当前位置: 仪器信息网 > 行业主题 > >

动力叠片电池检查机

仪器信息网动力叠片电池检查机专题为您提供2024年最新动力叠片电池检查机价格报价、厂家品牌的相关信息, 包括动力叠片电池检查机参数、型号等,不管是国产,还是进口品牌的动力叠片电池检查机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动力叠片电池检查机相关的耗材配件、试剂标物,还有动力叠片电池检查机相关的最新资讯、资料,以及动力叠片电池检查机相关的解决方案。

动力叠片电池检查机相关的资讯

  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。 上篇中,我们展示了岛津ct在正极材料和负极材料观测方面的应用。本篇我们将展示岛津ct观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池ct的观察 在成品动力锂电池检查中,ct检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津smx-225ct fpd hr plus微焦点x射线ct系统 ct检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察 目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用ct对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的ct图像。 图1 18650动力锂电池ct图像 图2是方形动力锂电池的ct扫描图像,外形尺寸为l150mm´w100mm´h26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池ct图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,ct检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池ct图像 电池内部尺寸测量 在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点ct对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的ct观察 通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。x射线微焦点ct作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2d截面图像和3d图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验ct测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。 图7 动力锂电池充放电实验ct观察 通过以上案例展示,岛津x射线微焦点ct不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。上篇中,上篇中,我们展示了岛津CT在正极材料和负极材料观测方面的应用。本篇我们将展示岛津CT观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池CT的观察在成品动力锂电池检查中,CT检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津SMX-225CT FPD HR Plus微焦点X射线CT系统 CT检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用CT对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的CT图像。 图1 18650动力锂电池CT图像 图2是方形动力锂电池的CT扫描图像,外形尺寸为L150mm´W100mm´H26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池CT图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,CT检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池CT图像 电池内部尺寸测量在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点CT对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。 图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的CT观察通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。X射线微焦点CT作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2D截面图像和3D图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验CT测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。图7 动力锂电池充放电实验CT观察 通过以上案例展示,岛津X射线微焦点CT不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 动力电池安全性能检测实验室场地建设规划条件
    p  近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg"//ppstrongspan style="color: rgb(31, 73, 125) " span style="color: rgb(84, 141, 212) " span style="color: rgb(0, 112, 192) "一、(规划)锂电池实验室设计依据及设备部署:/span/span/span/strong/pp  strong1、依据标准规范:/strong/pp  满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。/pp  实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。/pp  1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。/pp  strong2、(规划)锂电池实验室设备布局:/strong/pp  在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区:/pp  1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。/pp  2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。/pp  3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。/pp  4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。/pp  5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。/pp  strong注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。/strong/pp  span style="color: rgb(0, 112, 192) "strong二、(规划)锂电池实验室测试程序:/strong/span/pp  strong1. 电池材料检测/strong/pp  电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。/pp style="text-align: center "img title="2.png" src="http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg"//pp  工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。/pp  strong2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="3.png" src="http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg"//pp  strong3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。/ppimg title="4.png" src="http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg"//pp  strong4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测/strong/pp  电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg"//pp  strong5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险:/strong/pp  1)着火、燃烧、爆炸/pp  磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。/pp  电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。/pp  2)有毒气体的排放/pp  由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。/pp  3)漏液的污染性/pp  电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。/pp  span style="color: rgb(0, 112, 192) "strong三、(规划)锂电池实验室——通风系统特点:/strong/span/pp  1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。/pp  2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。/pp  3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。/pp  4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。/pp  5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。/pp  6、实验室的通风换气次数取每小时10~20次。/pp  7、支管内风速取6~12m/s,干管内风速取8~14 m/s。/pp  8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。/pp  strongspan style="color: rgb(0, 112, 192) "四、(规划)锂电池实验室——内部装饰/span/strong/pp  strong1、天花/strong/pp  (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。/pp  (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。/pp  (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。/pp  (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。/pp  (5)洁净室采用彩钢板天花板。/pp  strong2、地面/strong/pp  (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。/pp  (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。/pp  (3)在装修过程中,抛光砖的铺设最适合于办公场所。/pp  (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。/pp  (5)洗涤室利用原有地面,节约成本。/pp  (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。/pp  strong3、墙体/strong/pp  (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。/pp  (2)采用其他墙体全部贴500*500抛光砖/pp  (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。/pp  (4)采用玻璃间隔的设计使得开放式实验成为一种可能。/pp  (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。/pp  strong4、门窗/strong/pp  (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。/pp  (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。/pp  span style="color: rgb(0, 112, 192) "strong四、(建议)锂电池实验室注意事项:/strong/span/pp  实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。/pp  strong1.爆炸前预警:/strong由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。/pp  strong2.爆炸过程控制:/strong电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。/pp  strong3.污染物可回收:/strong污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。/pp  strong4.试验室防爆系统:/strong房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。/pp  strong5.每个防爆室配置有防爆灯,视频监控探头。/strong视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。/pp  strong6.充放电区:/strong设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。/pp  strong7.消防要求:/strong在人员操作区和样品区设置有消防烟感探头。/pp  strong8.视频监控要求:/strong共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。/pp  strong9.实验室噪音:/strong实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。/pp  strong10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。/strong设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。/pp  strongspan style="color: rgb(0, 112, 192) "五、(规划)锂电池实验室水电要求:/span/strong/pp  1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /pp  2.独立地线:接地电阻≤4Ω /pp  3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /pp  4.排水:配管连接直径Φ100。/pp  span style="color: rgb(0, 112, 192) "strong六、(设计)锂电池实验室测量系统精度:/strong/span/pp  1.所以控制值的准确度应在以下范围内/pp  2.电压:± 1.0% /pp  3.电流:± 1.0% /pp  4.温度: ± 2℃ /pp  5.时间:± 1.0% /pp  6.尺寸:± 1.0% /pp  7.容量:± 1.0%。/pp  strongspan style="color: rgb(0, 112, 192) "七、锂电池防爆实验室典型设计应用:/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "img title="6.png" src="http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg"//span/strong/pp style="text-align: center "(锂电池实验室效果图)/pp style="text-align: center "img title="7.png" src="http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg"//pp style="text-align: center "(测试系统综合交钥匙工程)/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg"//pp style="text-align: center "(电池整体实验室正面)/pp style="text-align: center "img title="9.png" src="http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg"//pp style="text-align: center "(电池整体实验室背面)/pp  strong作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器)/strong/p
  • 干货 | 锂离子动力电池及其关键材料的发展趋势
    p  进一步提高电池的能量密度是动力电池发展的主题和趋势, 而关键材料是其基础. 本文从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径 负极材料将继续朝低成本、高比能量、高安全性的方向发展, 硅基负极材料将全面替代其他负极材料成为行业共识. 此外, 本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  1 引言/strong/pp  发展新能源汽车被广泛认为是有效应对能源与环境挑战的重要战略举措. 此外, 对我国而言, 发展新能源汽车是我国从“汽车大国”迈向“汽车强国”的必由之路 [1] . 近年来, 新能源汽车产销量呈现井喷式增长, 全球保有量已超过130万辆, 已进入到规模产业化的阶段. 我国也在2015年超过美国成为全球最大的新能源汽车产销国. 以动力电池作为部分或全部动力的电动汽车, 因具有高效节能和非现场排放的显著优势,是当前新能源汽车发展的主攻方向. 为了满足电动汽车跑得更远、跑得更快、更加安全便捷的需求, 进一步提高比能量和比功率、延长使用寿命和缩短充电时间、提升安全性和可靠性以及降低成本是动力电池技术发展的主题和趋势./pp  近日,由中国汽车工程学会公布的《节能与新能源汽车技术路线图》为我国的动力电池技术绘制了发展蓝图. 该路线图提出,到2020年,纯电动汽车动力电池单体比能量达到350Wh/kg,2025年达到400Wh/kg,2030年则要达到500W h/kg 近中期在优化现有体系锂离子动力电池技术满足新能源汽车规模化发展需求的同时, 以开发新型锂离子动力电池为重点, 提升其安全性、一致性和寿命等关键技术, 同步开展新体系动力电池的前瞻性研发 中远期在持续优化提升新型锂离子动力电池的同时, 重点研发新体系动力电池, 显著提升能量密度、大幅降低成本、实现新体系动力电池实用化和规模化应用./pp  由此可见, 在未来相当长的时间内, 锂离子电池仍将是动力电池的主流产品. 锂离子电池具有比能量高、循环寿命长、环境友好、可以兼具良好的能量密度和功率密度等优点, 是目前综合性能最好的动力电池, 已被广泛应用于各类电动汽车中 [2~7] ./pp  本文简要介绍了锂离子动力电池的产业技术发展概况, 并从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 本文还对锂离子动力电池正、负极材料的选择及匹配技术、动力电池安全性、电池制造工艺等关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  2 锂离子动力电池产业技术发展概况/strong/pp  从产业发展情况来看, 目前世界知名的电动汽车动力电池制造商包括日本松下、车辆能源供应公司(AESC)、韩国LG化学和三星SDI等都在积极推进高比能量动力锂离子电池的研发工作. 综合来看, 日本锂电池产业的技术路线是从锰酸锂(LMO)到镍钴锰酸锂三元(NCM)材料. 例如, 松下的动力电池技术路线早期采取锰酸锂, 目前则发展镍钴锰酸锂三元、镍钴铝酸锂(NCA)作为正极材料, 其动力电池主要搭载在特斯拉等车型上. 韩国企业以锰酸锂材料为基础, 如LG化学早期采用锰酸锂作为正极材料, 应用于雪佛兰Volt车型, 近年来三星SDI和LG化学已经全面转向镍钴锰酸锂三元材料(表1) [8] ./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/2d0662ae-8c3d-4524-aa6c-4ba35fb5d971.jpg" title="1.jpg"//pp  目前国内主流动力锂电池厂商, 如比亚迪等仍以磷酸铁锂为主, 磷酸铁锂电池在得到了大规模普及应用的同时, 其能量密度从2007年的90W h/kg提高到目前的140W h/kg. 然而, 由于磷酸铁锂电池能量密度提升空间有限, 随着对动力电池能量密度要求的大幅提升, 国内动力电池厂商技术路线向镍钴锰三元、镍钴铝或其混合材料的转换趋势明显(表2)./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/fd4ccbd7-67aa-49c0-bf98-30020d1d0ed3.jpg" title="2.jpg"//ppstrong  3 锂离子动力电池关键材料的发展趋势/strong/pp  锂离子电池采用高电位可逆存储和释放锂离子的含锂化合物作正极, 低电位可逆嵌入和脱出锂离子的材料作负极, 可传导锂离子的电子绝缘层作为隔膜,锂盐溶于有机溶剂作为电解液, 如图1所示. 正极材料、负极材料、隔膜和电解液构成锂离子电池的4种关键材料./pp  3.1 正极材料/pp  锰酸锂(LMO)的优势是原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越, 但由于存在Jahn-Teller效应及钝化层的形成、Mn的溶解和电解液在高电位下分解等问题, 其高温循环与储存性能差. 通过优化导电剂含量、纯化电解液、控制材料比表面 [11] 以及表面修饰 [12] 改善LMO材料的高温及储存性能是目前研究中较为常见且有效的改性方法./pp  磷酸铁锂(LFP)正极材料有着良好的热稳定性和循环性能, 这得益于结构中的磷酸基聚阴离子对整个材料的框架具有稳定的作用. 同时磷酸铁锂原料成本低、对环境相对友好, 因而使得LFP成为目前电动汽车动力电池中的主流材料 [12~16] . 但由于锂离子在橄榄石结构中的迁移是通过一维通道进行的, LFP材料存在着导电性较差、锂离子扩散系数低等缺点./pp  从材料制备角度来说, LFP的合成反应涉及复杂的多相反应,因此很难保证反应的一致性, 这是由其化学反应热力学上的根本性原因所决定的 [16] . 磷酸铁锂的改进主要集中在表面包覆、离子掺杂和材料纳米化三个方面.合成工艺的优化和生产过程自动化是提高LFP批次稳定性的基本解决方法. 不过, 由于磷酸铁锂材料电压平台较低(约3.4V), 使得磷酸铁锂电池的能量密度偏低,这一缺点限制了其在长续航小型乘用车领域的应用./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/4796d208-e8dd-4b71-a5fc-296ecba8d6c1.jpg" title="3.jpg"//pp  镍钴锰三元(NCM)或多元材料优势在于成本适中、比容量较高, 材料中镍钴锰比例可在一定范围内调整, 并具有不同性能. 目前国外量产应用的动力锂电正极材料也主要集中在镍钴锰酸锂三元或多元材料, 但仍然存在一些亟需解决的问题, 包括电子导电率低、大倍率稳定性差、高电压循环定性差、阳离子混排(尤其是富镍三元)、高低温性能差、安全性能差等 [17] . 另外, 由于三元正极材料安全性能较差, 采用合适的安全机制如陶瓷隔膜材料也已成为行业共识 [18] ./pp  考虑到安全性等问题, 通过改进工艺(如减少电极壳的重量等)来提高电池能量密度的空间有限. 为了进一步提高动力锂离子电池的能量密度, 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径(图2) [19,20]/pp  3.1.1 高电压正极材料/pp  开发可以输出更高电压的正极材料是提高材料能量密度的重要途径之一. 此外, 高电压的另一显著优势是在电池组装成组时, 只需要使用比较少的单体电池串联就能达到额定的输出电压, 可以简化电池组的控制单元. 目前主流的高电压正极材料是尖晶石过渡金属掺杂的LiM x Mn 2?x O 4 (M=Co、Cr、Ni、Fe、Cu/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/3b01137b-1330-47a0-a313-51c9d4f2f033.jpg" title="4.jpg"//pp style="text-align: center "  图 2 比较各种类型的高电压、高容量正极材料的体积能量密度、功率、循环性、成本和热稳定性的雷达图 [20] (网络版彩图)等)/pp  最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差./pp  因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/e33aa180-4c60-4e9a-af6d-315f29391fd1.jpg" title="5.jpg"//pp style="text-align: center "  图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系. /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) LiFSA/DMC混合电解液中的组分结构示意图 (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟 (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性 (d) 全电池在40° C, C/5倍率下的循环性能 [31] (网络版彩图)/span/pp  如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命./pp  此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] ./pp  3.1.2 高容量正极材料/pp  由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] ./pp  镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系./pp  高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] ./pp  解决上述问题的方法有如下3种./pp  (1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%./pp  (2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%./pp  (3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] ./pp  目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高./pp  除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 · (1?z)LiMO 2(0/pp  3.2 负极材料/pp  锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/6e6b8975-e32c-4aee-9021-c6d0edef3ad9.jpg" title="6.jpg"//pp style="text-align: center "  图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] ./pp span style="font-family: 楷体, 楷体_GB2312, SimKai "(a) TEM EDS元素分析成像 (b) TEM 线性元素扫描分析 (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图)/span/pp  负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识./pp  硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] ./pp  研究者尝试了多种方法解决该问题./pp  (1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等./pp  (2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示./pp  (3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性./pp  (4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/c68c0215-a21a-4fa0-9f73-1a0fca0d02f5.jpg" title="7.jpg"//pp style="text-align: center "  图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] ./ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " (a) 蛋黄蛋壳的结构合成示意图及TEM图 (b) 类石榴的结构合成示意图 (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图)/span/pp  应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料./pp  3.3 电解液/pp  高安全性、高环境适应性是锂离子动力电池对电解液的基本要求. 随着电极材料的不断改善和更新, 对与之匹配的电解液的要求也越来越高. 由于开发新型电解液体系难度极大, 碳酸酯类有机溶剂配伍六氟磷酸锂盐的常规电解液体系在未来相当长一段时间内依然是动力电池的主流选择./pp  在此情形下, 针对不同用途的动力电池和不同特性的电极材料, 优化溶剂配比、开发功能电解液添加剂就显得尤为重要.例如, 通过调整溶剂配比含量和添加特殊锂盐可以改善动力电池的高低温性能 加入防过充添加剂、阻燃添加剂可以使电池在过充电、短路、高温、针刺和热冲击等滥用条件下的安全性能得以大大提高 通过提纯溶剂、加入正极成膜添加剂可以在一定程度上满足高电压材料的充放电需求 通过加入SEI膜成膜添加剂调控SEI膜的组成与结构, 可以实现延长电池寿命 [91] . 近年来, 随着Kim等 [92] 第一次成功地将丁二腈(SN)作为电解液添加剂来提高石墨/LiCoO 2 电池的热稳定性, 以丁二腈(SN)和己二腈(ADN) [93] 等为代表的二腈类添加剂因其与正极表面金属原子极强的络合力并能很好地抑制电解液氧化分解和过渡金属溶出的优点, 已经成为学术界和工业界普遍认可的一类高电压添加剂. 而以1,3-丙烷磺酸内酯(PS [94] 和1,3-丙烯磺酸内酯(PES) [95] 等为代表的另一类高电压添加剂,即正极成膜添加剂, 则是通过在正极表面优先发生氧化反应并在正极表面形成一层致密的钝化膜, 从而达到阻止电解液和正极活性物质接触、抑制电解液在高电压下氧化分解的效果./pp  目前, 高低温功能电解液的开发相对成熟, 动力电池的环境适应性问题基本解决, 进一步提高电池的能量密度和安全性是电解液研发的首要问题. 中远期, 锂离子动力电池电解液材料的发展趋势将主要集中在新型溶剂与新型锂盐、离子液体、添加剂等方面, 凝胶电解质与固态电解质也是未来发展的方向. 而以固态电解质为关键特征之一的全固态电池在安全性、寿命、能量密度及系统集成技术等都具有潜在的优异特性, 也是未来动力电池和储能电池领域发展的重要方向 [96] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/58812389-5862-4e1d-a7b7-b4dc7b4fc4d9.jpg" title="8.jpg"//pp style="text-align: center "  图 6 SiMP负极PR-PAA黏结剂的应力释放机理 [88] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 减小提起物体用力的滑轮机理 (b) PR-PAA黏结剂用于缓解因硅颗粒充放电过程中体积变化而产生应力的示意图 (c) 充放电过程中PAA-SiMP电极破碎和生成SEI膜的示意图 (网络版彩图)/span/pp  3.4 隔膜/pp  目前, 商品化锂离子动力电池中使用的隔膜材料主要是微孔的聚烯烃类薄膜, 如聚乙烯(polyethylene,PE)、聚丙烯(polypropylene, PP)的单层或多层复合膜.聚烯烃类隔膜材料由于其制造工艺成熟、化学稳定性高、可加工性强等优点在一段时间内仍然是商品化隔膜材料的主流, 尤其是PE的热闭孔温度对抑制电池中某些副反应的发生及阻止热失控具有重要意义.发展基于聚烯烃(尤其是聚乙烯)隔膜的高性能改性隔膜材料(如无机陶瓷改性隔膜、聚合物改性隔膜等),进一步提高隔膜的安全特性和电化学特性仍将是隔膜材料研发的重点 [18] ./pp  最近, 本课题组 [97] 通过使用耐高温的聚酰亚胺做黏结剂将纳米Al 2 O 3 涂覆在商业PE隔膜单层表面将隔膜的热稳定性提高到了160℃. 本课题组 [98] 还在前期开发的SiO 2 陶瓷隔膜的基础上, 在其表面和孔径间原位聚合包覆上一层耐高温的聚多巴胺保护层, 如图7所示, 使隔膜在230℃高温下处理30min, 不但不收缩并且保持良好的机械性能, 可以有效保障电池安全. l’Abee课题组 [99] 以耐热性的聚醚酰亚胺树脂为基材, 将其用NMP加热溶解后重新浇铸成膜, 得到的聚醚酰亚胺隔膜, 其热稳定性可达到220℃.随着锂离子电池在电动汽车等领域的应用, 建立隔膜构造、隔膜孔径尺度与分布的有效调控方法, 以及引入电化学活性基团等使聚烯烃隔膜多功能化, 将是隔膜发展的重要方向. 针对耐热聚合物隔膜等的研发及产业化工作也将得到大力推进./pp  综上所述,锂离子动力电池关键材料的发展趋势将如图8所示, 正极材料向高电压、高容量的趋势发展 负极则以发展硅碳复合材料为主, 通过发展新型黏结剂和SEI膜调控技术使得硅碳复合负极材料真正走向实际应用 电解液近期内将以发展高电压电解液和高环境适应性电解液材料为主, 中远期则将以固态电解质材料为发展目标 多种材料复合且结构可控的隔膜材料将是锂离子动力电池隔膜的重点发展方向./ppstrong  4 锂离子动力电池的关键技术和基础科学问题/strong/pp  4.1 锂离子动力电池的关键技术/pp  锂离子动力电池是一个复杂的系统, 单一部件、材料或组分的优化未必对电池整体性能的改善有突出效果 [100] . 发展面向电动汽车的高比能量、低成本、长寿命、安全性高的动力电池, 需对锂离子动力电池体系的关键技术予以重点关注, 解决在最终应用过程中影响性能的制约因素./pp  4.1.1 正极、负极材料等的选择及匹配技术/pp  锂离子动力电池的寿命、安全性和成本等基本性能很大程度上取决于其电极材料体系的选择和匹配. 因此如何选择高比能量、长寿命、高安全、低成本的材料体系是当前锂离子动力电池的重要技术./pp  4.1.2 动力电池安全性/pp  安全性是决定动力电池能否装车应用的先决条件/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/a49c15af-1975-4d11-bfe5-e1f5440c1331.jpg" title="9.jpg"//pp style="text-align: center "  .图 7 包覆上耐高温聚多巴胺保护层的SiO 2 陶瓷隔膜 [98] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 隔膜结构及合成示意图 (b) 隔膜形貌表征 (c) 隔膜热收缩性能对比(网络版彩图)/span/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/35ce98d1-12c4-439a-b44f-0aa5561115de.jpg" title="10.jpg"//pp style="text-align: center "  图 8 锂离子动力电池关键材料技术现状及发展趋势总结(网络版彩图)/pp  随着锂离子电池能量密度的逐步提升, 电池安全性问题无疑将更加突出. 导致锂离子电池安全性事故发生的根本原因是热失控, 放热副反应释放大量的热及有机小分子气体, 引起电池内部温度和压力的急剧上升 而温度的急剧上升反过来又会呈指数性加速副反应,产生更大量的热, 使电池进入无法控制的热失控状态,导致电池终发生爆炸或燃烧 [101,102] . 高比能的NCM和NCA三元正极、锰基固熔体正极均较LFP材料的热稳定性差, 使人们在发展高能量密度动力电池的同时不得不更加关注安全问题 [103] . 解决电池安全性问题至少需要从两方面着手: (1) 防止短路和过充, 以降低电池热失控的引发几率 (2) 发展高灵敏性的热控制技术,阻止电池热失控的发生 [104] ./pp  4.1.3 电池制造工艺/pp  随着动力电池应用的不断加深, 单体电池向着大型化、易于成组的方向发展. 在这一过程中, 单体电池的制造技术尤为重要. 提高产品一致性, 从而使电池成组后的安全性、寿命更高, 使其制造成本更低将是未来锂离子电池制造工艺的发展方向. (1) 开发生产设备高效自动化技术, 研发高速连续合浆、涂布、辊切制片、卷绕/叠片等技术, 可以降低生产成本 (2)开展自动测量及闭环控制技术研发, 提高电池生产过程测量技术水平, 实现全过程实时动态质量检测, 实现工序内以及全线质量闭环控制, 保证产品一致性、可靠性 (3) 建立自动化物流技术开发, 实现工序间物料自动转运, 减少人工干预 (4) 开展智能化生产控制技术研发, 综合运用信息控制、通讯、多媒体等技术,开发有效的生产过程自动化控制及制造执行系统, 最大程度地提高生产效率, 降低人工成本./pp  4.2 锂离子动力电池的基础科学问题/pp  4.2.1 研究电极反应过程、反应动力学、界面调控等基础科学问题/pp  目前, 元素掺杂、包覆等方法被广泛应用于材料改性, 但究其原因往往“知其然不知其所以然”, 如LFP可以通过异价锂位掺杂显著提高电子导电性, 但其究竟是晶格掺杂还是通过表面渗透还存在争议. 另外,一般认为LFP较低的电子导电性和离子扩散特性是导致倍率特性不佳的主要原因, 但研究表明, 锂离子在电极/电解液界面的传输也是影响LFP倍率特性的重要因素. 通过改善界面的离子传输特性, 可以获得更好的倍率特性. 因此深入研究电极上的表面电化学反应的机理, 尤其是关于SEI膜的形成、性质以及电极与电解液的相互作用等, 可以明确材料的结构演化机制和性能改善策略, 为材料及电池性能的改善提供理论指导 [6] ./pp  4.2.2 发展电极表界面的原位表征方法/pp  锂离子电池电极材料的性能主要取决于其组成及结构. 通过原位表征技术系统研究材料的组成-结构-性能间构效关系对深入了解电极材料的反应机理,优化材料组成与结构以提高其性能及指导高性能新材料开发与应用均有十分重要意义 [105,106] . 例如, 原位Raman光谱可以通过晶格(如金属-氧配位结构)振动实时检测材料的结构变化, 为找寻材料结构劣化原因提供帮助 [107~109] . 同步辐射技术不仅可通过研究电极材料中原子周围化学环境, 获取电极材料中组成元素的氧化态、局域结构、近邻配位原子等信息, 还可原位获得电池充放电过程电极材料的结构演化、过渡金属离子氧化态以及局域结构变化等信息, 精确揭示电池反应机理 [110,111] 固体核磁共振谱(NMR)则可提供固态材料的局域结构信息, 得到离子扩散相关的动力学信息 [112,113] ./ppstrong  5 结论/strong/pp  锂离子动力电池是目前最具实用价值的动力电池, 近几年在产业化方面发展迅速, 有力地支撑了电动汽车产业的发展. 然而, 锂离子动力电池仍然存在许多有待解决的应用问题, 特别是续航能力、安全性、环境适应性和成本, 需要在动力电池基础材料、电池制造和系统技术全产业链上同时进行研究. 可以预期相关技术将在近年内取得长足进步并实现规模应用.随着电动汽车的快速发展, 锂离子动力电池将迎来爆发增长的黄金期./pp style="text-align: right "  strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  作者:刘波(厦门大学) 张鹏 赵金保/span/strong/pp  /ppbr//p
  • ACCSI2019|新材料之新能源动力电池检测技术论坛召开
    p  strong仪器信息网讯/strong 2019年4月18日-19日,中国科学仪器行业的“达沃斯论坛”——2019第十三届中国科学仪器发展年会(ACCSI2019)在青岛银沙滩温德姆至尊酒店圆满召开,ACCSI2019借助十二年的品牌积淀,发挥青岛的区位优势,吸引“政、产、学、研、用”等领域1200余位高端人士参会。br//pp style="text-align: center"img title="大会会场_副本.jpg" alt="大会会场_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/c6858bda-b2d6-4bf2-b31d-fee803166a6c.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "年会现场盛况/span/pp  继首日大会报告、I100峰会、仪器及检测风云榜颁奖盛典等精彩日程之后,大会第二日,13个分主题分论坛悉数上演。作为重要分论坛之一,由仪器信息网与北京材料分析测试服务联盟共同主办的“新材料之新能源动力电池检测技术与发展论坛”(以下简称“新材料论坛”)于19日上午在柏林Ⅱ厅如期进行,锂电、新能源汽车动力电池检测领域相关职能单位、国家质检中心、科研院所、电池生产商专家等齐聚一堂,共同探讨锂电检测新技术,为锂电高性能与安全保驾护航。/pp  “新材料论坛” 邀请6位来自锂电检测领域相关职能单位、检测机构、知名仪器厂商等专家代表为大家分享精彩报告,并对锂电检测技术、潜在合作进行了现场交流。/pp style="text-align: center"img title="分会场_副本.jpg" alt="分会场_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/be0da12a-6274-47d2-8ed2-20ae57ce7a5d.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "“新材料论坛”现场/span/pp style="text-align: center"img title="关璐_副本.jpg" alt="关璐_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/25291503-8d17-47be-b86d-749f08d7c800.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "北京材料分析测试服务联盟秘书长关璐主持会议/span/pp style="text-align: center"img title="唐玲_副本.jpg" alt="唐玲_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/1c4d1f11-787b-4057-b7ca-e936726e9e1e.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:国联汽车动力电池研究院有限责任公司检测试验部经理 唐玲/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:浅谈国家动力电池创新中心在锂电材料及动力电池检测技术领域的探索/span/pp  国联汽车动力电池研究院有限责任公司前身为北京有色金属研究总院动力电池研究中心,拥有30余年动力电池及关键材料研发历史,2000年开始正式开展锂离子动力电池研发,累计承担了数十项国家级科技计划项目的研究工作。国家动力电池创新中心检测试验中心,从整车设计开发角度考虑建立设计验证及测试验证试验条件 具备开展动力电池关键材料、动力电池、电池系统及BMS等关键部件的法规性检测、设计验证及研究分析的能力。/pp  唐玲主要介绍了国家动力电池创新中心检测试验中心针对电池材料及电池检测技术的相关研究。材料分析技术分别详细介绍了电池-材料-性能构效关系评价技术研究、关键材料物相结构变化过程原位检测技术、材料表面微区化学成分分析、材料和电极表面微区分析、SEI膜定性与半定量分析技术开发、材料安全性及电化学分析技术研究等。讲解的其他的检测技术还包括动力电池设计验证及测试验证技术、电池热特性测试分析能力、多种复合滥用条件下电池安全性定评价技术、锂电材料及电池安全风险评估技术等。/pp style="text-align: center"img title="周健_副本.jpg" alt="周健_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/41e1ee7b-bb99-4087-8451-443391379b2a.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:纳凡检测技术(上海)有限公司创始人 周健/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:锂电技术高速迭代之下关于锂电检测市场的思考/span/pp  纳凡检测技术(上海)有限公司是一家年轻的初创公司和商业实验室,旨在运用科研方法与设备开展检测技术的研发与服务。周健将他们的服务称作“用科研的人才,解决工业的问题”。 锂电很多中小型客户,哪怕是每年花费千万美金在电芯采购上,也没有足够的能力去全面的评估用在自己产品上锂电池的安全性。所以很多时候,锂电池是黑盒子。在客户如此需求推动下,纳凡检测慢慢进入了锂电池失效分析和可靠性研究领域。/pp  周健表示,新的锂电池技术高速迭代并被用于商用锂电池制造,而大量研发测试数据仅被少数核心电芯厂商掌握,并不向公众提供,导致B端用户对电池安全性无法做出可靠的判断。由于缺乏核心数据,第三方检测公司很难有效开展锂电池失效分析。这使得锂电失效分析市场在迎来机遇的同时,也面临各项挑战,包括新材料层出不穷,逆推难度大 添加剂犹如炼金术,副反应庞杂 电池失效路径多,分析设备贵等。接着,分别讲解了CT无损分析、色/质谱分析、电芯拆解分析等失效分析技术 。最后,依次介绍了商用18650电池的异常自放电根源研究、满充拆解排除析锂短路、隔膜离子火焰质谱测量负极铜溶出量等具体解析案例。/pp style="text-align: center"img title="刘晓晨_副本.jpg" alt="刘晓晨_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/e3c1338b-2665-44ca-8995-7a3bd61f888a.jpg"//pp style="text-align: center"span style="color: rgb(0, 176, 240) "报告人:北京市新能源汽车发展促进中心项目主管 刘晓晨/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:北京市动力电池发展现状及下一步工作重点/span/pp  北京市新能源汽车发展促进中心为北京市科学技术委员会直属事业单位,主要职责是承担协调促进本市新能源汽车发展的事务性工作 开展新能源汽车领域科技项目管理的事务性工作。刘晓晨首先介绍了北京市动力电池发展现状。现状特征包括动力电池研发团队、产业链条较完整、产业集聚、产能及技术开发水平国内领先、积极布局前沿动力电池技术等。接着,刘晓晨分享了北京市动力电池下一步重点工作,包括推进高必能量动力电池产业化 面向冬奥会应用需求,低温全气候电池的工程化技术与产业化 持续开展前沿动力电池技术攻关 固态锂电池的工程化技术等。最后,介绍了北京高精尖产业政策,其中,推广应用方面包括扩大新能源汽车应用规模推进在北京2022年冬奥会和冬残会中的应用。同时,对近两年北京市新能源汽车政策进行了汇总介绍。/pp style="text-align: center"img title="郝正明_副本.jpg" alt="郝正明_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/64b8254e-4932-4076-b548-68cd45b777fa.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:岛津公司分析测试仪器市场部技术专家 郝正明/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:锂离子电池检测中的原位分析手段解析/span/pp  对于传统电池分析手段,电池体系就像一个黑盒子,并不能实时进行测试,也不可以在电池工作中进行分析。郝正明则主要介绍了一类可以对锂电实时进行测试的非规检测手段,即原位分析手段。结合岛津仪器及解决方案新技术,详细介绍了多种锂电原位分析技术。XRD原位分析技术主要结合XRD-6100与XRD-7000,相关技术包括变温/不同气氛下的原位物相分析、充放电过程中对正负极活性物质进行原位物相分析等。SPM原位分析技术方面,通过附加环境控制舱可以提供特殊气体、真空环境 调节环境温度湿度 向样品吹气 光照样品表面的观察等。如原位加热隔膜样品进行观察, 随着温度升高, 可以观察到纤维逐渐膨胀, 将孔洞填满等。XPS原位分析技术主要介绍了惰性气体传输器-准原位分析方法、原位充放电样品台系统研究全固态锂离子电池、原位样品条改造-离子液体电解液研究等案例。/pp style="text-align: center"img title="须颖_副本.jpg" alt="须颖_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/74c00b7f-8d1b-44a4-b82a-54512d59732b.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:天津三英精密仪器股份有限公司董事长 须颖/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:中国X射线显微成像技术发展展望及在锂电行业应用/span/pp  相较光镜、电镜、原子力显微镜等传统成像分析手段,X涉嫌三维显微成像作为新一代显微成像技术,具有三维、透视、全息等优势。须颖首先讲解了X射线成像技术的发展历程,相关成像设备类型、CT技术分辨率发展进程、CT成像原理等。市场方面,DR设备(2D)主要国内品牌包括正业科技和卓茂科技等,主要国外品牌包括YXLON和DAGE等。CT设备(3D)主要国内品牌包括三英精密和真测科技等,主要国外品牌包括Carl Zeiss和GE 等。/pp  锂电池研究中CT检测的广泛应用方面,须颖分别从电极材料、极片、卷绕/叠片、入壳/装配/焊接、化成、PACK、循环样品、安全实验、充放电实验等锂电产业链重要环节,结合CT检测实际案例依次对CT检测技术进行介绍。最后简单介绍了三英精密的显微CT、工业CT、专用型CT、多场耦合CT等X射线显微成像产品系列。/pp style="text-align: center"img title="邵丹_副本.jpg" alt="邵丹_副本.jpg" src="https://img1.17img.cn/17img/images/201904/uepic/886766a4-31e6-4946-b921-ce432018aff1.jpg"//pp style="text-align: center"span style="color: rgb(0, 176, 240) "报告人:广州能源检测研究院主任工程师 邵丹/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:动力电池关键材料检测标准及检测技术/span/pp  国家化学储能材料及产品质量监督检验中心(广东),华南地区唯一一家化学储能材料以及产品类国检中心。服务内容包括动力电池、锂离子电池、铅酸蓄电池及其它电池产品检测,电池材料检测,相变材料及自热产品等相关产品的检测等。/pp  报告中,邵丹首先从动力电池关键材料维度,分别介绍了国内外相关检测标准情况。相较国外,我国相关标准更加丰富。据不完全统计,正极材料相关标准31项,负极材料相关3项,电解液相关12项,隔膜材料相关7项,其他电池材料相7项等。接着,邵丹主要介绍了动力电池关键材料双向检测技术。“至上而下”检测方面,主要是从材料理化性能检测、匹配检测、极片理化性能检测、电池性能检测等角度实现关键材料性能评价及整体解决方案。“至下而上”检测,则是从电池电性能检测、电池拆解、材料性能检测、故障定位等角度实现精准定位储能产品中材料问题。/p
  • 江西理工大学研制出新式可折叠锂电池 轻薄如纸
    据新华社南昌4月8日电 智能手机近年来获得了长足的发展,而电池技术发展却相对缓慢。近日,江西理工大学研制出一款新式的可折叠锂电池,轻薄如纸、可任意弯曲,性能优于目前的普通锂离子电池。  江西理工大学&ldquo 江西省动力电池及材料重点实验室&rdquo 研发团队主要成员胡经纬表示,普通电池的电极材料附着在金属片上,即便再薄,电极材料也容易脱落,而用一种碳纳米管形成的宏观膜替代传统的金属片,便解决了这个问题。同等条件下,这款电池的比容量、能量密度均高于传统商用锂离子电池。该电池在经历5次持续折叠情况下仍能保持正常工作。  胡经纬说:&ldquo 这款电池主要是顺应了可穿戴设备的发展,可穿戴设备要受到一定的弯曲甚至折叠,要求它的电池也具备弯曲和折叠性能。我们设计的这款电池,最大限度地满足了可穿戴设备对电池柔性的需求。此外,由于轻质碳纳米管膜替代了金属箔材,该电池的能量密度有明显提高,因而可改善可穿戴设备续航能力不足的缺点。&rdquo
  • 和晟发布九工位电池片剥离试验机新品
    上海和晟九工位电池片拉伸测试仪测试过程中采用全数字化力量、位移、速度三闭环控制,采用日本松下交流伺服马达及控制驱动系统,配合美国铨力高精度传感器加台湾TBI高精密滚珠丝杆传动,本试验机可安装九个力量传感器,配合我公司自主研发专用软件,可达到九个传感器同时使用,并且测试数据可同时显示在电脑软件上,操作无误差,方便好用。本试验机采用调速精度高、性能稳定的日本松下数字式交流伺服马达及驱动控制系统;特别设计的同步齿型带减速系统和滚珠丝杠副带动试验机的移动横梁运动;以Windows为操作平台的基于数据库技术的控制与数据处理软件采用了虚拟仪器技术代替传统的数码管、示波器,实现了试验力、试验力峰值、横梁位移、试样变形及试验曲线的屏幕显示,所有的试验操作均可以在计算机屏幕上以鼠标输入的方式完成,具有良好的人机界面,操作方便;插装在PC机内的双通道全数字程控放大器实现了真正意义上的物理调零、增益调整及试验力测量的自动换档、调零和标定,无任何模拟调节环节,控制电路高度集成化,完全取消了电位器等机械调整器件,结构简单,性能可靠。上述各项技术的综合应用,保证了该机可以实现试验力、试样变形和横梁位移等参量的闭环控制,可实现恒力、恒位移、恒应变、等速度载荷循环、等速度变形循环等试验。用户可以使用PC机专家系统自主设置恒应力、恒应变、恒位移等控制模式,各种控制模式之间可以平滑切换。程控模式满足国家标准GB/T6497-1986《地面用太阳能标准一般规定》、GB/T6495.2-1996、GB/T6495.5-1996为试验数据的再分析、数据库管理、网络传输等后处理提供了方便。 由于该试验机实现了试验过程的自动控制和试验结果的信息化处理,可使操作人员方便、自主地设置试验程控步骤。在进行拉伸试验时,可以使试验者清晰地观察低碳钢、铸铁等整个试验过程。通过在不同曲线段的反复加载,由力—位移(变形)曲线,可以直观的验证虎克定律和观察冷作硬化现象。对无明显物理屈服现象的材料,可以选用滞后环法或逐步逼近法测定规定非比例延伸强度。 本试验机专业用于太阳能行业电池片180度剥离强度试验,卧式结构省空间,操作方便;九工位同时拉伸可减少人工操作及节约测试时间。本机采用电脑控制,专业测试程序用于数据分析处理,结合高分辨率力量采集传感器及高精数据处理芯片,呈现于客户直观的的性能曲线及客户要求的处理后数据值使更直观准确了解产品性能,从而提高产品质量。 二、技术规格:1、 试验力50kg内任选;2、试验机准确度等级:0.5级;3、试验力测量范围:0.2%—100FS;4、试验力示值相对误差:示值的±1%以内;5、试验力分辨力:试验力的1/±300000(全程分辨力不变);6、位移示值相对误差:示值的±0.5%以内;7、位移分辨力:0.001mm;8、力控速率调节范围:0.1-5%FS/S;9、力控速率相对误差:设定值的±1%以内;10、横梁速度调节范围:0.05—1000mm/min;11、横梁速度相对误差:设定值1%以内;12、恒力、恒变形、恒位移控制范围:0.5%--100FS;13、恒力、恒变形、恒位移控制精度:设定值10%FS时,为设定值的±1%以内;设定值≥10%FS时,为设定值的±0.1%以内;14、拉伸行程:380mm;15、 有效试验宽度:300mm;16、主机外型尺寸(长×宽×高):约1000*550*950mm;17、电源:220V 50Hz 400W;18、主机重量:约140kg19、 拉力角度应为180±2度;20、 要求定速度、定位移、定荷重等控制方式可选;21、 根据负荷大小自动切换到适当的量程,以确保测量数据的准确度;22、 要求自主拆卸调整传感器及夹具部件,可做五工位测试;23、 要求控制程序灵敏度高,满足高频次使用连贯性;24、 配置专用电脑;25、 测试软件要求中英文兼备;26、机台配备标准铝合金机架。 三、软件测试功能简介A.载荷位移曲线;载荷、时间曲线;位移、时间曲线;应力、应变曲线。B.根据各国对试片的要求编辑相应的测试标准,填写试品资料,编辑测试方法,并可供日后测试选择。C.自动储存本次试验结果,并可将其编辑为报表打印输出。有公式编辑功能,可对多个已测试的曲线进行对比。D.可设定小数点位数,各物理量单位及密码保护等。E.自动清零:计算机接到试验开始指令,测量系统便自动清零;F.自动回归:自动识别试验力,活动横梁自动高速返回初始位置;G.自动存档:试验资料和试验条件自动存盘,杜绝因突然断电忘记存盘引起的资料丢失;H.测试过程:试验过程及测量、显示、分析等均由微机完成;I.显示方式:数据和曲线随试验过程动态显示;J.结构再现:试验结果可任意存取,可对数据曲线再分析;K.曲线遍历:试验完成后,可用鼠标找出试验曲线逐点的力值和变形数据,对求取各种材料的试验数据方便实用;L.结果对比:多个试验特性曲线可用不同颜色迭加、再现、放大、呈现一组试样的分析比较;M.曲线选择:可根据需要选择应力应变、力时间、强度时间等曲线进行显示和打印;N.批量试验:对参数相同的试验一次设定后可顺次完成一批试样的试验;O.试验报告:标准格式;P.限位保护:具有程控和机械两级保护;Q.过载保护:当负载超过额定的10%时自动停机;紧急停机:设有急停开关,用于紧急状态切断整机电源;自动诊断:系统具有自动诊断功能,定时对测量系统,驱动系统进行过压、过流、超温等到检查,出现异常情况即刻停机;R.试验主机和微机独立操作。创新点:本试验机可安装九个力量传感器,配合我公司自主研发专用软件,可达到九个传感器同时使用,并且测试数据可同时显示在电脑软件上,操作无误差,方便好用。九工位电池片剥离试验机
  • 蔡司《新能源汽车电池质量保证白皮书》:工业检测助推动力电池高质量发展
    新能源汽车行业竞争迈入新阶段,市场呈现多元化趋势,产品不断升级与创新。在此竞争环境下,动力电池企业成为关键角色,致力于提高电池性能、安全性和降低成本,以满足市场需求。加强质量管控成为动力电池企业提升竞争力和行业可持续发展的关键举措。近日,蔡司正式发布《新能源汽车电池质量保证白皮书》,该报告通过趋势解读、技术解析和未来挑战等方面,解析了动力电池企业如何运用质量控制手段来实现技术创新和降本增效,并从"更高性能、更高安全、更优成本"三个角度出发,阐述了工业检测在动力电池研发和生产中扮演的重要角色。白皮书首先从电芯入手,分析多种检测维度,如何通过探索电池材料和结构,提高电池性能,推动新能源汽车电池基础研究取得更大突破。一、对新型电芯的探索,永无止境动力电池产品的高安全性、高能量密度、高倍率性能、经久耐用和更低成本,是决定其是否能取得市场成功的关键因素。竞争打法的全面升级,意味着在"性能"、"安全性"、"成本"这三 个方面的全面升级。电池企业都想在这些关键因素上表现优异,这就需要超过同行的质量控制手段。首先就要在研发环节,充分了解和控制电池相关材料的特性,选择良好的材料。材料从根本上决定着电池性能。通过改进材料提高电池性能、优化电池老化机制、应用新型材料、改变电芯结构是电芯研发的主要方向。例如,材料体系方面,采用新型材料体系(高镍正极、硅基负极、锂金属负极、固态电解质等),提高单体能量密度;或者研制出磷酸锰铁锂,探索钠离子电池的商业化应用,降低成本;或者加快固态电池的研发进程,使电池性能更高,更耐久。电芯形状方面,方形电池,尤其是LFP短刀兼顾性能、集成与制造,成为主流企业的优选方案之一;大圆柱电池也是热门方向,特斯拉和宝马均已提出具体的实施规划。快充技术方面,多家主机厂开始导入800V高电压平台,并联合电池企业推出2C~4C快充方案。材料的改性、新型材料的研制、电芯结构的设计,往往多策并举,促成电池的升级和创新。诸如,从2020年到现在,由特斯拉开局,国内电池企业共同推进的大圆柱电池拥有极其独特的杀手锏:1. 由于采用钢壳的圆柱外壳以及定向泄压技术,电芯本身的束缚力比较均匀,有效抑制膨胀,为电池包的整体安全提供第一层的有力保障。这也使大圆柱电池在材料上的探索更加大胆,当下高比能路线下的主流用材,高镍三元正极材料、硅基负极材料在大圆柱电池上的使用更为广泛。2. 全极耳设计,电池直接从正极/负极上的集流体引出电流,成倍增大电流传导面积,缩短电流传导距离,从而大幅降低电池内阻,提高充放电峰值功率。对于更低成本的锰铁锂电池体系,宁德时代的M3P电池将在第三季度搭载于特斯拉国产Model 3改款车型。网络不断有消息指出M3P电池就是LFMP磷酸锰铁锂电池。宁德时代则在调研中表示,准确说来,M3P不是磷酸锰铁锂,还包含其他金属元素——该公司将其称为"磷酸盐体系的三元"。容百科技在8月10日的全球化战略发布会上指出,其LFMP率先实现了73产品(锰铁比)大批量供货,并以此为基推进LFMP与三元的复合产品M6P以及下一代工艺产品。他们认为,到2030年,广义的三元材料和磷酸盐仍旧占据主体,三元里面的高镍材料、磷酸盐里面锰铁锂以及钠电都会迎来非常高速的增长。另一方面,行业也需要支持更高倍率的动力电池。这就需要电池企业在加强电池热管理的同时,还要从电池材料(尤其是负极材料的选择和微观结构的设计)、电极设计、电池形状等出发,降低内阻、加强散热,提高电池的倍率性能。目前已有多个企业推出快充电池方案。欣旺达在今年上海车展着重推出其闪充电池,在核心材料上部署了专有技术,自主设计闪充硅材料技术、高安全中镍正极和新型硅基体系电解液技术等关键技术,支持电动汽车10分钟可从20%充至80%SOC,让充电像加油一样快。二、工欲善其事,必先利其器在电池企业为大众剖析"高性能"、"高安全"、"低成本"电池新品之时,"自研"、"微观"、"纳米级包覆"、"掺杂"、"原位固态化技术"等关键词频频闪现,为主流电池材料进行改性之外,加速LFMP、固态电池等新类型电池的应用。以近年火热的LMFP为例,该类型电池原存在导电性能、倍率性能以及循环性能较差等问题,但随着碳包覆、纳米化、离子掺杂等改性技术的进步,其电化学性能得以改善。甚至,目前企业正在研究将LFMP或NCM组合使用,兼具低成本、高安全性及高能量密度的优势。蔚来使用的150kW半固态电池,由卫蓝新能源提供,采用了原位固态化技术。该技术是通过注液保持良好的电解质与电极材料的原子级接触,之后将液体电解质部分或全部转换为固体电解质,这样的好处是能够做到原子尺度的结合,而不是宏观的把电极材料和固态电解质压在一起。凡此种种,不一而足,充分展现出电池基础研发人的耐心值和创造力,犹如炉火纯青的雕刻家,对微观结构有着清晰的掌握,将每一个微小的纹路都打磨得精雕细琢。正所谓"工欲善其事,必先利其器",更优秀的动力电池产品离不开更高效有力的检测工具。材料的微观结构表征是电芯研发的关键,目前多种材料表征方法被推出并得到广泛应用。在研发环节,工程师利用光学显微镜、X 射线显微镜、3D 检测来观察电极材料,检测电极缺陷并分析电池失效原理。还可观察材料的粒径尺寸、各种成分的配比及分布情况等,加深研发人员的认识和理解。这些都可以在提高研发效率的同时更好的改善电池性能,进而为材料、工艺的改进提供依据。三、电池材料的二维显微成像和表征光学显微镜利用光学原理对物体进行放大,最早成型于 17 世纪。光学显微镜的分辨率与可见光的波长(390~780nm)有关,其最大放大倍数可达 1000 多倍,实现微米级别分辨率,在生命科学、材料科学等领域被广泛应用。在动力电池研发中,光学显微镜可用来观察电极结构,检测电极缺陷并分析电池失效原理、观察锂枝晶的生长行为等,进而为材料、工艺的改进提供依据。不过,由于受制于可见光的波长,光学显微镜的放大倍数有限,无法实现对更微观结构的观测,而电子显微镜则很好的解决了这个问题。电子显微镜最早由英国物理学家卢卡斯于 1931 年发明,利用电子束代替光束,最大放大倍数可达 300 万倍,实现纳米级别分辨率。由于电子显微镜具备更高的分辨率,在电池研发中,搭配不同的探头,可以得到多维度的信息(成分、表征信息,粒度尺寸,配料占比等),实现对正负极材料、导电剂、粘结剂及隔膜等更微观结构的检测(观察材料的形貌、分布状态、粒径大小、存在的缺陷等)。常用的观察样品表面形貌的电子显微镜是扫描电子显微镜(SEM)。由于具备高分辨率,SEM 能清楚地反映和记录材料的表面形貌特征,因此成为表征材料形貌最为便捷的手段之一。配合氩离子抛光技术(又称 CP 截面抛光技术),SEM可以完成对样品内部结构微观特征的观察和分析。这也是目前最有效的制备锂电池材料极片解剖截面的制样方式。SEM还可以用来观测电池颗粒循环老化的情况。目前,经分析发现,颗粒碎裂表征成为学者改善正极材料性能的切入点。四、电池检测:从 2D 走向 3D传统的检测手段通常局限在 2D 平面,但 2D 图像会有局部偏差(比如,制备样品时刚好切到没有问题的部位),3D 图像可以更好的表征材料结构,使检测结果更为直观,有助于加深研发人员的认识和理解,提高研发效率的同时更好的改善电池性能。在不对电池进行拆解的情况下,通过 X 射线显微镜可以对电池内部特定区域进行高分辨率成像,实现样品的 3D 无损成像,分辨电极颗粒与孔隙、隔膜与空气等,可以大大简化流程,节省时间。高分辨率显微 CT 可以实现电池内部结构的三维可视化,解决因拆卸等原因造成的内部结构二次损伤等难题,清晰地展示出电池内部的真实情况。在此,X 射线显微镜技术得到应用。当前,CT 成像的精度进入亚微米阶段,可以对电池材料及孔隙进行分析检测。在 X 射线显微镜的基础上,蔡司推出了可以实现随时间(4D)变化的微观结构演化表征方法。利用空间分辨率可达 50nm、体素尺寸低至 16nm 的真正的纳米级三维 X 射线成像,可以获得更多信息,识别更微小的细节特征。目前,X 射线显微镜可达到最高 50nm 级别的分辨率,当需要研究更高分辨率的细节时,则需要用到新一代聚焦离子束(FIB)技术。FIB 利用高强度聚焦离子束(通常为镓离子)对材料进行纳米加工,配合扫描电镜(SEM),可同时实现对样品的加工和观察。目前,蔡司和赛默飞都推出了聚焦离子束显微镜。蔡司双束电镜 Crossbeam 系列结合了高分辨率场发射扫描电镜 (FESEM) 的出色成像和分析性能和 FIB 的优异加工能力,无论是用于多用户实验平台还是科研或工业实验室,利用 Crossbeam 系列模块化的平台设计理念,都可基于自身需求随时升级仪器系统(例如使用Laser+FIB 进行大规模材料加工)。在加工、成像或是实现三维重构分析时,Crossbeam 系列将大大提升 FIB 的应用效率。当需要分析各种成分的分布,需要模拟仿真,需要看到内部结构时,FIB 可以依托低电压成像,能扫描更多 3D 细节,可以做多种测试,令研发工作成效更高。五、电池的原位测试和多技术关联应用无论是光学显微镜,电子显微镜,还是 X 射线显微镜和工业 CT,不同的测试手段各具优势,适用于不同的场景。但一种检测手段常常无法完全表征材料属性。所以,行业将不同的测试设备协同应用,实现多手段的关联,则可以在测试中得到多维度的信息,使结果更为直观。早期,多手段关联的出发点,是以不同分辨率来观察被测对象的需求。例如,CT和X 射线显微镜可以无损探测,但分辨率相对较低,因此,初看材料时,就可以利用二者先观看形貌特征。扫描电镜具有更高分辨率,例如蔡司以扫描电镜为基础,推出 FIB-SEM 产品,可以实现高分辨率(3nm)的 3D 成像。如此,利用 CT→X 射线显微镜→ FIB-SEM,选定区域并逐级放大,就可以得到更为全面和精确的信息,同时可以实现快速定位,使检测更为高效。电子显微镜上设有多个拓展口,来添加不同的探头。但在电池研发中,配备的 SE、BSE 和 EDX 探测器,不足以完全表征材料的属性。尤其在样品尺寸大的情况下,不容易聚焦到同一特定颗粒。拉曼探头则可以帮助分析分子结构与组成,界面结构等。但一般情况下,拉曼电子显微镜是独立分开的。因此,如果能对同一被测对象使用BSE、EDS 和拉曼,拍摄三重图像的重叠信息,就能实现原位多角度分析。显微镜厂商在做如上努力。如德国 WITec、捷克 Tescan、蔡司等推出了 RISE 系统,可以实现拉曼成像与 SEM 等技术的联合应用,通过电池表面形貌(SEM)、元素分布(EDS)与电极材料分子组成信息(Raman 图谱)结合,实现材料的原位多角度分析,了解电池状态以及不同位置材料的形貌、元素和分子组成,进而评价电池性能。材料测试通常伴随制样过程,由于 FIB-SEM 需要对同一个样品进行多次制样测试来构建 3D 图像,采用常规制样方法需要消耗很长时间。为解决这个问题,蔡司提出了一组非常巧妙的联合方案。首先,可以用 Versa 大视野范围、无损情况下得到 3D 成像,发现可疑位置。然后,为了对可疑位置进行更深入的分析,需要剖切到指定位置。使用 Fs-laser 飞秒激光可以实现样品高速率切割(107μm3/sec),进行快速粗制样,迅速完成样品深处的分析,同时不影响 FIB-SEM的高性能和高分辨率。最后,再用 FIB 精细抛光,并拍照分析。通过 Versa、FIB-SEM 和 Fs-laser 的联合应用,实现对检测对象的快速定位和制样,使检测更为简单快捷,帮助研发人员提高工作效率。
  • 岛津CT助力锂离子动力电池检测(上)
    ■ 自2018年下半年以来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,严重影响了消费者对新能源汽车的使用信心。前不久,工信部就新能源汽车动力锂电池产品质量安全问题约谈了多家新能源公司,要求对已销售的产品开展自查自纠,针对产品质量问题提出对策,并对动力电池的研发、生产、检测和售后等各环节进行系统梳理和整顿优化。监管机构对于新能源行业的安全提出了更高要求,提升汽车动力锂电池安全迫在眉睫。 ■ 岛津X射线微焦点CT对汽车动力电池从正负极材料到装配好的电池都可以实行无损检测,观察正、负极材料内部结构,确认颗粒尺寸分布,助推研发和品质管控,也可以实现在充放电过程中进行原位测试,便于实行工艺优化和控制。 锂离子电池电极3D像 本文展示岛津CT在正极材料和负极材料观测和尺寸测量方面的应用,是为上篇。下篇将展示岛津CT在成品电池观测方面的应用,以及充放电时的原位观测。 |正负极材料CT观察| 汽车动力锂电池原材料现有主材主要有四种:正极材料、负极材料、隔离膜和电解液。X射线微焦点CT对汽车动力锂电池原材料分析中,能够清晰观察正、负极材料内部结构及测量尺寸,轻松确认组成颗粒的大小、颗粒大小的变化和厚度等。而正、负极材料中的颗粒尺寸大小、物相是否均一、粉体粒径的大小及分布是否均匀决定了动力锂电池的性能,因此用X射线微焦点CT观察正、负极材料变得尤为重要。 岛津inspeXio SMX-100CT |正极材料观察及分析| 通过扫描一块长宽约为2mm的正方形的正极材料,得到MPR(多平面重建)图像(图1),可以观察出正极材料具有颗粒状结构。 图1 正极MPR图像 再通过软件对其尺寸测量,如图2所示,表明组成颗粒大小都约为20μm,再通过3D图像(图3)显示可以确认正极具有分层的结构。 图2 正极尺寸测量图像 图3 正极3D图像 |负极材料观察及分析| 同样通过扫描一块长宽约为2mm的正方形的负极材料,得到MPR(多平面重建)图像(图4),可以观察出负极材料具有鱼鳞片状结构。 图4 负极MPR图像 再通过软件对其尺寸测量,如图5所示,最大的石墨片长度约为100μm。图6所示是负极的CT图像3D显示效果。在该图中,石墨被涂成蓝色,以区别于黄色的铜箔。通过这种方式,可以通过3D显示效果来三维观察负极。 图5 负极尺寸测量图像 图6 负极3D图像 岛津微焦点X射线CT能够无损观察物品的内部结构。因此,可用于分析有缺陷的电池、比较合格和不合格的电池、比较充电或放电前后的电池状态、评估循环测试期间的电池内部结构的变化等。在此示例中,使用了inspeXio SMX-100CT微焦点X射线CT系统观察可充电锂离子电池中的电极,并进行颗粒尺寸测量,进而为工艺优化及质量控制提供科学可靠的指导。 撰稿人:黄军飞
  • “百亿级”动力电池回收市场现状与前景
    p  /pp  新能源汽车的高速发展让全球电动汽车的保有量达到了一个新的里程碑,据相关数据显示,到2017年为止,全球电动汽车保有量(包括纯电动汽车和插电式混合动力汽车)超过300万辆,相比2016年增长了57%。/pp  作为新能源汽车“心脏”的动力电池配套量自然也逐年增加,而目前市场上流通的新能源汽车的质保期多以5年或8万公里为标准。若照此标准计算,2009年至2012年推广的新能源汽车或行驶里程接近8万公里车辆的动力电池已经到了需要更换的标准。对此,业内人士估计,2018年累计废旧动力电池报废量将超17万吨,从中回收的镍、钴、锰等金属将为电池原材料市场创造超53亿元的价值。同时,动力电池退役数量每年将以几何级的数量增长,在巨大商机的背后也隐藏着一场新的环保隐患。/pp  在今年3月,工信部等七部委联合发布了《新能源汽车动力蓄电池回收利用管理暂行办法》,办法中提到目前需探索形成动力电池回收利用创新的商业模式,并且支持国内企业结合各地区试点工作开展动力电池梯次利用示范工程。目前国内动力电池回收产业尚未成熟,电池回收量少、回收网络不健全、环保风险大等因素也成为了动力电池回收行业发展路上最大的阻碍。/pp  眼下,废旧动力电池回收利用一般分为两种形式:梯次利用和拆解利用。梯次利用主要针对电池容量降低使得电池无法使电动车正常运行,但是电池本身没有报废,仍可以在别的途径继续使用的电池。/pp  拆解利用则是将电池进行资源化处理,回收有利用价值的再生资源,如钴、锂等有价金属。通过对废弃动力电池进行拆解利用,将镍、钴、锂等有价金属进行提取进行循环再利用,能够在一定程度规避上游原材料稀缺和价格波动风险,降低电池生产成本。业内相关人士告诉笔者,动力电池电浆中的镍、钴、锂纯度相比起矿石和矿物盐中提取的原料纯度会高出许多,这也是动力电池拆解利用市场的获利根本原因。/pp  目前,国内新能源汽车多数搭载三元锂电池和磷酸铁锂电池,对于磷酸铁锂电池,由于不含有钴等贵重金属,回收拆解经济效益不高,但其循环性能较优,因此磷酸铁锂电池倾向适用于梯次利用。对于三元电池,因其含有钴贵金属元素,循环性能欠佳,因此三元电池倾向于拆解利用。相关数据显示,根据现有技术水准,金属钴回收率为95%,碳酸锂回收率85%,同时参考当前金属钴及碳酸锂价格走势,预计至2020年电池回收市场空间可达107亿元,至2024年可提升至245亿元。/pp  除了巨额利润之外,国家出台的一系列制度也正在逐渐引导动力电池回收行业形成其商业模式,第三方机构、材料企业和电池企业也不断将目光转向这杯“羹”。/pp  目前,第三方回收企业以格林美、湖南邦普、赣州豪鹏等企业为代表,依靠着其专业的回收技术、设备、资质和渠道等优势迈入了动力电池回收领域 锂电材料企业方面则以华友钴业、赣锋锂业和寒锐钴业等矿业巨头为代表,在近年先后斥巨资设立了各自的锂电池循环回收利用项目 动力电池企业方面由于动力电池回收责任制的设立,动力电池企业也渐渐成为电池回收商业模式的“主角”,如CATL巨资打造“电池生产-销售-回收”产业环、比亚迪与格林美合作构建“电池再造”的循环体系、国轩高科自建“动力电池回收利用试用流水线”等。/pp  可见,随着国家政策、产业链下游需求、上游原材料价格激增、动力电池回收市场高利润等因素的推动,国内未来几年必将形成一个多元化、激烈极其竞争的动力电池回收市场,各大企业或只有及时开发和制定出各自独有的商业模式,才能尝到这“百亿级市场”的甜头。/pp  /ppbr//p
  • 宁波材料所在提升钙钛矿/硅叠层太阳能电池稳定性方面取得重要进展
    尽管目前钙钛矿/硅叠层太阳电池效率可达到33.2%,但钙钛矿活性层的长期稳定性是阻碍钙钛矿/硅叠层太阳电池商业化的最紧迫问题之一。目前提高钙钛矿器件稳定性通常基于封装工艺、晶体调控工程、缺陷钝化方法和能带调节方式。   然而,类似于许多金属、玻璃和聚合物材料中的“应力腐蚀”,由器件制造和运行中不可避免的拉伸应力引起的时间依赖的亚临界钙钛矿降解仍然会发生。微观层面,该应力可以削弱铅卤化物轨道耦合,从而改变与结构相关的材料特性(如带隙和载流子动力学),降低相变、缺陷形成和离子迁移的势垒;宏观层面,该应力会促使裂纹和分层情况的产生,从而加速钙钛矿的降解,导致器件的效率降低甚至失效。   近期,中国科学院宁波材料技术与工程研究所所属新能源所硅基太阳能及宽禁带半导体团队在叶继春研究员的带领下在前期晶体硅和钙钛矿太阳电池研究的基础上,在高效稳定钙钛矿/硅叠层电池领域又取得了新的进展。该团队采用一种长碳链阴离子表面活性剂添加剂,研究发现该添加剂能通过表面自分离和胶束化以改善钙钛矿晶体生长动力学,并在钙钛矿晶界构建类胶状的支架以消除残余应力;因此,钙钛矿活性层中缺陷减少、离子迁移受抑制以及能级结构改善。最终实现了未封装的钙钛矿单结和钙钛矿/硅叠层太阳电池在最大功率点跟踪下连续光照下3000小时和450小时的运行稳定性测试中,分别保持了85.7%和93.6%的初始性能,代表了迄今为止在类似条件下报道的稳定性最佳的器件之一。   相关成果以“Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion”为题发表于Nature Communications(https://doi.org/10.1038/s41467-023-37877-z),博士生汪新龙为第一作者,应智琴博士后、杨熹副研究员和叶继春研究员为共同通讯作者。该研究得到了国家重点研发计划(2018YFB1500103)、澳门特别行政区科学技术发展基金(FDCT-0044/2020/A1、0082/2021/A2)和澳门大学研究基金(MYRG2020-00151-IAPME)等项目的支持。长链阴离子表面活性剂抑制应力腐蚀作用机理(上);钙钛矿单结(中)以及钙钛矿/硅叠层(下)太阳电池最大功率点工作稳定性测试
  • 重磅!动力电池强制性国标来袭,这些变化你需要知
    p style="text-indent: 2em "近日锂电大数据记者获悉,备受关注的国家强制标准《电动汽车用锂离子动力蓄电池安全要求》修改已基本完成,预计今年8月将会发布实施。 /pp/pp style="text-indent: 2em "《电动汽车用锂离子动力蓄电池安全要求》从2016年8月开始立项制定,项目周期为两年,今年年前,工信部发布《电动汽车用锂离子动力蓄电池安全要求(征求意见稿)》,面向社会各界征求意见,目前,该法规的修改已经基本完成,即将进入审查阶段。 /pp style="text-indent: 2em "与2015年的推荐性国标相比,新国标为强制性国标,同时新国标出现了一些新变化,具体如下图所示:/pp/pp style="text-indent: 2em "新国标试验项目分为电池单体和电池包或系统两部分,分别有6项和16项。与2015年的标准相比,新国标取消了所有模组级别的试验,电池单体试验项目取消了跌落、针刺、海水浸泡和低气压测试,同时对过放电试验只要求不起 火、不爆 炸,取消了不漏液要求。 /pp style="text-indent: 2em "电池包或系统安全试验项目取消了跌落和翻转试验,同时新增了过流保护和热稳定性两项试验,外部火烧也列在热稳定性试验之内,此外,海水浸泡改为浸水安全,振动试验分为两部分。 /pp style="text-indent: 2em "过充、过放、短路、挤压、针刺等是锂电池安全测试常规的试验项目,在新国标中规定针刺试验暂不执行,这一点在行业内也颇受争议,根据解读,取消的理由是IEC等国际标准没有发现针刺试验,工信部发布的新能源汽车准入管理规定(39号令)中针刺为暂不执行项目,以及针刺试验与实际失效模式不相符。 /pp style="text-indent: 2em "也有业内人士认为,随着动力电池能量密度和电池容量的不断提升,电池通过针刺实验变得越来越困难,因此在新国标中规定针刺实验暂不执行。 /pp style="text-indent: 2em "新国标的一大进步是将热失控列入规定,要求在电池包发生热失控时,汽车要提供预警信号,预留5分钟的逃生时间。 /pp style="text-indent: 2em "另外,在新国标中,对锂离子电池单体过充的问题提出了新要求。为了提高锂离子电池充电过程中的安全性,拟将充电时的截止条件规定为“1.1倍电压或115%SOC”,从而降低动力电池在充电时的安全隐患。 /pp style="text-indent: 2em "《电动汽车用锂离子动力蓄电池安全要求》对动力电池行业的健康稳定发展意义重大,随着法规完善,我国动力电池行业发展将迎来新局面。/p
  • 等离子清洗机如何助力动力电池发展?
    近日,小米汽车SU7正式亮相,在电池安全方面,小米采用全球最高电池安全标准,全系采用高安全的电芯。另外,小米SU7上市27分钟大定超5万台,十分火爆。*图片源自小米汽车视频号,侵删在新能源汽车行业迅猛发展的当下,800V及以上高电压平台车型的兴起,电池安全也成为汽车制造商和消费者的核心关注点。一、PET蓝膜 vs UV涂覆绝缘材料电池绝缘材料作为电池安全的重要屏障,对于电池模组性能乃至整车性能都有着关键作用。在电池生产过程中,PET蓝膜以其良好的绝缘性、化学抗性和拉伸强度备受青睐,PET蓝膜贴合一直以来都是主流的绝缘方案。然而,随着新能源汽车对电池性能的要求提高,PET蓝膜逐渐显现出其局限性,蓝膜粘接性能不足,且在高电压下容易产生击穿风险,对于电池安全而言是一大隐患。为优化单体电池乃至整个电池模组的性能,UV涂覆绝缘材料应运而生。这种材料不仅具备良好的绝缘性、耐高温性和耐腐蚀性,还具备与电池完美结合的能力,能够为电池提供更为全面的保护,有效防止短路和热失控的风险。而UV涂覆绝缘材料也因此被认为在动力电池领域具有广泛的应用前景。*图片源自网络,侵删UV涂覆绝缘材料喷涂固化后,会在电芯铝壳表面形成一层连续、致密的绝缘涂层,可以提高电芯的耐久性和稳定性,延长使用寿命。同时,为了使得UV涂覆绝缘材料可以更好地与电芯铝壳表面结合,等离子表面预处理的作用不容小觑。二、等离子表面处理在喷涂UV绝缘材料之前,通过等离子表面处理可以粗化电芯铝壳表面,提高其表面附着力,使其更有利于UV绝缘材料的涂覆和固化,有助于防止涂层在使用过程中出现脱落或剥离,进一步提高电池的安全性和可靠性。大气等离子清洗机应用案例经过等离子处理前后接触角的数据对比可以看出,电芯铝壳表面润湿性得到提高,保证后续UV绝缘材料能够更均匀地分布。大气等离子清洗机,适用于各种平面材料清洗,在动力电池领域,可搭配旋转枪头使用,有效粗化材料表面,提高表面附着力和润湿性。
  • 明天直播!13报告|锂电/钠电/动力电池分析检测技术全解析
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 “新能源电池检测技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾新能源电池检测技术(11月29日全天)09:30新能源电池及其材料检测技术邵丹广州能源检测研究院 主任/高级工程10:00岛津光谱技术助力新能源材料解决方案曹亚南岛津企业管理(中国)有限公司 光谱产品专员10:30日立电镜新能源材料分析检测解决方案周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长11:00光学显微镜在新能源汽车检测中的应用王海银徕卡显微系统(上海)贸易有限公司 工业显微镜应用工程师11:30钒电解液检测解析胡俊平湖南省银峰新能源有限公司/江西银汇新能源有限公司 质量控制部部长,研发部副部长12:00午休14:00动力电池测试评价技术马小乐中汽研新能源汽车检验中心(天津)有限公司 平台总监14:30电位滴定仪&卡尔费休水分仪在新能源行业的应用龚雁瑞士万通中国有限公司 产品经理15:00牛津仪器显微分析技术在新能源材料中的应用陈帅牛津仪器科技(上海)有限公司 应用科学家15:30HORIBA拉曼光谱在新能源电池材料中的应用研究代琳心HORIBA科学仪器事业部 应用工程师16:00无机碳硫氧氮氢分析仪以及火花直读光谱仪在新能源汽车行业的应用王元慈艾力蒙塔(上海)贸易有限公司 产品专员16:30PAT技术在锂电材料工艺研究中的应用赵长兴梅特勒托利多科技(中国)有限公司 市场开发专员17:00二次电池层状正极材料失效的原子机制闫鹏飞北京工业大学 教授五、 嘉宾简介及报告摘要(按分享顺序)邵丹 广州能源检测研究院 主任/高级工程【个人简介】博士,高级工程师。现任国家化学储能材料及产品质量检验检测中心(广东)主任工程师,广州能源检测研究院学术委员会委员,广东省动力电池安全重点实验室副主任,广州市高层次人才,广州市科技局专家,广东省国际标准化人才,锂离子电池国际标准化专家,ATC汽车技术平台智库专家,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,CSTM试验机构技术能力评价专家委员,CSTM试验人员技术能力评价专家委员。作为主要技术负责人完成国家化学储能材料及产品质量检验检测中心(广东)、中华人民共和国WTO-TBT/SPS新能源材料及产品技术性贸易措施研究评议基地、广东省动力电池安全重点实验室等多个国家级、省部级科技平台建设工作。主持及参与多项国家科技部重点研发计划、国家市场监督管理总局、广东省科技厅、广东省市场监督管理局、广州市科技局、广州市市场监督管理局等各级科研以及技术开发等项目。【摘要】待定曹亚南 岛津企业管理(中国)有限公司 光谱产品专员【个人简介】岛津企业管理(中国)有限公司 分析计测事业部 光谱产品专员,硕士毕业于北京化工大学,目前主要负责岛津紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的市场工作,拥有多年光谱分析技术和仪器测试方面的工作经验。【摘要】在双碳的背景下,新能源材料是新能源有效发展的核心。本报告主要介绍岛津激光粒度仪产品在锂电池材料中的解决方案,如磷酸锂、三元材料等,以及岛津紫外分光光度计产品在光伏材料中的表征方案,如光伏玻璃等。周海鑫 日立科学仪器(北京)有限公司 电镜市场部 副部长【个人简介】周海鑫博士毕业于北京化工大学,主修高分子材料和化学专业,曾在德国马克思普朗克高分子研究所(Max Plank Institute for Polymer Research)电镜中心工作,主要负责电子显微镜的测试和相关研究工作,对扫描电镜和透射电镜的原理、操作和应用非常熟悉。周博士现任日立科学仪器(北京)有限公司电镜市场部副部长,主要负责日立表面科学相关产品的技术支持和市场开发工作,具有十几年的电镜相关工作经验。【摘要】本报告将重点介绍日立电镜及相关产品在新能源材料分析和检测中的应用,包括对电极材料中不同组分的观察和分析,电极材料的样品制备,锂电池生产过程的异物分析等。结合日立丰富的产品线,为广大客户提供多种解决方案。王海银 徕卡显微系统(上海)贸易有限公司 工业显微镜应用工程师【个人简介】本硕毕业于英国帝国理工学院,纳米材料硕士,现为徕卡显微系统工业显微镜应用工程师,负责工业显微镜相关的技术支持工作。熟悉半导体光刻技术,在微电子、材料科学及其他先进制造领域有丰富的应用经验。【摘要】本报告将从数码显微镜、高倍复合显微镜、LIBS元素分析和清洁度专家等方面简要介绍徕卡工业显微镜产品在新能源汽车检测的应用。胡俊平 湖南省银峰新能源有限公司/江西银汇新能源有限公司 质量控制部部长,研发部副部长【个人简介】胡俊平,浙江金华人,湖南省银峰新能源有限公司研发部副部长、江西银汇新能源有限公司质量控制部部长、能源行业液流电池标准委员会观察员。【摘要】 1.全钒液流电池简介 2.钒电解液检测标准及方法 3.检测中遇到的问题及方法优化马小乐 中汽研新能源汽车检验中心(天津)有限公司 平台总监【个人简介】中汽研新能源汽车检验中心(天津)有限公司平台总监,多年来始终致力于电池热特性和热安全相关的仿真与测试评价技术研究,发表数篇相关论文,拥有多项发明专利。【摘要】待定龚雁 瑞士万通中国有限公司 产品经理【个人简介】龚雁,女,瑞士万通中国电位滴定仪和卡尔费休水分仪产品经理,有着十多年电位滴定和卡尔费休水分方面丰富的理论和客户实操经验。工作经历:在清华大学分析测试中心 开展硕士研究生课题的研究工作; 在国家纳米技术与工程研究院清华平台色谱组开展硕士研究生课题的研究工作。【摘要】电位滴定仪在正极材料和电解液的检测中发挥着不可或缺的作用,其应用包含残碱的测定,金属总量的测定,电解液中氯离子/游离酸的测定等。卡尔费休水分仪用于电池各组分水分含量检测,包含正负极材料,隔膜,电解液。瑞士万通将利用这次机会给新能源行业客户进行详细的讲解。陈帅 牛津仪器科技(上海)有限公司 应用科学家【个人简介】2015年3月毕业于日本京都大学材料工学专攻,获工学博士学位,博士期间主要研究超细晶亚稳态奥氏体钢的相变诱发塑性和马氏体相变。毕业后先后在钢铁公司和材料分析公司从事钢铁产品开发以及高纯材料分析等工作。2018年加入牛津仪器,主要负责EDS、WDS、EBSD、OP的推广及技术支持。【摘要】面对日益增加的环境危机,世界各国均主张通过技术进步获得新型能源来解决这一危机。几十年来,新能源材料的研究一直是材料领域的热点。新能源材料同样遵循最基本的规律,其成分和显微结构决定了服役性能。因此,通过各种技术分析材料的结构属性是提高新能源材料性能的必经之路。牛津仪器的材料分析技术涵盖了用于成分分析的EDS&WDS、结构和取向分析的EBSD&Raman成像以及物理性能测试的AFM,这些技术可多维度地表征材料的结构和性能,为新能源材料的研究提供技术支持。本次报告将以具体的案例展示这些显微分析技术在新能源材料中的应用。代琳心 HORIBA科学仪器事业部 应用工程师【个人简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱技术是研究新能源电池材料结构性质的重要光谱技术。拉曼光谱技术可用于表征锂电正负极材料,也可以测量异质结电池非晶硅薄膜晶化率以及检测燃料电池碳基涂层等。此外,通过原位电化学拉曼技术可实时监控电池反应和失效过程。本报告将介绍HORIBA Scientific高分辨率拉曼光谱技术在新能源电池研发和质控中的解决方案并分享相关应用案例。王元慈 艾力蒙塔(上海)贸易有限公司 产品专员【个人简介】毕业于美国东北大学,期间获得化学工程硕士学位。【摘要】1.新能源汽车行业发展概览 2.来自于德国元素公司的无机碳硫氧氮氢分析仪以及火花直读光谱仪解决方案 3.无机碳硫氧氮氢分析仪以及火花直读光谱仪在新能源汽车行业的应用。赵长兴 梅特勒托利多科技(中国)有限公司 市场开发专员【个人简介】赵长兴,本硕毕业于华东理工大学,学校期间一直从事前沿发光材料研究,包括有机荧光、纯有机室温磷光,并在前沿学术期刊Chemical Communication发表学术论文,拥有非常丰富的化学实验研究经验,熟练掌握常规化学表征手段。毕业后一直就职于梅特勒托利多,长期专注于行业研究,特别是PAT(过程分析技术)技术在锂电、化工新材料、学术前沿等行业的应用研究,特别是锂电材料领域,目前已经在六氟磷酸锂、双氟磺酰亚胺锂、磷酸铁锂、PVDF等领域成功探索到前沿的工艺研究技术,并成功开辟多家用户。【摘要】简要阐述梅特勒托利多的PAT技术用于锂电电解液材料的合成工艺研究、结晶工艺研究、正极材料的颗粒控制工艺研究、正负极浆料的固含量测定等。闫鹏飞 北京工业大学 教授【个人简介】闫鹏飞,北京工业大学教授,博士生导师。2010年博士毕业于中科院金属研究所,2010-2017先后在日本NIMS和美国太平洋西北国家实验室(PNNL)从事电子显微学研究。目前的研究领域是利用电子显微学研究二次电池材料的基本结构、储能机理以及失效和改性机制。在Nature Energy, Nature Nanotechnology,等期刊发表SCI学术论文100余篇,专利4项,引用6000余次,12篇ESI高被引论文,H因子40。入选国家海外高层次青年人才引进计划。IEEE PES 中国储能材料与器件分委会常务理事。【摘要】待定六、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 大型动力电池电化学测量方法技术讲座
    大型动力电池的电化学测量方法技术讲座--EIS(电化学交流阻抗测试)应用-- 电化学交流阻抗测试(EIS)、是把电池内部的化学反应置换为电气特性的等效电路,进行详细解析的唯一方法。在很早以前,此方法就应用于基础电化学、金属腐蚀、蓄电池、燃料电池等的测试。 其具有通过扫频的方式可以分离时间常数的特点,如果应用于电池测试,可以在不破坏复杂的电池内部状态的情况下,对电池进行解析,这是在充放电测试中无法达到的。在高性能电池研发技术处于领先地位的日本,EIS测试在电动汽车用大型电池的评价测试领域也已经广泛普及。而在目前的中国大部分企业偏重于实际生产,忽略了基础研发,基本上没有进行大型电池的EIS测试。 本次讲座,以已经进行着大型电池的研发或者将来有意进行大型电池研发的技术人员为对象,结合我公司测试设备的演示,以简单易懂的方式讲解EIS测试的基本原理以及在大型动力电池领域上的应用。■主讲人:佐佐木 浩人 (尖端应用测量部 部长)■现场翻译:郑海林■内容: 交流阻抗与直流电阻的区别 EIS的测试原理、设备选型、测试注意事项 EIS测试事例简介 大型动力电池上的应用和现场演示 大型动力电池测试的注意事项、误差因素 问题的解决方法:介绍我公司的解决方案 ※采用模拟和现场演示的方法进行说明。 ※讲座结束后,举办交流晚餐■时间:2011年12月22日(星期四)13:30-16:30■地点:上海市内酒店会议室(另行通知)■参加人数:30人■参加费:免费(需要事先登记报名)■登记报名: 使用E-mail登记 请写清楚所在公司、部门、姓名、电话、邮箱地址, 并注明"报名参加大型动力电池的电气化学测试方法应用技术讲座", 发邮件至bfc@toyochina.com.cn  ※讲座内容可能部分发生变化。  ※由于参会人数有要求,超过定员将停止接受报名,请您尽早登记报名。  ※我们可能拒绝同行业的竞争对手以及与此相关的人员参会。■咨询 东扬精测系统(上海)有限公司 尖端应用测量部 郑海林、沈利 TEL: 021-6380-9633 Email: bfc@toyochina.com.cn URL: http://www.toyochina.com.cn
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
  • 新产品 | 新一代---高精度大容量动力电池评估系统
    目前,锂离子电池电芯与模组正朝着超大容量,高度集成化方向发展,锂离子电池生产企业,系统集成商和主机厂为了获得更高的体积能量密度,正从100Ah电芯逐渐切换到200Ah以上大容量电芯,此外刀片电池,CTP,CTC技术以及4680型电池的广泛应用,对现有检测设备的测试能力提出新的极限挑战。基于联合Nissan,英国华威大学(WMG)和Element Energy参与由英国商业、能源和工业战略部主导的”英国能源存储实验室”项目,AMETEK(普林斯顿及输力强电化学)公司开发了新一代大容量动力电池评估系统。输力强分析的SI-9300R,是一套针对动力电池开发,测试,诊断和梯次利用分级筛选的一站式多通道电池评估系统,适用于多种不同类型电池的分析,并具有无与伦比的超高精度,测量和快速诊断能力。 动力电池开发-测试-分析-分级 动力电池对高比容量、快速充电和长寿命等特性的需求,使得电池测量面临着更大的挑战。在对动力电池测试设备市场深入分析,对动力电池和电动汽车生产企业需求的充分了解的基础上, Solartron Analytical开发出一整套针对动力电池开发,测量,分析和分级的系统解决方案。 SI-9300R 五大技术特点 1.超大容量电流量程:2A-300A200A连续,300A脉冲并联可达到1000A可以满足各种类型的单体动力电池及模组的测试需要,不仅可以满足传统的18650,21700等类型的圆柱型电池,同时可以满足日益增长的高容量软包及方形动力电池测试。 2.超高精度• 24-位高精度ADCs• 磁通量电流传感器-高精度低热漂移• 高精度电流电压测量:0.03%• 高精度阻抗测试:0.1%, 0.1deg可满足动力电池在开发,测试,分析,分级等复杂应用场景下的差异性测试需求3.超强能力随着对动力电池安全及性能的要求越来越高,如何在满足常规直流测试的前提下,同时实现动力电池电化学性能快速精确测量呢?交直流同步测试,一站式完成,无需切换接线,确保人机安全。集充放电技术,电化学测试技术于一身,可提供如线性循环伏安,线性扫描,恒电流,恒电压,恒功率恒电阻和HPC(高精度库伦法)等全套动力电池测试技术。 每通道标配交流阻抗功能,可完成动力电池在充放电过程中的动态EIS分析,模拟实际工况下的使用状态。每通道标配两个辅助分压功能,可同时同步监测单体电池中正负极或串联模组中的单体及总体响应。快速进行正负极或单体失效分析。 4.全新技术专利数据直存硬盘技术–保证系统的可靠性和数据安全性电网回馈式–多余电能回馈电网不会产生热能损耗体积小,节约空间通道电能共享–放电电能将用于对其他电池充电-优化电能使用,节能环保,减少碳排放。实时数据分析–测试时可进行实时DC/EIS数据分析, 实时诊断电池性能。 5.超快SoH诊断基于9300R强大的充放电仪叠加交流阻抗功能,及灵活开放的软件界面,可开发出动力电池快速SoH(健康状态)诊断功能。全球首个成功案例,输力强通过与英国华威大学合作,使用9300R ,针对NISSAN LEAF的退役动力电池模组开发出SoH专利算法,仅仅3分钟之内即可分析出电池的SoH,且其误差为+/-3%,远高于传统的直流方法。 这为动力电池梯次利用,分级筛选提供了高可靠性,巨大经济性的解决方案。 “工欲善其事,必先利其器“,输力强作为全球超高精度,超高可靠性的动力电池,研发,测试,分析和分级的领先品牌,一直持续致力于为广大科研用户提供最先进的技术解决方案。
  • 新能源动力电池检测技术中心正式运营
    记者4月6日从位于溧阳市别桥镇的新能源动力电池检测技术中心获悉,该中心日前已正式运营。该项目总投资5亿元,新建厂房3万平方米,提供新能源动力电池和储能电池的一站式检测、认证服务。该中心研发测试实验室设有电性能、机械、安全三大测试中心,全面覆盖了电芯、模组、电池包的测试需求。其中,40吨四综合振动试验系统为行业稀缺资源。
  • 2013年国家动力电池检测中心启用
    9月30日,长兴科技服务中心揭牌、国家动力电池检测中心启用仪式举行。县委副书记、县长吕志良和县领导高胜华、宋波、王春新、张加强参加揭牌、启用仪式。  吕志良在致辞中表示,长兴科技服务中心和国家动力电池检测中心的揭牌和启用,意义非常重大。两大中心的建设,凝聚了各方心血,得到了大家的重视支持。它们的建成将为全县的工业创强、转型升级提供有力的科技支撑,也将为广大科技企业提供更好的服务。办好两大中心,使命光荣。两大中心要自觉拉高标杆,瞄准更高定位,更好地发挥作用。科技服务中心要真正建设成为“企业满意、政府放心”的重要平台 动力电池检测中心要在前期工作的基础上,真正打造成为国内一流、国际先进的重要检测平台,从而为广大企业、各级各部门提供有力的支撑和服务。用好两大中心,需要各方支持。建设两大平台已经走出了第一步,希望省、市一如既往地关心支持两大中心的成长发展 希望上海研发公共服务平台对长兴科技服务中心多指导、多帮助 希望县级各部门、乡镇(街道、园区)大力支持配合两大中心的工作 希望广大企业充分发挥主体作用,用足用好两大中心资源。  上海研发公共服务平台由仪器设施共用、试验基地协作、专业技术服务、行业检测服务、技术转移服务、创业孵化服务等十大系统组成,其加盟单位包括各类大学、研发机构和大型企业。长兴科技服务中心作为上海研发公共服务平台在长兴设立的分中心,是企业与上海研发平台联系的重要桥梁,也能更加方便企业进行研制开发、产品检测等科技创新活动,可以一站式为长兴企业解决很多技术难题。
  • 投资3亿 国家动力电池检验中心在襄阳开工
    昨日,湖北回天胶业、襄阳金华港汽车零部件和国家动力电池产品质量监督检验中心3个项目,在高新区开工建设。根据规划,襄阳将成为全国新能源汽车电池研发、检测中心。  3个项目总投资12.4亿元,包括回天胶业投资8亿元建设的回天工业园项目 金华港投资1.4亿元的汽车零部件项目 投资3亿元的“襄阳质量技术监督局国家动力电池产品质量监督检验中心”(简称检验中心),是经国家质检总局批准在襄阳建设的国家级动力电池综合检验研发机构,总建筑面积10.47万平方米。  据介绍,检验中心将按“国内一流、国际领先”标准,建设环境及安全检测试验室、动力电池检测试验室、动力系统综合检测试验室等5大试验室,同时打造襄阳公共检测与技术服务平台,中心建成后将填补动力电池产品的质量、安全性检验在国内的空白。  市质监局党组成员、总工程师尚孝波介绍,近年来,襄阳新能源汽车产业发展迅速,检测中心将邀请知名专家学者加盟,这对襄阳参与国家新能源汽车电池标准制定、争夺市场话语权,将起到积极助推作用。
  • 报名倒计时|动力和储能电池产业创新论坛暨先进电池产学研对接峰会
    组织机构主办单位溧阳市人民政府江苏省溧阳高新技术产业开发区中科院物理研究所长三角物理研究中心北京清洁能源前沿研究中心天目湖先进储能技术研究院中国汽车动力电池产业创新联盟固态电池分会江苏省动力及储能电池产业创新联盟江苏省储能行业协会承办单位溧阳深水科技咨询有限公司协办单位江苏时代、宁德时代、上汽时代、亿纬锂能、孚能科技、中航锂电、蜂巢能源、璞泰来、当升科技、贝特瑞、容百科技、吉利汽车、东风汽车、蔚来汽车、长安汽车、威马汽车、中科海钠、江苏卫蓝、天目先导、江苏蓝固、江苏省储能材料与器件产业技术创新战略联盟等会议名誉主席执行主席报告总日程具体日程及报告安排注册报名和住宿预定本次会议免费(不含餐饮和住宿),目前已报名的437家参会单位详见文章尾部,由于本次会议最多容纳500人,目前还有少量名额,请各位参会嘉宾尽快缴纳餐饮费,付费后即锁定名额!如申请参会请填写以下二维码会务组在天目湖涵田度假村酒店以优惠价格为本次会议联系了一定数量的房间,参会人员可享受会议优惠价,会议代表如有订房问题可扫描填写以上二维码,费用自理。请大家尽量在2022年7月1日前完成订房。支持单位参会单位参会单位持续更新中会议联系人会议联系人会务组邮箱:ties-conference@aesit.com.cn联系电话:史女士:18115066088(参展)顾女士:18961291736(参会、住宿)虞先生:18114689920(参会、住宿)
  • 聚焦动力电池,谈安全/续航瓶颈下的检测技术——ACCSI2020新能源电池检测技术发展论坛邀您参会
    p style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em "第十四届中国科学仪器发展年会(简称ACCSI2020)将于2020年9月16日-9月17日在天津东丽湖恒大酒店召开,大会正在如火如荼地筹备中,目前大会日程及分论坛日程已确定,诚邀“政、产、学、研、用、资、媒”各方代表莅临参会。/pp style="text-align: center"a href="https://www.instrument.com.cn/accsi/2020/" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 310px " src="https://img1.17img.cn/17img/images/202009/uepic/e40c5c7c-6c72-40ca-956a-a76211db367d.jpg" title="微信截图_20200909145752.png" alt="微信截图_20200909145752.png" width="600" height="310" border="0" vspace="0"//a/pp style="text-indent: 2em "中国新能源汽车从 2015 年开始得以迅猛发展,从2015 年到 2019 年,中国新能源汽车年平均销量为 76 万辆,此带动下,动力电池市场实现稳定增长。/pp style="text-indent: 2em "尽管电池在汽车、出行、电子消费领域的运用已十分广泛,但依旧面临瓶颈:一方面,在市场主流新能源汽车产品中,电池成本约占车价的四分之一甚至三分之一;另一方面,在现有技术路线下,电池尚不能摆脱“长期使用后续航里程大幅衰减”的命运。续航和安全也成为新能源汽车消费者长期关注的焦点。/pp style="text-indent: 2em "新能源汽车仍处于产业发展初期,尚需更多创新,如能量密度、电池寿命,安全性等。而创新与研究则离不开综合的科学仪器检测技术。/pp style="text-indent: 2em "此背景下,ACCSI 2020主办方联合国联汽车动力电池研究院有限责任公司、天目湖先进储能技术研究院有限公司,在ACCSI 2020会议同期设立——新能源电池检测技术发展论坛,邀请动力电池厂、动力电池研究院、高校、汽车国家质检中心、检测机构等业界专家代表,结合车用动力电池瓶颈技术,针对最新检测技术、国家标准、检测市场展望等进行探讨,助力我国新能源动力电池产业创新发展。a href="https://www.instrument.com.cn/webinar/meetings/ACCSI-3/" target="_blank" textvalue="【点击报名】"span style="color: rgb(255, 0, 0) "strong【同步直播免费报名】/strongstrong/strong/span/a/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/ACCSI-3/" target="_blank"img style="max-width: 100% max-height: 100% width: 500px height: 234px " src="https://img1.17img.cn/17img/images/202009/uepic/9b021f30-7392-4a01-af12-f58bea512464.jpg" title="64030020200910.jpg" alt="64030020200910.jpg" width="500" height="234" border="0" vspace="0"//a/pp style="text-align: center "span style="font-size: 18px color: rgb(255, 0, 0) "strong直播回放链接:/strong/spana href="https://www.instrument.com.cn/news/20200927/560802.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "https://www.instrument.com.cn/news/20200927/560802.shtml/span/strong/a/pp style="text-indent: 0em margin-top: 15px margin-bottom: 15px text-align: center "span style="font-size: 20px "strong新能源电池检测技术发展论坛/strong/span/pp style="text-indent: 2em "strong一. 合办单位/strong/pp style="text-indent: 2em "国联汽车动力电池研究院有限责任公司/pp style="text-indent: 2em "天目湖先进储能技术研究院有限公司/pp style="text-indent: 2em "strong二. 论坛时间/strong/pp style="text-indent: 2em "9月17日,9:00-12:00/pp style="text-indent: 2em "strong三. 论坛地点/strong/pp style="text-indent: 2em "天津东丽湖恒大酒店,一层香港厅/pp style="text-indent: 2em "strong四. 参会嘉宾及规模/strong/pp style="text-indent: 2em "strong嘉宾/strong:新能源汽车动力电池企业、电池研究院、国家质检机构、检测机构、高校专家/学者、实验室主任、技术/研发负责人、QC/QA负责人;相关仪器企业及电池产业链企业董事长、总经理、总工、市场总监、研发总监、销售总监等。/pp style="text-indent: 2em "strong规模/strong:80人/pp style="text-indent: 2em "strong五. 论坛日程/strong/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse: collapse "tbodytr style=" height:48px" class="firstRow"td width="85" style="background: rgb(112, 173, 71) border: 1px solid rgb(0, 0, 0) padding: 5px " height="48"p style="text-align:center"span style="font-size: 16px "strongspan style="color: white "报告时间/span/strong/spanspan style="font-size: 18px "strongspan style="color: white "/span/strongstrongspan style="color: white "/span/strong/span/p/tdtd width="192" nowrap="" style="background: rgb(112, 173, 71) border: 1px solid rgb(0, 0, 0) padding: 5px " height="48"p style="text-align:center"span style="font-size: 16px "strongspan style="color: white "报告题目/span/strong/span/p/tdtd width="255" nowrap="" style="background: rgb(112, 173, 71) border: 1px solid rgb(0, 0, 0) padding: 5px " height="48"p style="text-align:center"span style="font-size: 16px "strongspan style="color: white "报告嘉宾/span/strong/span/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"9:00-9:30/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"新能源汽车在役span//span退役动力电池快速智能检测评估技术及装备/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"张家港清研检测技术有限公司 总经理 郑郧/span/strong/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"9:30-10:00/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"动力电池全生命周期检测技术研究/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"国联汽车动力电池研究院有限责任公司 经理span//span高级工程师 云凤玲/span/strong/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"10:00-10:30/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"锂电池超声波扫描技术及其在失效分析中的应用/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"华中科技大学 副教授 沈越/span/strong/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"10:30-11:00/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"动力电池电芯研发及其相关检测技术探讨/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"天津市捷威动力工业有限公司 研究院副院长span//span高级工程师 从长杰/span/strong/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"11:00-11:30/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"新能源车用锂离子电池失效分析解析技术整体方案/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"同济大学span//span上海蓄熙新能源材料检测有限公司 总经理 韩广帅/span/strong/p/td/trtr style=" height:19px"td width="94" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"11:30-12:00/span/strong/p/tdtd width="192" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"基于新国标的动力电池安全性测试/span/strong/p/tdtd width="255" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"p style="text-align:center"strongspan style="font-size:15px color:black"中国汽车技术研究中心有限公司 高级工程师 马天翼/span/strong/p/td/tr/tbody/tablep style="text-indent: 2em margin-top: 10px "strong六. 报告嘉宾及报告摘要span style="color: rgb(127, 127, 127) "/span/strongspan style="color: rgb(127, 127, 127) "(按报告顺序)/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/304890fb-10b5-410f-806a-80b28b61876f.jpg" title="郑郧-方图_副本.jpg" alt="郑郧-方图_副本.jpg"//pp style="text-align: center text-indent: 0em "strong style="text-align: center "span style="color: rgb(0, 112, 192) "张家港清研检测技术有限公司 总经理 郑郧/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:新能源汽车在役/退役动力电池快速智能检测评估技术及装备/span/strong/pp style="text-indent: 2em "【简介】任职:清华大学苏州汽车研究院院长助理\张家港清研再制造产业研究院常务副院长\国家再制造汽车零部件产品质量监督检验中心主任/pp style="text-indent: 2em "长期从事智能制造与再制造产业、新能源动力电池回收梯次利用研究及产业化工作,主导建设的张家港“国家再制造产业示范基地”公共服务平台、国家再制造汽车零部件产品质量监督检验中心,并已在全国范围内形成模范、占领先地位。参与编写了国际国内高端课题、再制造及车用动力电池标准40余项,参与研制了一系列应用于低速车\叉车、共享单车、光伏示范储能项目梯次利用电池产品等。本人获2015年度“港城英才”、江苏省产业教授(江苏大学汽车机械系)、武汉理工大学特聘教授、淮海职业技术学院产业教授等荣誉,发表论文20余篇。/pp style="text-indent: 2em "【摘要】十三五期间,我国新能源汽车产业得到了高速的发展,2020年,我国新能源汽车保有量预计将突破500万台,相关的退役动力电池将达到12-17万吨/年的规模。但是目前由于缺乏对在役动力电池及退役动力电池性能的快速有效、低成本检测手段和装备。直接影响到动力电池的服役安全和退役后的回收梯次利用经济可行性。开展动力电池快速智能检测技术及装备的研发和产业化,可有效解决我国新能源汽车售后服务过程中的在役动力电池的检测评估及退役动力电池回收梯次利用过程总的余能快速检测评估分类对检测技术及装备需求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/c41e9b7e-8eeb-49b2-8910-8d0d97b48272.jpg" title="云凤玲-方图_副本.jpg" alt="云凤玲-方图_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "国联汽车动力电池研究院有限责任公司 经理/高级工程师 云凤玲/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:动力电池全生命周期检测技术研究/span/strong/pp style="text-indent: 2em "【简介】现任国联汽车动力电池研究院有限责任公司检测事业部材料与电池测试分析中心经理,高级工程师,博士。2011至今,一直致力于车用锂离子动力电池的热行为分析及寿命诊断研究,包括对锂离子动力电池在应用过程中的热特性分析、电化学-热耦合行为、无损失效解析和电池热失控安全边界等。/pp style="text-indent: 2em "期间作为工信部《2016年工业转型升级(中国制造2025)-动力电池创新能力建设项目》骨干成员完成动力电池实验室的软、硬件建设,覆盖整车需求的电池/模组功能特性、耐环境特性、耐久特性及热安全特性的系统性测试验证及过程研究能力。目前作为骨干成员参与科技部 “新能源汽车”重点专项“课题一“的相关研究工作。/pp style="text-indent: 2em "【摘要】报告以动力电池为基础,结合电池的功能特性、耐环境特性、耐久特性及安全特性等全方位性能的变化特点,建立适用于全生命周期内动力电池的相关检测评价方法,为识别动力电池在BOL和EOL阶段特征及过程变化特点,摸索建立电池的性能/安全使用边界提供技术指导;从材料-电池的构效关系层面,解析电池失效问题。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/e95fa909-afbf-48d2-9242-25d8b2e65263.jpg" title="华中科技大学-沈越-方图_副本.jpg" alt="华中科技大学-沈越-方图_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "华中科技大学 副教授 沈越/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:锂电池超声波扫描技术及其在失效分析中的应用/span/strong/pp style="text-indent: 2em "【简介】2011年博士毕业于北京大学,现任华中科技大学材料科学与工程学院副教授。以第一或通讯作者身份发表论文30余篇,其中19篇发表在包括Science、Joule、J. Am. Chem. Soc、 Adv. Mater.等影响因子大于10的权威期刊。作为项目负责人主持国家自然科学基金项目两项,获授权国家发明专利11项,美国专利1项。研究领域包括新型二次电池及其检测技术,是锂离子电池超声快速检测技术和搅拌式自分层电池的主要发明人。/pp style="text-indent: 2em "【摘要】报告将介绍超声波无损检测技术在锂离子电池检测、分析领域的应用。该技术对电池内部产气与电解液浸润不良具有非常高的检测敏感度,进而可以分析多种产气、电解液分解相关的失效机制,并对电池的循环稳定性进行预测。该技术可对商品软包、方形硬壳锂离子电池在充放电同时进行直接透视,高效无损,可应用于产品研发、质量控制、回收检测等产业环节。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/ffc15953-2e4d-4dc2-b89a-ab4ed917362d.jpg" title="从长杰-方图_副本.jpg" alt="从长杰-方图_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "天津市捷威动力工业有限公司 研究院副院长/高级工程师 从长杰/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:动力电池电芯研发及其相关检测技术探讨/span/strong/pp style="text-indent: 2em "【简介】博士,高级工程师,天津市捷威动力工业有限公司研究院副院长,主要从事锂离子动力电池技术研究、产品开发及其管理工作。2007年6月获武汉大学理学博士学位;2009年10月-2011年8月北京有色金属研究总院动力电池研究中心,博士后,主要负责磷酸铁锂材料研究与产业化开发。2011年8月至今就职于天津市捷威动力工业有限公司,主要负责车用动力电池的研发及其管理工作,成功开发了混合动力用高功率电池,纯电动车用动力电池及能量功率兼顾型动力电池等近10款产品,销售超5万套。承担多项国家863项目及天津市区重大项目,已在国内外知名期刊上发表论文25篇,申请专利20多项。/pp style="text-indent: 2em "【摘要】报告中主要介绍动力电芯开发情况及其在测试评价过程中遇到的困难及其挑战,同时将先进的测试评价技术应用于电芯开发研究中。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/cd380d07-acc6-4d67-aa01-318178eaeb27.jpg" title="韩广帅_副本.png" alt="韩广帅_副本.png"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "同济大学/上海蓄熙新能源材料检测有限公司 总经理 韩广帅/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:新能源车用锂离子电池失效分析解析技术整体方案/span/strong/pp style="text-align: left text-indent: 2em "【简介】同济大学 助理研究员,上海蓄熙新能源材料检测有限公司 总经理。主要研究方向锂离子电池,电池失效分析。目前为国家质检总局缺陷产品管理中心汽车缺陷调查与鉴定专家,上海市科学技术委员会上海新能源领域技术专家,多家新能源汽车技术委员会委员。申请并授权专利10余项,发表论文10多篇。建立了完整的锂离子电池非破坏分析和非大气暴露下的破坏性分析解析研究体系。/pp style="text-align: left text-indent: 2em "【摘要】1、新能车用背景;2、锂离子电池失效逆向分析解析流程;3、锂离子电池失效正向分析解析流程。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/063e6f52-67ca-412d-8347-1aeb4bbe8d00.jpg" title="中国汽车技术研究中心有限公司-马天翼-方图_副本.jpg" alt="中国汽车技术研究中心有限公司-马天翼-方图_副本.jpg"//pp style="text-align: center " strong style="text-align: center "span style="color: rgb(0, 112, 192) "中国汽车技术研究中心有限公司 高级工程师 马天翼/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于新国标的动力电池安全性测试/span/strong/pp style="text-indent: 2em "【简介】博士,CATARC新能源部动力电池高级工程师。主要从事动力电池材料和电化学测评技术研发及标准化工作。作为课题骨干参与多项国家、省部级动力电池相关科研重大科研项目,包括国家重点研发计划“动力电池测试与评价技术”“退役动力电池异构兼容利用与智能拆解技术”,2018年天津市重点研发计划“锂电池智能化三维无损成像检测装备的开发及应用”。在电池测试分析、机理研究、模型建立等领域研究经验丰富,发表文章20余篇,其中SCI/EI论文14篇;申请和授权国家发明专利10项。作为团队核心成员入选天津市创新人才推进计划重点领域团队。/pp style="text-indent: 2em "【摘要】动力电池检测技术的提升是新能源汽车安全性的重要保障。报告介绍2020年5月新发布的动力电池安全测试强制性标准GB 38031-2020《电动汽车用动力蓄电池安全要求》的制定背景、主要内容、测试项目和试验流程,并介绍CATARC动力电池实验室的检测技术研发成果。/pp /pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: left " microsoft="" white-space:="" line-height:="" text-align:=""br//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" line-height:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(192, 0, 0) "strong style="margin: 0px padding: 0px "点击图片,报名线下参会/strong/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" text-align:=""a href="https://www.instrument.com.cn/accsi/2020/" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "img src="https://img1.17img.cn/17img/images/202008/uepic/be43346f-3150-47cc-b087-57195f4dcee9.jpg" title="accsi2020.jpg" alt="accsi2020.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% "//a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  参会联系报名/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  报告及参会报名:010-51654077-8229 15611023645李女士/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  赞助及媒体合作:010-51654077-8015 13552834693魏先生/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  微信添加accsi1或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)即可报名。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  报名链接span style="margin: 0px padding: 0px color: rgb(192, 0, 0) ":/spana href="https://www.instrument.com.cn/accsi/2020/Register.html" target="_blank" style="margin: 0px padding: 0px color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "https://www.instrument.com.cn/accsi/2020/Register.html/span/a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  会议日程查看年会官网(点击下方链接或扫描二维码)/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:="" text-indent:=""a href="https://www.instrument.com.cn/accsi/2020/" target="_blank" style="margin: 0px padding: 0px color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "https://www.instrument.com.cn/accsi/2020//span/a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" text-align:=""img src="https://img1.17img.cn/17img/images/202008/uepic/7975316b-30b7-43a2-904b-4d584f393570.jpg" title="二维码.jpg" alt="二维码.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 300px height: 300px " width="300" height="300" border="0" vspace="0"//p
  • “续航”新动力 | 助力锂电池产业升级——锂电产业一站式解决方案
    锂离子电池作为智能手机、笔记本电脑等电子电器设备,以及电动汽车、混合动力汽车等的电源,其性能的提升一直深受行业关注。日立科学仪器作为先进的技术企业,可为锂电领域的“研发”、“制造”、“品质管理”,以及当下广泛关注的“电池回收”等产业链环节,提供从仪器到零配件再到方案等全面解决方案。1. 研发(R&D):创新驱动,助力锂电池研发突破【背景介绍】国内新能源汽车产业经过几十年的发展,已经形成一定的产业规模并取得很大技术突破。动力电池作为新能源汽车核心部件,是新能源汽车产业发展的关键因素之一,动力电池综合性能的提升是重要的支撑。电池的化学性能、电性能、循环性能、安全性能、可靠性能等评价能力的迫切要求下,推动电池产业界在技术创新投入方面不断加码。日立科学仪器可以为锂电研发、制造、品质管理等提供电子显微镜、分析仪器产品与解决方案。【案例分享】浓度分析——原子吸收分光光度计ZA3000为了提高锂离子电池的性能,需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,对某些元素的检测灵敏度低, 而且使用成本较高。分析实例:正极活性物质相关分析左:正极活性物质中的组成元素摩尔比;右:原子吸收分光光度计ZA3000日立偏振塞曼原子吸收分光光度计ZA3000系列可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。分析实例:正极活性物质相关分析左:钴酸锂中的锂分析;右:钴酸锂中的钴分析分析实例:电解液(电解质)相关分析左:碳酸锂中的钠分析;右:六氟磷酸锂中的钾分析2. 制造:智能制造,提升锂电池生产效能【背景介绍】锂电是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。其生产环节需要经历多道复杂工序,这对提高生产效率、提高良品率等都提出很高的要求。同时,随着锂电产业的不断升级发展,智能制造、自动化、数字化等成为锂电制造当下的发展趋势。【案例分享1】高速检出隐藏于表面之下的微米级金属异物——X射线异物分析仪EA8000A原材料中的金属异物会使电池失效,甚至发生事故。X射线异物分析仪EA8000A具备强大的X射线异物检出能力,可以高效检出20μm级微小金属异物颗粒,并对其进行元素识别。这套异物检测系统能帮助用户提高成品率、提升锂电制造工序的效率、构建工序管理并不断改进,从而有效控制异物混入情况。X射线异物分析仪EA8000A(产品来自日立分析仪器(上海)有限公司)EA8000A在锂电领域的应用【案例分享2】成分和水分测试——自动电位滴定仪COM-A19自动电位滴定仪COM-A19可以高精度地测定氢氟酸、氢氧化锂、碳酸锂等电解液中的各种成分。锂电池电解液成分浓度测定案例左:氢氧化锂和碳酸锂的测试结果案例;右:自动电位滴定仪COM-A19对于非水相体系的锂电池材料而言,水分是一个关键指标,因为它不仅会对材料的稳定性有影响,而且可能引起一系列有害的反应。在自动滴定装置上增设“水分测定单元”,可以同时测定水分含量。另外,平沼的单室电解单元由于不需要阴极液,能够降低运行成本。锂电池原料:聚氨酯硬化剂多元醇中水分含量测定案例左:测试结果案例;右:MOICO-A19与卡式蒸发炉3. 品质管理:精准监控,确保锂电池卓越品质【背景介绍】锂电产品安全性至关重要,这决定了锂电行业对产品品控和管理的高规格要求,如何在生产环节中保证锂电产品的性能稳定性、均一性等尤为重要,精准的检测技术和分析手段此时便可以发挥重要的支撑作用。【案例分享】仅需3分钟即可观察影像——TM4000Plus IITM4000Plus II是日立台式扫描电镜系列中最新的型号。样品无需前处理,从放入样品到获得图像只需要短短几分钟。从形貌观察到元素分析,以及生成报告都可以迅速完成。尤为适合各工序的锂离子电池的品质管理。 上左:EDS颗粒分析;上右:日立台式扫描电镜TM4000Plus II;下:宽范围成分图4. 回收:环保先行,推动锂电池可持续发展【背景介绍】我国新能源汽车行业在“双碳”政策引导下进入规模化快速发展阶段。在电池需求大力拉升下,镍、锂、钴等金属价格持续上涨,,锂电回收不仅复合减污降碳的政策方向,且目前全球镍、锂、钴等原生矿产资源相对稀缺。通过对废旧动力电池的循环利用,可有效解决资源枯竭问题。如何推动锂电回收产业由规模速度型向质量效益型有序化转变已经成为当下的重要命题。【案例分享】:锂电材料综合评测—SEM和AFM联动分析SÆ Mic.是指将SEM、AFM的特点功能结合使用得到综合评价。在同一视野下,对锂离子电池正极材料进行测试。将SEM得到的成分信息和AFM的SSRM像的电气特性进行匹配,得到全面的样品信息。左:SEM-AFM联合观察SÆ Mic.;右:锂电正极材料的SEM/AFM同一视野下的测评观察锂电材料,SEM和AFM联用2023年,随着新能源汽车产业进入叠加交汇、融合发展新阶段,面对全球不断壮大的发展需求,动力电池产业进入新的发展阶段,电池的安全、可控、低碳等发展方向为对应检测技术提出越来越高的要求。日立科学仪器将在锂电解决方案的开发中不断加码,在锂电领域“研究开发”、“制造”、“检测”的价值链中,提供从仪器到零配件的高端及前沿的解决方案。携手广大客户,共同为锂电升级不断赋能。欢迎垂询日立科学仪器(北京)有限公司电话:400-898-1021邮箱:contact.us@hitachi-hightech.com 欢迎扫描下方二维码,官微更多产品内容等您来看!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 安全无小事——从刀片电池看XPS如何助力电池安全研究
    2020年3月,某新能源汽车公司一则动力电池“针刺试验”视频将锂电池的安全问题推向了风口浪尖。视频中对比了三种动力电池——三元锂电池、磷酸铁锂块状电池与刀片电池,在针刺之后,电池发生短路,三元锂电池出现明火燃烧,磷酸铁锂块状电池虽无明火,但有出现冒烟,刀片电池则无火无烟。日常生活中,锂电池在不规范使用过程中仍有可能发生短路现象,比如高功率快速充电引起自燃。 锂离子电池在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌,如果充电功率过高锂离子快速脱出并“游向”负极,锂离子可能会在表面析出形成锂枝晶,如果锂枝晶不断生长,就会从负极刺穿到隔膜,造成电池短路自燃。岛津通过最新的Axis Supra+光电子能谱仪分析了造成短路的“罪魁祸首”锂枝晶的内部成分及形貌像,我们一起来看一下!图1. Axis Supra+光电子能谱仪图2. 锂离子电池结构图 X射线光电子能谱(XPS)技术现在已经成为科研分析中的日常表征手段,通过XPS结合岛津Minibeam 6型团簇离子枪可以给出材料表面元素、价态及其随深度的变化情况,离子枪加速电压可以达到20kV,相比于10kV的加速电压,离子溅射速率提升了约20倍,使其不仅可对较软的有机材料进行刻蚀,也可对无机材料进行刻蚀,如图3是Minibeam 6型团簇枪的结构图。Axis Supra+配备了独有的“半球型分析器(HSA) +球镜型分析器(SMA)”双层分析器设置,通过独立的球镜型分析器(见图4)可以对材料表面元素进行快速的化学态成像,两种技术强强联手,对锂离子电池的电极进行了表征。图3. Minibeam 6型团簇离子枪图4. 镜像分析器原理 首先通过XPS全谱分析了电极表面的主要元素,主要存在Mg、Li、Cu、O、C及少量的F、Na、Cl、S,全谱图如图5所示,之后对材料表面进行团簇刻蚀分析。刻蚀电压选择为20kV,Ar团簇数为500,此模式下刻蚀能量大,团簇数小,可以对无机材料进行快速的刻蚀,团簇刻蚀均分到每个Ar原子的能量只有40eV,因此对材料的化学态影响较小。图6是团簇刻蚀得到的元素深度分布曲线,从图中可看出,在刻蚀到2500s时,Cu元素为主要存在元素,说明已基本刻蚀到电极表面。Li、O、Cl元素靠近样品表面,Mg元素在表面与体相的分布则比较均衡。 图5. 电极表面XPS全谱图6. 电极表面的深度剖析图 深度剖析给出了材料元素的纵向分布情况,XPS成像则可以给出表面元素的横向分布情况。如图7是材料表面元素的叠加XPS成像,红色为Cl元素,蓝色为Mg元素,可以看出表面呈枝晶状分布的Cl元素,充电时Li元素与其共同沉积在电极表面形成了枝晶,Mg则属于电极表面的元素。为了对枝晶的物种成分进行分析,对枝晶区域采集了小面积的XPS精细谱,如图8所示,高氯酸盐的存在形式表明枝晶物种成分主要为高氯酸锂。 图7. 电极表面XPS成像(红色为Cl,蓝色为Mg)图8. Cl元素的XPS精细谱结 论安全无小事,跟人们生活密切相关的电池安全更是如此,随着锂电池研究的深入,锂电池部件表界面的状态扮演着越来越重要的角色,比如锂的嵌入与脱出、SEI膜的形成机理与作用、隔膜的表面修饰等等,XPS作为表面分析中重要的研究手段,正在成为锂离子电池研究开发的利器!本例中通过Axis Supra+型光电子能谱仪对锂离子电池电极进行了分析,结合团簇剖析与XPS成像分别给出了材料表面元素纵向与横向的分布情况,对电极表面及枝晶的“化学形貌像”进行了生动的呈现! 撰稿人:王文昌
  • 上海交大汽车动力电池材料研究所正式揭牌
    7月8日,上海交通大学汽车动力电池材料研究所正式揭牌。  上海交通大学汽车动力电池材料研究所,是学校面向国家在新能源技术与电动汽车领域的重大需求,布局新兴交叉学科的基础研究,加速科技成果的转化和应用,在材料学院、化工学院的共同支持下于2009年11月成立的。  研究所在材料学院院长吴毅雄教授的大力推动下,以材料学院孔向阳教授、化工学院杨立教授领衔的学术团队,经过8个多月的建设,在人才队伍、研发平台,以及承担科研项目方面取得了很大的进展。相继成立了纳米离子学研究室,动力电池材料与技术实验室,动力电池性能评估及失效分析实验室,以及产业化联络部。
  • 超百亿市场:动力电池回收布局进行时
    p 在新能源汽车产业繁荣发展的同时,动力电池回收利用问题也已成为业内关注的焦点。无论是从环境保护还是资源最大化利用角度而言,动力电池回收利用都已是箭在弦上,而动力电池回收利用也在逐渐彰显其利用价值。国内机构预测,废旧电池所创造的回收市场规模在2018年将超过52.87亿元,2020年将超过100亿元。/pp  动力电池规模化退役时限渐行渐近。按照新能源汽车的使用周期和我国新能源汽车的市场化进程,今年将是新能源汽车动力电池大规模报废回收布局窗口。/pp  近年来,我国新能源汽车产业发展一直在稳步提升。据统计,2017年我国新能源汽车销量达77.7万辆,截至当年累计保有量约180万辆。而逐渐扩大的新能源汽车体系背后,动力电池报废回收再利用等方面的需求也随之加大。估算显示,动力电池“退役潮”今年将开始爆发,如按70%实施梯次利用计算,2020年将有约6万吨废旧电池等待处理。目前国内的动力电池主要是锂离子电池,其成分中的正极材料有可能造成重金属污染。/pp  在此背景下,我国有关动力蓄电池回收利用的政策不断出台。七部门印发《新能源汽车动力蓄电池回收利用管理暂行办法》,强调落实生产者责任延伸制度,要求汽车生产企业承担动力蓄电池回收的主体责任。随即,工信部公布的《新能源汽车动力蓄电池回收利用溯源管理暂行规定》明确,对动力蓄电池生产、销售、使用、报废、回收、利用等全过程进行信息采集。业内预测,随着相关技术的不断突破,政策发布速度将加快,预计相关标准也将在2018年发布。/pp  一边是蜂拥而至的批量报废,一边是尚处起步的新兴领域,动力电池回收将历经怎样的考验?由于体积大、成分复杂,动力电池回收再利用面临诸多限制和较高技术门槛。诚如电池类型、电池容量和电压平台均存在不小的差异,这是动力电池梯次利用面临的第一道坎,因此如何科学评估退役电池也成为决定电池“去哪儿”的第一关。同时我国没有出台动力电池的统一标准,要大范围集中利用还有困难。/pp  除了技术难题外,在多位业内人士看来,动力电池回收问题的焦点在于谁来收、怎么收及采用何种模式回收都不确定。当前倡导退役动力电池先梯次利用再报废回收的原则,并且要求整车企业作为动力电池回收主体,承担动力电池回收责任。而在回收模式上,因“退役潮”暂未大规模到来,不少企业面临盈利难题,短期内仍难实现规模效应。/pp  尽管起步艰难,前景却被业内普遍看好。甚至有机构预测,动力电池回收市场将形成百亿元新“风口”。这也是目前除了车企、电池企业、原材料回收企业,资本也大举进军该领域的原因,他们也在谋求这一领域的新机遇。迄今,新能源汽车动力电池的梯次利用和回收利用有望根据适用场景依次展开,新能源汽车产业链企业已经积极布局电池回收利用领域。/pp  其中,部分车企选择以合作的形式,联手其他公司共同推进国内动力电池回收再利用等相关事项。长安、比亚迪、银隆新能源等16家整车及电池企业与动力电池回收利用大户中国铁塔公司达成合作,解决退役动力电池回收再利用等问题。除了整车企业,电池生产企业也对此进行了积极探索,宁德时代、中航锂电、比克电池、国轩高科等企业都建立了电池回收网络,开始布局动力电池回收业务。/pp  截至目前,仅有少数车企开展了相关布局。相对于即将进入市场的报废动力电池总量来说,仍然是“杯水车薪”,总体而言,回收主体还处于缺位状态。因而,不论是市场规模还是处理技术都需要时间来完善。但业界一种普遍的观点是,控制退役电池的品质和安全是梯次利用技术的难点,必须研发相关检测技术和设备,才能准确判断退役电池能否进入梯次利用市场,并确定应用场景。/p
  • 新蓝海|动力电池迎退役期,四专家线上解读锂电回收产业发展与现状
    在“碳达峰、碳中和”双碳目标推动下,中国的新能源汽车交出了产销两旺的成绩单。新能源汽车行业的快速发展带动了动力电池及相关材料产业的快速发展。基于动力电池的生命周期,退役动力电池的回收利用将是一个非常重要的新兴领域。自2015年新能源汽车快速制造和销售开始,以5-8年的退役期限看,未来相当一段时间内,大量的动力电池将陆续进入退役期。经测算,我国锂电回收整体市场规模2022年预计为314亿元,至2030年理论可达2351亿元。锂电回收行业仍处于初期阶段,目前任是蓝海市场。此背景下,仪器信息网将联合国联汽车动力电池研究院有限责任公司共同举办第五届“锂离子电池检测技术与应用”网络会议,并特别在5月26日下午增设“锂电回收相关检测技术专场”,欢迎广大关注锂电回收产业人士免费报名线上参会。主办单位:仪器信息网 国联汽车动力电池研究院有限责任公司直播平台:仪器信息网-3i讲堂会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2023 参会方式:线上直播,免费报名参会(报名入口见会议官网)扫码免费报名1、 整体会议日程第五届“锂离子电池检测技术与应用”网络会议5月23-26日时间专场名称5月23日 全天锂电成分分析技术专场5月24日 上午锂电结构形貌分析技术专场5月24日 下午锂电粒度/表界面性能分析技术专场5月25日 上午锂电热性能分析技术专场5月25日 下午锂电安全与失效分析技术专场5月26日 上午锂电环境可靠性试验技术专场5月26日 下午锂电回收相关检测技术专场锂电回收相关检测技术专场报告嘉宾及日程【嘉宾简介】李阳,高级工程师,新能源汽车国家大数据联盟执行秘书长,中国工业节能与清洁生产协会新能源电池回收利用专业委员会执行秘书长。专注于新能源电池回收利用领域,主导搭建新能源汽车国家监测与动力蓄电池回收利用溯源综合管理平台,开展“废旧动力电池回收行业规范企业”的评定管理工作,推动建立“退役电池回收利用行业标准化工作组”,具有丰富的电池回收行业研究和咨询经验。荣获中国汽车工业科学技术进步奖三等奖1项,作为项目负责人主导科技部国家重点研发课题1项。【报告题目】动力电池回收利用产业发展及数据应用报名占 位【摘要】 从动力电池回收利用产业发展现状、行业数据分析、溯源数据应用、重点服务领域等方面,以数据应用角度剖析动力电池回收利用产业发展现状及发展制约因素,促进回收利用行业规范发展,协助构建新能源电池回收利用体系。【嘉宾简介】武双贺,中汽数据有限公司咨询研究员。长期从事新能源汽车动力蓄电池回收利用相关研究工作。参与完成工信部、全球环境基金、中汽中心等的政策分析、产业研究项目多项。开展动力蓄电池回收拆解、梯次利用、再生利用等方面产业发展及前沿技术追踪,熟悉动力蓄电池综合利用全流程要点内容,参与多项动力蓄电池回收利用行业重要政策文件编制和修订工作。【报告题目】新能源汽车动力电池回收利用技术热点分享报名占 位 【摘要】 我国动力电池回收利用产业,随着新能源汽车及动力电池产业快速发展呈现快速上升趋势,动力电池回收利用过程中不断涌现新的技术热点及难点,对检测设备及手段也不断提出新的要求,本报告围绕退役电池的快速检测分选评估、梯次产品的状态监测及安全预警、再生利用产品特定检测指标体系等行业研究热点进行梳理分析,分享未来动力电池回收利用产业检测技术发展需求。【嘉宾简介】别传玉,博士后,高级工程师,现任格林美(武汉)绿色产业创新研究院副院长兼武汉动力电池再生技术有限公司副总经理。主要从事动力电池梯次利用相关研发工作。主持湖北省中央引导地方科技发展专项,武汉市重点研发计划项目,作为项目研发骨干参与多项省部级研发项目,取得了一系列的原创性科研成果。累计在该领域申报国家专利60余项,其中发明专利40余项,在国内外期刊发表论文10余篇。报告:退役电池综合利用检测与评价技术报名占 位 【摘要】 作为国内最早从事废旧电池回收利用的企业之一,格林美在废旧动力电池高值资源化利用技术方面开展大量的工作,主要体现在三个方面:1.退役动力电池智能柔性拆解技术,主要解决退役动力电池拆解过程中多品种、小批量而引起的拆解效率低和安全风险高等问题。2.退役动力电池梯次利用关键技术,主要解决退役动力电池分选过程成本高、耗时长和电池管理过程中一致性差等问题。3.退役动力电池资源化利用关键技术,主要解决镍钴锰锂等有价金属的高效回收利用和三废的绿色处理问题。【嘉宾简介】刘春伟,比利时鲁汶大学冶金与材料学博士,曾任中国科学院过程工程研究所副研究员,现任博萃循环首席科学家。留学期间所在团队为欧洲冶金方向科学研究与产业化应用的引领者,近年来致力于有色金属二次资源循环利用的技术装备开发与产业化推广,开发了废旧锂离子电池、航空铝合金、尾气催化剂和光伏板等二次资源的综合利用技术。相关成果获中国有色金属工业协会科技进步1等奖,入选博士后国际交流引进计划国家级人才项目,获中国有色金属青年工程师称号,主持国家级项目3项和省部级/企业项目、课题等7项,在主流期刊发表学术论文20余篇,申请国际、国内专利20余项。【报告题目】锂电回收产业发展与技术现状报名占 位 2、 往届会议回顾1)第四届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc202 2 2)第三届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc202 1 3)第二届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc2020 4)第一届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc/ 3、 会议联系会议内容:杨编辑(仪器信息网)15311451191 yanglz @instrument.com.cn 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 深圳率先印发动力电池回收利用试点方案
    p  为落实《国务院办公厅关于印发生产者责任延伸制度推行方案的通知》(国办发〔2016〕99号),在发改委环资司指导下,深圳市发展改革委深入调研,积极协调,于今年3月份率先印发了《深圳市开展国家新能源汽车动力电池监管回收利用体系建设试点工作方案(2018-2020年)》,在全市范围内开展动力电池生产者责任延伸制度探索和实践。br//pp  方案提出,构建动力电池信息管理平台,建立废旧动力电池回收管理体系,建立动力电池梯级和再生利用产业体系。并在方案中明确哪些部门落实规“如何利用政策、资金对回收利用体系建设提供支持”。为支持梯级利用和再生利用产业化,鼓励梯级利用企业围绕废旧动力电池余能检测、残值评估、快速分选和重组、安全管理等共性技术研究,支持再生利用各企业有价元素高效提取、材料性修复、残余物质无害化处置等先进技术开展研发攻关。/pp  国家发改委表示,将在总结深圳试点经验的基础上,不断完善生产者责任延伸制度设计,争取尽快出台全国范围的制度实施方案。并将深圳市发展改革委印发的《深圳市开展国家新能源汽车动力电池监管回收利用体系建设试点工作方案(2018-2020年)》予以公开。/pp  2018年将会是首批新能源汽车动力蓄电池退役潮起点。据预测,2018年废旧动力电池回收市场规模可达50亿规模,到2020年,相关市场空间可达百亿级别。日前,7部委联合发布《新能源汽车动力蓄电池回收利用试点实施方案》,决定在京津冀、长三角、珠三角、中部区域等选择部分地区开展试点工作,试点实施方案将建设若干再生利用示范生产线,建设一批退役动力蓄电池高效回收、高值利用的先进示范项目,培育一批动力蓄电池回收利用标杆企业,研发推广一批动力蓄电池回收利用关键技术,发布一批动力蓄电池回收利用相关技术标准,研究提出促进动力蓄电池回收利用的政策措施。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201804/ueattachment/2ca030a4-1a76-4021-9bee-18f785e84072.pdf"深圳发文-电池监管回收利用试点方案.pdf/a/ppbr//p
  • 国家动力电池产品质量监督检验中心在襄樊筹建
    由国家质量监督检验检疫总局组织的专家组日前就国家动力电池产品质量监督检验中心的筹建情况在襄樊市调查研究。  国家动力电池产品质量监督检验中心是以湖北省蓄电池质量监督检验中心为主体建设单位,武汉理工大学、襄樊学院等四家单位协同建设。襄樊市政府拟在航空航天工业园这一项目划拨100亩土地,项目建成后将成为全国动力电池、电驱动控制系统及充电系统零部件产品的检测中心、标准中心和研发中心。项目预算总投资1.513亿元,计划年内立项,2011年到2012年一季度完成安装调试并投入试运行,2012年6月通过国家验收。  座谈会上,调研组听取了湖北省、襄樊市质量技术监督部门的情况汇报。调研组建议省市相关部门继续加大对筹建工作的支持力度,加强人才培养,不断提升中心的发展能力与水平,进一步推动襄樊乃至全国新能源汽车产业的发展。
  • 【会议通知】固态十大焦点问题解答&天目湖先进电池产业创新论坛暨固态电池研讨会
    —2月23-24日中国-溧阳—天目湖先进电池产业创新论坛暨固态电池研讨会 参会联系人史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)如申请参会请填写左方二维码 论坛信息论坛时间2023年2月23-24日论坛地点江苏溧阳天目湖豪生大酒店组织机构l 指导单位工业和信息化部产业发展促进中心溧阳市人民政府长三角物理研究中心l 主办单位江苏省溧阳高新技术产业开发区管理委员会天目湖先进储能技术研究院江苏省储能行业协会中国汽车动力电池产业创新联盟固态电池分会北京清洁能源前沿研究中心江苏省储能材料与器件产业技术创新战略联盟 l 赞助单位赛默飞世尔科技(中国)有限公司溧阳储慧智能软件科技有限公司上海微纳国际贸易有限公司林德(中国)投资有限公司康模数尔软件技术(上海)有限公司牛津仪器科技(上海)有限公司上海交通大学绍兴新能源与分子工程研究院广东光华科技股份有限公司深圳市科晶智达科技有限公司上海米开罗那机电技术有限公司天津三英精密仪器股份有限公司深圳市新威尔电子有限公司合肥科晶材料技术有限公司博亿(深圳)工业科技有限公司威格科技(苏州)股份有限公司北京并行科技股份有限公司苏州易拓联国际贸易有限公司天美仪拓实验室设备(上海)有限公司苏州越视精密仪器有限公司瑞士万通中国有限公司深圳市迪斯普设备有限公司徕卡显微系统(贸易)有限公司广东欧科空调制冷有限公司杭州蓝固新能源科技有限公司东莞市琅菱机械有限公司咸阳科源新材装备有限公司深圳市泰能新材料有限公司苏州鸿昱莱机电有限公司复纳科学仪器(上海)有限公司复阳固态储能科技(溧阳)有限公司荷兰IVIUM艾维电化学(天津德尚科技有限公司)上海荆谱若科技有限公司天目湖先进储能技术研究院中科海钠科技有限责任公司北京卫蓝新能源科技有限公司l 合作媒体environmental advances、储能科学与技术、电化学期刊、电源技术杂志、高低温特种电池、金属空气电池、锂电联盟会长、锂电新能源、锂想生活、连线新能源、纳米materials、能源学人、石墨时讯、无人机、新材料资讯、新能源情报局、新威、伊曼如歌、仪器信息网、中国颗粒学会 组织委员会名誉主席:陈立泉 执行主席:温兆银,李泓组织委员会主席:李泓委员(按姓名首字母排序):薄首行、别晓非、曹安民、曾伟国、陈立桅、崔光磊、郜明文、关敬党、金東規、李泓、李晶泽、刘敏、刘张波、陆浩、史冬梅、王建涛、王尊志、尉海军、吴凡、夏晖、徐吉静、许晓雄、阳如坤、杨全红、姚霞银、易昊昊、赵伟、周伟东报告日程 固态十大焦点问题圆桌讨论期间邀请资深专家进行解答1、全固态锂电池相对于液态锂离子电池,是否有足够的的不可替代的优势,它的出现能否更好的解决安全性问题和里程焦虑?2、适合固态电池的电芯构型是什么?圆柱、软包和方壳?制造工艺选择叠片还是卷绕?制备极片选择干法还是湿法?3、有报道称,LG放弃全固态,这是否意味着全固态电池商业化短期内看不到希望?中国能否后发先至?4、原位固态化技术的意义和优势是什么?其主要难点和挑战在哪?5、为克服锂资源瓶颈,发展固态钠离子电池是否可行?固态钠离子电池相比于固态锂离子电池,可能有哪些优势和不足?6、硫化物全固态电池量产必须引入哪些新的制备技术和装备,大规模制造有哪些挑战?制造成本是否可以接受?7、目前硫化物全固态电池能量密度最高达到什么水平?循环性能达到什么水平,室温倍率特性如何?关键性能指标距离动力电池应用需求还有多大距离?8、固态电池技术在大规模储能市场的应用前景如何?是否有必要开始布局?哪些材料体系需要重点布局?9、目前混合固液电池技术在能量密度、安全性、循环寿命方面达到了什么水平?是否存在技术指标的天花板,是否是全固态电池的过渡技术?10、固态锂硫电池具备高能量密度、低成本和解决多硫离子穿梭问题的可能,目前还有哪些技术影响其量产? 赞助单位 参会单位 报名参会和住宿预订01参会费用如申请参会请填写左方二维码*注:1、参会费用包含:论坛注册费、餐费(含晚宴)、茶歇、资料费等,不包含酒店住宿费用。2、由于酒店餐饮容纳人员有限,超出部分用餐自理,敬请谅解。02缴费付款方式:银行转账公司名称:溧阳深水科技咨询有限公司地 址:江苏省溧阳市昆仑街道上上路87号(江苏中关村创智园1号楼)电 话:0519-87300136开 户 行:建设银行溧阳燕山路支行账 号:32050162634800000124付款请注明:“固态电池+姓名”,并将付款凭证保留,便于报到时查验。缴费成功后,请保持手机畅通,会务组会尽快与您联系,感谢您的支持!03住宿会务组在天目湖豪生大酒店以优惠价格为本次会议联系了一定数量的房间,参会人员可享受会议优惠价,鉴于会议规模,房间数量有限,先到先得。请各位嘉宾及时与工作人员联系确认,以免错过优惠价,费用自理。 会议联系人会务组邮箱ties-conference@aesit.com.cn联系电话史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制