当前位置: 仪器信息网 > 行业主题 > >

低噪声高功率放大器

仪器信息网低噪声高功率放大器专题为您提供2024年最新低噪声高功率放大器价格报价、厂家品牌的相关信息, 包括低噪声高功率放大器参数、型号等,不管是国产,还是进口品牌的低噪声高功率放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低噪声高功率放大器相关的耗材配件、试剂标物,还有低噪声高功率放大器相关的最新资讯、资料,以及低噪声高功率放大器相关的解决方案。

低噪声高功率放大器相关的方案

  • 平均功率5瓦,载波包络相位(carrier envelope phase, CEP)稳定的,光学参量啁秋放大器系统,可输出5.5TW峰值功率,重复频率1kHz
    采用Ekspla UAB 公司特别设计的半导体泵浦的固体Nd:YAG皮秒激光器,构建了一套平均功率5瓦,载波包络相位(carrier envelope phase, CEP)稳定的,光学参量啁秋放大器系统,可输出5.5TW峰值功率,重复频率1kHz。
  • FLCE 百伏兆赫兹级电压放大器解决方案
    本方案能用户挑剔的高频高电压放大功能,放大器的输出频段和电压范围在国际上是独有的。放大器性能涵盖电压范围70Vpp~1500Vpp,直流~5Mhz频带,输出电流60mA~2A。放大倍数固定/可调,单通道/双通道/双通道联用,支持0~10V之间的输入电压,支持电阻性|电容性负载,适用诸多尖端科研实验。FLCE源发自铁电液晶发现者,瑞典查尔姆斯理工大学。凭借秉承的精良技术,使得FLCE放大器拥有优异的电性能输出。
  • 如何“听见”光的声音?国仪量子锁相放大器在光声光谱中的应用
    在光声光谱测量中,从微音器采集到的信号需要通过一个前置放大器放大,再通过锁相放大器锁定我们需要的频率信号,这样才能探测到较高信噪比的光声光谱信号,从而对样品的性质进行测量。国仪量子基于在量子精密测量领域深厚的技术积累和出色的产品工程化能力,推出了一系列的微弱信号检测仪器,数字锁相放大器LIA001M就是其中之一,它在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。
  • inTEST 热流仪 RF 射频芯片高低温冲击测试
    射频芯片 RF chip 主要为手机等移动终端设备提供无线电磁波信号的发送和接收, 是进行蜂窝网络连接, Wi-Fi, 蓝牙, GPS 等无线通信功能所必需的核心模块. 全球射频市场处在一个高速发展的时代, 芯片和系统制造商需要相应的测试系统, 以确保射频芯片性能和合规性. 近日, 国内某射频功率放大器制造企业通过上海伯东推荐, 购入美国 ThermoStream ATS-710 高低温冲击测试机, 给射频芯片提供 -80 至 +225 °C 快速精准的外部温度环境, 满足测试芯片性能的要求.
  • 300UL型电脑微波超声波组合催化合成/萃取仪相关应用研究论文
    微波、超声波、紫外光模式可单一使用,亦可组合使用,多种工作模式可选,用户多,发表论文多。仪器具有微波、超声波、紫外光波三种模式。大功率侵入式超声波换能器可以在300℃以下的环境中工作,频率为25kHz,任意脉冲工作方式可调,应用单片机控制技术和锁相环频率自动跟踪,使超声波功率放大器与换能器的振荡频率经相位取样使锁相环实现频率自动跟踪。超声波功率检测和温度测量电路使单片机实现超声波发射功率超限自动调整和超温保护及报警功能。保证超声换能器能实时的共振,保证高效的超声转化效率。机器采用高精度传感器进行快速实时测温,当达到预设温度将自动改变超声波模式,很好的避免了因为超声波自身发热而不能控制反应物温度的问题。仪器具有紫外光辐照强度的测量显示,为科研提供科学有效的数据。良好的人机交互界面,您可轻松定制不同的实验方案。LCD全程显示实验进程,实验中可随时修改参数,使您的实验过程更加简单,实验结果更加理想。开放式反应体系,可安装滴液漏斗和冷凝管等进行回流反应。微波合成模式时可提供不同速度的磁力搅拌,使反应更加充分,温度更加均匀。
  • C波段EDFA光纤放大器系统技术方案 - 筱晓光子
    EDFA采用掺铒离子光纤作为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。铒离子有三个能级,在未受任何光激励的情况下,处在最低能级E1上,当用泵浦光源的激光不断激发光纤时,处于基态的粒子获得能量就会向高能级跃迁。如由E1跃迁至E3,由于粒子在E3 这个高能级上是不稳定的,它将迅速以无辐射跃迁过程落到亚稳态E2 上。在该能级上,相对来讲粒子有较长的存活寿命,此时,由于泵浦光源不断的激发,则E2能级上的粒子数就不断的增加,而E1能级上的粒子数就减少,这样,在掺铒光纤中实现了粒子数反转分布,就具备了实现光放大的条件。当输入信号光子能量E=hf正好等于E2和E1 的能级差时,即E2-E1=hf,则亚稳态上的粒子将以受激辐射的形式跃迁到基态E1上,并辐射处和输入信号中的光子一样的全同光子,从而大大加大了光子数量,使得输入光信号在掺铒光纤中变为一个强的输出光信号,实现 了对光信号的直接放大。
  • L波段EDFA掺铒光纤放大器系统技术方案 - 筱晓光子
    EDFA采用掺铒离子光纤作为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。铒离子有三个能级,在未受任何光激励的情况下,处在最低能级E1上,当用泵浦光源的激光不断激发光纤时,处于基态的粒子获得能量就会向高能级跃迁。如由E1跃迁至E3,由于粒子在E3 这个高能级上是不稳定的,它将迅速以无辐射跃迁过程落到亚稳态E2 上。在该能级上,相对来讲粒子有较长的存活寿命,此时,由于泵浦光源不断的激发,则E2能级上的粒子数就不断的增加,而E1能级上的粒子数就减少,这样,在掺铒光纤中实现了粒子数反转分布,就具备了实现光放大的条件。当输入信号光子能量E=hf正好等于E2和E1 的能级差时,即E2-E1=hf,则亚稳态上的粒子将以受激辐射的形式跃迁到基态E1上,并辐射处和输入信号中的光子一样的全同光子,从而大大加大了光子数量,使得输入光信号在掺铒光纤中变为一个强的输出光信号,实现 了对光信号的直接放大。
  • 差示扫描量热仪的实验过程
    差示扫描量热仪DSC是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术。根据测量方法的不同,又分为功率补偿型DSC和热流型DSC两种类型。常用的功率补偿DSC是在程序控温下,使试样和参比物的温度相等,测量每单位时间输给两者的热能功率差与温度的关系的一种方法。DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化的关系。
  • Vescent SLICE-QTC温控器在大型热负载的具体应用
    SLICE-QTC温度控制器是Vescent Photonics研发的新品,在锥形放大器、二极管控温、TEC或加热薄膜亚mK级别控温等领域有着广泛的应用。它拥有四个独立的PID伺服回路滤波通道,可以同时控制多达四个热负载,在长时间内始终保持着亚mK级别的高稳定性。每个通道提供20W的功率(总共最多分配40W)。本文以客户实际使用SLICE-QTC单通道基于加热薄膜稳定大型热负载为例,展示它伺服回路的能力。
  • 高稳定性、低噪声飞秒激光器用于时间分发
    高稳定性的时间信号分发对于大科学装置(如粒子加速器等)基础设施有非常重要的意义。未来加速器对于稳定时基的要求将会越来越高。基于自由电子激光的新一代高亮度超快X射线光源通常要求其分配到加速器和激光系统的射频信号具备10飞秒以下的时间精度。
  • 高功率大能量纳秒固体激光器典型应用
    啁啾脉冲放大(Chirped Pulse Amplification, CPA)技术是产生超短脉冲、超高峰值功率激光的一种技术。作为商品化TW - PW 飞秒激光器制造商,Amplitude在钛宝石泵浦领域具备多年的经验和技术。
  • 利用空间无烧孔增益的本质稳定高功率单纵模激光器
    激光器的一个基本优势是能够在单个光学模式中产生大量光子,但由于称为空间空穴燃烧的不稳定性机制,这只能在一小部分设备中实现。在这里,我们利用受激散射增益介质的空间无空穴燃烧特性,在普通驻波腔中演示了单纵模(SLM)操作。在不使用额外的模式选择元件的情况下,展示了具有多瓦特电平输出功率和80MHz频率稳定性的连续波金刚石拉曼振荡器。通过考虑斯托克斯功率与增益介质中热引起的光程长度变化的耦合,来解决模式稳定性问题。该结果预示着一种新的方法可以极大地扩展SLM激光源的功率和波长范围,并具有在强度噪声和亚肖洛-汤森线宽中实现亚泊松的潜在优势。
  • 垂直轴流风机扩散放大器性能的实验研究
    The performance of a vertical axis wind turbine with and without a diffuser was studiedusing direct force measurement technique applied to a scaled model of the rotor in awater tunnel. The experiment was conducted at different tip-speed ratios. The maximumpower coefficient for the turbine was found to be equal to 0.35 for the rotor with diffuserand to 0.26 for the rotor without diffuser. Therefore, the maximum power coefficient wasincreased by 35% when the diffuser was used in the configuration.In the second part of this work, the flow patterns downstream of the turbine werestudied by the particle image velocimetry (PIV) technique. Six different tip-speed ratioswere considered for each configuration (with and without a diffuser). The vorticity andthe streamline plots provide insight into the flow physics in each configuration. Inaddition, the swept area of a full-scale rotor was calculated for both a diffuser-augmentedand a bare turbine for a range of power outputs.
  • 微量样品中 U 同位素 MC-ICP-MS 测定研究进展
    在核鉴定,核安全和环境应用方面,对铀同位素比值测定因样品之间的同位素差异大,234U和236U的丰度低而具有极大挑战性。在某些应用领域,U含量较少,可以在较低 U 含量下进行工作,并且可以防护。样品引入系统与检测系统的发展使得 MC-ICP-MS 以更高精度分析微量样品成为可能。在此,我们对Elemental Scientifc apex ? 去溶系统、microFAST MC 双环进样流动注射系统以及 Thermo Scientifc NEPTUNE Plus MC-ICP-MS 系统的组合进行评价。该进样系统可以高效处理微量的样品,高效溶剂去除可以极大限度地减少氢化物对236U的干扰。ICP 高效的采样效率通过使用热电公司采样锥实现。热电公司 1013Ω 放大器技术可以实现小离子束更高精度的测量并提供高信噪比和在很宽的线性范围(1 Kcps-30Mcps)内稳定的信号输出。对于纳克量级的低浓缩铀和贫化铀标准,235U 通过 1013Ω 方法技术检测。微量同位素 (234U、236U) 通过具有 RPQ 滤质透镜的 SEM 离子计数器进行检测。对于大约 20 ng 的样品量的样品,微量同位素利用 1013Ω 放大器检测,235U 利用标准的 1011Ω 的放大器检测。为了说明该装置的应用,我们分析了一组环境粒子,使用三个同位素比值作图进行溯源,结果更为可靠。
  • 突破扫描电镜景深极限
    扫描电镜作为一种基础显微成像工具,因具有超高的放大能力,从而被高校、科研院所、材料研发和质量分析部门广泛用于研发、生产过程。相比于光学放大器件,扫描电子显微镜使用电子束进行成像,放大、分辨能力比光学显微镜有非常大的提升。
  • 气相色谱仪噪声过大解决办法
    气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。
  • 采用平面激光诱导荧光方法进行CO氧化过程中Pd(110)催化剂的实时气相成像
    采用Ekspla公司的PL2143C型皮秒激光器经过APL70-1100型放大器放大,用其355nm紫外输出泵浦皮秒光学参量发生器(PG401-P80-SH)产生230nm附近可调谐输出来激发CO的激光诱导荧光(LIF)光谱.
  • 多参数监护仪的基本原理
    多参数监护仪的基本原理 监护仪功能各异, 其具体工作原理也不同,但一般都是通过传感器感应各种生理变化,然后放大器会把信息强化,再转换成电信息,这时数据分析软件就会对数据进行计算,分析和编辑,最后在显示屏中的各个功能模块显示出来,或根据需要记录,打印下来,当监测的数据超出设定的指标时,就会激发警报系统,发出信号引起医护人员的注意。硬件构成测量服务器(包括生理感受器(即传感器),信号放大器,数据模拟处理,数据分析处理,数据输出接口等。)数据分析及记录和警报系统
  • 岛津红外显微镜AIM-9000定性分析医药包材的多层膜的材质
    岛津秉承50多年以来的红外光谱技术底蕴,十年磨一剑,最新推出了新一代旗舰级红外显微镜AIM-9000。AIM-9000有目前业内最高信噪比30000:1的灵敏度指标,可对微小样品得到高灵敏度、低噪声的光谱图。观察、定义测量位置、测量、鉴别结果,红外显微分析所需的全部操作都能自动执行,并提供高灵敏度结果。大视野相机(可选,业内唯一可视图像330X直接放大)和显微镜相机实现从目视尺寸(10x13 mm)到显微异物尺寸(30x40 μ m)的连续放大,使得异物更加容易辨别被确认。测量位置自动识别功能,自动设定各个待测点的光阑参数,所有点的测量顺序自动完成,显著缩短操作时间。
  • 理加联合:高纬苔原结冻期会释放大量的甲烷
    2008年12月4日,著名的Nature杂志刊登了一个惊人的研究成果,苔原结冻期会释放大量的甲烷。 做为国际极地项目的一部分,科学家在格陵兰岛的东北部进行了一年的测量,结果发现苔原带在秋季解冻期会释放出甲烷。一般情况下在生长季结束后,科学家就会结束数据收集,这样就不会发现这一现象。“如果不是测量数据是如此的坚实,测量方法是这样的仔细严谨,那么可能没有人会相信会有这样的甲烷排放现象。”Lund大学的Torben Christensen说:“用一种经典的基础研究方法,发现了一个令人惊讶的结果。这种现象本来是非常常见的,但是此前没有针对苔原带气候可行的方法,包括适当的技术和高测量频率的仪器来发现这一现象。”湿地排放是温室气体――甲烷最大的甲烷源。在高纬度地区,大气甲烷浓度在晚秋会有一个比较稳定高平台期现象,但是原因并不是很清楚。Christensen和来自哥本哈根大学,奥尔胡斯大学,NOAA的地球系统研究实验室,SRON 荷兰,Utreche大学的合作者使用激光甲烷分析仪(FMA, LGR)结合自动呼吸室在Zackenberg山谷进行测量,得到这个惊人的结果。科学家发现甲烷排放在生长季后期会降低,但是在开始结冻的时候,排放量有明显的增加,并且持续了几个星期,直到土壤和根区完全结冻。研究者推测,可能是由于在土壤活性层的甲烷被结冻挤压出去。相对而言,在更低纬度地区,由于缺少这样的严寒,使得甲烷向下扩散。秋季的甲烷通量在空间分布上变化很大,大概是因为泥炭和植被结构的不同,造成的不同的甲烷排放的途径。结冻期的排放也比夏季排放变化大,峰值达到112.5mg/m2/hr,是已有最高的苔原排放速率(除了thermokarst湖的热区)。而在整个夏季,总体释放量大约有4.5g/m2。|用秋季释放数据,带入大气扩散模型计算,结果更吻合大气甲烷季节动态的实测值。“如果这个现象是一般性现象,那研究发现能帮助我们理解北方高纬度地区是甲烷是如何排放到大气中的,甲烷浓度季节动态也可以得到更好的解释。”Christensen说:“但是要想揭示这个现象对于气候变化的影响,还有更好的了解自然系统是怎样工作的。通过这个现象,我们可以更好的理解北冰洋周边地区的永久冻土带融化,在这些地区甲烷排放变化可能对气候产生反馈效果。”研究者认为在类似环境中,不可能不存在这样的情况。对所有wet-meadow苔原带,都应用在Zackenberg测量数据进行计算。我们发现在原本我们认为排放不活跃期,会有一个4Tg的甲烷排放量。“这并没有显著的增加北方高纬度地区甲烷排放量,但是这修正了我们对于已知排放总量季节分配的观点。”研究者最近在Nature上发表了一篇letter,表达了这样的观点。目前研究团队正在调查排放的机理,同时通过野外研究和实验室研究。“但是最关键的问题是确保Zackenberg试验站能每年都能开放更长的时间”,Christensen说,“我们相信在春季和秋季的研究会揭开这些问题的谜底,所以我们需要一个长期开放的试验站供我们进行这令人兴奋的观察,至少也应该是从4月到11月。”
  • 利用光学隔离器消除激光模块早期故障
    拉曼光谱和成像是在研究和工业环境中询问样品的强大方法,适用于从质量控制(QC)到鉴定多晶型物,再到活细胞的无标记成像,以及化学过程监测应用。这是因为拉曼效应产生的光谱解析化学指纹数据类似于傅立叶变换红外(FTIR),但使用的是可见光和近红外波长的光,这些光可以通过玻璃纤维、透镜传输到水性样品中。随着三种技术的融合,准确测量拉曼光谱所需的工具完全改变了,这三种技术使紧凑的自给式光谱仪和显微镜成为可能。这三种技术是紧凑型高功率窄线宽半导体和固态激光器、消除相对强烈(Rayleigh)散射激光的全息和陡边长通滤波器,以及低噪声多元件光电探测器和相机。
  • 建筑施工噪声污染排放监测预警系统、符合建筑施工噪声监测国标、多场景解决方案
    一、方案背景 近几年来,我国城市规模的不断扩大,城市化进程的加剧,随着城市建设的深入开展,建筑施工噪声造成的污染越来越严重,致使扰民事件的不断发生,对周围人群的生活环境造成了一定的影响。对于建筑工地的施工,大致可分为土石方阶段、打桩阶段、结构阶段、装修阶段等四个部分,但由于近几年我国的建筑施工技术和施工效率的提高,各阶段的施工区分不是很明显,甚至各个阶段混合施工。 同时各个阶段的施工的主要噪声源各不相同,所以,建筑施工带来的噪声及噪声造成的影响程度和影响范围也不相同。同时,由于施工单位的管理责任意识不足,为了注重工程的施工进度,无法按照建筑施工标准进行合理安全的施工。在建筑施工的土石方阶段和对一些建筑物拆除过程中,一般使用的施工机械有挖掘机、装载机、推土机和运输车辆等机械设备,这些移动性的机械设备是土石方阶段的噪声的主要来源,这对建筑工地周围的人群正常生产生活带来了较大影响。 同时,各种大型的运输车辆的移动范围比较大,产生的噪音相对较少,但其噪声影响的范围比较广。而推土机和挖掘机等机械设备工作范围较小,但其发出的噪音大,对周围的影响较大。根据现场试验测量,在建筑施工的土石方阶段,所使用的施工机械运作的噪声源的声功率级范围一般在100~120dB(A),而且其声源是无明显指向性的。在基础施工阶段,建筑施工场地的噪声源一般是各种打桩机、一些打井机、风镐和移动式空压机等机械设备。该施工阶段的噪声源大都是固定的声源,其中最主要的是打桩机噪声,虽然此阶段的施工周期比较短,但是建筑施工的噪声较大,噪声污染很严重。 因此,为防治建筑施工的噪声污染,改善声环境质量,我国制定有《建筑施工厂界环境噪声排放标准》(GB 12523-2011),对于建筑施工噪声的排放有了明确的要求。
  • 液滴撞击覆盖LB(Langmuir-Blodgett)膜表面的动力学
    采用Ekspla由30皮秒20赫兹30毫焦激光器,皮秒光学参量振荡放大器PG401和参量差频器构成的振动和频光谱(SFG)测量系统,对液滴撞击覆盖LB(Langmuir-Blodgett)膜表面的动力学过程进行了研究和分析
  • 石墨炉原子吸收光谱法测定生活饮用水中Tl的定量限
    本仪器具有低噪声,高信背比,稳定性好,灵敏度高,检出限是同类仪器最低的,本方法测试生活饮用水的定量下限是0.005或0.01ug/L.
  • 离子色谱法测定有组织排放废气硫酸雾采样
    崂应1083A型 硫酸雾多功能取样管采用整体钛合金加硼硅酸玻璃材质,钛材质本身更加耐腐蚀,相比不锈钢材质也更轻便,使用寿命更长,硼硅酸玻璃材质本身对样品无污染,此外该取样管也可以根据HJ/T-67-2001标准完成氟化物的采样,崂应3012H-D型便携式大流量低浓度烟尘自动测试仪,配备自护研发的高负载、低噪声、大流量采样泵,空载流量达到100L/min,负载20KPa时流量不小于60L/min,可完成一些负压大负载高的工况,具备制造计量器具许可证书,流速、烟尘、大气压等参数可同时监测,让您可以放心的更好的完成采样,如果您已经有我们的崂应3012H 新08代仪器,在流速相对较低,负压不高的污染源工况,崂应3012H 新08代同样可以配崂应1083A完成采样任务。
  • 积分球 精确测量大功率激光器功率
    弥补热电堆和光电二极管测量激光功率缺陷,实现大功率激光器功率精确快速测量。 采用积分球-光纤-光功率计整体校准,组成全新的功率检测系统。由积分球和光电二极管组合成的传感器呈现出了一个几近完美的激光功率测量传感器。对于高功率激光器的测量,该组合可以让操作者看到热电堆探测器无法捕捉到的激光功率波动。这些波动包括:CW模式运行其间波动,启动激光器时的瞬态和过冲波动,以及运行其间的短时下降波动。
  • 利用飞秒激光器产生精密微波
    锁模激光产生的超低位相噪声脉冲提供一种产生具备亚飞秒(RMS)时间抖动的射频或微波信号的便利途径,比超低噪声石英晶振的位相噪声低几个数量级。另一方面,制冷的宝石晶振需要一个庞大的制冷系统,其复杂性限制了它在很多场合的应用。近年出现的新型的、基于光学频率梳的超低噪声微波信号源可以实现极高的位相稳定性和低位相噪声,这种设备的安装、维护技术却过于困难而且昂贵
  • 医院环境噪声自动监测综合管控解决方案
    在医院公共场所开放区域建设噪声自动监测系统,通过物联网技术与现场端仪器仪表进行互联互通,完成对医院环境噪声数据实时采集,并对采集数据统计分析,计算噪声值,是一种简易型的户外噪声自动监测系统,它由数据显示大屏、噪声传感器、数据采集统计分析软件、无线传输模块、服务器云平台软件、微信客户端等部分组成。 噪声计测量范围大、功能强稳定性好、可实现远程视频监控、远程广播喊话等功能。可广泛应用于医院各功能区噪声监测。其采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽、无需量程转换等优点。产品款式外观多种选择,充分考虑不同的应用场合进行安装使用。 一级噪声在线监测系统,符合GB/T3785-20101级、GB/T3241-20101级标准。相比二级声级计,一级声级计范围更宽、精度更高、温度范围更大。对精度要求高时,应用一级声级计;如果测量的声音频率很高时,也应用一级声级计。另外,一级声级计的本机噪声更低,测量下限也更低,GB12348、GB22337等国家标准中均要求,当测量的噪声小于35dB时,应用1级声级计。该配置适用于国标法标准功能区噪声监测系统的建设,如区域声环境监测、功能区声环境监测、城市声环境监测等。可监测各小时的等效声级计、累积百分声级、最大值、最小值、标准差等,计测量范围超大,功能强,稳定性好。
  • 奥斯恩|工业噪声纳入排污许可管理之工业企业噪声监测系统
    工业企业噪声在线监测系统,通过物联网技术与现场端仪器仪表进行互联互通,完成对环境噪声数据实时采集,并对采集数据统计分析,计算噪声值,是一种简易型的户外噪声自动监测系统,它由数据显示大屏、噪声传感器、数据采集统计分析软件、GPRS无线传输模块、服务器云平台软件、微信客户端等部分组成。噪声计测量范围大、功能强稳定性好、可实现远程视频监控、远程广播喊话等功能。广泛应用于工业企业噪声监测。其采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽、无需量程转换等优点。
  • 城市交通轨道噪声污染自动检测管控系统方案
    道路交通噪声监测系统是一款用于评估与实时记录道路交通噪声水平的技术装置。系统功能强,集成度高,方案灵活,采用了声学传感器和数据分析技术,提供准确的噪声水平测量结果,并能够识别噪声污染的趋势和模式,可扩展气象要素、声源定位、鸣笛抓拍、人流量、车流量、视频监控,适用于城市快速路、城市主干路、城市次干路、含轨道交通走廊的道路及穿过城市的高速公路等应用场景。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制