当前位置: 仪器信息网 > 行业主题 > >

蛋白质双向电泳系统

仪器信息网蛋白质双向电泳系统专题为您提供2024年最新蛋白质双向电泳系统价格报价、厂家品牌的相关信息, 包括蛋白质双向电泳系统参数、型号等,不管是国产,还是进口品牌的蛋白质双向电泳系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质双向电泳系统相关的耗材配件、试剂标物,还有蛋白质双向电泳系统相关的最新资讯、资料,以及蛋白质双向电泳系统相关的解决方案。

蛋白质双向电泳系统相关的论坛

  • [推荐]双向电泳实验培训资料zz

    目  录第一章   实验材料1.1 IPG预制胶条及载体两性电解质1.2 蛋白质定量试剂盒及其试剂1.3 试剂盒及其试剂1.4 化学试剂1.5 蛋白质Marker1.6 染色试剂1.7 注意事项第二章  SDS-PAGE聚丙烯酰胺凝胶电泳2. 1 溶液的配制2. 2 SDS-PAGE凝胶的配制2. 3 操作方法2. 4 注意事项第三章  双向电泳3. 1 溶液配制3. 2 操作步骤3. 3 注意事项附录1 双向电泳完整的操作步骤附录2  聚丙烯酰胺凝胶电泳凝胶的配置附录3  细胞样品的一般处理步骤附录4  组织样品的一般处理步骤附录5  我方主要工作人员通讯录[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18952]双向电泳实验培训资料[/url]

  • 双向电泳 实验技术

    双向电泳篇 1. 重泡胀后的胶可以不用转移到另一个电泳槽,直接跑 2D 的一向吗? 一般情况下是可以的。但当上样量特别大时,可能会有一部分蛋白质没有被胶条吸收,这样跑完 1D 和 2D 胶后,会有很多横向条纹。所以在这种情况下,最好在重泡胀后,将胶条转移到另外一个电泳漕中进行电泳。 2. 为什么我在等电聚焦前加的矿物油在聚焦后会减少,暴露出了胶条的背面? 这是因为 BioRad 的电泳槽有个盖子。为了固定电泳槽中的胶条,这个盖子上设计了对应的突起,以便压住胶条。由于虹吸作用,这个突起会导引矿物油到相邻的空电泳槽,从而降低有胶条的电泳槽中的矿物油液面。如果由此把胶条暴露在空气中,那对等电聚焦的影响将是毁灭性的。为了防止这个现象的发生,可以在相邻的空电泳槽里,也加入适量( 80 %满)的矿物油。 3. 跑第一向时,为什么要设定一个电流的最大值电压(50 μ A/ 胶)? 电流的平方和功率成正比。电流增大,功率增大,放出的热量也随之增大,就会导致胶条的温度增加。当温度超过 30 摄氏度时,缓冲液里的尿素就容易解离,产生一些极性分子,从而对等电聚焦产生影响。 4. 跑第一向时,为什么刚开始的电压比较低,而后逐渐增高? 刚开始时,体系内的带电小分子比较多(比如无机盐和双极性分子)。所以在这个阶段,电流主要是由这些小分子的移动所产生的。由于这些分子质量小,移动他们不需要很高的电压。当这些小分子移动到他们的目的地时(无机盐移动到极性相反的电极;两性分子移动到对应的 pH 条带),体系内的蛋白质才开始肩负起运载电流的任务,逐渐向所对应的 pH 区域移动。 5. 跑第一向时,为什么会产生一条蓝色的条带,并逐渐向酸性端移动? 蓝色条带是缓冲液中痕量的溴酚蓝被聚焦所产生的。溴酚蓝也是 pH 指示剂,当它移动到酸性区时( pH4 ),颜色会变成黄色。溴酚蓝的这个移动过程大体上发生在极性小分子的聚焦之后,蛋白质大分子聚焦之前。 6. 跑第一向时,为什么电压总达不到预定值? 当上样量比较大时或体系内盐分比较多时,聚焦的电压有可能达不到所设定的数值。 7. 跑第一向时,在电压达到预定值后,电流为什么会降低? 当上样量比较少时,所有蛋白在较短的时间内就移动到所对应的 pH 值区域值,从而变成中性分子。这样,体系的电阻越来越大,在恒定的电压下,电流就会越来越小。 8. 跑第一向时,为什么在两个电极丝附近有气泡产生? 等电聚焦完成后,所有的蛋白质都移动到了相应的 pI 值区域,而成为中心分子。这是加在体系上的电压就开始电解水分子,在阳极产生氧气,在阴极产生氢气。 9. 重泡胀缓冲液(rehydration buffer)中的硫脲的作用是什么,双极性分子的作用是什么? 硫脲的作用是增加蛋白质的溶解性,特别是碱性蛋白的溶解性。双极性分子的作用也是增加蛋白质的溶解性。当蛋白移动到相应的 pH 值后,就变成了中性分子。而不带电荷的蛋白质分子容易聚集,从而降低其在随后的二向胶时的迁移效率,可能会造成竖的脱尾。而硫脲和双极性小分子则会鉴定中性蛋白质之间的相互作用,防止它们的聚集。 10. 怎样估计 2D 胶上蛋白质点的分子量和 pI 值? 可以用 BioRad 生产的 2D 胶标准蛋白来校准。也可以用体系内已知蛋白来做比对。 11. 为什么 2D 胶上的蛋白点有横的和竖的脱尾? 横的脱尾可能是: 1 )一向等电聚焦不完全; 2 )某些蛋白质本身的原因(糖蛋白); 3 )蛋白的丰度太高。竖的脱尾是因为跑二向时,蛋白的溶解度不好。 12. 什么成分会影响 2D 胶的效果? 核酸,盐,去垢剂等等。 13. 2D 胶的上样量应该在什么范围? 上样量和样品有关。样品内蛋白种类多的上样量要大些,这样每个点才有足够的量被检测到。一般的全细胞裂解体系,上样量大概在 100 微克(银染)到 500 微克(考染)之间。 14. 我的蛋白质浓度很低,应该用什么方法来浓缩? 蛋白质的浓缩有很多方法。大致有超滤法,沉淀法和透析法。超滤比较温和,对蛋白质不会有修饰和改变,蛋白的种类一般不会有丢失。它的缺点是总样品的量可能会减少(被膜所吸附)。另外超滤对样品的要求比较高。甘油,去垢剂都会堵塞滤膜,影响超滤的效果。沉淀法比较快速,容易操作,对盐,甘油,去垢剂的耐受性好。缺点是可能会有部分种类的蛋白没有被沉淀下来(丢失)。沉淀法中,又以 TCA 法最为普遍使用。使用 TCA 法时,一定要用冷的纯丙酮清洗蛋白沉淀两次,去处残留的 TCA 和其他沉淀下来的杂质。透析法只使用于量比较大的样品,量小时,操作困难。 透析法可以和超滤法联用。先把样品透析到一个比较干净的环境( 不含盐,甘油,去垢剂或其它杂质,比如碳酸氢氨溶液),然后再进行超滤。

  • 双向电泳操作步骤及相关溶液配置

    一、实验原理:2-DE的第一向电泳等电聚焦是基于等电点不同而将蛋白粗步分离,第二向SDS-PAGE是基于蛋白质分子量不同,而将一向分离后的蛋白进一步分离。这样就可以得到蛋白质等电点和分子量的信息。二、实验步骤:1. 样品的溶解取纯化后的晶体蛋白3.0mg,加入300ul裂解液(1mg蛋白:100ul裂解液)振荡器上振荡10min左右,共处理一个小时。其中每隔10~15分钟振荡一次,然后13200rpm离心15min除杂质,取上清分装,每管70ul,-80℃保存。2. Bradford法测蛋白含量取0.001g BSA(牛血清白蛋白)用1ml超纯水溶解,测定BSA标准曲线及样品蛋白含量。取7个10ml的离心管,首先在5个离心管中按次序加入0ul,5ul,10ul,15ul,20ul 的BSA溶解液,另2管中分别加入2 ul的待测样品溶液,再在每管中加入相应体积的双蒸水(总体积为80ul),然后,各管中分别加入4ml的Bradford液(原来配好的Bradford液使用前需再取需要的剂量过滤一遍方能使用),摇匀,2min在595nm下,按由低到高的浓度顺序测定各浓度BSA的OD值,再测样品OD值。(测量过程要在一个小时内完成)。3. 双向电泳第一向——IEF(双向电泳中一律使用超纯水)3.1 水化液的制备称取2.0mg 的DTT,用700ul水化液储液溶解后,加入8ul 0.05% 的溴酚兰,3.5ul(0.5%v/v)IPG buffer (pH 3-10)振荡混匀,13200rpm离心15min 除杂质,取上清。在含300ug 蛋白(经验值)的样品溶解液中加入水化液,至终体积为340ul,振荡器上振荡混合,13200rpm离心15min除杂质,取上清。3.2 点样,上胶分两次吸取样品,每次170ul, 按从正极到负极的顺序加入点样槽两侧,再用镊子拨开 Immobiline DryStrip gels (18cm,pH 3-10)胶条,从正极到负极将胶条压入槽中,胶面接触加入的样品。注意:胶条使用前,要在室温中平衡30分钟;加样时,正极要多加样,以防气泡的产生;压胶时不能产生气泡;酸性端对应正极,碱性端对应负极;样品加好后,加同样多的覆盖油(Bio-Rad),两个上样槽必须与底线齐平。3.3 IPG聚焦系统跑胶程序的设定(跑胶温度为20℃)S1 (30v, 12hr, 360vhs, step)S2 (500v, 1hr, 500vhs, step)S3 (1000v, 1hr, 1000vhs, step)S4 (8000v, 0.5hr, 2250vhs, Grad)S5 (8000v, 5hr, 40000vhs, step) 共计44110vhs, 19.5小时其中S1用于泡胀水化胶条,S2和S3用于去小离子,S4和S5用于聚焦3.4 平衡用镊子夹出胶条,超纯水冲洗后,在滤纸上吸干(胶面,即接触样品那一面不能接触滤纸,如果为18cm的胶条要将两头剪去),再以超纯水冲洗,滤纸吸干(再次冲洗过程也可省略),然后用镊子夹住胶条以正极端(即酸性端)向下,负极端(即碱性端)向上,放入用来平衡的试管中(镊子所夹的是碱性端,酸性端留有溴酚兰作为标记),用平衡液A,平衡液B先后平衡15min. 注:平衡时要注意保持胶面始终向上,不能接触平衡管壁。平衡第二次时,在沸水中煮Marker 3min,剪两个同样大小的小纸片,长度与一向胶条的宽度等同,然后吸取煮好的Marker,转入SDS-PAGE胶面上,保持紧密贴合;同样在第二次平衡时,煮5%的琼脂糖10ml.4. 双向电泳第二向——SDS-PAGE4.1 配胶(两根胶条所用剂量)分离胶:(T=8% 80 ml):溶液于真空机中抽气后再加APS和TEMED30 % 丙烯酰胺储液 21.28ml分离胶buffer 20ml 10%APS 220ul TEMED 44 ul双蒸水 38.72ml浓缩胶:(T=4.8% 10ml)30 % 丙烯酰胺储液 1.6ml浓缩胶buffer 2.5ml 10%APS 30ul TEMED 5ul双蒸水 5.9ml4.2 灌胶将玻璃板洗净后,室温晾干,然后,将电泳槽平衡好,玻璃板夹好,再在玻璃板底部涂上凡士林以防漏胶,倒入正丁醇压胶,凝胶后(这时会出现三条线),用注射器吸去正丁醇,超纯水洗两次,再用滤纸除水后,倒入浓缩胶,正丁醇压胶,凝胶后,用注射器吸去正丁醇,超纯水洗两次,再加入超纯水,用保险膜封好。

  • 蛋白质化学与蛋白质组学(推荐)

    蛋白质化学与蛋白质组学夏其昌 曾嵘 等编著2004年4月出版ISBN 7-03-012401-4/Q.133116开,平装,580页定价: 75.00元 本书系统论述了蛋白质化学基础理论和实验技巧,也反映了蛋白质组学研究的最新成果。内容包括:蛋白质的表征,蛋白质的组成分析和序列测定,与此相关的实验方法,包括各种色谱、电泳、质谱技术等,以及应用在蛋白质表征研究和基因工程产品的质检方面的实际范例。在蛋白质组学领域介绍了基本概念、样品制备、双向凝胶电泳的图像分析和定量分析、质谱等常规方法,并介绍了国际上最新的多维技术在研究中的应用;同时充分体现了生物信息学在蛋白质组研究中的重要性。 本书可作为生物学、医学、化学专业大学生,研究生和教学人员的参考书,也是从事生物化学、分子生物学、医学等领域中分离分析工作人员的参考书。

  • SDS-PAGE蛋白质电泳常见问题分析1

    Q:SDS-PAGE电泳的基本原理?A:SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠),SDS会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

  • 等电聚焦电泳法测定蛋白质的等电点

    一、实验目的了解等电聚焦的原理。通过蛋白质等电点的测定,掌握聚丙烯酰胺凝胶垂直管式等电聚焦电泳技术。二、实验原理等电聚焦(Isoelectric focusing,简称IEF)是六十年代中期出现的新技术。近年来等电聚焦技术有了新的进展,已迅速发展成为一门成熟的近代生化实验技术。目前等电聚焦技术已可以分辨等电点(pI)只差0.001pH单位的生物分子。由于其分辨力高,重复性好,样品容量大,操作简便迅速,在生物化学、分子生物学及临床医学研究中得到广泛的应用。蛋白质分子是典型的两性电解质分子。它在大于其等电点的pH环境中解离成带负电荷的阴离子,向电场的正极泳动,在小于其等电点的pH环境中解离成带正由荷的阳离子,向电场的负极泳动。这种泳动只有在等于其等电点的pH环境中,即蛋白质所带的净电荷为零时才能停止。如果在一个有pH梯度的环境中,对各种不同等电点的蛋白质混合样品进行电泳,则在电场作用下,不管这些蛋白质分子的原始分布如何,各种蛋白质分子将按照它们各自的等电点大小在pH梯度中相对应的位置处进行聚焦,经过一定时间的电泳以后,不同等电点的蛋白质分子便分别聚焦于不同的位置 。这种按等电点的大小,生物分子在pH梯度的某一相应位置上进行聚焦的行为就称为“等电聚焦”。等电聚焦的特点就在于它利用了一种称为两性电解质载体的物质在电场中构成连续的pH梯度,使蛋白质或其他具有两性电解质性质的样品进行聚焦,从而达到分离、测定和鉴定的目的。两性电解质载体,实际上是许多异构和同系物的混合物,它们是一系列多羧基多氨基脂肪族化合物,分子量在300~1000之间。常用的进口两性电解质为瑞典Pharmacia-LKB公司生产的Ampholine 和Pharmalyte,价格昂贵。国产的有中国军事医学科学院放射医学研究所和上海生化所生产的两性电解质,价格便宜,质量尚佳。两性电解质在直流电场的作用下,能形成一个从正极到负极的pH值逐渐升高的平滑连续的pH梯度。若不同的pH值的两性电解质的含量与pI值的分布越均匀,则pH梯度的线性就越好。对Ampholine两性电解质的要求是缓冲能力强,有良好的导电性,分子量要小,不干扰被分析的样品等。在聚焦过程中和聚焦结束取消了外加电场后,如保持pH梯度的稳定是极为重要的。为了防止扩散,稳定pH梯度,就必须加入一种抗对流和扩散的支持介质,最常用的这种支持介质就是聚丙烯酰胺凝胶。当进行聚丙烯酰胺凝胶等电聚焦电泳时,凝胶柱内即产生pH梯度,当蛋白质样品电泳到凝胶柱内某一部位,而此部位的pH值正好等于该蛋白质的等电点时,该蛋白质即聚焦形成一条区带,只要测出此区带所处部位的pH值,即为其等电点。电泳时间越长,蛋白质聚焦的区带就越集中,越狭窄,因而提高了分辨率。这是等电聚焦的一大优点,不像一般的其他电泳,电泳时间过长则区带扩散。所以等电聚焦电泳法不仅可以测定等电点,而且能将不同等电点的混合的生物大分子进行分离和鉴定。早期的等电聚焦电泳是垂直管式的,其特点是体系是封闭的,不与空气接触,可防止样品氧化。近年来,又发展了超薄层水平板式等电聚焦电泳。此法的优点是加样数量多,节省两性电解质,电泳后固定、染色、干燥都十分迅速简便,其最大优点是防止了电极液的电渗作用而引起正负两极pH梯度的漂变。测定pH梯度的方法有四种:1.将胶条切成小块,用水浸泡后,用精密pH试纸或进口的细长pH复合电极测定pH值,然后作图。2.用表面pH微电极直接测定胶条各部分的pH值,然后作图。3.用一套已知不同的pI值的蛋白质作为标准,测定pH梯度的标准曲线。4.将胶条于-70℃冰冻后切成1mm的薄片,加入0.5ml 0.01M KCl,用微电极测其pH。三、仪器和用具1.电泳仪2.垂直管式园盘电泳槽一套3.注射器与针头4.移液管:10ml、5ml、2ml、1ml、0.1ml5.小烧杯若干6.培养皿一套7.直尺8.小刀9.精密pH试纸和带细长复合pH电极的pH计10.塑料薄膜和橡皮筋

  • 【转帖】蛋白质电泳

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=46149]蛋白质电泳[/url]

  • 【资料】双向电泳完整操作步骤

    双向电泳完整操作步骤(一)第一向等电聚焦1. 从冰箱中取-20℃冷冻保存的水化上样缓冲液(I)(不含DTT,不含Bio-Lyte)一小管(1ml/管),置室温溶解。2. 在小管中加入0.01g DTT, Bio-Lyte 4-6、5-7各2.5ml,充分混匀。3. 从小管中取出400ml水化上样缓冲液,加入100ml样品,充分混匀。4. 从冰箱中取-20℃冷冻保存的IPG预制胶条(17cm pH 4-7),室温中放置10分钟。5. 沿着聚焦盘或水化盘中槽的边缘至左而右线性加入样品。在槽两端各1cm左右不要加样,中间的样品液一定要连贯。注意:不要产生气泡。否则影响到胶条中蛋白质的分布。6. 当所有的蛋白质样品都已经加入到聚焦盘或水化盘中后,用镊子轻轻的去除预制IPG胶条上的保护层。7. 分清胶条的正负极,轻轻地将IPG胶条胶面朝下置于聚焦盘或水化盘中样品溶液上,使得胶条的正极(标有+)对应于聚焦盘的正极。确保胶条与电极紧密接触。不要使样品溶液弄到胶条背面的塑料支撑膜上,因为这些溶液不会被胶条吸收。同样还要注意不使胶条下面的溶液产生气泡。如果已经产生气泡,用镊子轻轻地提起胶条的一端,上下移动胶条,直到气泡被赶到胶条以外。8. 在每根胶条上覆盖2-3ml矿物油,防止胶条水化过程中液体的蒸发。需缓慢的加入矿物油,沿着胶条,使矿物油一滴一滴慢慢加在塑料支撑膜上。9. 对好正、负极,盖上盖子。设置等电聚焦程序。10.聚焦结束的胶条。立即进行平衡、第二向SDS-PAGE电泳,否则将胶条置于样品水化盘中,-20℃冰箱保存。(二)第二向SDS-PAGE电泳1. 配制10%的丙烯酰胺凝胶两块。配80ml凝胶溶液,每块凝胶40ml,将溶液分别注入玻璃板夹层中,上部留1cm的空间,用MilliQ水、乙醇或水饱和正丁醇封面,保持胶面平整。聚合30分钟。一般凝胶与上方液体分层后,表明凝胶已基本聚合。 2. 待凝胶凝固后,倒去分离胶表面的MilliQ水、乙醇或水饱和正丁醇,用MilliQ水冲洗。3. 从-20℃冰箱中取出的胶条,先于室温放置10分钟,使其溶解。4. 配制胶条平衡缓冲液I。5.在桌上先放置干的厚滤纸,聚焦好的胶条胶面朝上放在干的厚滤纸上。将另一份厚滤纸用MilliQ水浸湿,挤去多余水分,然后直接置于胶条上,轻轻吸干胶条上的矿物油及多余样品。这可以减少凝胶染色时出现的纵条纹。6. 将胶条转移至溶涨盘中,每个槽一根胶条,在有胶条的槽中加入5ml胶条平衡缓冲液I。将样品水化盘放在水平摇床上缓慢摇晃15分钟。7. 配制胶条平衡缓冲液II。8. 第一次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液I。并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。再加入胶条平衡缓冲液II,继续在水平摇床上缓慢摇晃15分钟。9. 用滤纸吸去SDS-PAGE聚丙烯酰胺凝胶上方玻璃板间多余的液体。将处理好的第二向凝胶放在桌面上,长玻璃板在下,短玻璃板朝上,凝胶的顶部对着自己。10.将琼脂糖封胶液进行加热溶解。11.将10×电泳缓冲液,用量筒稀释10倍,成1×电泳缓冲液。赶去缓冲液表面的气泡。12.第二次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液II。并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。13.将IPG胶条从样品水化盘中移出,用镊子夹住胶条的一端使胶面完全浸末在1×电泳缓冲液中。然后将胶条胶面朝上放在凝胶的长玻璃板上。其余胶条同样操作。14.将放有胶条的SDS-PAGE凝胶转移到灌胶架上,短玻璃板一面对着自己。在凝胶的上方加入低熔点琼脂糖封胶液。15.用镊子、压舌板或是平头的针头,轻轻地将胶条向下推,使之与聚丙烯酰胺凝胶胶面完全接触。注意不要在胶条下方产生任何气泡。在用镊子、压舌板或平头针头推胶条时,要注意是推动凝胶背面的支撑膜,不要碰到胶面。16.放置5分钟,使低熔点琼脂糖封胶液彻底凝固。17.在低熔点琼脂糖封胶液完全凝固后。将凝胶转移至电泳槽中。18.在电泳槽加入电泳缓冲液后,接通电源,起始时用的低电流(5mA/gel/17cm)或低电压,待样品在完全走出IPG胶条,浓缩成一条线后,再加大电流(或电压)(20-30mA/gel/17cm),待溴酚蓝指示剂达到底部边缘时即可停止电泳。19.电泳结束后,轻轻撬开两层玻璃,取出凝胶,并切角以作记号(戴手套,防止污染胶面)。20.进行染色。

  • 【转帖】中国计量院高通量蛋白质检测技术研究取得重大突破

    “高通量蛋白质分离检测关键技术研究取得的突破给我们很大鼓舞,但这只是我们大规模系统集成研究的一部分,我们正在着力于系统后续的研究。相信,在不久的将来,这套集成系统将为蛋白质组的分析提供一个完整规范的平台。”谈起不久前通过项目鉴定的《高通量蛋白质分离检测关键技术研究》和取得的成果,中国计量科学研究院生物、能源与环境研究所科学仪器研究室主任刘新志显得踌躇满志。  随着全球性的国际人类基因组计划的初步完成,一个以蛋白质和基因调节为研究重点的后基因组时代已经拉开序幕。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。伴随人类基因组研究而发展的蛋白质组学则是研究细胞内各种蛋白质的组成及其活动规律的一门新兴学科。后基因组时代,蛋白质组将成为重点研究方向之一,并将有力推动生物产业的持续性高速发展。  “蛋白质组研究是一门极为年轻的科学,从诞生到蓬勃发展也不过七八年历史,我国的研究时间也只有六年而已。但其发展速度非常迅猛,应用范围也非常广泛。”刘新志说。  蛋白质组研究对生命科学、化学分析、食品安全、人类健康等诸多领域都有着重要意义。例如,几乎所有的药物都是通过蛋白质发挥作用,蛋白质组学在药学研究中的应用不仅可直接产生新的药物,更重要的是可减少对新药开发研制的盲目性,大大加速和简化新药研制的过程;通过对疾病不同阶段蛋白质组的研究,还可帮助诊断和防治疾病。目前,蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病的诊断和治疗。  “蛋白质组研究的核心技术分为两个部分:蛋白质分离技术和蛋白质鉴定技术。实验数据表明,现阶段依赖质谱分析的蛋白质鉴定技术的发展水平远高于蛋白质分离技术的发展水平。但对大分子、复合物、细胞的分离纯化是进行更详尽的生物鉴定和工程化应用所必需的重要步骤,如果不能快速有效地进行蛋白质分离,后续的鉴定也无法进行。所以,蛋白质组研究的瓶颈来自于蛋白质分离技术的限制。”刘新志打了一个比喻:“蛋白质鉴定技术好比一条宽敞的高速路,但通往这条高速路的必经路——蛋白质分离技术就好比一条小胡同,这条小胡同严重影响了车辆的快速通行。”  据介绍,目前蛋白质分离技术主要有两种——双向电泳技术和高效液相色谱技术。“这两种传统技术与生俱来的缺点是很难分解出难溶性蛋白,而且不能分解出不溶性蛋白。要打通这条小胡同,就必须找到一种新的方法、研制一种新的装置,能够有效地分离出难溶性蛋白和不溶性蛋白,并且要实现高通量快速分离。”刘新志介绍。  由中国计量科学研究院完成的《高通量蛋白质检测关键技术的研究》课题在解决蛋白质的快速分离技术方面取得了重大突破。研究建立了以反向加样连续自由流电泳(FFE)分离方法为核心的高通量蛋白质分离检测技术中最为关键的高稳定度自由流电泳(HSFFE)装置。“该装置最显著的特点就是解决了两种传统的分离技术所不能解决的问题——从蛋白混合物中有效地分离出可溶性蛋白、难溶性蛋白、不溶性蛋白,实现了对这三种蛋白的完全分离;其次,装置的通量高,速度快,能够满足蛋白质快速分离鉴定的需要。”刘新志说。

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 【资料】-蛋白质电泳实验技术

    这是一本由郭尧君编著,1999年版本的,可能有些老了,希望对大家还是有些 帮助。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16890]蛋白质电泳实验技术[/url]来源:食品伙伴网。

  • 【中文】蛋白质的聚丙烯酰胺凝胶电泳

    蛋白质的聚丙烯酰胺凝胶电泳 最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质前移并在分离胶前沿积聚。此处pH值较高, 有利于甘氨酸的离子化,所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。SDS与蛋白质结合后引起蛋白质构象的改变。SDS-蛋白质复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形状的长椭园棒,不同蛋白质的SDS复合物的短轴长度都一样(约为18Å,即1.8nm),而长轴则随蛋白质分子量成正比地变化。这样的SDS-蛋白质复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只是椭园棒的长度也就是蛋白质分子量的函数。由于SDS和巯基乙醇的作用,蛋白质完全变性和解聚,解离成亚基或单个肽链,因此测定的结果只是亚基或单条肽链的分子量。 SDS聚丙烯酰胺凝胶的有效分离笵围取决于用于灌胶的聚丙烯酰胺的浓度和交联度。在没有交联剂的情况下聚合的丙烯酰胺形成毫无价值的粘稠溶液,而经双丙烯酰胺交联后凝胶的刚性和抗张强度都有所增加,并形成SDS蛋白质复合物必须通过的小孔。这些小孔的孔径随 “双丙烯酰胺~丙烯酰胺” 比率的增加而变小,比率接近 1:20 时孔径达到最小值。SDS聚丙烯酰胺凝胶大多按“双丙烯酰胺~丙烯酰胺”为1:29 配制,试验表明它能分离大小相差只有3% 的蛋白质。 凝胶的筛分特性取决于它的孔径,而孔径又是灌胶时所用丙烯酰胺和双丙烯酰胺绝对浓度的函数。用5~15%的丙烯酰胺所灌制凝胶的线性分离范围如下表:

  • 【资料】双向电泳操作手册

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=164458]双向电泳操作手册[/url]

  • 蛋白质提取方法-------列举10种方法

    一、植物组织蛋白质提取方法(summer)1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4 小时)。3、用离心机离心8000rpm40min4℃或11100rpm20min4℃4、提取上清夜,样品制备完成。蛋白质提取液:300ml1、1Mtris-HCl(PH8) 45ml2、甘油(Glycerol)75ml3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳!二、植物组织蛋白质提取方法 (summer)三氯醋酸—丙酮沉淀法1、在液氮中研磨叶片2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1 小时),然后真空干燥沉淀,备用。4、上样前加入裂解液,室温放置30 分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。5、用Brandford法定量蛋白,然后可分装放入-80℃备用。药品:提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮裂解液:2.7g 尿素0.2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的DTT65ul/ml。这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少!三、组织:肠黏膜 (newinbio)目的:WESTERN BLOT检测凋亡相关蛋白的表达应用TRIPURE 提取蛋白质步骤:含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)倒转混匀,置室温10min离心:12000 g,10min,4度,弃上清加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE 用量)振荡,置室温20min离心: 7500g,5 min,4 度,弃上清重复0.3M盐酸胍/95%乙醇步2 次沉淀中加入100%乙醇 2ml充分振荡混匀,置室温20 min离心: 7500g,5min,4度,弃上清吹干沉淀1%SDS溶解沉淀离心:10000g,10min,4度取上清-20 度保存(或可直接用于WESTERN BLOT)存在的问题:加入1%SDS 后沉淀不溶解,还是很大的一块,4 度离心后又多了白色沉定,SDS 结晶?测浓度,含量才1mg/ml左右。解决:提蛋白试剂盒,另外组织大小适中,要碎,立即加2X BUFFER,然后煮5-10分钟,效果很好的。四、lysis solution:(yog)Protein extraction buffer (Camiolo buffer):100 ml= (0.075M Potassium Acetate) 0.736g(0.3M) NaCl 1.753g(0.1M) L-arginine basic salt 1.742g(0.01M) EDTA-HCl 0.292g(0.25%) Triton X-100 250. ulup to 100 ml with dH20. pH 7.4. Then 0.2 um filter.1. Freeze tissue in liquid nitrogen.2. Rinse in PBS then mince.3. Add 1 ml Camiolo extraction buffer per 100 mg of tissue.4. Homogenize for 1 minute at 4\'C.5. Spin at 3,000. rpm/15 minutes/4\'C.6. Remove supernatant and save in another tube.7. If necessary, dialize the supernatant against PBS with50mM/L Tris-HCl pH 7.4.五、植物材料:水稻苗,叶鞘,根(ynibcas)1、200 毫克样品置于冰上磨碎2、加lysis buffer,离心,10000rpm,4度,5min 取上清3、重复离心5minlysis buffer:urea np-40 ampholine 2-me pvp-40

  • 【分享】生物质谱技术在蛋白质组学中的应用

    一、 前言基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的LC-MS联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。此贴与http://bbs.instrument.com.cn/shtml/20081130/1613156/重复,请版友在发帖前先搜索一下,以免重复发帖,谢谢!

  • 【分享】生物质谱技术在蛋白质组学中的应用

    一、 前言[1,2]基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。

  • 【转帖】质谱与蛋白质组学

    质谱与蛋白质组学蛋白质组学对一个细胞或组织所表达的蛋白质进行的系统分析,而质谱是它的关键性分析工具。在过去的两年中,标准蛋白质组技术中的进展增进了更高水平自动化和敏感性的蛋白质识别技术。另外,新的技术促成了鉴定蛋白质功能相关特性的里程碑性的进展,包括它们的定量和在蛋白质复合物中复杂情况。缩写2DE two-dimensional gel electrophoresis双向凝胶电泳CID collision-induced dissociation碰撞诱导的解离ESI electrospray ionization电喷雾离子化FT-ICR Fourier-transform ion cyclotron resonance傅里叶-变换离子回旋加速器共振ICAT isotope-coded affinity tagsIEF isoelectric focusing等电聚焦MALDI matrix-assisted laser desorption ionization基质辅助的激光解析离子化Q-TOF quadrupole-TOFRP reversed phase反向TOF time-of-flight飞行时间简介蛋白质组学的核心组成是系统识别一个细胞或组织中表达的每一个蛋白质,以及确定每个蛋白质的突出特征(比如,丰度、修饰状态以及在多蛋白质复合体中的复杂状态)。这些分析的技术包括分离蛋白质和肽的分离科学、识别和定量分析物的分析科学和数据管理和分析的生物信息学。它的初步工具包括使用IEF(等电点聚焦)/SDS-PAGE凝胶的高分辨率的双向凝胶电泳(2DE),结合质谱和数据库搜索来分离、识别和定量在一个复合样本中存在的个体蛋白质,最终识别被分离的蛋白质。一个常用的方法用在Fig1中用图解说明。此技术以及由此而来的变化(综述见[1])已经被用来识别和分类在复杂样本中存在的大量蛋白质,并在蛋白质组数据库中呈现它们,该过程我们这里称之为"描述蛋白质组学"比如,Shevchenko等[2]从2D凝胶上系统地鉴定了150个蛋白质。数目庞大的这样的数据库现在可以找到。同样的技术现在已经被作为普遍的发现工具来动态检测一个细胞或组织对外来或内部干扰反应而在蛋白质组中的改变。因为检测动态改变需要精确定量每个被检测成分,我们使用"定量蛋白质组学"来定义。在此报告中,我们总结了自1999年1月至2000年4月来报道的与蛋白质组学和质谱相关的最重要的进展。在核心质谱技术中的进展已经导致2DE为基础的蛋白质组学技术的进一步改进。它们同时又促进了传统凝胶为基础的方法的替代方法,诸如引入以同位素稀释理论为基础的精确蛋白质定量技术和蛋白质复合物的系统分析。蛋白质组分析的MS技术进展在此部分,我们总结了在MS设备、它们的控制和操作中的进展,以及比较质谱数据和序列数据库识别蛋白质所用的搜索工具的进展。随着新型质谱仪的引入,蛋白质组学研究现存类型的质谱仪性能已经显著改进了。在此综述期间最普遍使用的仪器是可以分为两类:单一阶段的质谱仪和串联质谱为基础的系统。单一阶段的质谱仪,最显著的是基质辅助的激光解吸电离(MALDI)飞行时间(TOF)仪器,被用于无数通过肽质谱图谱技术大规模蛋白质识别的项目中。此方法在鉴别表达自小一些的和完全测序的基因组的蛋白质特别成功[3,4]。串联质谱仪器诸如triple quadrpole、离子捕获(ion-trap)和近来引进的混合quadrupole飞行时间(Q-TOF)被常规应用于[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS或用电喷雾电离(ESI)来生成肽片段离子谱,以便通过搜寻序列数据库进行蛋白质鉴定。使用仪器控制程序来自动选择肽离子进行碰撞诱导的解离(CID)(数据依赖CID)的不断增多是这些MS/MS仪器的一个明显的趋势。一些新的构造的具有高潜能的质谱仪被引入到蛋白质组学研究中产生深刻影响。两个研究组近来一个MALDI离子源和一个混合Q-TOF耦联了起来[5,6]。Q-TOF提供的质量准确性和敏感性提升了数据库搜寻结果并同时使它成为MS/MS从头测序的当然仪器选择。MALDI Q-TOF构造提供了激动人心的机会进行自动化和高通量应用以及在一个样品盘上存档样品进行日后研究的可能。Medzihradszky等[7]描述了一个不同的混合仪器称之为MALDI TOF TOF。此设备享有许多MALDI Q-TOF的优点,另外能够进行高能量CID和非常快速的扫描速率。傅里叶-变换离子回旋加速器共振(FT-ICR)质谱对于蛋白质组学来说相对陌生。这些设备具有非常高的敏感性和分辨率,质量精确性可以达到1ppm。这些特征被用来在一次分析中测量和定量几百种蛋白质的完整的分子质量[8]。Goodlett等[9]表明FT-MS测量的一个肽的准确质量以及可以容易获得的限制因素能够通过序列数据库搜索被用来识别蛋白质。蛋白质组学如果没有软件工具来进行质谱数据和序列数据库的关联将变得几无可能。现存的数据库搜索程序已经变得越来越成熟和可以(从网络)可获得。另外,引入了新的算法。主要相关程序是Sequest[10],MASCOT[11],PeptedeSearch[12],PROWL[13]和Protein Prospector[14]。在它们中间,Sequest使用CID谱设置了蛋白质识别的实验室标准(benchmark),因为它与边界MS/MS数据工作得最好,并高度可信,可以从整个[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS实验中自动分析数据,并不需要任何使用者的破译工作。在所提的程序中,然而,只有Sequest不能在网络上搜索。MASCOT是一个新的、快速、网络可进入和多功能的程序,具有进行肽指纹分析、用部分破译或未破译的CID谱进行数据库搜索的功能。

  • 电泳仪分类

    根据电泳仪原理、电泳仪功能、电泳仪的使用方法、电泳仪的用途不同可以为:琼脂糖凝胶电泳、毛细管电泳、凝胶电泳、聚丙烯酰胺凝胶电泳、醋酸纤维薄膜电泳、高效毛细管电泳、琼脂糖电泳、SDS-PAGE凝胶电泳、蛋白质电泳、血清蛋白电泳、dna电泳、血红蛋白电泳、蛋白质双向电泳、免疫电泳、等电聚焦电泳、单细胞凝胶电泳、蛋白质凝胶电泳、质粒电泳、对流免疫电泳、变性电泳等。电泳仪分类:1、毛细管电泳仪:其主要部件有0~30kV可调稳压稳流电源,内径小于100μm(常用50~75μm)、长度一般为30~100cm的弹性石英毛细管、电极槽、检测器和进样装置。检测器有紫外/可见分光检测器、激光诱导荧光检测器和电化学检测器,前者最为常用。进样方法有电动法(电迁移)、压力法(正压力、负压力)和虹吸法。成套仪器还配有自动冲洗、自动进样、温度控制、数据采集和处理等部件。 2、常规电泳仪:其组成部件为可调稳压稳流电源,垂直电泳槽,水平电泳槽,电极连接线,支持体【非凝胶性支持体区带电泳(支持体有:①淀粉②纤维素粉③玻璃粉,硅胶等) ;凝胶支持体区带电泳支持体有:①淀粉液②聚丙烯酰胺凝胶③琼脂(糖)凝胶】;陶瓷板,抽水泵,输水管,冰水曹等部件组成。3、其他电泳仪:Tiselius或微量电泳、显微电泳、等电点聚焦电泳技术、等速电泳技术、密度梯度电泳等。是一种非支持体的电泳仪也称为自由电泳法的发展并不迅速,因为其电泳仪构造复杂、体积庞大,操作要求严格,价格昂贵等很少使用。毛细管电泳仪、凝胶电泳仪、垂直电泳仪、微电泳仪、高压电泳仪、水平电泳仪、高效毛细管电泳仪、双向电泳仪、bio rad 电泳仪、脉冲场电泳仪、伯乐电泳仪、北京六一电泳仪上海巴玖均可提供!

  • 【分享】生物质谱技术在蛋白质组学中的应用

    一、 前言  基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。  目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的 LC-MS联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。  二、 生物质谱技术  1.电喷雾质谱技术(ESI)  电喷雾质谱技术( Electrospray Ionization Mass Spectrometry , ESI - MS) 是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子, 使质量电荷比(m/ z) 降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电荷数算出。本帖与http://bbs.instrument.com.cn/shtml/20081130/1613156/重复,故锁帖!请版友在发帖前先搜索一下,以免出现重复贴。谢谢!斑竹您给的重复贴链接有误,并且我写贴前已经搜索了标题。SORRY,请LZ检索一下这个网址,开始那个是弄错了。

  • 【转帖】蛋白质纯化

    蛋白质纯化 蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。  是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。常用技术有:  1、沉淀,  2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。  3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。  4、层析:  a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。   b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。  5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

  • 毛细管电泳分离蛋白质

    我是做毛细管涂层分离碱性蛋白质,请教前辈检验毛细管柱分离柱效应该用什么级别的蛋白质呢?需要色谱纯的吗?或者用百分含量90%以上就行了呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制