于开发半导体无损热检测装备。现承担多个国家/省部/国际合作级重大战略需求的纵向科研项目,在高影响力期刊上(包含 Materials Today Physics, Communications Physics,Appl. Phys. Lett.等)发表多篇论文。此外,长期和国内外知名半导体集成电路企业和机构合作。课题组主页:http://jszy.whu.edu.cn/yuanchao
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • SpectraBlack 超低反射率漫反射目标板
    更易表征激光雷达和飞行时间 (ToF) 传感系统由于缺乏光谱平坦的光学反射材料,因此很难了解激光雷达和 ToF 系统在低反射率 (5%) 下的灵敏度。Labsphere (蓝菲光学)的 Spectrablack 漫反射目标板和材料有效解决了这个问题。Spectrablack 是一种低反射率、耐磨损的吸光材料,非常适合用于室内近标准传感器测试应用,以及OEM光学系统中的遮光/预防散射光。应用:ToF 和 LIDAR 低反射率范围测试遮光/吸光:利用微孔表面的吸光效果预防光学系统、光学测量仪器、相机等中的散射光降低光谱仪和分光光度计杂散光非反光片和一般遮光材料典型反射率*250 – 380 nm:1.5%380 – 780 nm:1.0 %780 – 2500 nm:1.1 %*反射值可能会有所不同。
  • 基于地物光谱应用,干旱胁迫下的水稻反射率表现
    水资源短缺是目前制约农业生产的一个全球性问题,近年来,全球水资源供需矛盾更加突出。对于中国而言,有43%的面积为干旱和半干旱地区,并且中国的水量分布在时间和空间上也存在非常巨大的不均衡性,这使得中国的水资源供需矛盾更加尖锐,是中国农业生产面临的最?大危机之一。自21世纪以来,中国每年都会发生大强度的干旱,受灾面积往往波及数个省,如2010年西南地区发生的大旱灾,有将近5000000hm2的农作物受害,造成190多亿元的经济损失。水稻作为中国第?一大粮食作物,研究不同干旱胁迫对水稻的影响以及研发出抗干旱品种对农业发展尤为重要。在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。地物光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度 利用漫反射参考板对比测量,可获得目标的反射率光谱信息。实验过程及结果本实验旨在理解不同干旱胁迫下水稻基本型的表现,测量了10种在不同干旱威胁水平下导致相对含水量(RWC)不同的水稻的光谱数据,如图1所示。图1该实验显示了不同干旱胁迫下水稻的反射率模式。1) 在水稻含水量(RWC)降低时,由于1400nm和1900nm这两处水吸收特征峰减弱,导致近红外区域反射率增加。2) 对于350-700nm波长区域也有着类似的变化,在叶绿素a和叶绿素b的吸收范围中,反射率随着RWC降低而升高。3) 其次,随着RWC的降低,1400-1925nm波长向较短波长移动,且反射率增加。4) 在810-1350nm的海绵状叶肉中的散射也反映出反射率随RWC降低而增加的相同趋势。5) 最?后,在1100-2500nm波段位置的吸收也是一个强烈的吸收区域,随着RWC降低,叶片枯萎主要通过新鲜叶片中的水,其次是通过如蛋白质、木质素和纤维素的干物质而变得更加明显。结论这项实验的结果表明不同干旱威胁下的水稻的光谱反射率具有明显且规律的特征。因而可根据特征位置的差异建立预测模型,在精?准的模型分析下定量的分析出水稻含水量乃至干旱威胁程度,最终用于开发抗旱水稻品种的研究,为我国的农业生产作出巨大的贡献。
  • 西安交大张留洋老师课题组《Laser & Photonics Reviews》:3D打印的反射式手性
    手性是一种有趣的几何概念,指物体不能通过平移、旋转和缩放等变换与其镜像重合的特性,其应用范围涉及光学、生物学、化学、医药和生命科学等领域。在光学领域,当手性介质被不同旋向的圆极化光激发时,表现出不同的手性光学效应:当左旋圆极化 (LCP) 光和右旋圆极化 (RCP) 光经过手性介质后的透射率或反射率不同,从而显示出圆二色性(Circular dichroism, CD);若这两种光在手性介质中的折射率不同,导致透射光相比于入射光的偏振面发生旋转,则显示出旋光性(Optical activity, OA)。尽管光学手性在自然界中无处不在,但天然材料中的手性响应极其微弱,且难以灵活控制,这严重阻碍了极化相关器件的微型化和集成化应用。由于具有比自然材料高几个数量级的手性光学响应,由人工设计的亚波长单元结构阵列构成的手性超材料/超表面为实现可控手性光学响应提供了一条途径。然而,尽管常见多层手性超表面具有很强的本征光学手性,但其设计过程相对复杂,且加工所需的多步光刻工艺存在技术要求和加工成本高的问题。近日,西安交通大学张留洋老师课题组提出了一种反射式手性超表面的简单、通用的设计方法及其低成本、无光刻的制备策略,该工作与深圳大学范殊婷老师课题组合作完成。通过结合新型微立体光刻技术实现了手性超表面的3D打印,实验测试结果验证了手性响应机理的准确性相关成果以“Chiral Metasurfaces with Maximum Circular Dichroism Enabled by Out-of-Plane Plasmonic System”为题发表于国际期刊Laser & Photonics Reviews上, 影响因子10.9。 图1. 反射式手性超表面通用设计流程示意图对于任意的谐振器,跟随提出的通用设计流程,仅需简单两步即可打破其n重旋转对称性(n 1)和镜像对称性,从而获得一个具有面外形态的反射式手性超表面。以工作于太赫兹频段的U型手性超表面为例,其圆极化反射谱和圆二色性谱如图2所示。不同的面外形态方向,可获得具有相反手性响应的对映体A和B。 图2. 基于U型共振器的太赫兹手性超表面及其手性响应通过调控超表面的偏置高度可实现对其损耗的调控,根据耦合模理论可知,当其辐射损耗等于耗散损耗时,此时一种圆极化波被近完美的选择性吸收,而另一种圆极化波被非共振地反射,从而可获得最强的圆二色性值(图3(d))。 图3. U型太赫兹手性超表面圆极化反射谱和圆二色性谱通过结合微尺度3D打印技术,提出的手性超表面可由简单的三步工艺制备得到。其中,周期性阵列的面外形态结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,加工得到的手性超表面具有良好的表面质量和形状精度,测试所得的太赫兹反射谱与圆二色性谱与数值模拟结果较为吻合。 图4. 太赫兹手性超表面制造策略及表征结果 图5. 太赫兹手性超表面实验验证
  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 葛炳辉团队:STEM模式下基于扫描莫尔条纹快速测定样品厚度的方法
    ◆第一作者:南鹏飞通讯作者:葛炳辉教授通讯单位:安徽大学论文DOI:10.1016/j.micron.2022.103230近日,安徽大学电镜中心南鹏飞同学关于利用扫描摩尔条纹测定样品厚度的工作被Micron杂志接收。样品厚度是透射电镜(TEM)成像中的重要参数,主要用于图像衬度的解释以及性能和微观结构之间的关系的研究。当前,透射电镜中常用的样品测厚方法主要包括电子能量损失谱(EELS),会聚束电子衍射(CBED)和位置平均会聚束电子衍射 (PACBED)等技术。其中EELS是一种原位测厚技术,主要通过log-ratios方法或K-K求和法则来计算样品的相对厚度或绝对厚度。在准确测得非弹性平均自由程的情况下,EELS测厚的准确度可达± 10%。CBED测厚则主要借助模拟来实现,测厚准确度可达 ± 5%。PACBED是扫描透射模式(STEM)下的一种测厚方法,通过对多个位置的CBED花样取平均,最终获得的PACBED花样中只包含厚度、倾转和极化的影响,精确度优于± 10%。然而,实际使用时,EELS测厚需要昂贵的Gatan成像过滤系统(Gif),而CBED和PACBED测厚则需要复杂且耗时的模拟工作。本工作介绍了一种STEM模式下快速测定样品厚度的方法,主要通过调节focus借助系列离焦的扫描莫尔条纹(SMF)成像来判断。通过将样品倾转至正带轴或强的双束衍射条件,并且适当调整放大倍数和电子束扫描方向就可以在中等放大倍数范围观察到SMF像。通过SMF的形成条件可知,只有电子探针和样品发生相互作用时才能观察到SMF。再通过改变离焦量,就可以控制电子探针相对于样品的位置,从而实现SMF的出现和消失。因此,实际在改变离焦值时电子探针的位置变化 ∆f 就反映了样品厚度。不过,要更准确的获得样品厚度 T 还需要考虑电子探针在深度方向的尺寸 δz 以及样品表面总的非晶层厚度 A, 即 T=∆f-δz+A ,其中 δz=1.77λ/α^2,α 为会聚半角,λ 为电子波长。进一步地,本工作还结合EELS测厚方法验证了SMF测厚方法的正确性。该工作强调了系列离焦SMF在快速测定样品厚度方面的应用,能够有效避免STEM模式下的电子束损伤和积碳问题,尤其适用于不耐电子束辐照的样品。赞助国家自然科学基金项目 (Nos. 11874394) 安徽省高校协同创新计划项目 (No. GXXT-2020-003)。论文链接https://doi.org/10.1016/j.micron.2022.103230
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制