当前位置: 仪器信息网 > 行业主题 > >

多个波段激光防护镜

仪器信息网多个波段激光防护镜专题为您提供2024年最新多个波段激光防护镜价格报价、厂家品牌的相关信息, 包括多个波段激光防护镜参数、型号等,不管是国产,还是进口品牌的多个波段激光防护镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多个波段激光防护镜相关的耗材配件、试剂标物,还有多个波段激光防护镜相关的最新资讯、资料,以及多个波段激光防护镜相关的解决方案。

多个波段激光防护镜相关的资讯

  • 多波段拉曼-荧光激光雷达系统可用于雾霾探测
    近日,兰州大学教授黄建平带领科研团队研制出我国首个多波段拉曼-荧光激光雷达系统。该系统不仅可用于大气雾霾探测的研究及预警,还可用于卫星数据校正、医疗气象观测等领域,处于国际先进水平。  &ldquo 多波段拉曼-荧光激光雷达系统用高功率激光器向天空同时发射三束激光,也就是三个波段。紫外激光与大气颗粒物作用之后,就会释放出荧光,我们利用大口径的望远镜接收被大气反射回来的信号,共有38个波段。大多国内研究中使用的少数波段,对于颗粒物的大小、形状、成分等认识还不够。&rdquo 黄建平介绍说,&ldquo 印度科学家拉曼发现了光和粒子的相互作用,在这种作用后,光的波长和频率会发生变化。对接收到的信号进行分光、提取和探测,根据其变化的多少,就可以知道这种物质的化学成分是什么,也就可以进一步分析大气污染物的重要性质,尤其是对人体有害的有机物。&rdquo   课题组成员黄忠伟解释说:&ldquo 大家现在都关心雾霾天气,但对于雾霾的成因、成分等问题的认识都还不够,多波段拉曼-荧光激光雷达系统能够连续工作并探测到不同高度的雾霾变化数据,而且精度很高。&rdquo   当前,我国在全球气候变化、空间环境监测等领域都急需大量激光雷达技术支撑,但一直依赖国外进口的高成本产品。多波段拉曼-荧光激光雷达系统的成功研制,将降低我国购置相关产品的成本。
  • 美打造高强度窄波段X射线激光束
    据物理学家组织网日前报道,美国能源部斯坦福直线加速器中心国家加速器实验室的研究人员,采用金刚石细薄片把直线加速器的相干光源转化为手术刀般更精确的工具,以探测纳米世界。改进后的激光脉冲可在X射线波长更窄频带高强度聚焦,开展以前所不能为的实验。该研究结果刊登在《自然光子学》杂志上。  这个过程被称为“自激注入”,金刚石将激光束过滤为单一的X射线颜色,然后将其放大。研究人员可以在原子水平研究和操纵物质上有更强的能力,传送更为清晰的物质、分子和化学反应的影像。  人们谈论“自激注入”已经近15年,直到2010年斯坦福线性加速器中心成立时,才由欧洲自由电子激光器和德国电子加速器研究中心的研究人员提出,并由来自斯坦福线性加速器中心和阿贡国家实验室的工程队伍将其建立。“自激注入”可潜在地产生更高强度的X射线脉冲,显著高于目前直线加速器相干光源的性能。每个脉冲增加的强度可以用来深入探测复杂的材料,以帮助解答诸如高温超导体等特殊物质或拓扑绝缘体中复杂电子态等问题。  直线加速器相干光源通过接近光速的电子群加速激光束,用一系列磁体将其设定为“之”字路径。这将迫使电子发射X射线,聚集成亮度超过之前10亿倍的激光脉冲。如果没有“自激注入”,这些X射线激光脉冲包含的波长(或颜色)范围比较宽,无法被所有的实验使用。之前在直线加速器相干光源创造更窄波段(即更精确波段)的方法则会导致大量的强度损失。  研究人员在可产生X射线的130米长磁体的中间段安装了一片金刚石晶体,由此创建了一个精确的X射线波段,并且使直线加速器相干光源更像是“激光”。该中心物理学家黄志荣(音译)说:“如果我们完成系统的优化,并添加更多的波荡,所产生的脉冲集中的强度将达10倍之多。”目前世界各地的相关实验室已经趋之若鹜,计划将这一重要进展与自身的X射线激光设施相结合。
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产成果简介:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。应用前景:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。  2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。  AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。  AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。  Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。  关于Hexagon计量产业集团  Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn  海克斯康测量技术(青岛)有限公司  地址:青岛市株洲路188号 邮编:266101  电话:0532-8089 5188 传真:0532-80895030  网址:http://www.hexagonmetrology.com.cn  E-mail:info@chinabnsmc.com
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性,使该晶体成为目前首例实现了全波段双折射相位匹配的紫外/深紫外非线性光学晶体材料。研究结果表明,宽的相位匹配波长范围使GFB晶体透光范围得到充分应用,可实现1064 nm激光器二、三、四、五倍频高效、大能量输出,有望满足半导体晶圆检测等领域的重大需求。更重要的是,GFB可采用水溶液法生长出高质量、超大尺寸晶体,使其有望成为应用于大科学装置的新晶体材料。   今年是习近平总书记视察中国科学院并提出“四个率先”目标要求十周年。十年来,新疆理化所认真贯彻落实习近平总书记重要指示精神,面向国家重大需求,在新型光电功能晶体材料等重要技术领域取得了一系列科研成果。下一步,新疆理化所将持续开展相关晶体材料、器件及激光光源应用的攻关研究,力争产出更多原创性、引领性重大创新成果。GFB晶体器件利用GFB晶体进行激光实验
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性。该晶体具有优异的线性和非线性光学性能,如短紫外截止边(~193 nm),大有效倍频系数(deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • “现场级多波段红外成像光谱仪”重大专项获好评,通过“三组一委”审核
    p 2017年4月10日,湖北久之洋红外系统股份有限公司承担的国家重大科学仪器专项“现场级多波段红外成像光谱仪开发与应用”通过2017年三组一委(总体组、专家组、监理组、用户委员会)会议评审。国家科技部刘处长和武汉光电国家实验室叶朝辉院士等专家进行了现场审查,并对该专项给予高度评价。/pp  该项目由中船重工集团组织实施,由久之洋公司承担,在去年8月份从29个审查项目中脱颖而出,或得技术高分、综合评分A级的优良评价,顺利通过中期验收。并获得2670万元的全额国家专项经费拨付。近期,该项目按照阶段审核,以优良的专业技术水平通过了项目三组一委会议评审,标志该项技术实现又获新高。/pp  与会专家认为该项目所研制具有自主知识产权的现场级多波段红外成像光谱仪,突破了大视场迈克尔逊干涉仪设计、宽谱段分光镜分区镀膜多项关键技术,提升了我国成像光谱领域的自主创新能力和核心竞争力。目前项目在工程化与应用研究方面已经取得了阶段性成果。在海上溢油监测、有害气体检测与军事目标辐射特性研究等应用领域有着广泛的应用前景。国家科技部刘春晓处长对项目产业化前景充满信心,并对项目的验收工作寄予厚望,祝愿项目能以优异的成绩通过验收。叶院士等专家对项目的完成情况和仪器的应用开发情况表示了充分的肯定,期望项目组能在中期优秀的基础上更上一层楼,做出性能优良、高技术指标的仪器。中船重工科技部王俊利主任指出项目组以生产国际一流的仪器为己任,以工程化和应用研究为重点,进一步验证仪器在机载/舰载/车载等不同平台的工作稳定性和可靠性。在安防、反恐、环境保护、科学研究等应用领域外积极拓展。据悉该项目将于2017年9月完成研制并验收。/p
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 新型光谱发生器:可发射近红外波段任何期望波长的光
    光谱发生器L12194-00-70130可发射近红外波段的光,而且使用者可根据用途自行选择波长,其调节的最小单位间隔可为1nm。该产品内置高稳定性的光源和特有的光学系统,实现了小型化(144x236.5x513.5mm)、高稳定性、高输出功率和高效率。滨松新型光谱发生器L12194-00-70130L12194-00-70130作为一个新产品,与以往同为近红外波段的光谱发生器的产品相比,照射波长可以根据实际应用,拥有390~700nm,430 nm ~790nm,700nm~1300nm三种照射波段的选择。滨松将提供产品的样本软件,直接在PC上就可实现波长的控制。产品连接示例该产品可以广泛应用于生物发光刺激、光谱设备性能以及材料光学性能的研究和评估,另外,亦可作为显微镜和内窥镜的光源使用。产品应用点击按钮,查看详细产品信息:欢迎关注滨松中国官方微信号
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。  一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。  强强联合  项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。  但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。  为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。  但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。  而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。  上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。  1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。  “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。  从“敢想”到“敢做”  据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。  位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。  针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。  据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。  在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。  据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 全球首套5米分辨率宽波段多光谱卫星数据集发布
    5月29日至31日,第六届亚洲大洋洲区域综合地球观测计划(AOGEO)国际研讨会在澳门大学召开。在GEO秘书处、AOGEO协调委员会联合主席、GEO中国专家委员会专家、以及现场参会代表等共同见证下,全球首套5米分辨率宽波段多光谱卫星数据集(JLS-5M)正式对外开放共享。全球用户可通过国家对地观测科学数据中心获取相关数据产品。   该数据集由长光卫星技术股份有限公司和中国科学院空天信息创新研究院联合研制,包含20个光谱谱段,其中主要地物特征谱段图像的空间分辨率达到5米。数据集的研制利用了吉林一号光谱01/02卫星在2020-2022年期间采集的覆盖“一带一路”沿线65个国家的L1级标准数据,采用剔除邻近像元效应的大气校正算法、场地定标与交叉定标等在轨绝对辐射定标技术以及指数产品验证进行数据集精度评价,最终构建了两期覆盖率达到90%以上、支持定量遥感应用的地表反射率产品数据集,数据量超过80TB。   作为国家重点研发计划国际合作专项的重要成果,该数据集有助于提高土地利用、资源管理、环境监测等领域的精细程度,进一步提升了国产优质卫星数据资源的国际影响力。 长光卫星技术股份有限公司成立于2014年12月1日,是我国第一家商业遥感卫星公司。公司由吉林省政府、中科院长春光机所、社会资本以及技术骨干出资成立,总注册资金19.7亿元。公司专注于商业航天领域,是我国第一家集卫星研发制造、运营管理和遥感信息服务于一体的全产业链商业遥感卫星公司。 中国科学院空天信息创新研究院是光电工程、航天航空和应用科技等三个主要领域兼具总体管理与技术总体职能的研究单位。中国科学院空天信息创新研究院始建于1956年的电子学研究所。
  • 技术线上论坛|12月02日《红外竟成为关键数据?接连登上Nature子刊!550-7000 cm-1全波段 10 nm红外光谱(nano-FTIR/AFM-IR)测量系统》
    报告简介: 傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源,它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm成像和光谱测量。 这种特技术的特点:• 超宽的可调谐波长范围 550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 4 cm-1,实现快速的纳米化学组分成像;• 与散射式近场光学(s-SNOM)和 AFM-IR / PTE+等测量模式兼容。 在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!报名注册:您可以通过点击此处或扫描下方二维码报名注册此次会议。扫描上方二维码,即可注册!报告时间:2021年12月02日 17:00(北京时间) 主讲人:主持人:Sergiu Amarie, neaspec高应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 新一代宽波段高通量光学光谱仪通过国际评审和技术验收
    7月12日至13日,由北京大学、中国科学院国家天文台、南京天文光学技术研究所与美国加州理工学院联合研制的新一代帕洛马天文台光谱仪(NGPS)通过国际评审。该项目是北京大学牵头的国家自然科学基金委员会国家重大科研仪器项目。中国科学院南京天文光学技术研究所是该项目的技术责任单位。中国科学院紫金山天文台、中国科学院大学杭州高等研究院、中国科学技术大学、南京大学、南京师范大学等单位的专家对该仪器项目进行了技术测试验收。 与会专家听取了项目组所做的研制情况汇报,审核了相关测试报告和技术文档,现场查看了光谱仪并测试了各项指标。经质询和充分讨论,与会专家一致认为NGPS各项技术指标全面达到技术要求。该仪器预计于2023年8月运往美国加州理工学院。 NGPS作为一台宽波段、高通量和智能化的新一代光谱仪,将安装在美国帕洛马天文台5米海尔望远镜的卡焦焦点,替换有40多年历史的双通道光谱仪(DBSP)。NGPS整体为四通道设计,单次曝光可实现310nm-1040nm的宽波段覆盖;光谱分辨率可实现1800-6000;包含大气和望远镜的仪器峰值效率优于45%,达到国际先进水平。光谱仪焦面前留有自适应光学系统接口,配置连续可调像切分器,将成为中大型望远镜上先进的现代天文光谱仪。 北京大学、国家天文台、南京天光所的相关负责人和项目组成员参加会议。 7月12日,NGPS国际交付评审 7月12日,测试组专家和项目组成员现场查验光谱仪
  • 赛克玛公司参加清华大学“多波段热/光碳分析仪”招标项目并成功中标
    2015年7月13日由清华大学组织的关于购置“多波段热/光碳分析仪”招标项目的谈判活动于清华大学实验室处洽谈室进行,我公司派遣代表参加了此次谈判。经过紧张的谈判,最终我公司代理的由美国DRI(沙漠技术研究所)生产的Model 2015多波段有机碳/元素碳分析仪以绝对的技术优势成功中标。清华大学仪器设备采购成交通知书 DRI 2015多波段热/光碳分析仪是在原有DRI 2001A基础上进行升级,完全能满足原有DRI 2001A的技术和功能需求,不影响原有分析需求。升级之后的DRI 2015多波段热/光碳分析仪,能够更好的应用于黑碳(Black Carbon,即BC)和棕碳(Brown Carbon即BrC)的研究,并且结合其光学属性,判别BC和BrC在近红外和近紫外光区的光学性质,更好的区分机动车及生物质燃烧源,对大气颗粒物来源更准确解析。(详细资料介绍可见http://www.bmet.cn/index.php/Index/productdet/cid/131/spid/252.html) 我公司将积极完成后续的技术支持等工作,继续保持与清华大学及国内其他高校和科研单位的良好合作关系,争取为客户提供更加优质的技术支持与服务!
  • 国内首套光电输运选件在清华大学顺利验收,完美实现不同波段的电输运全自动测量
    随着新能源产业的不断发展,新型太阳能材料的研究正进入快速发展阶段,进而凸显高精度光电测量系统的重要性。Quantum Design秉承科研需求高于一切的精神,同时应广大用户的要求,于2016年的美国物理学年会APS上隆重推出了光电输运选件。日前,国内套光电输运选件在清华大学材料学院功能复合材料课题组完成安装调试并顺利验收。Quantum Design工程师讲解仪器的操作方法Quantum Design公司的综合物性测量系统PPMS可根据客户需求配置不同选件,实现磁学、电学、热学等性质的测量。光电选件是基于PPMS、Versalab平台全新推出的光照下电输运测量选件,该选件在原有的多功能样品杆选件的基础上集成了适应不同光波段的光纤,并标配了卤素灯和单色仪。用户能够根据测量的实际需求调节入射光线波段,并配合高电输运或直流电学选件实现进一步的电输运测量。 光电测量样品杆 在此次更新的光电输运测量选件中,选用100W长寿命卤素灯光源,输出的波谱范围可从350nm一直延伸到1850nm,通过光栅单色仪能够输出约为10nm线宽的单色光,并能够实现整个波谱范围的连续调控,结合系统的变温、变磁场样品腔环境,用户能够在不同温度以及不同磁场条件下,对样品进行不同波段光照下的电输运性质的全自动测量,更加便捷。 光源及连续可调光栅单色系统 不同温度下样品电阻对激发光波长的依赖关系此次更新的光电输运选件能够支持两个4线法样品同时进行测量,如此,用户在同样的物理环境下即可对多种不同组分样品的性质进行更为直观地对比,这就大大提升了实验室样品测试的效率。结合PPMS平台的电输运测量选件,该选件能够帮助用户实现光照下样品电输运性能测量,进一步拓展了PPMS综合物性测量系统在光、电、磁等方面的多场调控能力。期待该选件的顺利安装能够为老师获取更多的科研成果添砖加瓦,也期望有越来越多的用户能够充分利用PPMS系统以及新选件的多种功能,取得更的学术成果! 相关产品链接: PPMS 综合物性测量系统 http://www.instrument.com.cn/netshow/SH100980/C17086.htm 完全无液氦综合物性测量系统 DynaCool http://www.instrument.com.cn/netshow/SH100980/C18553.htm多功能振动样品磁强计 VersaLab 系统 http://www.instrument.com.cn/netshow/SH100980/C19330.htm MPMS3-新一代磁学测量系统 http://www.instrument.com.cn/netshow/SH100980/C17089.htm
  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD FieldspecPro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
  • 探访世界首台中红外波段太阳磁场望远镜建设现场
    近日,记者驱车探访了东半球首个天文观测基地——青海冷湖天文观测基地,用于太阳磁场精确测量的中红外观测系统正在建设调试。冷湖天文观测基地位于柴达木盆地西北边缘的青海省海西蒙古族藏族自治州茫崖市冷湖镇赛什腾山区域,平均海拔约4000米。2017年以来,中国科学院等科研单位合作在此开展天文台址科学监测。监测结果显示,冷湖赛什腾山区域的视宁度、晴夜时间等光学天文观测所需的关键监测数据表现优越,可比肩国际一流大型天文台所在地。蜿蜒的山路平坦却又险峻。在海拔4000米左右的一处平台,五层楼高的用于太阳磁场精确测量的中红外观测系统正在进行调试。“在对太阳活动研究中,科学家发现磁场是影响太阳活动的重要测量量,为了获得更高分辨率的太阳磁场,我国研制了‘用于太阳磁场精确测量的中红外观测系统’,它是国际上第一台中红外波段的太阳磁场望远镜。”中国科学院国家天文台怀柔太阳观测基地博士生佟立越1日告诉记者。据佟立越介绍,太阳是距离地球最近的恒星,是研究恒星的最佳样本,也是密切影响现代人生活的主要天体。因此,对太阳活动的研究兼具科学与社会意义。“这个系统是国内首个用于太阳中波红外观测的望远镜,是由中国国家天文台、西安光机所和上海技物所联合研制的。”中国科学院西安光学精密机械研究所装配主要负责人雷昱说,该望远镜是一个1米口径的离轴格里高利系统,它有两个观测部分,一个是小的导行镜,可以看到整个太阳的全日面;大系统可以看到太阳6.4角分的视场,用于观测局部区活动。该项目是冷湖天文观测基地已落地的9个天文望远镜项目之一。目前,9个项目总投资近20亿元人民币,共有35台天文望远镜,4台已建成,29台已完成土建施工和主体建设,2台正在研制。在海拔4200多米的另一处平台,由中国科学技术大学、紫金山天文台实施的2.5米墨子巡天望远镜项目(WFST),已完成望远镜观测楼主体、附属用房及圆顶轨道安装调试,圆顶安装正在进行。WFST望远镜建成后,将成为北半球具备最高巡天能力的光学时域巡测设备,能够获取高精度位置和多色亮度观测数据,高效搜寻和监测天文动态事件,预期可以在时域天文、外太阳系天体搜寻、银河系结构和近场宇宙学等领域取得突破性成果。据了解,今年1月1日起,冷湖地区开始施行《海西蒙古族藏族自治州冷湖天文观测环境保护条例》,进行暗夜星空保护,在暗夜保护核心区内,光源种类和亮度都将得到严格控制。
  • 质谱仪器研制专辑分享十二——基于傅里叶变换离子回旋共振质谱仪的超宽波段光解离光谱系统的研制及应用
    p dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术;四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术;双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术;小型飞行时间质谱和离子束诊断飞行时间质谱;复合离子源技术和激光后电离技术;以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。/pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "仪器信息网授权对本专辑内容进行转载,以下为第2期题为“基于傅里叶变换离子回旋共振质谱仪(FT-ICR-MS)的超宽波段光解离光谱系统的研制及应用span style="text-indent: 2em "”的文章,作者/span张凯林,span style="text-indent: 2em "通信作者/span孔祥蕾。/pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "1.通信作者孔祥蕾,现任南开大学元素有机化学国家重点实验室副教授。/pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "科研与学术工作经历:2003年于中科院安光所获博士学位。分别于2004及2006年在台北原分所和康奈尔大学从事质谱和离子红外光谱研究。2010年到南开大学任职,从事基于质谱和光谱的气相离子化学研究,已发表论文九十余篇。/pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "主要研究方向:有机与生物质谱分析新方法;新材料在质谱中的应用;光谱学;反应机理。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c3b80650-5df2-4142-9bdb-1bec1b3c7985.jpg" title="图3.jpg" alt="图3.jpg"//pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "基于质谱技术的光解离光谱方法具有灵敏度高和可行性好的优势,近年来在气相离子化学和分析化学研究领域得到了快速发展和广泛应用。本工作基于一台7 T的傅里叶变换离子回旋共振质谱仪(FT ICR MS),搭建了超宽波段的可调谐激光光路系统,获得了气相离子超宽波段的光解离光谱。该系统的光谱可调谐范围为192~3700 nm,是目前已知在单台质谱仪上可获得最宽波段的光解离光谱系统。超宽波段的波长覆盖范围使用两台宽波段可调谐OPO激光器实现,光路可以在真空传输,提高了紫外和红外激光的传输效率。该系统结合了电喷雾(ESI)电离源和FT ICR MS的高分辨能力以及超强的离子操控能力,可以获得目标离子的紫外-可见光以及中红外区域的光解离光谱,分别对应于分子的电子和振动能级,实现了分子结构信息的互补。以罗丹明110和色胺为例,获得了相应的离子在不同波段中的光解离光谱,初步证明了该仪器实现相关功能的可行性。/pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "strong以下为论文内容:/strongbr//pp style="text-align: center"img style="width: 600px height: 623px " src="https://img1.17img.cn/17img/images/202003/uepic/76392738-66e9-4d26-b206-8ad6bbb9c603.jpg" title="截屏2020-03-27上午10.07.33.png" width="600" height="623" border="0" vspace="0" alt="截屏2020-03-27上午10.07.33.png"//pp style="text-align: center"img style="width: 600px height: 779px " src="https://img1.17img.cn/17img/images/202003/uepic/17744f41-5bd5-410a-93c5-2d6087ac55e9.jpg" title="截屏2020-03-27上午10.07.48.png" width="600" height="779" border="0" vspace="0" alt="截屏2020-03-27上午10.07.48.png"//pp style="text-align: center"img style="width: 600px height: 777px " src="https://img1.17img.cn/17img/images/202003/uepic/ecbb5f6b-1022-4a15-a41a-465c17aa9976.jpg" title="截屏2020-03-27上午10.08.04.png" width="600" height="777" border="0" vspace="0" alt="截屏2020-03-27上午10.08.04.png"//pp style="text-align: center"img style="width: 600px height: 547px " src="https://img1.17img.cn/17img/images/202003/uepic/d70ee9dc-6b69-47a1-b904-36458d5c9618.jpg" title="截屏2020-03-27上午10.08.18.png" width="600" height="547" border="0" vspace="0" alt="截屏2020-03-27上午10.08.18.png"//pp style="text-align: center"img style="width: 600px height: 773px " src="https://img1.17img.cn/17img/images/202003/uepic/4b227b28-1bf4-4a56-8fd0-fdca1426c681.jpg" title="截屏2020-03-27上午10.08.34.png" width="600" height="773" border="0" vspace="0" alt="截屏2020-03-27上午10.08.34.png"//pp style="text-align: center"img style="width: 600px height: 598px " src="https://img1.17img.cn/17img/images/202003/uepic/2b72d939-2eca-46f6-8288-8f16d101e7ff.jpg" title="截屏2020-03-27上午10.08.45.png" width="600" height="598" border="0" vspace="0" alt="截屏2020-03-27上午10.08.45.png"//pp style="text-align: center"img style="width: 600px height: 505px " src="https://img1.17img.cn/17img/images/202003/uepic/7baba6ac-ef80-4ec4-95b3-090291722de5.jpg" title="截屏2020-03-27上午10.08.54.png" width="600" height="505" border="0" vspace="0" alt="截屏2020-03-27上午10.08.54.png"//pp style="text-align: center"img style="width: 600px height: 726px " src="https://img1.17img.cn/17img/images/202003/uepic/5e5b2894-5c59-46a1-8643-ab8161c1aa43.jpg" title="截屏2020-03-27上午10.09.09.png" width="600" height="726" border="0" vspace="0" alt="截屏2020-03-27上午10.09.09.png"//pp style="text-align: center"img style="width: 600px height: 768px " src="https://img1.17img.cn/17img/images/202003/uepic/4cfe37e0-fcd6-4ae4-9f38-82bf158c0d1e.jpg" title="截屏2020-03-27上午10.09.21.png" width="600" height="768" border="0" vspace="0" alt="截屏2020-03-27上午10.09.21.png"//pp style="text-align: center"img style="width: 600px height: 757px " src="https://img1.17img.cn/17img/images/202003/uepic/6feaada8-9dc3-41e9-b0b7-99eab4bdde76.jpg" title="截屏2020-03-27上午10.09.38.png" width="600" height="757" border="0" vspace="0" alt="截屏2020-03-27上午10.09.38.png"//pp dir="ltr" style="text-align: justify text-indent: 2em line-height: 1.75em "br//pp dir="ltr"br//p
  • 晶牛制定工业防护微晶玻璃标准
    近日,经国家工业和信息化部批准,晶牛工业防护用微晶玻璃为行业标准,由中国晶牛集团对该标准的制定进行系统工作。3月1日,集团公司的技术、销售、生产、质检四方面人员参加了工业防护用微晶行业标准初稿讨论会,集团董事局主席王长林参加会议。  据悉,该标准形成初稿后,将向用户征求意见,请国内专家审定标准,最后报中国建材联合会质量部,然后由行业申报工业和信息化部批准实施。该标准通过批准后将会在全国同行业范围内实施。  据了解,工业防护用微晶玻璃作为晶牛高科技产品工业微晶玻璃的升级产品,具有耐磨耐腐耐酸碱、耐极冷极热等特性。自投放市场以来,被河北唐山电厂、首都钢铁厂、开滦煤矿洗煤厂等电力行业、钢铁行业、煤炭行业数百家单位采用晶牛微晶板材做设备内衬、机械防护,取得了显著的经济效益。
  • 国仪量子:成功研制可商用W波段脉冲式电子顺磁共振波谱仪
    4月2日,国仪量子研发人员正在操作W波段脉冲式电子顺磁共振波谱仪“W波段脉冲式电子顺磁共振波谱仪的研制成功,使国仪量子成为目前国内能研制生产该类高端科学仪器的厂商。也标志着中国成为继德国之后,第二个有能力研发该型电子顺磁共振波谱仪的国家。”4月2日,国仪量子技术(合肥)股份有限公司传感事业部副总经理石致富站在最新研发的仪器前向记者介绍。根据揭榜项目任务书的项目目标和考核指标,国仪量子最终任务全部完成,部分指标超额完成。专家组召开验收会议,认为该产品达到了国际先进水平,此攻关任务已经完成。近年来,安徽在量子信息领域“从0到1”的原始创新不断突破:目前,安徽集聚量子科技产业链企业60余家、数量居全国首位,全国首条量子芯片生产线建成运行,全国首个量子信息未来产业科技园挂牌运营,量子专利授权量全国领先,以国盾量子、国仪量子、本源量子、问天量子、中电信量子集团等为龙头的量子高新技术企业不断涌现。安徽发展量子信息等未来产业,具有强劲的科技创新策源能力。国仪量子在2021年承接了安徽省制造业重点领域产学研用补短板产品和关键共性技术攻关任务,项目针对“W波段电子顺磁共振波谱仪”进行工程化、产品化开发,解决产品化实现涉及到的核心技术难题,研制出用户友好、皮实可靠,可产品化出售的W波段电子顺磁共振波谱仪。W波段电子顺磁共振波谱仪具有高分辨率、高灵敏度的优势,是一种重要的高端科学分析装置,将给生物、化学、物理以及交叉学科等领域提供一项强有力的研究手段,可用于进行蛋白质、RNA、DNA 的结构解析,从而解决生物学、医学、制药学中的关键问题。得益于中国科学技术大学、合肥国家实验室等高校与科研机构,合肥在量子信息技术的科研领域具有先发优势,为量子科技发展提供了强有力的人才和智力支撑。“我们团队在量子精密测量领域有着十多年的研究积累,以长相干、多比特、高精度量子操控为核心目标,目前已掌握了世界领先的高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、高精度扫描钻石探针技术等核心技术。”石致富说。 “揭榜挂帅”是用市场竞争来激发创新活力的一种机制。国仪量子相关负责人表示,“揭榜挂帅”有助于选拔领头羊、先锋队,聚力突破关键共性技术瓶颈,提高制造业自主创新能力,带动产业链上下游的技术进步,强化供应链保障。未来,国仪量子将持续加强研发投入力度,在核心技术上不断追求更高标准。与用户协同创新,推动技术落地,赋能多个行业的升级发展,在全球量子领域逐渐发出中国声音,也让“安徽身影”更加活跃。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 红外竟成为关键数据?接连登上Nature子刊!德国科学家和你聊聊如何利用新型全波段纳米红外
    【报告简介】傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长最小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源( 550-7000 cm-1),它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm级成像和光谱测量。这种独特技术的特点:• 超宽的可调谐波长范围550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 4 cm -1,实现快速的纳米级化学组分成像;• 与散射式近场光学(s-SNOM)和 AFM-IR / PTE+等测量模式兼容。在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!【主讲人】主持人:Sergiu Amarie, neaspec高级应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm必看案例案例1:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度极高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性极小,因此可用于单层分子自组装材料的研究。图2. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。案例2:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有极高的对应度,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图3. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图4. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电极电解液的原位界面表征的常用方法。然而该技术的探测深度在微米级别,而电极电解液的界面,如双电层,一般在纳米级别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面独有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电极的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm -1),C=O(1740cm -1)及C-O(1155cm -1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率最高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。纳米傅里叶红外光谱仪nano-FTIR的技术优势:☛ 极大地突破了传统红外光谱的空间分辨率极限,可达10 nm;☛ 得到的谱图与传统红外谱图有极高的一致性;☛ 探测光学信号而非机械信号,灵敏度极高,适用于热膨胀系数低的系统;☛ 可同时得到光谱及成像结果;☛ 测样时间短;☛ 操作和样品准备简单——仅需要常规的AFM样品准备过程。参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.
  • 上海技物所发现一种太赫兹波段室温新光电导现象
    产生光电导现象的方法主要有导带与价带之间的跃迁、子带之间的跃迁或者杂质带激发,目前人们普遍认为由远小于半导体禁带能量的光子直接激发的室温光电导机制是不可能实现的。中国科学院上海技术物理研究所黄志明研究员团队研究发现并提出一种太赫兹波段室温新光电导现象(见下图):当外部电磁波(光子)入射到器件上,将在半导体材料中诱导势阱,从而束缚来自于金属中的载流子,使得材料中载流子浓度发生改变。黄志明团队成功制备出相关器件,并通过实验证明了所提出理论的正确性。  有关研究结果已于9月1日在线发表在Advanced Materials (DOI:10.1002/adma.201402352)上。此项研究结果证明了远小于禁带能量的光子激发的室温光电导机制,并跳出了传统的基于带间跃迁、子带能级跃迁,以及杂质带激发产生光电导的限制,解决了室温下远小于禁带能量光子直接产生光电导这一难题。它将对半导体、超材料、等离子体和太赫兹低能光子探测产生深远影响。   一种太赫兹波段室温新光电导现象
  • 创建国际前沿——访我国著名激光技术专家许祖彦院士
    前言:我国作为一个人口众多的发展中国家,在很多技术、行业领域都长期处于缺少自己的知识产权、缺少自己的核心技术、缺少自己的核心竞争力的被动境地。我们实施的许多科学技术研究定位于瞄准、跟踪或赶超国际前沿,已取得了丰硕的成果,极大促进了我国高技术的全面发展,使我国在国际高技术舞台占有一席之地。而“创建国际前沿”,使科学技术走在国际科学研究最前沿,则更有利于推动我国相关研究领域的发展,推进产业优化升级。  日前,仪器信息网编辑走访了中科院物理所许祖彦院士,“创建国际前沿”这句令全体中国科研工作者为之振奋的话,正是我国这位著名激光技术专家许院士与我们讨论最多的,许院士和他的同事们在国际激光研究领域,也确实身体力行地不断为“创建国际前沿”而奋斗。  全固态深紫外激光器研制的成功,不仅使得我国激光科技研究突破了200nm以短的深紫外壁垒,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。  全固态深紫外激光器核心技术之一的KBBF晶体棱镜耦合装置是我国具有自主知识产权的核心技术,为我国独有并暂时不对外国出售,以保护我们国家先进科研装备的研制,这是我国在高技术领域第一次对发达国家说“不”。  世界首台大色域140英寸大屏幕激光显示样机研制的成功,标志着我国在国际激光彩色显示技术开发的先进行列,以及我国在激光显示研究领域取得国际领先关键技术优势。我国著名激光技术专家、中科院物理研究所许祖彦院士我国科学仪器现状与发展任务  谈到仪器,许院士表示:“科学仪器能提升国民经济水平、科学水平、技术水平和促进国防建设的发展,有人曾经统计过,诺贝尔物理、化学奖的获得者1/3与科学仪器发明有关,而发明的科学仪器反过来又促进了科学技术的进一步发展。”  讲到我国仪器现状,许院士无奈地说:“现在我国使用的大型科学仪器,包括激光仪器在内,“八五”的时候,只有9.98%是国产的,到“十五”的时候,不到15%,也就是说,现在我国的大型科学仪器85%还是依赖从国外进口。这样事情就非常严重了,从进行科技前沿方面的研究来说,外国的先进科学仪器,先他们自己用,待他们把‘第一桶金’都淘完了,再把仪器高价卖给我们,回收成本 另一方面,涉及到高、精、尖的仪器,国外往往对我国禁运。”  “从‘八五’到‘十五’近10年间才增长5%左右,增长速度好像有点缓慢?”笔者吃惊地表示。“从‘八五’到‘十五’近10年间才增长5%左右,增长速度的确有点缓慢,其实我们有很多科研技术不一定比国外落后,也做了很多科学研究,发表了很多文章,就是做不成仪器,这与我国的工业化水平有关。现在我们国家正在提倡‘两化融合’,即信息化与工业化结合,将信息产业部与工业部连在一起,这将会很好的促进我国科学仪器的发展。而激光很大程度应用在信息仪器上,应用在分析仪器上也比较多,所以我比较关心国家的‘两化融合’。希望此项举措能推进国家科学仪器的发展,让我们国家的国产大型科学仪器不到15%的比例能够尽快增加。”  针对目前我国国产仪器现状,许院士进一步道出了心中所想,并提出了当前我国科学仪器产业发展的重大任务:“要想将国产仪器做强,首先要提高仪器质量,将15%的比例提高上去,增进我国仪器的国产化,进一步在世界范围内实现仪器创新,在世界上有中国自己的品牌,所以说中国国产仪器的发展也是任重而道远。作为一个研究仪器人的心理话,希望中国仪器产业能有具体目标和历史使命感,也希望仪器信息网也能起到积极的推动促进作用。”激光技术在仪器方面的应用  激光技术属战略支撑技术,在仪器创新上有广泛应用  “我国的激光技术起步比国外稍晚一些,60年开始起步,但现在差距比较大,这跟当初的国际关系背景、国民经济水平、人才素质背景有关。改革开放后,各方面都有所改观。03-04年国家中长期科技发展战略研究中,将激光技术定义为战略支撑技术,即激光是国家的高新技术产业、科技前沿和国防建设的战略支撑技术。在后来的国家纲要中,进一步将激光定位为国家八大前沿技术之一。”谈到激光技术,许院士首先向笔者介绍了我国激光技术的发展背景及目前现状。  “什么是‘支撑技术’?”笔者问到。  “所谓支撑技术,是指技术本身不一定值很多钱,但它支撑着这个产业产生很大的社会经济效益。”讲到这里,许院士形象的举例道,“支撑技术就像盖大楼时刚开始建的支柱,看似简单,没有太大的用处,但一旦把它移开,整栋大楼也就不存在了 DVD里面的半导体激光器很简单、很便宜,但不代表不重要,如果将其去除,那么DVD连概念都产生不了。”  “那激光技术的发展方向呢?”笔者进一步问到。  “其主要发展方向为:半导体激光、全固态激光、自由电子激光和光纤激光。”许院士笑着说道,“我从毕业到现在干了近40年,一直是课题组组长,近20年主要是做全固态激光,主要应用在三个方面,包括产业工艺、科技前沿和军工。”  谈到全固态激光在仪器上的应用,许院士表示:“全固态激光技术在仪器方面也有很多用途。由于激光本身是一个定向光源,方向性好,单色性好,亮度高,首先在通讯仪器方面,其可以用来做信息载体,如在光纤通讯等方面,具有很宽的带宽,传输性非常好 第二,作为计量仪器,如激光刚发明的时候,就用来探测月球到地球的距离,现在发展到用飞秒频率梳作为长度和时间的标准,是一种很前沿、很重要的仪器技术 第三,在分析仪器上,用途也很广泛,如用在激光谱仪、能谱仪上 第四,主要是借助激光的定向性好、光能量密度大、能量高等特性,作为加工的仪器,如用来金属打孔、焊接等。”  KBBF晶体和它的棱镜耦合装置研究成功,使全固态深紫外激光器得以精密化和实用化  “当前,国家建设要提倡做强、做大,国产仪器也要做强、做大,国家财政部、产业部、科技部、基金委对此一直很重视,深紫外激光仪器就是由此研究开发出来的。”终于,这个令笔者十分感兴趣的话题,也是本次采访的核心话题终于出现了。为了不打断许院士的思路,笔者决定采取静静聆听的方式,让许院士将这个话题阐述完毕。  为了让笔者有所了解深紫外激光仪器,许院士先给笔者“科普”了一下:“深紫外波段光指波长在150~200nm左右的那一段光。从光的受激发射来讲,其泵浦速率与波长倒数的3次方成比例,波长越短,要求泵浦速率就越高,深紫外激光波长很短,直接用受激发射产生技术就非常困难。”  “科普”完毕,许院士继续讲到:“我们要研制的大型科学仪器,应既要实用化,又要精密化。现在的设备产生的深紫外激光,距离实用化和精密化比较远,因而深紫外波段的激光仪器,长期以来在世界上一直发展不起来。当前既实用化又精密化的激光器当数全固态激光器。”  “用固态激光直接产生深紫外波段激光,最好的办法就是利用非线性谐波技术,将激光一次次的倍频,这就要依靠非线性光学晶体,而中科院陈创天院士和他的研究群体研制的非线性光学晶体是世界上公认做得最好的。之所以说是世界上公认做得最好的,是因为目前国际上通用的四种非线性光学晶体中,中国四占其三。(目前世界上能够工业化使用的非线性晶体只有四种:从近红外到可见光使用的KDP晶体——由美国杜邦公司发明 从可见、紫外到深紫外3个波段使用的BBO、LBO、KBBF晶体——都是由中科院陈创天他们发明的。)  外国专家曾预言,200nm波长激光是一个发展壁垒,突破200nm波长这个瓶颈可能要靠中国专家来完成。早在九十年代,陈创天院士课题组就找到了KBBF晶体,用来做倍频,将激光波长缩短至186nm,突破了200nm波长的限制,但是由于其比较笨重,还不能达到实用化。  由于KBBF晶体层状特性很严重,长不厚,要做到深紫外倍频需要切割,但其又不易切割。直到2002-2003年的时候,陈创天院士课题组与我的课题组共同发明了KBBF晶体的棱镜耦合装置,在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并申请到了中国、日本、美国的专利。就目前情况而言,中科院的专利已垄断了深紫外全固态激光研究的全部领域。”  相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合装置的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5-10倍以上 在光子流密度方面,提高了3-5个量级 同步辐射在纳秒、皮秒条件下工作,而KBBF晶体的深紫外全固态激光器在纳秒、皮秒、飞秒条件下都能工作 同步辐射只能探测到1-2nm,而全固态激光器能探测到10个nm的深度。  真空紫外激光角分辨光电子能谱仪成功问世,令世界瞩目  许院士继续说道:“光电子能谱仪是当今研究凝聚态物质电子行为的先进仪器,目前都使用同步辐射光源,如改用深紫外激光源,其性能将获得全面的突破。1.773nm深紫外全固态激光研制成功后,日本东京大学提出用于光电子能谱仪(积分式)。2004年周兴江博士回国研制深紫外激光高能量分辨、角分辨光电子能谱仪,在中科院创新工程计划支持下,研制计划顺利进行,06年获得成功,并应用于高温超导材料研究,这立即引起国际科仪界的强烈关注,许多国际著名实验室慕名前来,要求购买深紫外全固态激光相关技术。中科院和上级领导部门经慎重考虑,认为这一自主创新的原创性“敏感技术”首先应服务于国内前沿科学研究,推动我国创建学科研究国际前沿。周兴江研究员向许祖彦院士和仪器信息网采访人员介绍仪器及取得的成果真空紫外激光角分辨光电子能谱仪  7台深紫外激光器应用在物理、化学、材料科学领域,开发7台国际首创的大型科学仪器  现在,中国科学院、基金委、科技部、财政部对此都很重视,许院士在报告中也曾指出:这个研究在中国是完整的研发链:KBBF晶体材料是中国人把它长出来的,外国人没有 激光器是中国人的,外国人没有 用这个激光器研制的角分辨能谱仪也是中国人的,外国人也没有 再往下进一步研究,将由中科仪公司将这种仪器商品化,推向国内、外市场 仪器商品化之后,搞前沿科学研究的人就可以利用这种仪器进行发现新现象、阐明新理论、找到新方法等方面的研究。  深紫外全固态激光器出来后,许院士给中国科学院大连化学物理研究所做紫外拉曼光谱研究的李灿院士打了一个电话,李灿院士听到这个消息后,很受振奋,立即要求尽快提供一台深紫外激光器。根据李灿院士的要求,我们正量身制作一台全新的深紫外激光器,对此,李灿院士表示:“这种深紫外拉曼光谱仪将属于新一代的谱仪”。  现在我们正在加紧研制5类7台深紫外全固态激光器,提供给物理、化学和材料学家,帮助他们研制7台新的应用深紫外全固态激光器的国际首创的大型科学仪器,例如周兴江博士研发深紫外激光同时具有自旋分辨和角分辨的光电子能谱仪、光子能量可调谐深紫外激光光电子能谱仪用来将电子参数测全,包括电子能量、动量、自旋等。  李灿院士研发深紫外激光拉曼光谱仪,当初新型拉曼光谱仪将光谱波长检测范围最低限从205nm降低到193nm时,拉曼光谱就大大的增加了,如今采用深紫外全固态激光器再将检测范围最低限降至177.3nm,可想而知,拉曼光谱会增加多少……  包信和研究员研发深紫外激光光发射电子显微镜。目前,国际上最先进的光发射电子显微镜,其精确度最高能达到20nm的水平,而采用全固态激光器后,其精确度将能提高到5nm。  王占国院士研发深紫外光致发光光谱仪,用于超宽带隙半导体材料方面的研究。它将使这类新材料的基础参数检测成为可能。  佟振合院士研发深紫外光化学反应仪,现在有3000万个有机化合物,90%的吸收光谱在深紫外区,而现有的技术只能采用双光子效应来检测,效率非常低,采用深紫外激光器后,就可以用单光子激发的方式检测,探测到很多的化合物以及观察到化合物更深层次的反应。  王恩哥院士等研发深紫外激光原位时间分辨隧道电子谱仪,用于表面物理方面的研究,将使10nm左右小量子系统方面的研究成为可能。  这仅仅是深紫外波段仪器应用的第一期,主要应用在物理、化学、材料方面,已不再是瞄准、跟踪或追赶国际前沿,而是在创建国际前沿 第二期将应用在信息、资环、生命等领域,这将为各大学科提供全新研究手段,对科研活动起到革命性的推动作用。激光全色显示样机研究成功  有人问许院士:“您近些年都做了些什么?”  许院士幽默地回答道:“近10年做了3件比较大的事情,第一件就是深紫外激光器,‘坐了10多年的冷板凳’,但有它自己的好处,没人和你竞争,能够踏踏实实的自己搞研究 第二件事情,在高功率、高光束质量和变频全固态激光产生和应用方面 第三件事情,就是激光显示,从八五开始到现在。”  信息链包括信息的获取、处理、存储、传输、显示几大步骤,显示作为信息链的最终环节。许院士认为:显示技术目前走过了黑白显示、彩色显示、数码显示三个过程,但在这三个过程中普遍存在的、至今仍未解决的问题就是:色域覆盖率低。如果以人眼可识别自然界的色彩范围为100%,现在显示器的色域覆盖率只在33%左右,采用激光显示器,其理论色域覆盖率可达到90%以上。激光显示也被许院士称为显示技术发展的第四个过程或平面显示的终端过程。  十五期间,许院士和中科院五个研究所的科学家们合作已用激光全色显示技术做出了一台原理样机,色域覆盖率达到了73%,这个覆盖率为当今世界上最大的。样机做出来以后请显示专家及一般群众来观看鉴定,这给鉴定者带来了意想不到的视觉享受与冲击,得到了大家一致的赞许与认可。  当前,激光全色显示技术发展遇到最大的问题就是如何将此项技术推向产业化。“一台200多英寸的样机,其成本就100多万,这是中国许多用户所承担不起的,这是将激光显示技术推向产业化遇到的问题之一 一旦激光显示技术推向产业化,电视台传输带宽、标准等方面也需要重新制定。如果将上述问题全部解决,从而将激光显示技术彻底推向产业化,需要巨大的投资,仅靠现在的几千万政府科研经费投入是远远不够的,这也是制约将此项技术推向产业化的关键所在。”许院士感慨地说道,“数十上百亿元人民币的费用,对国家、对企业来说都是一笔不小的投入,但对于此项技术每年上千亿美元的市场而言,这些投入带来的效益回报也是巨大的!”  至此,笔者希望中国本土企业能够联合起来,对我们国家自主创新的技术予以积极的支持,开创我国显示技术领跑世界的新局面。否则,中国显示行业企业又将形成在标准上受制于人、在市场上为外国人打工的尴尬局面。打造中国企业的国际竞争力,又将成为一代人的一个壮志未酬的遗憾。许祖彦院士与仪器信息网采访人员合影  编者后记:  采访结束后,笔者一行又在许院士的带领下参观了周兴江研究组的实验室,亲眼看到了这台令世界瞩目的深紫外激光光电子能谱仪,亲耳听到了周兴江研究员对这台光电子能谱仪如数家珍的介绍。作为炎黄子孙,切身感受到了“创建国际前沿”给我们带来的骄傲。  回来的路上,笔者的情绪久久不能自已,遂作小诗一首:追梦依稀四十载,白发皓首燕归来。艰苦钻研终不辍,硕果丰存桃李开。  *许祖彦院士和他的科研团队最近已调到中科院理化技术研究所,继续从事激光物理和技术研究。
  • 中国第一世界最亮 大连极紫外自由电子激光光源出光
    大连光源   1月15日,由中科院大连化学物理研究所和上海应用物理研究所联合研制的极紫外自由电子激光装置——大连光源,在经过3个多月的调试后,这个总长100米的大装置发出了世界上最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中科院副院长王恩哥评价称:“大连光源是中科院乃至我国的又一项具有极高显示度的重大科技成果。装置中90%的仪器设备均由我国自主研发,标志着我国在这一领域占据了世界领先地位,为我国未来发展更新一代的高重复频率极紫外自由电子激光打下了坚实的基础。”  给分子“拍个电影”  自由电子激光是国际上最先进的新一代先进光源,也是当今世界先进国家竞相发展的重要方向,在科学研究、先进技术、国防科技发展中有着重要的应用前景。先进自由电子激光的发展在前沿科学研究中发挥着越来越重要的作用,特别是近十年来,自由电子激光技术的发展和突破为探索未知物质世界、发现新科学规律、实现技术变革提供了前所未有的研究工具。  “自由电子激光能够给分子‘拍电影’,比如记录化学键断裂的动态过程,具有非常诱人的应用前景。”中科院上海应物所所长赵振堂说。  而要拍好这部“电影”,离不开神奇的极紫外光。  当波长短到100纳米附近时,一个光子所具备的能量就足以电离一个原子或分子而又不会把分子打碎,这个波段的光称为极紫外光。  “在科学实验中,需要探测的原子或分子数量可能非常少,存在时间也非常短,普通的极紫外光源无法满足这个需求,必须要有高亮度的极紫外光源,即极紫外激光。”中科院大连化物所分子反应动力学国家重点实验室研究员戴东旭解释称,“极紫外激光只能在‘特殊物质’中产生,这个‘特殊物质’就是脱离原子核而单独存在的自由状态的电子。”  但是,一台运行在极紫外波段的自由电子激光设备在世界上尚属空白。  这让科学家感到,中国的机会来了。  中国第一 世界最亮  在国家自然科学基金委国家重大仪器专项资助下,由大连化物所和上海应物所联合研制的大连光源项目于2012年初正式启动,2014年10月正式在大连长兴岛开工建设,并于2016年9月底安装完成,首次出光。  至此,大连光源成为我国第一台大型自由电子激光科学研究用户装置,是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  光源的每一个激光脉冲可产生超过100万亿个光子,波长可在极紫外区域完全连续可调,具有完全的相干性 该激光可以工作在飞秒或皮秒脉冲模式,可以用自放大自发辐射或高增益谐波放大模式运行。在这样的极紫外光照射下的区域内,几乎所有的原子和分子都“无处遁形”。  “大连光源属于第四代光源,在化学、能源、物理、生物、环境等重要研究领域有着广泛的应用,我国率先建成这一先进光源,对推动我国乃至世界在这些领域的研究发展有着极其重要的意义。”中科院院士、中科院大连化物所副所长杨学明说,“大连光源的成功研制也为我国未来发展X波段的自由电子激光打下了坚实基础。”  例如,举国关注的雾霾问题,就可以利用大连光源来研究。大气中的化学物质与水分子作用后,形成分子团簇,这些团簇在生长过程中吸附大气中各种污染分子,生长为较大的气溶胶颗粒,并逐渐成长为雾霾。利用大连光源极紫外软电离技术,就可以研究雾霾的生长过程,从根本上理解雾霾形成的机理,为大气污染防治提供科学依据。  在王恩哥看来,在当今世界,大科学工程对于科技发展起着越来越重要的推动作用。大连光源的建成出光,成为我国大科学工程的又一成功范例,将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国科技事业注入新的活力。  一次握手 造就典范  大连光源正式开工建设以来,在两年的时间里完成了基建工程以及主体光源装置的研制,并且在很短的时间内调试成功产生了世界上单脉冲最亮的极紫外激光,创造了我国同类大型科学装置建设的新记录。  这一项目也开创了我国科学研究专家与大科学装置研制专家成功合作的先例,对于未来加快推动大科学装置在科学研究中的应用具有重要的现实意义。  以科学目标为驱动,让大连光源成为我国大科学装置研制的典范。赵振堂告诉《中国科学报》记者,我国早期的大科学装置,往往都是先建好装置,再去找用户,看看哪些科学家能用。“但是大连光源把这个过程反了过来,是科学家先对科研有了需求,再找到工程团队来合作。这要求我们在建装置之前就充分调研,开工之前就要掌握装置的科学目标是什么。”  大连化物所的长处是科学研究,而上海应物所团队在大科学装置建设方面积累了20年的经验,两个团队为了相同的梦想走到了长兴岛,合作顺利得出人意料。  “合作、协同是中科院的优良传统。”赵振堂认为,“现在看来,打破研究所之间藩篱,整合各所力量,集各家之长来建大科学装置,是投入产出比最小、效率最高的一种方式。”  接下来,大连化物所以及上海应物所的项目专家将进一步把大连光源建设成为高水平的实验研究用户装置,为我国乃至世界提供一个独特的科学研究装置。
  • 光学波段信号可当探测热木星大气逃逸探针
    记者从中国科学院云南天文台了解到,该台与美国亚利桑那大学研究人员合作,发现光学波段的信号可以作为探测热木星大气逃逸的探针。国际著名期刊《天体物理杂志快报》发表了这一成果。  早在2003年,人们通过观测远紫外波段的信号,发现离主星很近的热木星大气中处在低能态的较冷氢原子以一种剧烈的形式向外逃逸。这种逃逸可对行星演化造成严重影响。  “近几年,人们在光学波段成功探测到行星大气中较热氢原子对主星遮挡时产生的微弱吸收信号,如氢的光学波段透射光谱。”云南天文台郭建恒研究员说,然而研究者一直缺乏有力的模型,来论证这些较热的氢原子产生的吸收信号与大气逃逸之间的关系。  郭建恒与博士研究生闫冬冬以及亚利桑那大学黄辰亮博士等人合作,基于自主开发的流体动力学逃逸大气模型和辐射转移模型,在细致地计算了冷热氢原子的分布后,模拟了热木星WASP-121b在不同观测时刻光学波段透射光谱的数据。研究表明,这颗行星周围存在数量巨大的逃逸中性氢气体,每年损失物质以10万亿吨计。这些被行星抛射的物质中,热氢原子的速度比声速更快,并造成了光学波段的吸收。这也说明,光学波段的信号可以用作探测大气逃逸探针。  进一步研究发现,行星大气在不同时刻的吸收水平变化,反映了主星不同的活动特性,恒星更强的活动水平可导致行星大气更深的吸收。这一发现有助于更好地理解主星活动性对行星大气逃逸的影响。
  • 选择合适自己的双波段闪烁仪才能获得良好使用体验
    双波段闪烁仪是一种用于检测放射性物质的仪器,广泛应用于核能研究、医学诊断、环境监测等领域。选购双波段闪烁仪需要考虑多个因素,以确保选择适合需求的仪器。以下是一些建议和选购方法。   1、使用目的和应用领域。不同的研究和应用领域可能对仪器的性能和功能有不同的要求。例如,医学领域可能需要高灵敏度和分辨率的仪器,而环境监测领域可能更注重便携性和耐用性。因此,在选购之前,明确使用目的并了解使用领域的需求是非常重要的。  2、性能指标。仪器性能指标通常包括能量分辨率、计数效率、时间分辨率等。能量分辨率是指仪器能够区分不同能量的辐射源的能力,对于精确测量放射性物质的能量非常关键。计数效率是指测量到的信号与实际辐射源发出的信号之间的比率,通常希望选择具有高计数效率的仪器以提高测量的准确性。时间分辨率是指测量到的信号的时间分辨能力,对于快速或短暂的辐射事件的检测非常重要。  3、灵敏度和探测器类型。不同的仪器可能使用不同类型的探测器,如钠碘闪烁体探测器、硅探测器等。每种类型的探测器都有其特点和适用范围。例如,钠碘闪烁体探测器在中等能量范围内具有较高的灵敏度,适用于广泛的应用领域,而硅探测器在高能量范围内具有更好的性能。因此,根据具体需求选择适合的探测器类型非常重要。  4、可靠性和易用性。可靠性包括仪器的稳定性、耐用性和维护需求等方面。选择具有高可靠性的仪器可以减少故障和维修的频率,提高工作效率。易用性则包括仪器的操作界面、数据处理和报告功能等。选择界面友好、功能齐全的仪器可以简化操作流程,并提高数据处理的效率。  综上所述,选购双波段闪烁仪需要考虑使用目的、性能指标、灵敏度和探测器类型、可靠性和易用性以及预算限制等因素。建议在选购之前充分了解市场上的不同品牌和型号,并选择与应用需求相匹配的仪器,以确保获得良好性能和使用体验。
  • 奥影科普| X射线工业CT的放射安全防护
    X射线工业CT技术已经成为许多工业领域中不可或缺的无损检测工具。然而,由于它涉及到X射线的使用,人们往往对其辐射安全性存在疑虑。本文旨在科普X射线工业CT的放射安全知识,帮助大家了解其安全性,消除不必要的担忧。 X射线和工业CT X射线在工业CT中扮演着至关重要的角色。首先,X射线是一种波长极短的电离辐射,具有穿透质的能力,这使得它能够穿透被检测物体,获取其内部的结构信息。其次,X射线与物质相互作用时,会发生吸收、散射等现象,这些现象与物质的密度、厚度等特性有关。通过检测透射的X射线强度,可以获取物体内部不同位置的材料分布信息。 工业CT,即工业计算机断层成像技术,正是利用X射线的穿透性来实现对物体内部结构的三维成像。它通过从不同角度对物体进行X射线投影,获取多个截面图像,然后利用计算机技术将这些截面图像重建为三维立体图像。这种技术能够清晰、准确、直观地展示被检测物体的内部结构、组成、材质及缺损状况,被誉为当今最佳的无损检测和无损评估技术之一。 图片来源网络 X射线的辐射来源 X射线之所以会有辐射,是因为它是一种电磁波,具有波粒二象性。在X射线产生的过程中,高速运动的电子与靶物质相碰撞并被靶物质原子内层电子所阻止,导致电子突然减速并释放出能量。这些能量以X射线的形式辐射出去,形成了我们所说的X射线辐射。 X射线的辐射特性与其波长和能量有关。由于X射线的波长很短,能量很大,因此它具有很高的穿透能力和电离作用。这使得X射线能够穿透物质,并在穿透过程中与物质发生相互作用,导致物质原子内层电子的跃迁和电离。 X射线对人体具有多层次影响,涉及生物学、医学和物理学等领域。它可直接穿透细胞,损伤DNA,增加患癌和遗传疾病风险;同时,与体内水分子相互作用产生自由基,导致细胞损伤和氧化应激反应。长期接触低剂量X射线,其辐射效应具有累积性,可能逐渐损害细胞并增加疾病风险。因此,对X射线的防护与合理使用至关重要。 X射线放射的防护措施 为避免在使用X射线设备时受到放射伤害,在过往的研究和使用过程中,人们总结出一些常用的防护措施: 1.距离防护:距离是减少辐射暴露的有效方法。在使用X射线设备做检测时,确保与设备保持一定的安全距离,可以显著减少辐射剂量。 2.屏蔽防护:使用屏蔽材料来阻挡X射线辐射是常见的防护措施。常见的屏蔽材料包括铅、铅玻璃、铅橡胶等。在X射线设备周围设置屏蔽墙、屏蔽门等,可以有效减少辐射泄漏。 3.时间防护:尽量缩短暴露在X射线辐射下的时间。在使用X射线设备时,尽量减少不必要的曝光时间,避免重复照射。 4.设施防护:X射线设备的固有防护设施也是重要的防护措施。确保设备的辐射安全性能符合相关标准和规范,如X线管壳、遮光筒和光圈、滤过板、荧屏后铅玻璃、铅屏、铅橡皮围裙、铅手套以及墙壁等。 5.个人防护:对于从事与X射线相关的工作人员,应穿戴适当的防护用品,如铅围裙、铅围脖、铅帽、铅眼镜、铅手套等,以减少辐射对身体的直接接触。 6.安全管理:建立健全的辐射安全管理制度和操作规程,确保X射线设备的安全使用。定期进行辐射安全检测和维护,及时发现和处理潜在的安全隐患。 工业CT的辐射安全措施 1.屏蔽防护:工业CT设备的墙体和所有入口处的防护门应具有足够的屏蔽防护,以确保在射线束处于开启状态时,防护墙和防护门外30cm处的空气比释动能率不超过安全标准。此外,设备内部也应设置屏蔽装置,如铅钢结构的保护形式,以有效屏蔽射线。 2.监控装置:工业CT检测室内应设置监视装置,以便在控制室的操作台观察检测室内人员的活动和CT设备的运行情况。这样,如果发生任何异常情况,操作人员可以迅速作出反应,采取措施减少辐射暴露。 3.警示装置:为了直观地提示工业CT的工作状态,应在设备、检测室的所有入口处、源塔及其必要的地方设置电离辐射警示标志和工作状态指示灯。同时,检测室内及其入口处应设置声光警示装置,以便在开机前发出持续警告,提醒人员注意辐射风险。 4.通风设施:工业CT检测室应配备机械通风设施,确保每小时换气次数达到4-5次,以便及时排除有害气体,如臭氧和氮氧化物等。这有助于减少工作人员吸入有害气体的风险。 5.电气安全设施:对于以加速器为放射源的工业CT设备,应采取一系列电气安全设施,如主动接地联锁、高压屏蔽网、高压放电棒、高压过载保护、独立设备接地和警告说明等,以防止高压对工作人员造成危害。 6.分区管理:检测室内应划分为控制区和监督区。在射线束处于开启状态时,任何人不得进入控制区。控制室以及与检测室入口相连的过道、走廊等区域应划为监督区,无关人员不得擅自进入。这有助于限制人员接触辐射的风险。 国标中对工业CT设备的安全防护要求 在国家标准《工业X射线探伤放射防护要求》(GBZ117—2015)中,对X射线工业CT设备的放射防护做出了明确规定。例如: 4.1.3X射线探伤室墙和入口门的辐射屏蔽应同时满足:a)人员在关注点的周剂量参考控制水平,对职业工作人员不大于100μSv/周,对公众不大于5μSv/周;b)关注点最高周围剂量当量率参考控制水平不大于2.5μSv/h。4.1.4探伤室顶的辐射屏蔽应满足:a)探伤室上方已建、拟建建筑物或探伤室旁邻近建筑物在自辐射源点到探伤室顶内表面边缘所张立体角区域内时,探伤室顶的辐射屏蔽要求同4.1.3;b)对不需要人员到达的探伤室顶,探伤室顶外表面30cm处的剂量率参考控制水平通常可取为100μSv/h。 4.1.5探伤室应设置门-机联锁装置,并保证在门(包括人员门和货物门)关闭后X射线装置才能进行探伤作业。门打开时应立即停止X射线照射,关上门不能自动开始X射线照射。门-机联锁装置的设置应方便探伤室内部的人员在紧急情况下离开探伤室。 此外,《X射线计算机断层摄影装置放射卫生防护标准》 (GBZ 130-2020)、《电离辐射防护与辐射源安全基本标准》 (GB 18871-2002)等相关标准也对使用相关设备的放射防护作出了明确要求和指导。这些国标内容都是为了确保X射线设备在使用过程中的安全性和保护人员免受不必要的辐射照射。在使用X射线设备时,应遵循这些标准的要求,并采取必要的防护措施,以最大程度地减少辐射对人体的影响。同时,对于违反这些标准的行为,也应依法进行处罚和纠正。 尽管X射线工业CT设备在使用时会产生一定的辐射,但只有当辐射剂量达到一定程度时,才可能对人体造成危害。而且,X射线工业CT设备的辐射剂量通常较低,远低于可能对人体造成危害的剂量水平。因此,只要我们遵循正确的操作方法和安全规定,就可以有效地降低辐射风险。当然,为了最大程度地保护人体免受辐射的危害,我们仍然需要加强对辐射安全知识的了解和学习,提高自己的安全意识和防护能力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制