当前位置: 仪器信息网 > 行业主题 > >

低温超导电流比较仪

仪器信息网低温超导电流比较仪专题为您提供2024年最新低温超导电流比较仪价格报价、厂家品牌的相关信息, 包括低温超导电流比较仪参数、型号等,不管是国产,还是进口品牌的低温超导电流比较仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低温超导电流比较仪相关的耗材配件、试剂标物,还有低温超导电流比较仪相关的最新资讯、资料,以及低温超导电流比较仪相关的解决方案。

低温超导电流比较仪相关的资讯

  • 我国高温超导电流引线试验获世界最高纪录
    本报合肥12月19日电 记者从中科院合肥物质科学研究院获悉,即将用于人类首座热核聚变试验堆ITER的高温超导大电流引线的研发获重要进展。该院等离子体所的科研人员,在高温超导大电流引线试验中获得了通过90千安电流的成果。这是迄今世界各国获得的最高纪录。用于本次试验的电流引线是ITER协议签署后的第一个原型尺寸的重要部件。此举表明我国正在顺利执行ITER计划并迈出了关键一步。   ITER试验堆的超导电流引线系统又称超导馈线系统,是ITER及未来核聚变反应堆不可或缺的重要系统之一,其加工、制造的质量直接影响到将来ITER的主机磁体能否正常运行。按照ITER各参与国之间采购包的划分,中国将独立承担ITER所有超导馈线系统的设计与制造。ITER主机内部大型超导磁体线圈能产生稳定的磁场来约束等离子体,但为之供电、供冷及测量诊断的低温系统、电源系统以及控制测量系统等,却在主机外部而且距离较远,因此需要设置一个独立的磁体传输线系统即超导馈线系统,来连接磁体线圈与各子系统,实现磁体系统电流、低温冷却和数据信号等的传输。   符合ITER要求的是45—68千安的超大电流引线型超导馈线系统。这次用于试验的是一个符合ITER要求的原型尺寸的电流引线,这也是参加ITER计划的七国中第一个成功通过试验的原型尺寸的部件。这种高温超导大电流引线的成功研制,不但使中国可以按时交付ITER所需的超导馈线系统,而且有利于解决聚变堆巨型超导磁体致冷节能的科学问题。
  • 中测院完成全自动砝码质量比较仪实验室建设
    质量比较器/仪主要应用于:砝码的检定、国家标准质量实验室、法定的计量检定机构、校准实验室等,目前,在工业质量领域质量比较仪也越来越显示出其重要性,比如:质量标准的密度和体积的测定、由于机械作用而导致的涂层的磨损、化学工业中的大滤膜称量和涂层称量、贵重气体的气体填充称量、涡轮叶片的称量等。   为不断提高中国测试技术研究院(以下简称“中测院”)砝码质量比较仪检测技术水平,力学研究所于2022年底启动了全自动质量比较仪实验室技术改造,并于2023年2月完成全自动高等级砝码检测实验室建设,测量范围达1mg~50kg。   该实验室建成后,提升了中测院高等级砝码检测技术水平和能力,进一步提高了检测工作效率,为西南乃至全国的高等级砝码准确检测提供了可靠的技术支持。中国测试技术研究院是四川省人民政府直属公益二类科研事业单位,是集法定计量技术机构、第三方检测与校准机构、测试技术与标准研究机构三位一体的国家级综合性研究院。除开展计量科学及应用技术研究外,中测院面向全社会企事业单位开展计量检定校准、产品检验检测、工程测试与评价等,为企业保障和提升产品质量以及技术创新提供技术服务;受政府委托承担计量检定、计量比对、产品抽检、型式评价等法制计量工作,为政府履行监督职能,依法科学行政提供技术支撑。
  • 全国质量密度计量技术委员会发布《质量比较仪校准规范》征求意见稿
    附件下载:《质量比较仪校准规范》 征求意见稿.docx《质量比较仪校准规范》 修订编制说明.doc《质量比较仪校准规范》意见汇总表.docxZ-公开征求意见的函.docx全国质量密度计量技术委员会2024年2月29日
  • 我国自主研发全球首台5.5T低温超导磁选机
    近日,拥有自主知识产权的全球首台5.5T(特斯拉)零挥发低温超导磁选机通过山东省科技厅组织的技术鉴定。至此,我国磁选机市场被国外垄断的局面被打破。  国产纸张和陶瓷没有外国生产的白,这主要是因为生产它们的原料高岭土的提纯度不够,而磁选机就可以为高岭土等矿石原料提纯增白。  2009年,北京正负电子对撞机改造完成。中科院高能物理所的研究人员完全掌握了低温超导磁体技术。针对国内高岭土矿产的除杂需求,2010年10月,高能所与山东潍坊新力超导磁电科技有限公司合作,共同开发新型的低温超导磁选机。  中科院高能所研究员朱自安介绍,课题组利用在超导状态下电线电阻为零的特性,采用大电流通过超导线圈办法,产生极强的磁场,超导设备不但可以提取金属矿中的弱磁性矿物质,也可以将非金属矿中的弱磁性杂质分离出来,整套系统的能耗仅为相同产能的普通电磁设备的10%。  此前,高档磁选机只有美国等少数发达国家能够生产。进口产品不仅价格昂贵,一台约需2000万元,而且每年的维护运行费及服务费也极高。与之相比,我国研制的5.5T零挥发低温超导磁选机利用一台小型低温制冷机使液氦能在封闭系统中实现循环,使用的液氦3年内无需补充,大大减少了氦的消耗,减少了厂家的运行费用。  以中科院院士周远为组长的鉴定委员会认为,该磁选机属国内外首创,整机技术性能达到国际领先水平。  据悉,5.5T零挥发低温超导磁选机的研制引起国家科技部的高度重视,该项目已获得“十二五”国家科技支撑计划的后续支持。
  • 氢我一下就超导
    本文由知社学术圈(zhishexueshuquan)授权转载 【摘 要】近日,中国人民大学于伟强教授研究组和清华大学于浦教授(Quantum Design产品用户)研究组与国内同行合作,利用离子液体栅技术实现了铁基超导材料的氢化,并成功获得非易失性电子掺杂下的超导电性。该工作次将FeS材料的超导转变温度由5K提高到18K,突破了铁基超导核磁共振实验长久以来的困境,开辟了超导电性探索的新途径。 相关成果以题为“Protonation induced high-Tc phases in iron-based superconductors evidenced by NMR and magnetization measurements”发表在了2018年1月1日出版的Science Bulletin上 (Science Bulletin 63, 11-16(2018))[1]。为什么氢化能够实现超导?该研究方法的出现意味着什么? 罗会仟 | 中国科学院物理研究所 副研究员 科普作家【1、氢与超导结亲情】氢,是自然界轻的元素,仅含有一个质子和一个电子。氢是自然界重要的元素之一,因为氢和氧构成了水,才孕育了万物生灵。氢也是科学研究重要的起点,量子力学的成功,正是从氢原子起步的。超导,是一种神奇的宏观量子凝聚现象,在一定温度以下,某些材料电阻会降为零,同时出现完全抗磁性。超导的本质来源于材料中电子的两两配对,正所谓“男女搭配、干活不累”,配对的电子能够实现无阻碍的导电。只是,对于大部分超导材料,都要降到足够低的温度之下才能超导,称之为超导临界温度。如何提高超导临界温度,以及如何理解超导微观机理,成为超导研究的核心目标[2]。长久以来,科学家执着地认为氢单质就有希望实现室温下的超导电性,但条件是其苛刻的——需要在超高压力下将其金属化,这个压力约等于地球内部压力,在百万个大气压之上!实现如此高的静止压力只有一个办法,就是冒着爆炸的危险,用两块金刚石对可劲儿压。虽然有科学家宣称找到了金属氢,然而却在测定其超导电性过程中不慎失手打碎了金刚石[3]。德国科学家也在氢的硫化物中找到了203K的超导电性,但需要在200万个大气压下[4]!如此大得不得了的压力,谈应用前景是几乎不可能的了。氢与超导之间千丝万缕的联系,始终萦绕在科学家的脑海。 图1. 超高压下的金属氢[3] 【2、中式炒菜下的高温超导】超导材料的探索,被科学家戏称为“中式炒菜”——把几类元素单质或化合物经过一定的配比混合,经过高温烧结等工序,就能得到超导体。正如鲁、川、粤、苏、浙、闽、湘、徽等八大菜系一样,超导材料也因为炒菜原料和方式不同,有着不同的体系,包括金属单质、合金、氧化物、硫化物、有机物等多种形式的材料。这些“菜品”口味不一,物理性质千差万别,超导临界温度也各有千秋。上世纪80年代,一类新的铜氧化物超导体被发现,因为它们突破了当时理论预言的40K限,被称之为“高温超导体”[2][5]。历经30余年,许多铜氧化物高温超导体被发现,大地推进了超导研究的历史进程。到了2008年,新一类高温超导体再次被发现,它们是“铁基超导体”家族,以铁砷化物、铁硒化物和铁硫化物为主,块体临界温度可达55K,单原子层薄膜临界温度突破了65K,并且有可能走向更高[6]。高温超导貌似一个普遍物理现象,可人们却仍不知甚解。两类高温超导体都有一个共同特征,那就是需要高超的炒菜手艺。不仅仅是简单的原料混合,也需要把握火候(温度)和工艺。难之处在于,需要加一定的诸如糖、盐、醋、酱油、味精、花椒等调料,把口味调对了,才能出现的超导。这个调料,就是化学掺杂,通过元素替换或者原子缺陷,人为给增加电流的载体——电子或空穴,低温下的大量配对才会出现超导。铜氧化物高温超导体的母体本身是一个带有反铁磁性的缘体,然而掺杂可以将其调到金属导体状态,再降温后就成为超导体。如果炒得一手好菜,超导临界温度在常压下高能达到135K左右,离室温300K还有一定距离,然已经比单质金属要“有滋有味”多了(如金属铝为1.4K、金属汞为4.2K、金属铌为9K)[7]。调料加多了,也有烦恼。吃起来很香很美很有味儿,却难以搞明白是哪个调料起到了关键作用,或者调料复合下究竟是一个什么机制。因为载流子掺杂效应其复杂,比如改变材料的晶体结构、磁性、电性、热力学性质等等,许多现象已经超越了我们已有的理论框架体系。高温超导的微观机理问题,多年来也一直是个科学之谜,成为了凝聚态物理皇冠上的耀眼明珠。 图2. 铜基和铁基高温超导体的掺杂相图[2] 【3、喝水与酗酒的超导体】在其他科学家满头大汗忙着炒菜寻找超导体的时候,某些人也剑走偏锋,玩起了蒸包子超导体和酗酒超导体。例如一类钴氧化物本身难以超导,但是经过蒸笼里历练历练,把水分掺进去之后,它就超导了[8]!又如,一类铁硫化物材料超导性能往往很差,把它泡在各种酒里面喝高了之后,它就超导了!而且这家伙还酒品高雅,喜欢法国某酒庄某年份的某品牌红葡萄酒,光喝酒精反而不行[9]!无论是水还是酒,里面隐藏的奥秘,或许是传说中的氢?图3. 喝水的超导体NaxCoO2和喝酒的超导体FeTe0.8S0.2[8][9] 【4、洗澡蟹里出超导】 话说喝水和喝酒都能超导,给某些材料洗洗澡,是否也可以超导了呢?就像某湖水里的大闸蟹,洗洗涮涮再贴个标签,立马身价倍增,已是众所周知的秘密。给铁基超导材料洗洗澡,结果会怎么样?中国科学家还真就这么干了!确切地说,是给铁硫化物泡了个温泉。该泉水可不一般,是一堆“离子液体”,里面充满了多种带电离子。用铂丝做阳,要泡澡的材料做阴,加上栅电压。于是,离子液体里的氢离子,就在电作用下,呼啦啦涌到材料表层,甚至渗入内部。氢离子(质子)带正电,注入到材料中后为保持电中性,大量电子也就涌入到材料内部,从而使得材料实际上掺杂了更多的电子。电子掺杂让原本只有5K超导的FeS变成了18K超导,而FeSe0.97S0.03则出现了42.5K的超导,甚至完全不超导的BaFe2As2母体材料,也出现了20K的超导!原本需要进行元素替换的化学掺杂,这里通过“洗澡”方式注入氢离子,也同样实现掺杂后的超导,而且材料的晶体结构并未发生改变。真是“氢我一下就超导”! 【5、氢云之上有玄妙】 利用栅电压来改变材料中的载流子数量/浓度,并不是什么新的发明。实际上,半导体材料玩的就是这一套。在半导体PN结里,通过偏压控制电流通过或者不通过可以做逻辑电路元件,通过控制电子-空穴对湮灭可以实现LED光学元件[10]。必须注意的是,超导体中的载流子浓度,与半导体相比,可是天壤之别,前者要大7-8个数量。毫无疑问,载流子浓度越高,参与导电的粒子就越多,导电性才会越好。指挥一支敢死队的方法,不一定适用于千军万马对阵。利用离子液体或离子固体门电压调控,也是可以调节超导体表面的电子浓度的。中国科学家前几年就发现,FeSe薄层材料原本临界温度只有9K,在离子门调节载流子后,迅速提升到了46K[11]。这种技术靠的是在材料表面覆盖一层离子,通过偏置电压让离子聚集在表面,体内电荷就会重新分布,造成掺杂效应。产生的效应尺度有限,撤掉偏压会失去效应,调控掺杂浓度有限,是该方法的缺点。如果直接把离子打入材料内部呢?清华大学的于浦教授想到了电化学方法。干脆把材料当做电本身,在离子液体里加上电压,离子就会注入或离开材料,从而实现电子或空穴掺杂。经过摸索,他们先在氧化物材料实现了电化学离子注入。只要控制好温度和电压,就能无损害材料本身而调节其物性,并且过程是可逆的!中国人民大学的于伟强教授主要做核磁共振研究,多年以来的梦想就是实现高温超导体的注氢。因为核磁共振对同位素有大的选择性,高温超导体里面含有的元素要么不合适做实验,要么需要的同位素贵无比,注入核磁共振信号强的氢离子是合适不过了。于浦教授的方法和于伟强教授想法一拍即合,于是“二于配合”顺利把氢离子搞定进入超导体。图4. 注氢铁基超导实验原理、结果及主要研究人员:崔祎、于浦、于伟强等(于伟强提供)神奇的一幕就此揭开了,铁基超导的性能获得了大幅度的提升!同样“注氢超导”也是可逆的,且几乎不改变材料结构,同时可以撤离“洗澡水”依然保留超导。这意味着,该新型超导调控手段可以避免之前化学掺杂带来的麻烦,不仅为核磁共振,也为其他超导探测手段提供了连续可控的干净样品。无论是超导材料还是超导机理的研究,都将为此受益!目前,他们正在和国内的合作者一起,试图在更多的材料里面实现注氢超导,终将在攀登超导研究之峰上,开辟出一条崭新的道路! 【致谢】 感谢中国人民大学于伟强教授、清华大学于浦教授、Science Bulletin编辑邹文娟等人对此文的修改和帮助。 【参考文献】 [1]. Y. Cuiet al.,Science Bulletin 63, 11-16(2018) [2]. 罗会仟, 周兴江, 神奇的超导, 现代物理知识, 24(02), 30-39 (2012).[3]. R. P. Dias, I. F. Silvera, Science 355(6326), 715-718(2017).[4]. A. P. Drozdov et al., Nature 525, 73-76 (2015).[5]. J. G. Bednorz and K. A. Müller, Z. Phys. B. 64, 189 (1986).[6]. 罗会仟, 铁基超导的前世今生, 物理, 43(07), 430-438(2014).[7]. A. Schilling et al., Nature 363, 56-58(1993).[8]. K.Takada et al., Nature 422, 53-55(2003).[9] K.Deguchi et al.,Supercond. Sci. Technol. 24, 055008(2011).[10]. 黄昆, 谢希德, 《半导体物理学》, 科学出版社, 2012.[11]. B. Lei et al., Phys. Rev. Lett. 116, 077002 (2016).[12]. N. Lu et al.,Nature 546, 124–128 (2017). 【相关产品及链接】mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 天美公司参加第十六届全国超导薄膜和超导电子器件学术研讨会
    2020年11月22日至25日,由南京大学和中科院云南天文台承办,中国电子学会超导电子学分会、江苏省电磁波先进调控技术重点实验室、南京紫金山实验室协办的“第十六届全国超导薄膜和超导电子器件学术研讨会”会议在云南省昆明市召开,会议聚焦国内外超导薄膜、超导传感器探测器、超导无源器件、新型超导量子器件与电路、超导电子学关联技术与应用等展开学术讨论。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司给用户介绍了太赫兹激光器产品,并对用户提出的需求作进一步的解答,借此也会用户的需求,天美公司也会进一步的开发出符合用户需求的产品。会议期间,天美公司还受邀作了会议报告,会议报告对爱丁堡气体激光技术-高功率红外&远红外激光源作了相应的介绍。通过本次报告不但加深了新老用户对爱丁堡气体激光技术的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。 通过为其三天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在超导薄膜等关联技术上,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • “超导热”备受关注,背后蕴藏着哪些环保科技意义?
    近日,韩国研究团队在预印本平台arXiv上连发两文,宣称合成了全球首个室温常压超导体LK-99,临界温度为127℃。今年不止一次有团队宣称突破室温超导。室温超导可能引发第四次工业革命,但超导专家普遍认为韩国团队的研究只是发现了一种新的抗磁材料,并没有表现出室温超导的证据。无论如何,“超导”的热点持续一个多星期而且不断发酵、相关金融市场大热,都证明了全社会对超导材料领域科技创新的关注。超导不仅是物理、材料领域的议题,也是环保议题。日常生活中,电能在输送过程中会有一定的损失,例如电力线路中的电阻会产生热量,就会损失电能。超导材料在一定的温度下能够无电阻传导电流,这意味着电流在超导电路中流动不会有因电阻导致的能量损失。如果输电线路由超导材料制成,就可以消除绝大部分电力输送中损失的电能。因此,使用超导材料可以极大地提高能源利用效率,减少能源损耗,高压电传输估计可以节能20%—30%。 因为电力能源占比最高的一直是火力发电,而火力发电主要使用煤炭这种化石能源,会产生大量碳排放,所以使用超导材料输电,也会间接减少排碳量。此外,超导材料还可以应用在更高效的电力设备和储能设备上,如超导电磁储能系统(SMES)、超导电机和发电机等。这些设备的效率更高、功率损失更少,都能进一步减少能源损失和碳排放。然而,目前已知的常压超导材料都要在低温环境下才能达到超导状态,这就需要大量的冷却设备,增加了电力消耗,也增加了碳排放,并影响超导材料的规模化应用。提高超导材料的工作温度(临界温度)依然是当前物理学和材料科学领域的一大挑战。科学家们一直在探索提高临界温度的方法,以及运用量子力学原理来设计和优化材料,通过计算和模拟预测哪些材料在特定的条件下可能表现出超导性等。20世纪80年代发现的铜氧化物超导体具有相对高的临界温度(100K,-173℃),21世纪发现的铁基超导体也有50K(-223℃)以上的临界温度。一些已知超导材料在受到高压时能够调整微观结构改变性质,临界温度上升。然而这些材料的工作温度依然远低于常温,而且需要高压,但高压环境的产生和维持需要额外的能源。如果室温常压超导真的存在,理论上更环保。室温超导不需要额外的冷却设备和能源,这将大大减少能源损耗和碳排放。而且室温超导材料在运输和使用上也更方便,可以进一步降低生产使用过程的碳排放。今天,真正环保低碳的室温常压超导仍需要科学家们继续努力研究。超导研发虽然不属于生态环境科技工作者的任务,但生态环境科技依然能够发挥作用助力超导科技创新。比如,生态环境科技工作者可以向公众、企业和决策者宣传超导科技在环保降碳方面的优点和现有情况,提高公众对超导概念的理解水平。也可以和相关学术机构、企业及决策部门合作,共同推动超导科技在环保降碳方面的研发、创新与应用,以发现超导的更多可能。
  • 业界热议“室温超导”相关技术,未来几年国内超导产业有望迎来迅猛增长
    近日,“室温超导”热度持续走高。8月2日,天风国际证券分析师郭明錤表示,常温常压超导体的商业化尚无时间表,但是未来它将对消费电子领域的产品设计产生颠覆性影响,即便iPhone都能拥有匹敌量子计算机的运算能力。  从二级市场来看,超导相关概念股表现活跃。东方财富Choice数据显示,8月2日,超导概念股集体高开,中孚实业、百利电气等个股涨停,板块指数创今年以来新高。  “常温常压超导不需要特殊的温度和压力,是目前最有商用价值前景的超导体,如其落地则意味着可以为消费电子等更多产业带来巨大变革。”南京大学高性能计算中心高级工程师盛乐标在接受记者采访时表示,“常温常压超导材料将显著提升芯片的计算性能,促进量子计算、超导逻辑电路等发展,为计算机、手机等提供更高的电流密度和更低的能耗。”  如果常温常压超导材料取得突破,将在能源、计算等诸多领域产生变革,如可用于构建量子计算机等。  不过,目前室温超导体的相关研发工作仍在初期阶段。“从理论、实验,再到评审验证及量产,常温常压超导体的可行性落地仍有很长的路要走,同时其真正商业化还面临应用条件完善、技术路径变化、设计难度、成本等多重挑战。资本市场也要警惕过度炒作现象。”钧山董事总经理王浩宇对记者表示。  科技部国家科技专家周迪认为,超导体是一种比常规导体更为优越的无损耗导电材料。目前,常温常压超导体落地的主要难点在于超导材料和制备适配难度较大,多个机理的未知问题也有待解决。  对于“室温超导”的落地,相关上市公司虽集体持观望态度,但也将其视为重要的研发方向,并提前酝酿布局。  鑫宏业在投资者互动平台上表示,超导技术(高温、低温、常温)是未来电力输送的重要发展方向,是特种线缆未来的重点研发方向,公司会积极关注。九洲集团表示,超导技术可以提高电能传输的效率,降低能源损耗,因此可能会对电力设备制造业带来积极的影响。广电电气称,公司保持对重要新兴技术及领域的密切关注。永鼎股份则表示,公司在等待相关验证的过程。  根据贝哲斯咨询调研数据显示,2022年,全球超导体市场容量达405.93亿元,预测至2028年,全球超导体市场规模将会达到618.21亿元。  “重大装备、AI智造等领域急需的半导体材料、超导材料等是新材料产业重点发展方向。在自主化创新的推动下,未来几年国内超导产业有望迎来迅猛增长。”看懂经济研究院研究员袁博认为。
  • 290万!复旦大学超高空间分辨电子束诱导电流谱采购项目
    项目编号:0705-224002028120项目名称:复旦大学超高空间分辨电子束诱导电流谱采购国际招标预算金额:290.0000000 万元(人民币)最高限价(如有):290.0000000 万元(人民币)采购需求:1、招标条件项目概况:超高空间分辨电子束诱导电流谱采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028120招标项目名称:超高空间分辨电子束诱导电流谱采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高空间分辨电子束诱导电流谱1套电子束流范围不窄于:1 pA ~ 50 nA,连续可调预算金额:人民币290万元 最高限价:人民币290万元 合同履行期限:签订合同后9个月内合同履行期限:签订合同后9个月内本项目( 不接受 )联合体投标。
  • 首个大型可配置超导电路光机晶格创建
    瑞士洛桑联邦理工学院基础科学学院研究人员建造了第一个大型可配置的超导电路光学机械晶格,可克服量子光学机械系统的尺度挑战。该团队实现了光机械应变石墨烯晶格,并使用新的测量技术研究了非平凡的拓扑边缘状态。这项研究发表在最近的《自然》杂志上。对微机械振荡器的精确控制是许多当代技术的基础,从传感和定时到智能手机的射频过滤器。腔光力学使科学家能够利用电磁辐射压力来控制介观力学对象。这大大提高了人们对其量子性质的理解,使包括基态冷却、量子压缩和机械振子远程纠缠在内的许多进展成为可能。前沿理论研究曾预测,研究光学机械晶格有望带来大量物理学和动力学方面的创新性发现,比如量子集体动力学和拓扑现象。但要在高度可控的条件下造出这种实验性设备,构建可承载多耦合光学和机械自由度的光学机械晶格一直是个挑战。此次,研究人员开发了一种用于超导电路光学机械系统的新型纳米制造技术,该技术具有高再现性和对单个设备参数的极其严格的公差,使他们能将不同的位置设计成几乎完全相同,就像在自然晶格中一样。作为晶格单一位置的一部分,关键元件是所谓的“真空间隙鼓面电容器”,它由悬挂在硅衬底沟槽上的一层薄铝膜制成。这构成了器件的振动部分,同时形成了一个带有螺旋电感的谐振微波电路。石墨烯晶格具有非平凡的拓扑特性和局部边缘状态。研究人员在他们所谓的“光机械石墨烯薄片”中观察到了这种状态,该薄片由24个位点组成。该团队的测量结果与理论预测非常吻合,表明他们的新设备是研究一维和二维晶格拓扑物理的可靠实验平台。光机械晶格的演示不仅提供了在真实的凝聚态晶格模型中研究多体物理的途径,而且当与超导量子比特相结合时,还有望带来一种新型混合量子系统。
  • 常温超导这么火,对航天有什么好处?
    近日,韩国一篇论文声称发现了世界上首种常温超导材料,引发大众关注。如果无视网络上的种种喧嚣,我们不妨弄清楚3个问题:什么是超导和常温超导?为了获取相关成就,科研人员需要攻克哪些技术难关?如果常温超导成真,在航天领域可能具备怎样的应用前景呢?  神奇背后限制重重  讨论常温超导之前,我们有必要理解超导的概念。所谓“超导”,就是电流能够不受阻碍地流经导体,并产生强大的磁场。超导在日常生活中最常见的应用场景应该是医院的核磁共振仪,其最核心组件是由铌钛合金丝绕制的线圈。  不过,材料想达到超导状态,在传统上需要使用大量液氦和低温制冷机,冷却到零下264摄氏度左右,无疑会付出极大的代价,包括巨大能耗、液氦的昂贵成本和复杂的结构等。近年来,随着材料技术进步,一些在液氮温区(约零下196摄氏度)甚至更高温区下就能展现超导特性的材料不断被发现、改良,但距离室内常温还很遥远。  超导研究是20世纪材料学的前沿领域。1908年,液氦制取成功,沸点约为零下269摄氏度,为超导研究奠定了基础条件。1911年,科研人员发现,在液氦环境的极低温度下,水银的电阻突然消失了。这被认为是超导研究的“起点”。1933年,德国物理学家迈斯纳和奥森菲尔德认识到,只要材料温度低于超导临界温度,其内部的磁感应强度总和就为零,即具有完全抗磁性。这就是超导的检验标准“迈纳斯效应”。  那么低温超导是如何产生的呢?答案蕴含在精妙的微观世界中。  经典理论认为,电阻是电子在导线中碰撞、受阻所致。  然而,在超导材料中,电子会结成一对一对的所谓“库珀对”,就像舞蹈一样,迅速避开阻碍,实现电流的零电阻传输。这种奇妙的现象被认为是由材料晶体内部原子的振动引发的,也就是由巴丁、库珀、施瑞弗共同提出的“BCS理论”。  然而,受限于液氦等极低温条件,超导长期难以在大规模工程中广泛应用,也促使科研人员对“高温”超导的研究投入了巨大的热情。1986年,科学家们惊喜地发现,钇钡铜氧化物、铋系材料等在相对较高的液氮温区下仍然能够表现出超导现象。这意味着,可以将获取更简便、成本更低廉的液氮作为超导冷却剂。  这个突破为超导的实际应用提供了更广阔的“舞台”,也为许多大科学装置的建设提供了有力保障。比如,“东方超环”和国际热核聚变实验堆等设施都应用了新型超导电缆,有效降低了制冷系统的功率需求。  但“高温”超导研究当前似乎遇到了“理论滞后于现实”的困境。科学家们一直在努力探索其中的奥秘,至今仍未完全揭示其具体原理,基本上停留在假说阶段。例如,一些学者认为,电子之间复杂的相互作用、新的凝聚态现象等或许是“高温”超导诞生的主要原因。  不难看出,超导研究领域的所谓“高温”仍然不是大众日常能够体验到的,那么在室温条件下获得超导更是困难重重。  航天应用前景无限  航天是利用速度摆脱星球引力束缚、探索并开发浩瀚太空的伟大事业。而最经典的航天器运载工具就是火箭,一般利用燃料燃烧产生的高温高速喷流,产生强大的反作用力,将载荷不断加速、抬升,直到飞出大气层。  但现有的火箭大多数是从地面发射架上直接起飞,为了加速飞离空气稠密阻力大的对流层,需要消耗大量燃料,这也意味着火箭会损失许多宝贵的运力。  为了解决这个问题,航天发射机构提出了五花八门的创新方案,包括飞机挂载火箭空中发射、巨型飞艇和气球提升火箭到高空发射、离心机甩出火箭发射等。  比如,美国飞马座空射火箭在1990年成功入轨,在发射前会被悬挂在经过特别改装的客机机腹下。载机在13000米左右高度以0.8马赫平飞时,火箭被投放,随后点燃第一级固体发动机,加速爬升。  但这些发射方式都存在一些弊端,尤其是飞机等平台的运作维护成本不低,运输能力有限,一般只能发射小型火箭,入轨运力不足。例如,飞马座火箭的700公里太阳同步轨道运力仅有200公斤出头,只能投送小型载荷入轨,单位发射成本要高于很多地面发射的大中型火箭,因此飞马座火箭乃至后续的空射火箭规模化应用始终困难重重。  不过,一旦常温超导材料问世并成功实用化,航天发射史有望“翻开全新的一页”。比如,科研人员和工程师可以借鉴磁悬浮列车和电磁弹射器的原理,构建起一种新概念航天发射装置,其结构类似于一条垂直于地面的磁悬浮列车轨道。  届时,在矗立的发射塔上,悬浮线圈负责维持火箭的发射方向,并避免火箭与轨道发生摩擦而产生阻力,加速线圈则为火箭提供强大的起飞推力,帮助它尽快冲出空气稠密的近地高度。当火箭被发射装置充分加速并冲出对流层后,再点燃第一级发动机,继续加速爬升,最终入轨。  相比空中发射,这种发射方式基本上仅消耗电力,而且由于常温超导材料不需要配备复杂的冷却系统,发射装置的规模可以做得很大,因此有望将更重的载荷送入轨道,单位发射成本也会显著降低,很可能催生出更大的航天器组合体和全新的太空活动形态。  除了航天发射领域外,常温超导材料在卫星、宇宙飞船等航天器上也具有广泛的应用前景。  例如,在航天器设计过程中,需要对电子设备和敏感仪器采取合适的屏蔽手段,保护它们免受外界磁场干扰。常温超导将是磁屏蔽装置的完美材料,只需制成壳体,再将对磁场敏感的仪器设备放入其中,就可以在内部形成一个稳定的磁场屏蔽区域。  此外,常温超导材料如果用于制造导线,替代航天器内部的传统金属导线,不仅有望降低电功耗,还能显著减少热量,从而简化供电和温控系统的设计,助力新型卫星性能更强大、结构更轻巧。  总之,超导技术在短短几十年内取得了巨大的进展,为人类追寻美好生活、探索未知世界带来了全新的可能。科研人员对超导的研究和实验不断深入,一直在不懈地探索和挑战着物质的极限。而航天作为众多最前沿科技的优先应用领域,未来常温超导也一旦成真,必将在此大放异彩,帮助人类进一步探索和开发浩瀚苍穹。
  • 九家单位官宣获批2022科技部重大仪器专项
    2022年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持95个项目和9个青年科学家项目。其中科学仪器方向共计有66个,包括32个整机项目和34个核心部件项目。12月初,科技部公布了2022年度国家重点研发计划“基础科研条件与重大科学仪器设备研发”专项立项信息,国内多家单位宣布获批。序号项目名称项目承担单位1紫外光电子谱分析仪研制与应用西安交通大学2全光纤非线性单光子显微光谱仪天津大学3快速热化学反应过程分析仪沈阳化工大学4高灵敏手性物质离子迁移谱与质谱联用仪中国航天科技集团有限公司八院812所5高分辨地球电磁特性综合测量系统中国机械工业集团有限公司6超导低温电流比较仪(CCC)中船重工安谱(湖北)仪器有限公司7核磁共振波谱仪的研制及工程化开发武汉中科牛津波谱技术有限公司8裂解源费勉仪器科技(上海)有限公司9高稳定等温扩增核心酶及高灵敏配套试剂开发及应用中科院苏州生物医学工程技术研究所
  • 牛津仪器上海低温强磁实验室用户再发Nature!
    首次在石墨烯中观测到陈氏绝缘体行为近日,加州大学伯克利分校陈国瑞博士、王枫教授与复旦大学张远波教授及斯坦福大学David Goldhaber-Gordon教授合作在Nature上发表题为“Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice”的研究论文【1】。据陈国瑞博士介绍:“我们的发现表明,石墨烯是物理研究的理想平台,从单粒子物理到强关联物理,从超导到现在的拓扑物理在二维材料中的量子效应。令人兴奋的是,我们现在可以在一个只有百万分之一毫米厚的微小器件中探索新的物理现象。迄今为止,在同一个器件中能通过调控分别出现超导、绝缘和磁性的材料体系非常罕见。大多数人认为石墨烯很难产生磁性,因为碳材料通常不具有磁性,而这项研究成果的亮点之一就是第一次将这三种性质结合在一个器件中。如今电子产品中使用的磁性材料是由铁磁性金属制成的,如铁或钴合金。然而,组成石墨烯的不是磁性金属元素,而是碳,所以在石墨烯里面产生磁性很难。这次陈国瑞博士等人想出了一个创造性的解决办法:当夹在二维氮化硼之间时,石墨烯(三层石墨烯)就会形成一个称为Moiré超晶格的结构(图一)。这时通过在石墨烯器件的栅极上施加电压,垂直方向的电场会促使器件中的电子沿着同一方向旋转,将石墨烯器件变为了一个铁磁系统。图一左图:ABC三层石墨烯Moire超晶格样品及器件结构。右图:在极低温下T=0.06K,观测到v=2量子化平台。与此伴随的是另一重要的新特性:石墨烯系统的内部不仅变得有磁性,而且还变得绝缘,同时它的边缘变成了一个零电阻的电流通道。研究人员说,这是一种被称为陈氏绝缘体(Chern insulator)的罕见绝缘体。量子计算近些年十分热门,其数据便是存储在量子比特中,一个量子位可以表示一个1,一个0,或者它同时是一个1和一个0的状态。陈氏绝缘体的研究一直是拓扑量子计算领域的研究热点,同时也为量子计算中操纵信息提供了潜在的新方法。更令人惊讶的是,麻省理工学院的合作者Zhang Ya-Hui的计算结果显示,由于三层石墨烯中电子与电子之间的强相互作用,石墨烯器件的导电边缘态不仅仅只有一个,而且有两个,这是人们首次实验观测到“高阶陈氏绝缘体”(图二)。图二:石墨烯的磁性和C=2 反常量子霍尔效应陈国瑞博士希望可以用他们的石墨烯器件进行更多的实验研究,以便更好地了解陈氏绝缘体/磁性是如何产生的,以及其异常特性背后的机理【2】。先前的研究在石墨烯中调控出了超导态和Mott绝缘态【3】【4】,其中有一部分三层石墨烯的Mott绝缘态和超导态工作也是陈国瑞博士完成的【5】【6】。陈国瑞博士是牛津仪器上海低温强磁实验室的用户。他向我们讲述了该研究背后的故事。2019年春节前,为了研究三层石墨烯Moire超晶格样品的反常量子霍尔效应,需要首先研究其在低温强磁场中的性质。作为牛津仪器资深用户,陈博士首先联系了牛津仪器上海低温强磁实验室,提出希望利用牛津仪器TeslatronPT无液氦超导磁体系统进行初步测量。经过多日连续测试,终于得到了初步实验结果。如下是采得的数据,在1.5K温度下,2T磁场的时候已经初步看到v=2量子化平台出现(图三),预示着很可能有新的结果,于是陈博士立刻联系了国外的合作者进行了更低温度的测量,最终得到了令人满意的结果。图三:T=1.5K时看到半整数量子化平台迹象牛津仪器很高兴能为该研究提供支持。来自伯克利实验室、加州大学伯克利分校、斯坦福大学、SLAC国家加速器实验室、麻省理工学院、上海交通大学、人工微结构协同创新中心、复旦大学、日本国家材料科学研究所的研究人员参加了这项工作。图四:陈国瑞博士(左三)等用户和 牛津仪器工作人员合影参考文献/链接:1. Nature 579, 56–61 (2020)2. https://newscenter.lbl.gov/2020/03/04/2d-material-gets-a-new-gig/3. Nature 556, 80–84(2018)4. Nature 556, 43–50(2018)5. Nature Physics 15, 237–241 (2019)6. Nature 572, 215–219 (2019)
  • 找到镍基超导“看不见的手”
    不久前,美国罗切斯特大学物理学家Ranga Dias宣称发现了室温条件下的超导新材料。此消息一度引发全球“震动”。毕竟,室温常压超导材料一直被众多物理学家视为“终极目标”,需历经一次又一次的验证和时间的考验。尽管实现“终极目标”举步维艰,但仍让众多物理学家为之着迷,电子科技大学物理学院教授、凝聚态物理研究所所长乔梁就是其中一名。近日,他和团队也在超导新材料研究领域取得突破,为镍基超导领域的发展提供了新思路。研究成果在线发表于《自然》。氢元素,被乔梁称为是一只“看不见的手”,它悄悄改变了制备出的材料的物理性能,是影响镍基超导电性关键而又隐秘的元素。此次研究中,乔梁和团队首次在实验中观察到了奇异电子态,即巡游的间隙位s轨道(IIS)。在别人忽视的角落,他们牵到了那只“看不见的手”。从镍入手1986年初,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,为寻找室温常压超导带来了希望。为何这种材料具有较高的超导临界温度?这一问题30多年来仍没有得到完美解答。“科学家一直在思考,能否从类铜材料入手,借助铜基的调控思路实现新的超导材料,再借此反过来研究铜基超导?这或许会加深我们对高温超导的理解。”乔梁说,元素周期表中与铜元素相邻,在结构和性质上与铜有很多相似之处的镍元素,成为物理学家心中理想的突破口。2019年8月,美国斯坦福大学教授Hwang课题组率先在基于无限层结构的镍氧化物外延薄膜中发现了超导电性。乔梁称该研究具有划时代的意义。但后续镍基超导的研究却遇到一系列困惑:为什么无限层镍基材料可以成为超导?为什么全世界只有少数几个团队可以做出镍基超导样品?“物理规律是客观存在的。当不同科学家的课题组制备的材料样品频繁出现‘性能不能重现’问题时,第一直觉就是材料内部可能存在不为人知的‘隐变量’,从而悄悄改变了材料的物理性能。”在研究成果发布时,乔梁附上了这段话。抱着试一试的心态,乔梁于2019年9月与学生一起开启了镍基超导的研究之旅。摸清“黑匣子”里氢的作用2021年4月,乔梁团队在制备的镍基超导外延薄膜中成功获得了0电阻的超导电性。当年7月,乔梁带着团队继续从事超导样品里氢的调控实验。“当时并不知道氢的作用,只是学生碰巧做了。”乔梁回忆那时有一点“鬼使神差”,但也并不是毫无缘由——在无限层结构镍基氧化外延单晶薄膜的制备过程中,他们利用氢化钙进行了还原。“我们通过调控还原条件发现,如果温度不变,逐步增加还原时间,结果就会发生‘弱绝缘→超导→弱绝缘’的变化。”表面上看,是不同制备工艺导致,但乔梁总觉得这是一个新的角度。“往深一步想,为什么调控时间会引起这样的差别?”乔梁注意到,以往没有任何课题组深究过氢化钙这种还原剂。“是不是氢元素在起作用?”但这是一个“黑匣子”。氢原子具有最小的原子半径和原子质量,与常规探测媒介相互作用弱、散射截面小,导致其很难被探测到。随即,乔梁寻求澳大利亚合作者Sean Li的帮助,利用极高元素敏感性的飞行时间二次离子质谱发现镍基超导外延薄膜中存在大量的氢元素,而且氢元素自始至终存在于薄膜晶格外延生长和拓扑化学还原的过程中,并进一步确定了氢元素在材料内部的原子占据位置。2021年11月,乔梁团队确定了调控还原时间的本质就是调控氢元素。时间延长,氢元素就多,反之亦然。在极低温强磁场输运性质研究中,乔梁发现,在锶含量不变的情况下,通过调控氢元素的含量,可以实现“弱绝缘→超导→弱绝缘”的连续相变,说明氢元素的确对超导电性的出现起到关键作用。但乔梁又提出了一个问题:为什么调控氢元素会对超导电性产生影响?氢元素到底产生了怎样的作用?纺锤形“小包”的发现在此之前,乔梁团队与英国钻石光源的周克瑾合作,通过基于同步辐射的共振X射线非弹性散射(RIXS)技术和电子结构计算,研究了镍基超导体费米面附近的电子结构。乔梁在超导样品的RIXS图中,观察到一个纺锤形的“小包”。他对比了其他几项类似研究,都没出现过这种电子轨道。乔梁起初怀疑是测定有失误,但不知如何解释。之后,团队又发现了氢的存在,才开始考虑是否可以找到氢存在的电子态证据。此时,乔梁又想起了那个悬而未决的“小包”之谜。乔梁再次仔细查阅和自己做了类似RIXS实验的其他已发表的文章,发现有的实验中其实隐约出现过类似的“小包”,只不过被研究人员忽略了。乔梁设想,假定“小包”就是理论预言的IIS轨道,从这个思路对实验结果进行反推看能否成立,说不定有助于解释氢元素与IIS轨道的关系,及其对超导的影响。“根据对铜基材料研究的经验,对超导起着决定性作用的是金属元素的3d轨道。”乔梁解释说,在镍基超导体中,其费米面附近的电子结构中,IIS、Ni3d、Nd5d等轨道之间存在较强的相互作用。因此,IIS轨道的强烈吸引导致费米面附近Ni3d轨道的有效占据减少,丧失了超导能力。“氢元素的加入,填满了轨道空隙,如一只无形的手,导致IIS轨道没法‘拖拽’Ni3d轨道,产生了类似于铜基超导的费米面电子结构,进而促进超导态的出现。”乔梁和理论合作者黄兵讨论后认为,如果氢元素超过一定数量,反而会进一步改变Ni3d轨道极化情况,也不利于实现超导。2022年3月,合作团队最终刻画出“轨道污染”和“轨道纯化”竞争的示意图,并于4月完成了文章初稿,交稿后,审稿人评价其“极具创新性”。回顾整个过程,乔梁认为,此次研究改变了科学家对镍基超导材料的基本认知,并提供了一个更为准确和合理的物理模型。研究结果可以解释为何仅有少数课题能成功制备零电阻镍基超导样品,因为多数研究忽视了氢元素对超导的影响,没有控制这个关键因素。“但提高对氢元素控制的精确度和可重复性还是比较难。我们的研究只是抛砖引玉,提供了一个方向。”乔梁说。 镍基超导中氢元素作用示意图
  • 天才少年曹原再发Nature:三层扭转石墨烯诞生,具备更稳定超导性
    近日 ,美国麻省理工学院 Jeong Min Park、曹原等人在《自然》发文,报告三层扭转石墨烯能够表现出超导性。这个“三明治”比双层的“魔角” 石墨烯更加稳定,并且能够通过两种相互独立的方式进行调节。这样的结构或有助于理解实现高温超导需要的条件。图片来源:Pixabay当两片石墨烯 以 1.1° 的扭转角度交错排列,这个双层结构就会转变为非常规的超导体,从而使电流无阻通过,而不会浪费能量。这种“魔角”石墨烯结构及其超导效应由美国麻省理工学院 (MIT)物理学教授 Pablo Jarillo-Herrero 团队在 2018 年首次发现。这项研究也让中科大少年班毕业生、当时年仅 21 岁的曹原“一战成名”: 他以共同第一作者/共同通讯作者 的身份首次在同一天发表了两篇《自然》 (Nature )论文,随后他 成为了 《自然》2018 年十大科学人物中最年轻的学者 。扭转电子学 (twistronics)领域从此兴起。此后,科学家一直在寻找其他可以经过扭转而表现出超导性质的材料。但是到目前为止,除了最初的双层“魔角”石墨烯以外,没有发现其他材料具备相似的特性。近日,已经成为博士后的曹原再次以共同第一作者身份 在《自然》发文报告,在三层石墨烯组成的“三明治”中观察到超导性。 在新的三层结构中,中间一层石墨烯相对于外层以新的角度扭转,其超导性比双层结构更稳定。该论文 2 月 1 日在《自然》发表, Jeong Min Park 和曹原为共同一作,此外曹原还与他的导师、Pablo Jarillo-Herrero 共同担任论文通讯作者。日本国立材料科学研究所(National Institute of Materials Science)的渡边贤司(Kenji Watanabe)和谷口尚(Takashi Taniguchi)也参与了这项研究。研究人员还可以通过施加和改变外部电场的强度来调节结构的超导性。而通过调节三层结构,研究人员能够产生超强耦合超导性,这是一种奇特的电学行为,在其他所有材料中很少见。Jarillo-Herrero 说:“目前尚不清楚魔角双层石墨烯是不是特例,但现在我们知道它并不孤单,它有一个三层表亲。这种超可调(hypertunable)超导体的发现将转角电子学领域扩展到了全新的方向,在量子信息和传感技术中具有潜在的应用。”打开新型超导体研究的大门在 Jarillo-Herrero 和同事们发现扭转双层石墨烯中可能产生超导性之后不久,理论物理学家提出,在三层或更多层石墨烯中也可能看到相同的现象。石墨烯就是厚度仅有一层原子的石墨,它完全由排列成蜂窝状晶格的碳原子组成,如同纤细却坚固的金属网格。理论物理学家提出,如果将三层石墨烯像三明治一样堆叠, 中间层相对于两个外层扭转 1.56 度,那么这种扭曲构型将产生一种对称性,从而促使材料中的电子配对,形成无阻力的电流,即超导的标志。Jarillo-Herrero 说:“我们就想,为什么不尝试检验一下这个想法?”为此,Park 和曹原设计了三层石墨烯结构。他们将单层石墨烯小心地切成三个部分,并将其按照理论预测的角度精确堆叠。他们制造了几个这样的三层结构,每个结构的尺寸仅有几微米,大约相当于人类头发的直径的 1/100,高度则为三个原子。Jarillo-Herrero 称之为 “纳米三明治”。接下来,研究小组将电极连接到结构的两端,并通过电流,同时测量材料中损失或耗散的能量。“我们没有观察到能量耗散,这意味着它是超导体。”Jarillo-Herrero 说,“我们必须肯定理论物理学家的贡献,他们算出了正确的夹角。”但他补充说, 这种结构具备超导性能的确切原因仍然有待确认,目前还不确定这是不是因为理论物理学家所提出的对称性。这也是他们计划在未来的实验中进行检验的内容。 他说:“目前我们只能确认相关性,而无法确认因果关系。但现在我们至少有了一条途径,可以根据这种对称性思想探索一大批新型超导体。”“ 最强大的耦合超导体”在探索新的三层石墨烯结构时,研究团队发现,可以通过两种方式控制其超导性。对于团队此前提出的双层石墨烯,可以通过施加外部 门电压来改变流过材料的电子数量,从而调节其超导性。研究团队上下调节门电压,同时测量材料停止耗散能量、转变为超导体时的临界温度。通过这种方式,团队能够像调节晶体管一样打开和关闭双层石墨烯的超导性。团队使用相同的方法来调节三层石墨烯,同时还发现了控制材料超导性的第二种方法,这在双层石墨烯和其他扭转角结构中是不可能的。这种方式就是使用附加电极对材料施加 电场,这能够改变三层结构之间的电子分布,同时不改变结构的整体电子密度。Park 说:“现在,这两个相互独立的‘旋钮’能为我们提供大量有关超导电性出现条件的信息,帮助我们理解这种不寻常的超导状态背后至关重要的物理学原理。”通过同时使用这两种方法调整三层结构,研究小组在一定条件下观察到了超导性,包括在相对较高的 3 开尔文临界温度下,即使此时材料的电子密度很低。相比之下,量子计算领域正在研究使用铝制作超导体,铝具有更高的电子密度,而它仅在约 1 开尔文的温度下才具备超导性。Jarillo-Herrero 说:“我们发现魔角三层石墨烯可以成为最强大的耦合超导体,这意味着在给定的电子数量很少的情况下,它也能在相对较高的温度下进行超导。它能带来最大的收益。”研究人员计划制造三层以上的转角石墨烯结构,以了解具有更高电子密度的此类构型是否可以在更高的温度下表现出超导性,甚至实现室温超导。“如果能够工业化大规模生产这些结构,那么我们就可以制造用于量子计算的超导比特,或者低温超导电子器件、光子探测器等。不过我们还不知道如何一次制造数十亿个这样的结构,”Jarillo-Herrrero 说。Park 说:“我们的主要目标是理解强耦合超导的基本性质。三层石墨烯不仅是有史以来最强大的强耦合超导体,它还具备最大的调节空间。借助这种可调谐性,我们能够真正实现在相空间的任何位置探索超导电性。”论文信息:Park, J.M., Cao, Y., Watanabe, K. et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature (2021).
  • 西安光机所安排专项经费支持高端科学仪器国产化
    所属各研究单元:  为落实中科院2022年重点工作安排,进一步支撑我院科研仪器设备研发,推动我所科研仪器设备自主研制和创新发展,促进原创性科技创新成果产出, 所级公共技术中心以关键核心部件攻关及关键核心技术突破,围绕国家基础研究与科技创新重大战略需求,安排专项经费支持高端科学仪器国产化工作。经对相关科研人员开展问卷调查后,现就2022年度高端科学仪器国产化及核心部件开放基金申报工作通知如下:  一、基金申请基本条件  1、申请人应确保有足够精力从事开放基金课题的研究   2、项目以满足高端科学仪器的实际需求为目的,应有独到的设计思想、切实可行的技术方案和明确的验收指标,并能产出实用的关键器件或核心技术。  3、重点资助“院特别研究助理、院/所青促会会员、35岁以下在职博士”(女性适当放宽)人员   4、开放基金的经费管理与使用严格按照《西安光机所科研项目经费“包干制”管理办法》(西光财资字2020[62]号)。资助经费一次核准分阶段下达。  二、开放基金重点支持研究方向  1、国家“高端光电仪器”—国产化核心技术及关键部件  突破高分辨计算光学成像、多维超快相干光谱技术、皮秒光学精密测量、高效能光子极端制造、极限光制造与测量等关键技术,研发新一代单细胞及分子功能可视化、光电多模态多尺度医学诊断、核磁共振成像等系列光电装备。  2、国家“基础科研条件与重大科学仪器设备研发”计划  (1)高端科学仪器的核心技术及关键部件(详见附件)  高端通用科学仪器工程化及应用开发、高分辨率二次离子质谱分析仪、单细胞质谱分析仪、高速高空间分辨生物组织成像质谱仪、快速热化学反应过程分析仪、高灵敏数字化生物气溶胶直接分析仪、多模态超高分辨率成像仪、高通量拉曼流式细胞分选仪、紫外-可见光高分辨率光谱仪、扫描式光场辐射度计、紫外光电子谱分析仪、多自由度非接触三维光学扫描仪、微探头传感器式激光干涉仪、光电集成电路及器件参数综合测试仪、全光纤非线性单光子显微光谱仪、多功能扫描探针显微镜、高分辨地球电磁特性综合测量仪、高精度超导重力仪、形貌动态显微成像仪、三维复杂结构非接触精密测量与无损检测仪、高频阵列超声成像分析仪、超宽带高性能噪声系数分析仪、天线环境效应多参数综合测试仪、毫米波与太赫兹材料电磁特性测试仪、高性能物联网综合测试仪、多通道混合信号示波器、微观电磁物性自旋量子精密测量仪、超导低温电流比较仪、自主创新科学仪器、核磁共振波谱仪、宽频带取样示波器、高灵敏手性物质离子迁移谱与质谱联用仪、活细胞超分辨高速全景成像系统关键部件研发及应用等。  (2)核心关键部件开发与应用(详见附件)  大功率端窗型X射线光管、450kV X射线源、120kV热场发射电子枪、裂解源、宽带半导体增益激光器、1560 nm激光直接激发太赫兹源、高分辨率电源测量模块、宽带射频功率放大器、正电子断层成像探测器、抗辐照硅单光子探测器面阵、半导体伽马射线成像探测器、微型非放射离子迁移传感器、二维平面中子探测器、光谱色散式膜厚探测器、光学麦克风、高性能紫外成像探测器、碲镉汞制冷红外探测器、电磁力配衡重量检测器、可转运磁共振成像探测阵列、程控升降温与称重多功能探测器、高灵敏度大动态范围微电流计、微型比例阀、抗振动分子泵、微焦点X射线准直装置、宽频带同轴开关、毫米波隔离器、宽频带微型化双定向耦合器、扩口微通道板、热场发射电子源、磁共振成像低温探头、X射线能谱探测器、太赫兹超导混频器。  3、中国科学院科学仪器研制共性关键技术重点方向  (1)量子科学、生命医疗、大科学装置用高端科学仪器  (2)仪器研制共性关键技术(详见附件)  探测器技术、传感器技术、激光器技术、质谱技术、电子显微技术、核磁共振技术、光谱与成像技术、光学成像技术、极低温技术 以及重大设施中的光学仪器及器件、生命医疗领域的仪器及器件、量子科学中的的仪器及器件  4、国产高端科学仪器头部企业及前沿用户需求  (略)清单可至所级中心查阅  三、受理时间  1、提交《拟申请开放基金汇总表》时间:2022年3月20日~2022年4月5日。  2、开放基金申报受理时间:2022年3月20日~2022年4月20日。  四、评议程序、资助方式、课题及成果管理  1、西安光机所大型科研装备规划及共享管理委员会+中国仪器仪表学会专家+“前沿”用户专家+头部企事业单位专家   2、每年支持基金4项,每项30万,周期1年(择优后持续支持)   3、标注形式:  (1)资助课题发表论文均需注明“西安光机所所级中心高端科学仪器国产化及核心部件开放基金项目资助”或“The project was supported by theLocalization and core components of high-end scientific instruments Open Research Fund of Institutional Center for Shared Technologies and Facilities, XIOPM, CAS”。  (2)全部经费资助课题,西安光机所所级中心为第一署名单位 部分经费资助或以基础条件资助课题,西安光机所所级中心至少是第二署名单位。  所级中心联系人:赵阳 029-88887812,13891811660  邮 箱:zhaoyang@opt.ac.cn  所级公共技术中心  2022年3月18日  附件:   1.国家基础科研条件与重大科学仪器设备研发专项方向.pdf  2.中国科学院科学仪器研制共性关键技术及重点方向.docx  3.高端科学仪器国产化及核心部件开放基金实施方案.docx  4.拟申请开放基金项目汇总表.xls  5.开放基金项目所内评审标准.doc
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。  以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。  这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。  物理学中的璀璨明珠,未来应用的希望之星  超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。  在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。  也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。  这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。  中国成果震动学术界  物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。  是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。  为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。  2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。  高温超导的研究基地  物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。  中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。  铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。  机遇和有准备的头脑  铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。  物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。  基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!  突破极限,勇攀新高  由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。  为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。  中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。  物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。  截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献  在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。  当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。  丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。  任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。  王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。  就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。  民生超导,强国超导  百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。  习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
  • 韩国超导和低温学会称没有足够证据证明“LK-99”是室温超导体
    近期韩国一研究团队声称成功合成室温超导材料“LK-99”。但据韩联社3日报道,韩国超导和低温学会“LK-99”验证委员会表示,与“LK-99”相关的影像和论文中展示的这一材料的特征并不符合迈斯纳效应,不足以证明“LK-99”是室温超导体。  迈斯纳效应是超导体从一般状态相变至超导态的过程中对磁场的排斥现象,它可以用来判别物质是否具有超导特性。  韩国超导和低温学会“LK-99”验证委员会当天对韩联社表示,学会已要求合成该物质的韩国量子能源研究所提供进行验证的样本,但得到的答复是,此前发布的论文仍在接受评议,2至4周后才可提供样本。  韩国超导和低温学会2日发布新闻公报表示,将组建一个专家验证委员会,对近期韩国一研究团队声称成功合成的室温超导材料“LK-99”进行科学研判。新闻公报说,现阶段基于两篇存档论文和公开的影像,很难得出结论说“LK-99”是室温超导体,仍需开展进一步的科学验证,因此该学会决定成立一个专家验证委员会进行相关的实验及理论研讨。验证委员会成员来自该学会的物理、材料、电气和机械领域的会员。  韩国量子能源研究所等机构的研究人员7月22日在预印本网站arXiv上发布论文说,他们研发的一种被命名为“LK-99”的材料具备超导性,超导临界温度在127摄氏度左右,而且在常压下就具备超导性。韩国团队的研究成果引起大量关注的同时,也受到不少学者的质疑。
  • 基于Pμ SL 3D打印的导电点阵结构用于多模态传感器
    介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。原文链接:https://doi.org/10.1016/j.xcrp.2022.100786官网:https://www.bmftec.cn/links/10
  • 我国超导量子计算极低温测量技术达到世界先进水平
    15日,记者从安徽省量子信息工程技术研究中心获悉,科大国盾量子技术股份有限公司(以下简称国盾量子)自主研发了高性能抗干扰氧化钌温度计,产品起测温度接近6毫开尔文(mK),刷新了国内纪录,标志着我国超导量子计算极低温测量技术达到世界先进水平。国盾量子氧化钌温度计。安徽省量子信息工程技术研究中心供图氧化钌温度计是量子计算机的核心器件之一,可用于对量子芯片的工作环境进行测温。国盾量子技术专家李旭介绍,“宇宙最低温度”通常指的是0开尔文,也被称为“绝对零度”(约零下273.15摄氏度),是理论上能达到的热力学最低温度极限。由于量子态非常脆弱,量子芯片需要在“绝对零度”条件下运行,每一个微小温度波动都可能导致量子信息丢失。使用氧化钌温度计来精准监测量子芯片的工作温度,对于确保量子计算机稳定运行、提高计算的准确性和可靠性至关重要。李旭说,目前国内氧化钌温度计主要依赖进口,没有能在10mK以下温区进行测量的国产化产品。国盾量子新推出的氧化钌温度计,主要应用于6mK-200mK温区的测量,起测温度6mK(接近零下273.144摄氏度),刷新了国内最低起测温度纪录,并具有较高测量精度和灵敏度,能实现连续测量和快速响应。与普通的氧化钌温度计相比,国盾量子氧化钌温度计的标定基准在20mK以下温区采用顺磁盐温度计,显著降低了标定过程的环境干扰和测量误差,大幅提高温度标定的准确性和可靠性。此外,该产品还具有较强的抗干扰能力,满足科研和工业应用中的严格要求,为国内超导量子计算及相关低温技术的发展提供了关键支撑。安徽省量子信息工程技术研究中心副主任王哲辉表示,国盾量子氧化钌温度计的成功研制,会进一步增强我国超导量子计算产业链自主可控能力。
  • 中国科学家成功研制国产最紧凑型超导回旋质子加速器
    p style="text-indent: 2em "由中国科学家自主研制的最紧凑型超导回旋质子治疗系统加速器近日顺利引出200MeV的质子束流,实现高能量级超导回旋加速器技术的关键突破,标志着国产最紧凑型超导回旋质子加速器研制成功。/pp style="text-indent: 2em "据介绍,合肥质子治疗系统研发团队依靠自主创新日夜攻关,研制成功该加速器,相比较国际上同类装置,其超导磁体电流密度是国内外同类装置磁体水平的3倍;静电电场达到170kV/cm国际最高应用水平;加速器实现3.0T最高场强;直径缩小25%,仅2.2m,重量降低50%,总重不超过50t。这是目前世界上最紧凑型的质子加速器,具有体积更小、重量更轻、耗能更低、精度更高、能量切换更快的显著特点。/pp style="text-indent: 2em "科研人员依托合肥综合性国家科学中心创新平台,在建设运行国家重大科技基础设施中凝炼关键技术,加速推动大科学装置衍生技术的落地生根,将聚变大科学工程项目中的超导、磁体、低温等大科学工程衍生技术应用于我国大健康产业发展和高端医疗装备产业。/pp style="text-indent: 2em "质子治疗是国际上先进的治疗肿瘤方法,合肥质子治疗系统研发团队正在加快建设国产紧凑型超导回旋质子系统,期望未来在合肥建成世界一流水平的离子医学中心,实现超导质子系统的国产化和产业化。/ppbr//p
  • 研究发现铁基超导体中超导与奇异金属态在压力下的共存共灭现象
    低温下电阻随温度的线性变化是奇异金属态的重要特征,在非常规超导材料中常被发现。高温超导电性对这种奇异金属态的依赖关系一直是高温超导机理研究中备受关注的问题,可能隐含了破解高温超导机理的“密码”。一般情况下,高温超导体的电阻随温度的变化既包含线性项,又包含温度的平方项,近似可用一个温度的幂律函数即R(T) = R0 + ATα, 或是R (T) = R0+ AT + BT2 来描述。幂指数α=1是奇异金属态,系数A的值为零则表明奇异金属态消失。 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员孙力玲小组与研究员邱祥冈等,联合美国普林斯顿大学教授R. Cava、美国加利福尼亚大学洛杉矶分校教授N. Ni, 对具有奇异金属态的铁基超导体Ca10(Pt4As8)((Fe0.97Pt0.03)2As2)5(简称为1048 超导体)中奇异金属态和超导态的压力响应行为进行了系统研究,发现了随着压力的增加,其超导转变温度(Tc)连续下降,同时幂指数由常压下的 α=1 逐渐增加,而系数A随着压力逐渐减小。在量子相变临界压力处,超导转变温度Tc和A系数同时趋于零,转变成具有非超导费米液体态的高压相。 这是首次在高温超导体中通过压力调控观察到奇异金属与超导态的共存共灭现象,揭示了这类超导体的超导电性对奇异金属态的依赖关系。研究通过对实验结果的进一步分析发现,1048超导体的Tc与A系数之间服从与其他高温超导体类似的经验关系(Tc~ A0.5)。 相关研究成果发表在《自然-通讯》(Nature Communications)上。研究工作得到科学技术部、国家自然科学基金委员会、中科院战略性先导科技专项(B类)和松山湖材料实验室的支持。图1. 压力下超导转变温度对幂指数α和A系数的依赖关系。图2. (a)压力下1048超导体超导转变温度与系数A的变化关系;(b)不同的非常规超导体在压力下及常压掺杂得到Tc与A系数归一化后的关系,包括1048超导体和Sr0.74Na0.26Fe2As2超导体以及常压下掺杂的铜氧化物超导体及有机超导体。
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 低温物理世界的“追梦者”——访复旦大学李世燕研究员、北京大学王健研究员
    日前,在第十四届全国低温物理学术研讨会的开幕式上,复旦大学李世燕研究员和北京大学王健研究员因在低温物理学研究领域取得的突破性研究成果,获得了2015马丁&bull 伍德爵士中国物理科学奖。  对于此次获奖,李世燕和王健均表示很荣幸能够获得这个奖项,目前国内低温物理研究领域优秀的年轻学者非常多,能够获得这个奖项并不代表自己是最优秀的。同时,他们也为我国低温物理学研究水平与欧美国家的差距越来越小,并逐步走到世界前列感到骄傲和高兴。  他们对于我国低温物理学的发展、低温设备的技术发展、科学家与仪器厂商之间的合作,以及低温物理学研究的热点和实际应用都有怎样的见解和看法呢?会议期间,仪器信息网编辑特别采访了两位老师,并将他们的精彩观点整理成章,以飨读者。北京大学王健研究员(左)、复旦大学李世燕研究员(右)  低温设备技术发展助力低温物理学研究  Instrument:首先,请您们结合自身的经历谈谈近年来我国低温物理学的发展情况?  李世燕:2002年我在中国科学技术大学陈仙辉教授的指导下完成了博士阶段的学习,当时在国内我们基本没有见过极低温设备,只有中科大和物理所有两台非常庞大的稀释制冷机。后来我到加拿大多伦多大学Louis Taillefer教授的实验室做博士后,接触到两台新型稀释制冷机,研究的低温环境一下子从2K直接降到了mK级别,看到了许多以前从未看到过的本征物理现象,立刻觉得整个物理世界都不一样了。  2007年我回国加入复旦大学,当时获得了400万元的启动经费,我就采购了一台新型稀释制冷机。这个时候国内小型易用的新型稀释制冷机仍然比较少,全国也就两三台。之后随着国家对基础科学研究投入的加大,而且低温物理研究的内容也很丰富,逐渐有越来越多的研究组开始采购极低温设备,并做出了优秀的成果。  王健:2001年到2006年我在中科院物理所师从薛其坤院士完成硕士、博士阶段的学习,当时主要做超高真空系统,也涉及一些低温研究。但当时稀释制冷机的确非常少,我们接触的低温也就是液氦温度或是再稍微低一点的温度。2006年到2010年,我在美国宾夕法尼亚州立大学纳米科学中心和物理系做博士后,师从国际低温物理专家Moses Chan院士,开始接触稀释制冷机,做纳米超导方面的研究。  2011年我回到北大,以前国内做极低温物理研究的人特别少,但在我回来的这几年里,仅北大就有好几个研究组采购了极低温设备做这方面的研究,而且国内涌现出了许多国际一流的研究成果。  Instrument:请问近年来,低温设备的技术发展有哪些趋势?技术的发展对于科学研究有着怎样的影响和帮助?  李世燕:如今一些大的低温设备公司,如牛津仪器、Quantum Design,都能够提供非常好的低温磁场环境,稀释制冷机达到mK级的低温已经比较成熟。技术的主要发展方向是无液氦化和简单易用。  以前的稀释制冷机外围设备包括管道、泵等等,操作特别复杂,我当年做博士后的时候,花了整整一年时间才完全掌握如何使用。而现在的新型稀释制冷机,一个学生基本花半年时间就能很好地掌握。  还有过去测比热,大家觉得这是一个非常专门的测量手段,尤其是极低温下的比热,往往需要一个拥有10年到20年比热测量经验的人,才能获取准确的测量结果。但现在就拿Quantum Design PPMS系统的比热测量选件来说,它的最低测量温度可以达到50mK,而且非常好用,学生只要简单学习就能将极低温下的比热测好,这非常不容易。  王健:无液氦化是一个发展方向,以前大家觉得无液氦化很难达到,但现在已经成为了一种通用技术,而且仪器价格较之前有了大幅的下降,我相信以后低温设备的价格会更低,因此低温物理的研究队伍也会更加壮大。  商品化科学仪器的简单易用对于我们的科研起到了极大的促进作用。让一个新手能够很快的掌握测量技术,使大家有更多的精力和注意力集中在科学问题上,而不是技术手段上,这是对科学方面生产力的释放。  Instrument:对于和仪器公司合作开发低温设备的新功能,您们有什么看法?  王健:其实科学家和仪器公司的交流是非常密切的,如果我们在具体的实验上遇到需要改进仪器来实现一定功能,此时和一些有能力的仪器公司建立良好的合作非常重要。科学家根据实际研究需要提出设想,然后与仪器公司一起开发新功能,我觉得这会是今后的一个趋势。  实际上日本在这方面的合作就已经做的很好,Quantum Design的PPMS系统中采用的高压腔选件就是日本科学家与他们合作开发的。我觉得这是推动技术发展的一个很好的模式,如果有机会,我们希望能够和仪器公司合作拓展仪器的功能,让自己的实验手段更强大。  低温物理学研究改变百姓生活  Instrument:低温物理学研究目前有哪些热点研究方向?我国在该研究领域都有哪些创新性成果?  王健:在低温条件下,由于减少了热等因素的干扰,更多本征的物理现象能够被观测到,这对于基础研究以及新材料的本征特性研究十分重要。低温物理涉及的领域特别广,实际上很多研究方向都需要用到低温物理。  超导方面的探索就离不开低温,虽然我们希望能够实现室温超导,但首先得从低温超导开始,这也是全世界凝聚态物理研究人员最关注的一个方向。我们和薛其坤院士合作研究的二维极限下的界面增强超导,尤其是高温界面超导研究,就是当前极少数由中国人先做出来,外国人去跟进的研究方向。  李世燕:另外,拓扑材料的物性研究也是低温物理最近比较热的一个研究方向,薛其坤院士发现的量子反常霍尔效应大概是最近几年拓扑新材料研究最重大的突破,要在30mK的温度下才能看到量子现象。  我国在低温物理研究领域取得的创新性成果还有中科大的陈仙辉教授课题组与复旦大学张远波教授课题组合作,成功制备出了基于具有能隙的二维黑磷单晶场效应晶体管。可以看出我国现在已经逐渐在一两个点上引领低温物理的研究趋势,如果有越来越多这样的点,我们的研究水平就会有很大的提升。  王健:对于我国低温物理研究的发展,我还是比较乐观的,目前像北大、复旦、清华还有南京大学、中科大,上海交大、浙江大学等许多学校在低温物理研究领域做得是越来越好,如果我国的科研政策持续不变,大家一起努力,我想十年以后,在低温物理这个研究方向我们赶超发达国家是没有问题的。  Instrument:低温物理的研究成果在生活中会有哪些实际应用?  李世燕:低温下的物理现象更明显,更容易表现出来,我们在低温下发现新的物性,一些在实际应用中只要能提供低温环境,就能够实现很好的应用,其中最典型的应用就是医院里核磁共振超导磁体。  另外我们可以在低温下发现物性,然后再通过研究使得它能够在室温或者高温下表现出同样的性能。比如巨磁阻效应,最初是在低温下发现的,后来发现改进材料后,在室温下也有明显的效应,人们因此研究出了基于巨磁阻效应的读出磁头,引发了硬盘的&ldquo 大容量、小型化&rdquo 革命,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。这是一个很典型的低温物理研究成果最终应用到大家生活中的例子。巨磁阻效应的发现者也因此获得了2007年的诺贝尔物理学奖。  王健:其实目前高温超导也得到了一定的实际应用,比如甘肃白银的超导变电站,采用了高温超导限流器、高温超导储能系统、高温超导变压器和高温超导电缆等多种超导电力装置,能有效降低系统损耗。高温超导技术也被日本和美国等国家考虑作为城市储能系统的一种方案。  还有现在大家研究的拓扑材料,由于它的低耗散性,还有它的一些自旋特性和磁性相关联,因而可以实现一些特殊性能。如我们现在做的拓扑半金属Cd3As2体系载流子迁移率非常高,也许有一天这个体系可以用到高速器件上。另外,如果能实现拓扑超导,就可以用于量子计算,它要比现在所说的量子计算机更进一步,叫做拓扑量子计算机。  实际上低温物理的研究应用已经走入了老百姓的日常生活当中,只是还没有像半导体一样让整个社会都发生变化。如果有一天我们能够实现室温超导,那样整个人类社会将会从信息时代进入超导时代,因为它无能耗,而且能实现许多量子态,将会是非常好的工具,比如现在最可行的一种量子计算就是用超导的约瑟夫森结实现的。所以一旦实现室温超导,带来的变化将不可估量。  后记  近年来,我国低温物理学研究取得了快速的发展,这不仅仅是由于国家对于基础科研投入的持续加大,更重要的是老一辈科研人员不懈的努力,以及许多像李世燕、王健这样优秀的年轻学者,他们对于低温物理的研究充满热情,对于我国低温物理研究的未来满怀希望,努力在自己的研究领域做出了国际一流的研究成果,脚踏实地的践行着科技强国的梦想。  但有一件事情让他们感到遗憾。李世燕说:&ldquo 我们现在所用的设备绝大部分都是从国外进口的,这是我一直觉得比较遗憾的地方。&rdquo 王健说:&ldquo 其实低温设备的技术含量也没有那么高,希望今后有国产仪器厂商能够提供相应的设备,只要国产设备测量结果可靠,能够获得国际认可,我们会非常乐意选择使用国产仪器的。&rdquo   让我们期待,在不久的将来,我们能够在低温物理研究领域赶超发达国家,同时我们也能拥有性能优异的国产低温设备,助力科学家们做出更多国际一流的研究成果。  采访编辑:秦丽娟  相关新闻:2015马丁&bull 伍德爵士中国物理科学奖获奖者公布
  • 中国科大在笼目结构超导体研究中获进展
    中国科学技术大学合肥微尺度物质科学国家研究中心、物理学院、中科院强耦合量子材料物理重点实验室陈仙辉、吴涛和王震宇等组成的研究团队,在笼目结构(kagome)超导体研究中取得重要进展。科研团队在笼目超导体CsV3Sb5中观测到电荷密度波序在低温下演化为由three state Potts模型所描述的电子向列相。该向列相的发现为理解笼目结构超导体中电荷密度波与超导电性之间的反常竞争提供了重要实验证据,并为进一步研究关联电子体系中与非常规超导电性密切相关的交织序(intertwined orders)提供了新的研究方向。2月9日,相关研究成果以Charge-density-wave-driven electronic nematicity in a kagome superconductor为题,以Accelerated Article Preview形式,在线发表在《自然》(Nature)上 。   电子向列相是一种由电子自由度旋转对称性的自发破缺而产生的电子有序态,广泛存在于高温超导体、量子霍尔绝缘体等电子体系。电子向列相与高温超导电性之间存在紧密联系,被认为是一种与高温超导相关联的交织序,是高温超导的理论研究中重要的科学问题和研究热点。探索具有新结构的超导材料体系,从而进一步探究超导与各种交织序的关联是当前领域的重要研究方向,其中一类备受关注的体系为二维笼目结构。理论预测在范霍夫奇点(van Hove singularities)掺杂附近,二维笼目体系可呈现出新奇的超导电性和丰富的电子有序态,但长期以来缺乏合适的材料体系来实现其关联物理。近年来,笼目超导体CsV3Sb5的发现为该方向的探索提供了新的研究体系。中国科大超导研究团队前期研究揭示了该体系中面内三重调制(triple-Q)的电荷密度波态【Physical Review X, 11, 031026 (2021)】以及电荷密度波与超导电性在压力下的反常竞争关系【Nature Communications, 12, 3645 (2021)】。   在上述研究的基础上,科研团队充分结合扫描隧道显微镜、核磁共振以及弹性电阻三种实验技术,针对CsV3Sb5中的电荷密度波态的演化展开了细致研究。研究显示,体系在进入超导态之前,三重调制电荷密度波态会进一步地演化为一种热力学稳定的电子向列相,并确定转变温度在35开尔文左右。该电子向列相与之前在高温超导体中观测到的电子向列不同:高温超导体中的电子向列相是Ising类型的向列相,具有Z2对称性;而在笼目超导CsV3Sb5中发现的电子向列相具有Z3对称性,在理论上被three state Potts模型所描述,因而也被称为“Potts”向列相。有趣的是,这种新型的电子向列相最近在双层转角石墨烯体系中也被观察到。   这些发现在笼目结构超导体中揭示了一种新型的电子向列相,并为理解这类体系中超导与电荷密度波之间的竞争提供了实验证据。之前的扫描隧道谱研究表明,CsV3Sb5体系中可能存在超导电性与电荷密度波序相互交织而形成的配对密度波态(Pair density wave state,PDW)。在超导转变温度之上发现的电子向列序,可以被理解成一种与PDW相关的交织序,该研究为理解高温超导体中的PDW提供了重要的线索和思路。如何理解笼目结构超导体中超导电性及其交织序的形成机制仍需要进一步的实验与理论研究。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省及中国科大创新团队项目的支持。      论文链接
  • 室温超导体“突破”遭质疑
    LK-99材料有一个边缘呈悬浮状态。图片来源:Hyun-Tak Kim et al. (2023)一个研究小组声称已经创造出第一种在室温和环境压力下完美导电的材料,但许多物理学家对此持高度怀疑态度。美国威廉与玛丽学院的Hyun-Tak Kim表示,他将支持任何试图复制其团队工作的人。超导体是一种可以使电流在没有任何阻力的情况下移动的材料,因此可以显著降低电子设备的能源成本。但一个多世纪以来,研究人员一直无法让它们在极端条件下工作,比如极低的温度和极高的压力。现在,Kim和同事声称已经制造出一种在室温和压力下具有超导性的材料。为了制造这种被称为LK-99的新材料,Kim和同事制造出混合了铅、氧、硫、磷的粉末状化合物,然后将其在高温下加热几个小时。这使得粉末发生化学反应,变成深灰色固体。研究人员随后测量了一毫米大小的LK-99样品在不同温度下的电阻,发现其电阻率从105℃的相当大的正值急剧下降到30℃的接近零。超导体会驱逐磁场是迈斯纳效应现象的一部分,为此,研究人员还测试了这种材料在一定温度下对磁场的反应。结果显示,在电阻接近于零的温度范围内,它确实表现出这种效应。由于迈斯纳效应,超导体放置在传统磁体上时会呈漂浮状态,研究人员也记录了这种悬浮的测试。在他们的视频中,他们将一块LK-99放在磁铁上方,磁铁表面明显升起。然而,这种扁平的硬币状的材料只有一个边缘完全悬浮,另一边似乎与磁铁保持接触。Kim说,这是由于样品还不完美,意味着只有部分样品具有超导性,并表现出迈斯纳效应。目前,两篇关于k -99的论文已在预印本服务arXiv上公布,但不进行同行评审,相关研究已在4月份发表于《韩国晶体生长与晶体技术杂志》。Kim只是其中一篇论文的合著者,另一篇论文则是由他在韩国量子能量研究中心的同事撰写,他们中的一些人也在2022年8月申请了LK-99的专利。这两篇论文都提出了类似的测量方法,但Kim说第二篇论文存在“许多缺陷”,并且未经他的许可就被上传到arXiv。在那篇论文中,这项工作被描述为开启了“人类的新时代”。社交媒体上的一些评论员称赞这一发现是一代人的突破,但超导专业研究人员在很大程度上持怀疑态度。英国牛津大学的Susannah Speller和Chris Grovenor说,当一种材料成为超导材料时,在许多测量中应该有明确的特征。Speller说,对于其中两个,即对磁场的响应和一个称为热容的量,数据中都没有给予证明。“因此,现在说我们已经在这些样品中获得了令人信服的超导性证据还为时过早。”Kim已经意识到这种怀疑,但他认为其他研究人员应该尝试复制他团队的工作来解决这个问题。一旦研究结果发表在同行评议的期刊上,他将支持任何想要自己创造和测试LK-99的人。与此同时,他和同事还将继续完善奇迹超导体样品,并向大规模生产迈进。
  • 上海交大最新《Nature》!石墨烯超导又有重大发现
    近日,上海交通大学物理与天文学院李听昕课题组、李政道研究所刘晓雪课题组在《Nature》上发表题为“Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene”的研究论文。该项研究首次在单晶石墨烯中观测到电子掺杂情况的超导电性,这对于理解晶体石墨烯及转角石墨烯系统的超导机理,设计制备基于石墨烯系统的高质量新型超导量子器件等具有重要意义。论文链接:https://www.nature.com/articles/s41586-024-07584-w 超导这一宏观量子现象最早由荷兰科学家H. K. Onnes于1911年在研究汞在低温下的电学输运性质时被首次观察到,是凝聚态物理学中里程碑式的发现之一,有关超导材料和超导机理的研究是物理学及相关领域研究中经久不衰的课题。2018年,有关魔角双层石墨烯的研究首次在石墨烯系统中观察到超导电性,这一研究立即引起了国际物理学界的广泛关注,引领了有关二维莫尔超晶格研究的热潮。此后,研究者们在转角多层石墨烯莫尔超晶格系统中也观测到了超导电性,而转角石墨烯中超导与平带之间的关系、超导的配对机制等,至今仍是领域内备受关注的重要科学问题。魔角双层石墨烯对两层石墨烯之间的转角要求十分苛刻,容忍度仅在魔角1.1度正负偏差0.1度的范围,这在一定程度上限制了对魔角石墨烯中超导电性的深入研究。图一 样品结构示意图和光学显微镜照片2021年,研究者首次在不需要莫尔超晶格的亚稳态单晶石墨烯,即菱方堆垛的三层石墨烯中,通过栅极静电调控,观察到空穴掺杂的超导现象,其超导转变温度约为100 mK,这一研究结果也马上引起了广泛的关注。随后,2022年,在施加约0.15 T平行磁场和垂直位移电场(约1 V/nm)的条件下,人们在空穴掺杂的Bernal堆垛双层石墨烯也观察到了超导态,但其超导转变温度仅约为30 mK. 不同于魔角石墨烯和菱方堆垛石墨烯系统,Bernal堆垛的双层石墨烯是天然石墨的基本组成单元,是一种稳定的晶体结构,这为可控制备高质量样品、以及未来研制基于石墨烯的新型超导量子器件提供了理想的实验平台。之后的研究发现,将半导体过渡金属硫族化合物二硒化钨(WSe2)与Bernal堆垛的双层石墨烯组合形成异质结构时,由于近邻效应,增强了石墨烯体系的自旋轨道相互作用,有趣的是,这使得双层石墨烯的超导态能在零磁场下显现,并且超导转变温度被显著提升至约300 mK. 但由于实验中可实现的位移电场范围的限制,无法完全揭示双层石墨烯空穴超导态随位移电场变化的性质与规律;而且,其超导配对机制以及二硒化钨对石墨烯系统超导态的影响机制仍是悬而未决的问题。此外,之前有关高质量双层石墨烯器件中自发对称性破缺态和超导态的研究主要集中在价带(空穴掺杂),而对导带(电子掺杂)的关注较少。图二 实验揭示的双层石墨烯与二硒化钨异质结系统的相图,以及观察到的空穴和电子掺杂情况的超导态通过优化样品制备方法,上海交大实验团队成功制备出高质量双层石墨烯与二硒化钨异质结样品,使得可以对其施加高达1.6 V/nm的垂直位移电场。通过开展系统的极低温量子输运测量,结合电场调控和静电掺杂调控,他们揭示了该系统中空穴掺杂超导随位移电场和载流子浓度变化的完整相图;更为重要的是,实验上在电子掺杂的情况也观察到超导态,这是在单晶石墨烯中首次观察到电子掺杂的超导电性。空穴端和电子端的超导态强度都可以通过外加的垂直位移电场进行有效调节,实验上测量到的最高超导转变温度分别约为450 mK和300 mK,这也是目前在单晶石墨烯系统中观察到超导转变温度的最高记录。图三 在外加高垂直位移电场下,Bernal堆叠双层石墨烯电子端量子振荡及费米面分析通过测量高质量石墨烯样品的纵向电阻随垂直磁场的量子振荡(即Shubnikov-de Haas效应,简称SdH振荡),可以得到有关能带费米面的重要信息,这对于理解体系中由于电子关联相互作用导致的自发对称性破缺态,以及超导配对机制等都具有重要的意义。该研究工作详细测量了在不同位移电场下,低磁场区间空穴掺杂和电子掺杂时的SdH振荡。分析结果表明,在较高的位移电场下,双层石墨烯在空穴掺杂和电子掺杂时均出现了一系列自发对称性破缺态,这些态的出现与能带的范霍夫奇点以及电子-电子相互作用相联系。特别地,当施加电场使得双层石墨烯中的电子或空穴靠近二硒化钨层时,SdH振荡的频率发生了进一步的变化,这是因为当电子和空穴靠近二硒化钨层时,感受到了明显的自旋轨道耦合作用,从而导致电子态的简并度和费米面的结构发生变化。实验结果表明,空穴掺杂和电子掺杂的超导的正常态均对应于费米面为部分极化的情况。最后,该工作详细对比了双层石墨烯中电子掺杂超导和空穴掺杂超导的性质。出乎意料的是,在选取的超导转变温度,超导临界垂直磁场等超导性质类似的情况下,空穴掺杂超导和电子掺杂超导展现了截然不同的平行磁场依赖性。具体而言,空穴掺杂的超导态违反了泡利顺磁极限,而电子掺杂的超导性却始终遵循泡利顺磁极限。之前的研究工作认为,二硒化钨对石墨烯系统超导态的增强效果可以通过近邻效应引入的Ising自旋轨道耦合相互作用的角度来理解,而超过泡利顺磁极限的空穴掺杂超导是Ising自旋轨道耦合相互作用的直接结果。而在此项工作中,尽管通过费米面分析在导带中也观测到明显的Ising自旋-轨道耦合相互作用,但电子掺杂的超导电性却没有违反泡利顺磁极限。这一观察预示着二硒化钨对双层石墨烯中超导的增强效果可能不仅仅来自于近邻效应引入的Ising自旋轨道耦合相互作用。该成果上海交大团队主要成员:(从左至右)刘晓雪、李佳熠、李楚善、徐凡、李听昕这一研究工作突显了在高位移电场下双层石墨烯系统中涌现的丰富量子物态,其中很多现象和性质还值得进一步的理论和实验研究。该工作不仅为理解单晶石墨烯乃至魔角石墨烯的超导机理提供了重要的实验信息和约束,而且为基于稳态结构的单晶石墨烯设计和制造新型超导量子器件奠定了坚实基础。论文第一作者为上海交通大学物理与天文学院博士研究生李楚善。共同通讯作者为物理与天文学院李听昕副教授,李政道研究所刘晓雪副教授和武汉大学吴冯成教授。论文的合作者还包括上海交通大学贾金锋教授,博士研究生徐凡,李佳熠;武汉大学博士研究生李泊浩;中科院物理研究所吕力研究员,沈洁研究员,仝冰冰副主任工程师,博士研究生李国安,以及日本国立材料研究所Kenji Watanabe研究员和Takashi Taniguchi研究员。此项研究涉及的器件微纳加工部分在上海交通大学物理与天文学院微纳加工平台完成,极低温测量在中国科学院综合极端条件实验装置完成。本工作得到科技部、国家自然科学基金委、上海市和上海交通大学的资助。
  • 21℃室温超导实现了?有它,你也能测!
    近日火爆全网的室温超导论文,再次将低温物理科研推到了大众的视野里。自昂内斯1911年发现汞金属的超导电性之后,各种超导材料的研究进入了爆炸式增长,从金属到合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体以及其他氧化物超导体等,超导温度也在不断提升。然而即便是常见的高温超导材料仍要接近液氮温度才能够实现,使得超导材料距离人们生活中大规模应用仍然存有相当的距离。而近日在美国物理学会春季会议,罗彻斯特大学的兰加迪亚斯团队宣布在1GPa压强下,在镥-氮-氢体系中实现了室温超导,使整个物理学界沸腾了。这篇工作也刊登于Nature期刊,3月8日在线发表。图1. 兰加迪亚斯在美国物理学会春季会议的报告 相比于之前的氢化物超导,此次氮掺杂镥氢化物超导存在两个惊人的发现:一是该超导材料的临界超导温度达到了21度,二是压力仅需要1万个标准大气压(1Gpa)。这与之前动辄上百Gpa压力的极端高温超导条件天差地别,具有极高的应用潜力。 如此震惊世界的发现,作者在进行超导判定时也非常谨慎,分别从电、磁、热三个维度进行了超导转变实验验证。氮掺杂镥氢化物随着压力的增加,会发生两次明显的可视相变,起初样品无超导性,呈现蓝色(I相)。随着压力增加到3kbar,样品进入超导相(II相),颜色也转变为粉红色。进一步提升到32kbar以上,样品再次进入一个无超导金属相(III相),样品颜色此时也转变为鲜艳红色。图2:镥-氮-氢体系超导与可视相变 对不同压力下的超导相进行电输运测量,零外场条件下,温度依赖的电输运测量表明,随温度下降,电阻会存在一个陡然下降至零的行为,超导转变宽度与转变温度的比值ΔT/ΔTC在0.005至0.036范畴,可以在GL理论的脏极限范畴解释。零外场下,V-I特性曲线在超导转变温度上下明显不同:超导转变温度之上,材料具有线性V-I响应,符合欧姆定律;超导转变温度之下,电压几乎不可测量,并具有非线性响应。图3. 镥-氮-氢体系温度依赖的电输运测量和V-I特性曲线 对于超导转变判定,除零电阻行为外,更为关键的是迈斯纳现象的发现。本文磁学测量方面,温度依赖的磁化强度曲线和M-H曲线基于Quantum Design PPMS系统完成,并搭配了相应的磁测量高压包选件。在8kbar压强下,场冷、零场冷条件下磁化强度的测量表明了一个清晰明确的迈斯纳现象的存在,确定超导转变为277K。宽超导可能源于高压包不同压力梯度或者材料的不均匀性。磁测量获得的超导转变与电阻测量结果相吻合。除直流磁化率外,交流磁化率也明显观测到超导转变带来的抗磁性。图4. 镥-氮-氢体系直流与交流磁化率测量 而热输运方面,比热测量同样是验证超导转变的重要途径,根据BCS理论,超导转变伴随有能带打开能隙,会导致比热激增。本文采用了新型交流量热技术,获得了不同压力下,材料比热随温度的演变关系,可以看出,比热具有明显的不连续特征,由此获得的超导转变温度也与电、磁测量相吻合。图5. 镥-氮-氢体系的高压比热测量 本文通过电、磁、热三个维度的实验验证了镥-氮-氢体系在1GPa下接近室温的超导电性,但关于其内容见解,各路大神众说纷纭。此篇文章中,使用了PPMS磁测量高压腔组件,能够实现1.3GPa压力下的等静压磁学测量。相信在未来的超导探索工作中,PPMS的磁学测量和电学测量高压腔能够发挥更多更重要的贡献。图6:Quantum Design 高压磁学和电学测量功能组件
  • 世界精英聚京城,共话超导论“英雄”——第十二届国际超导材料与机理大会(M2S-2018)在京举办
    2018年8月20日至8月24日,来自全球超导界的科研工作者们齐聚北京参加了十二届国际超导材料与机理及高温超导体学术会议(M2S-2018)。自1997年北京举办了五届国际超导材料与机理大会以来,超导大会时隔二十年再次来到中国。回二十年,不变的是我们的科研热情,不同的是我们的科研成果。二十年间我们的科学家栉风沐雨不改初心,二十年间我国的科学研究硕果累累人才辈出!本次大会还举行了代表超导领域高荣誉的三大奖项颁奖仪式。卡末林昂内斯奖:日本京都大学的Yuji Matsuda和加拿大施尔布鲁克大学的Louis Taillefer凭借在非常规超导体超导性质研究方面的突出贡献而获此殊荣。马蒂亚斯奖:该奖项花落日本大阪大学Katsuya Shimizu,以表彰他在非超导元素中发现高压下29 K的超导电性。巴丁奖:由于在非常规和多带超导领域以及超导量子涨落方面持续做出的理论贡献,美国明尼苏达大学的Andrey V. Chubukov、美国海军实验室的Igor Mazin和美国斯坦福大学的Sebastian Doniach享了该奖项。无论功勋的科学大家,风华正茂的青年才俊,还是年轻有为的明日之星,一千三百余人齐聚一堂分享新的科研成果,探讨超导领域未来的发展方向。为期五天的学术会议共计数百场报告,让全球的科研人员享受了一场科研的饕餮盛宴。Quantum Design作为超导应用的典范、科研仪器的行业翘楚,在大会上展出了包括新产品OptiCool在内的几十种产品。Quantum Design的工程师在现场接受了各国参会人员的产品与技术咨询。Quantum Design工程师为参会代表介绍产品性能 Quantum Design全球销售总监Daniel Polancic先生发表讲话 赵忠贤院士(中)、董晓莉研究员(左)与Daniel Polancic先生亲切交谈 Quantum Design全球销售总监Daniel Polancic先生出席了本次会议并在大会晚宴上发表讲话,讲述了Quantum Design与超导领域的不解之缘和深厚感情。Quantum Design起源于超导,服务于科研。正如伟人所说,科学技术是生产力,自从台SQUID诞生以来Quantum Design的测量设备大的促进了全球科研的发展。无论是高精度测量还是智能化控制,科研工作者无不享受着先进科研仪器带来的便利。Quantum Design成立三十年来时刻保持着积进取的态度,不忘初心砥砺前行。从开始的兢兢业业到现在的精益求精,Quantum Design始终是全球科学家的科研伙伴。通过本次超导盛会,Quantum Design向广大科学家展示了在仪器领域取得的丰硕成果,也希望能够更好地服务于大家。这是一次超导的盛会,更是一次智慧的盛会。我们期待着这次超导大会的举行能够让更多的科研工作者迸发出智慧的火花,让我国的科研事业再上新台阶。在此,我们也感谢国内外超导科研工作者对Quantum Design的信任和支持。相关产品及链接:1、 超全开放强磁场低温光学研究平台—OptiCool:https://www.instrument.com.cn/netshow/C283786.htm2、 多功能振动样品磁强计—VersaLab :https://www.instrument.com.cn/netshow/C19330.htm3、 超精细多功能无液氦低温光学恒温器:https://www.instrument.com.cn/netshow/C122418.htm
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制