当前位置: 仪器信息网 > 行业主题 > >

低温扫描霍尔显微镜

仪器信息网低温扫描霍尔显微镜专题为您提供2024年最新低温扫描霍尔显微镜价格报价、厂家品牌的相关信息, 包括低温扫描霍尔显微镜参数、型号等,不管是国产,还是进口品牌的低温扫描霍尔显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低温扫描霍尔显微镜相关的耗材配件、试剂标物,还有低温扫描霍尔显微镜相关的最新资讯、资料,以及低温扫描霍尔显微镜相关的解决方案。

低温扫描霍尔显微镜相关的仪器

  • 技术参数:1. Temperature control From room degree to 80 温度控制: 室温 到80度 2. Data length 16 bits, all channels 传输数据长度: 16位,所有通道 3. Image pixel resolution Up to 1024×1024 图像像素分辨率: 最大1024×1024 4. Scan range 90μmwith large scanner 扫描范围: 最大90μm 5. Resolution Mica atomic resolution or graphite atomic resolution 分辨率: 云母原子,或石墨原子 6. Noise lever Vertical, less than 0.1 Å RMS Lateral, less than 1Å RMS 噪音: 垂直方向,少于0.1Å RMS 水平方向,少于1Å RMS 主要特点:安捷伦5500ILM 可与国际上各个倒置显微镜、荧光显微镜厂商的主流型号进行联用,为生命科学等领域的用户提供最理想的显微手段。高分辨AFM直接放置在光学显微镜上,您既可原位地、实时地获取AFM图像,又可同时采集荧光图像等,真正帮您实现各种显微手段的有机组合。AFM位于倒置显微部分的上方同时又处于倒置显微镜光源的下方,因此既能提供高分辨的AFM图像又能提供高衬度的光学图像,这是生命科学领域用户最心仪的显微解决方案,同时还能实现FRET、暗场和明场成像等。优势1,AFM和光学(荧光)显微镜同时成像,2,上置光源和倒置光源均能获高衬度光学图像3,独特的生物活体成像模式,4,可直接对培养皿中的样品成像,5,独特的上部扫描设计使制样极为方便,6, 真正模块化设计,大大提高了系统的灵活性
    留言咨询
  • 低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM系统 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从低温、强磁场到室温。attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。低温强磁场磁力显微镜 - attoMFM I系统 attoMFM I采用紧凑设计,其主要用于低温和低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现高的空间分辨率(10.7nm,如下图)。attoMFM I特点与技术优势+ 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置 + 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量+ 超导、磁畴、材料科学研究attoMFM I技术参数+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛) + MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。attoSHPM特点与技术优势+ 可升到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 其紧凑和可靠SHPM扫描头设计+ 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式 + 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量+ 超导、磁畴、材料科学研究attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛) + SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围应用案例:PPMS-MFM vortex测量高分辨磁畴测量315mK下vortex测量300mK下SHPM测量AFM在脉冲管制冷机中使用300mK-9T下AFM/STM测量
    留言咨询
  • 产品详情德国Attocube低温强磁场原子力/磁力/扫描霍尔显微镜attoAFM/attoMFM/attoSHPM 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从极低温、强磁场到室温。 attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。 attoMFM I采用紧凑设计,其主要用于低温和极低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现极高的空间分辨率(10.7nm,如下图)。 attoMFM I特点与技术优势 + 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升级到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM极高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoMFM I技术参数 + 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+ MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm 低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和极低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。 attoSHPM特点与技术优势+ 可升级到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM + 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠SHPM扫描头设计 + 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围
    留言咨询
  • 德国Attocube低温强磁场原子力/磁力/扫描霍尔显微镜 attoAFM/attoMFM/attoSHPM 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从极低温、强磁场到室温。 attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。 低温强磁场磁力显微镜 - attoMFM I 系统 attoMFM I采用紧凑设计,其主要用于低温和极低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现极高的空间分辨率(10.7nm,如下图)。 attoMFM I特点与技术优势 + 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升级到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM极高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoMFM I技术参数 + 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+ MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm 低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和极低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。 attoSHPM特点与技术优势+ 可升级到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM + 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠SHPM扫描头设计 + 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围
    留言咨询
  • 德国Attocube Systems AG公司成立于2002年,作为纳米科学领域年轻的仪器供应商,Attocube Systems AG以其掌握的纳米精度定位成果和强大的技术实力,在短短的几年中研制开发了低震动无液氦磁体与恒温器、多种低温磁场下工作的扫描探针显微镜、端环境应用纳米精度位移器、皮米精度位移激光干涉器等系列产品,深受用户赞誉。自成立以来,Attocube Systems AG已经获得了许多荣誉,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 00 Innovation Award 2013 等。 无液氦低温强磁场扫描探针显微镜德国attocube公司推出的attoDRY Lab系列无液氦低温强磁场扫描探针显微镜系统基于attoDRY系列无液氦强磁场超低震动恒温器和多种扫描探针显微镜插件,特别适应于低温光学实验、扫描探针显微镜等应用,产品优异的稳定性为超高分辨率的表面表征研究奠定了坚实的基础。不止于此,产品还早集成了简单易用的触摸屏控制系统以方便自由控制温度大小与磁场强度的商业化恒温器。扫描探针显微镜插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、导电力、压电力显微镜;attoCFM共聚焦显微镜;Raman与光致发光谱;atto3DR双轴旋转平台等。参数与技术特点: + 无液氦,闭路可循环系统+ 特设计,超低震动(0.12 nm RMS)+ 温度范围:1.5 K...300 K 或 4 K...300 K+ 磁场强度:高可达15T + 多功能测量平台:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN+ 超高温度稳定性+ 全自动控制,触摸屏控制 + 快速冷却:1-2小时样品冷却相关阅读:1、无液氦低温强磁场共聚焦显微镜 - attoCFM2、低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM3、磁共振显微镜/低温强磁场磁共振显微镜 - attoCSFM4、低震动无液氦磁体与恒温器 - attoDRY系列5、atto3DR低温双轴旋转台部分发表文献:1. Chaoyang Lu et.al, Coherently driving a single quantum two-level system with dichromatic laser pulses, Nature Physics, 15,941-945,(2019)2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-7347. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-131411. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260.12. Yang, W. et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.13. Surajit Saha et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.14. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotechnology 2015, 10, 497-502.15. Nazin, G. et al. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010, 6, 870-874.16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303.29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.部分用户列表 attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......北京大学清华大学中国科技大学南京大学中科院物理所中科院半导体所中科院武汉数学物理所上海同步辐射中心中科院上海应用技术物理研究所北京理工大学复旦大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……
    留言咨询
  • 德国Attocube Systems AG公司成立于2002年,作为纳米科学领域年轻的仪器供应商,Attocube Systems AG以其掌握的纳米精度定位成果和强大的技术实力,在短短的几年中研制开发了低震动无液氦磁体与恒温器、多种低温磁场下工作的扫描探针显微镜、端环境应用纳米精度位移器、皮米精度位移激光干涉器等系列产品,深受用户赞誉。自成立以来,Attocube Systems AG已经获得了许多荣誉,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 00 Innovation Award 2013 等。 无液氦低温强磁场扫描探针显微镜德国attocube公司推出的attoDRY Lab系列无液氦低温强磁场扫描探针显微镜系统基于attoDRY系列无液氦强磁场超低震动恒温器和多种扫描探针显微镜插件,特别适应于低温光学实验、扫描探针显微镜等应用,产品优异的稳定性为超高分辨率的表面表征研究奠定了坚实的基础。不止于此,产品还早集成了简单易用的触摸屏控制系统以方便自由控制温度大小与磁场强度的商业化恒温器。扫描探针显微镜插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、导电力、压电力显微镜;attoCFM共聚焦显微镜;Raman与光致发光谱;atto3DR双轴旋转平台等。参数与技术特点: + 无液氦,闭路可循环系统+ 特设计,超低震动(0.12 nm RMS)+ 温度范围:1.5 K...300 K 或 4 K...300 K+ 磁场强度:高可达15T + 多功能测量平台:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN+ 超高温度稳定性+ 全自动控制,触摸屏控制 + 快速冷却:1-2小时样品冷却相关阅读:1、无液氦低温强磁场共聚焦显微镜 - attoCFM2、低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM3、磁共振显微镜/低温强磁场磁共振显微镜 - attoCSFM4、低震动无液氦磁体与恒温器 - attoDRY系列5、atto3DR低温双轴旋转台部分发表文献:1. Chaoyang Lu et.al, Coherently driving a single quantum two-level system with dichromatic laser pulses, Nature Physics, 15,941-945,(2019)2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-7347. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-131411. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260.12. Yang, W. et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.13. Surajit Saha et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.14. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotechnology 2015, 10, 497-502.15. Nazin, G. et al. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010, 6, 870-874.16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303.29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.部分用户列表 attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......北京大学清华大学中国科技大学南京大学中科院物理所中科院半导体所中科院武汉数学物理所上海同步辐射中心中科院上海应用技术物理研究所北京理工大学复旦大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所… …
    留言咨询
  • PAN式低温扫描探针显微镜系统 Pan式低温扫描探针显微镜析系统是由美国RHK Technology公司制造的,主要特点包括:- PAN STM/AFM扫描头体积小(2.96”X1.55”)- 集成了样品X-Y-Z方向的大范围移动(5mmX5mmX10mm)- 工作温度包括了低温300mK、RT、VT和HT多种范围- 内置弹簧和涡流阻尼减震系统,原位针与样品更换- 兼容多种Flow式或Bath式低温恒温器与磁体- 与RHK新全数字R9控制器一同使用适用于拓扑缘体、低温超导、表面结构、电学测量等表面科学研究中。 主要技术参数:- 工作模式:STM与非接触式AFM- 温度范围:300mK RT VT HT- X-Y-Z位移范围:5mmX5mmX10mm - 扫描范围:5umX5um (RT)- 样品尺寸:10mmX10mm- 扫描头尺寸:40mmX70mm 结构紧凑,体积小:内置减震系统、可水平或垂直放置 Pan式低温扫描探针显微镜结构其紧凑,核心部分尺寸在~40X70mm左右;内置有弹簧和涡流阻尼减震系统;根据用户的要求,可以提供水平放置配置和垂直放置配置两种;初次之外,它兼容常用的低温恒温器和磁体,并提供相应的集成方案。原位样品与探针更换:操做简单、快速;性能可靠 在低温和超高真空环境中,样品和针的原位更换一直是使用者非常关心的问题。为此,RHK公司为Pan式低温扫描探针显微镜开放了一套性能可靠、操作简单快速的原位样品与针更换装置,并提供了多个样品与针的放置室。Pan式低温扫描探针显微镜中使用的样品架灵活多样,可充分满足各种实验要求,如原位加热、样品剥离、样品轰击等等;同时,它还兼容其他的商业化扫描探针显微镜中所配备的样品架。 兼容各种磁体和恒温器为充分满足科学家的要求,RHK与磁体和恒温器制造商紧密合作,开发了低温扫描探针显微镜整机系统和立扫描头模块系统,根据用户的特殊要求提供了一整套的解决方案。 RHK公司将上先进的全数字扫描探针显微镜控制器R9集成到Pan式扫描探针显微镜中,集中研发力量,推出了噪音低的R9扫描控制系统和IVP-R9前置放大器。应用案例: Si(111)表面7X7重构,4KBi2Se3表面形貌,4K部分用户名单: - University Of Texas- University of Maryland- University of Chicago- Columbia University- Technischen Universitat Berlin- Academica Sinica (2)- Georgia Institute of Technology- Weizmann Institute of Science- Indian Association for the Cultivation of Science......
    留言咨询