当前位置: 仪器信息网 > 行业主题 > >

蛋白质聚集体颗粒计

仪器信息网蛋白质聚集体颗粒计专题为您提供2024年最新蛋白质聚集体颗粒计价格报价、厂家品牌的相关信息, 包括蛋白质聚集体颗粒计参数、型号等,不管是国产,还是进口品牌的蛋白质聚集体颗粒计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质聚集体颗粒计相关的耗材配件、试剂标物,还有蛋白质聚集体颗粒计相关的最新资讯、资料,以及蛋白质聚集体颗粒计相关的解决方案。

蛋白质聚集体颗粒计相关的资讯

  • Postnova场流分离系统应用举例:蛋白质聚集体分离的理想解决方案
    Postnova场流分离系统应用举例——蛋白质聚集体分离的理想解决方案 蛋白质聚集体已经成为药学发展和质检上一个重要的问题。其活性,生物利用度和可能的消极免疫响应等性能直接与不同程度的聚集态的存在有关。因此不仅FDA, 更多的官方和私人研究机构都对聚集态结构产生越来越大的兴趣。他们研究的目标是确定精确的聚集情况,即药物中的蛋白质中某个时间有多少聚集态结构形成以及如何避免这种情况。 场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。当样品注射到场流分离通道时,分离应力作用于聚合物或粒子强迫它们向通道底层移动,通道底层就被称为聚集壁。样品不能透过聚集壁,所以它们再次扩散到通道中心。扩散应力被分离应力抵消,在很短的时间(一般是30~120秒)内两种力之间就建立起一个稳定的动态平衡。大小不同的颗粒有着不同的扩散系数,所以它们在通道内由于速度梯度而被分离。注射后的粒子/聚合物由于“垂直场力”的存在,受迫向垂直于流动相流动的方向移动。小粒子由于具有较大的扩散系数将会比大粒子在通道内扩散的更深远。结果就是,小粒子在通道内被“层流”更快的定位,并因此而被洗脱出来;而大粒子则定位较慢,后洗脱出来。上图是使用AF4非对称场流分离单克隆抗体的结果。在20分钟内,不同程度的聚集态被分开,整个分离过程由于没有固定相存在,因此蛋白质的空间结构不会被破坏。样品不需要前处理,更可以通过联用多种在线检测器(LS, UV, RI, SEM, DLS),方便迅速得到需要的数据。 场流分离技术具有以下优点:• 快速、温和的分离,可以兼容任何溶剂和缓冲液• 超高的分辨率(±1nm)• 没有任何固定相的分离通道• 宽分离范围:粒径1nm~100mm /分子量1000Da~1012Da• 无需前处理及过滤,直接进样复杂基质样品• 可收集所需要的样品,方便升级至制备级• 能够连接各种检测器,如在线串联紫外、光散射、荧光、质谱等检测器• 可同时测定分子的分子量及粒子的粒径。这些优点使场流分离技术在蛋白质及其聚集体分离方面可以发挥巨大的作用。更多产品详情,敬请登陆:www.tegent.com.cn德祥热线:4008 822 822info@tegent.com.cn
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    导读生物药发生聚集后药效会明显减弱,还可能导致人体出现休克,岛津基于流动成像技术开发的粒子分析系统,对生物药中亚可见类聚集体以及不溶性微粒物或外源性组分检测提供了全新分析手段。 受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。 对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。 图1 生物聚集体大小及粒径范围分布 岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。图2 岛津iSpect DIA-10动态颗粒图像分析系统 应用实例 生物药中不溶性亚可见微粒物的检查 样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态 图3 80℃加热3min后粒子状态 图4 机械搅拌10min后粒子状态 图5 粒子检定结果 生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津开发的生物医药聚集体评价系统Aggregates Sizer可以完美解决上述问题。图6 生物聚集体评价系统Aggregates Sizer ? 定量评价生物聚合体浓度(ug/mL)? 高灵敏度生物聚合体分析,一次仅需0.4mL? 具有温度控制及机械搅拌功能? 间隔1秒的超快速聚集过程监控? 可进行超过15小时的连续不间断测定 应用实例 不同温度及机械压力刺激下,生物蛋白聚集情况分析 样品:静脉注射免疫球蛋白(IVIG)热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定 通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。图7 70℃加热 图8 190次/分钟速度搅拌 总结 生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,可为生物药开发及品质监控提供全新的解决方案。
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/ae33f487-b53d-426d-88fa-4973b5dcfcbb.jpg" title="1.jpg" alt="1.jpg"//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/209b379b-870b-4e36-908c-369cae988b7e.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center text-indent: 2em "strongspan style="font-family: 宋体, SimSun "图1 生物聚集体大小及粒径范围分布/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/32d542bd-19df-418c-ab7e-f5202ba39c0c.jpg" title="3.png" alt="3.png"//pp style="text-indent:36px text-align:center line-height:120%"a href="https://www.instrument.com.cn/netshow/C390622.htm" target="_self"span style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) text-decoration: underline font-family: 宋体, SimSun "图2 岛津iSpect DIA-10动态颗粒图像分析系统/span/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:生物药中不溶性亚可见微粒物的检查/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f21eba36-d161-4013-9e03-71c806dab510.jpg" title="4.png" alt="4.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/b69d824b-dbef-4341-914e-027cc8bfa68c.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津公司开发的生物医药聚集体评价系统Aggregates Sizer对上述问题有如下解决方案:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/22689e1b-d6f5-43e4-954d-b8975108ee69.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:不同温度及机械压力刺激下,生物蛋白聚集情况分析/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品:静脉注射免疫球蛋白(IVIG)/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/c2534c58-481b-4f10-b689-019e91bc3562.jpg" title="7.png" alt="7.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "总结/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津公司开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,为生物药开发及品质监控提供全新的解决方案。/span/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "作者:刘舟/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "岛津企业管理(中国)有限公司/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "高级技术专家/span/strong/p
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced Protein Aggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织
    【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织(文末预约试拍)01—研究介绍脑组织样本的组织学分析给我们提供了有关导致常见神经退行性疾病的病理过程的宝贵信息。在这种情况下,开发新的高分辨率成像方法是神经科学当前面临的挑战。为此,我们使用了一种被称为随机光学重建显微镜 (STORM) 的超分辨率成像技术来分析人脑切片。作者将 STORM 细胞成像方案与神经病理学技术相结合,对患有神经退行性疾病的患者和对照受试者的脑样本进行了成像。02—研究结果(节选)作者在新皮质、白质和脑干样本中执行了 2D、3D 和双色STORM成像 。STORM 被证明在可视化致密蛋白质包涵体的组织方面特别有效,作者对阿尔茨海默病、帕金森病、路易体痴呆和额颞叶变性患者的中枢神经系统内的病理聚集体进行了 50 nm 分辨率的成像。聚集的 Ab 分支在细胞外基质中呈网状和交联,宽度为 60 至 240 nm。神经元内 Tau 和 TDP-43 内含物更密集,胞体呈蜂窝状,轴突呈丝状组织。最后,α-突触核蛋白病理学的 STORM 成像揭示了路易体的内部组织,这是传统荧光显微镜无法观察到的。1、使用 STORM 和TEM测量对人脑前额叶皮层冷冻样本进行成像图1、使用 STORM 对人脑样本进行超分辨率成像。(A) 用于 STORM 成像的光学设置示意图。I.B.,入射光束;E.F,渐逝场;R.B.,反射光束。(B) STORM 采集人脑切片中的皮层轴突,对神经丝 (NF) 进行免疫染色:首先采集传统的宽视场荧光显微镜图像。(B1),然后强烈增加激发功率以诱导荧光团闪烁,并获得数千帧记录(B2-B5)。以亚像素精度(B6-B9)在每帧的基础上检测到激活的荧光分子的定位。然后使用来自所有帧的累积定位来重建超分辨率图像(B10)。IF,成像帧。(C) 使用常规宽视场荧光显微镜、STORM 和透射电子显微镜 (TEM) 获得的纵向和横向切片前额叶皮层轴突的代表性图像。(D 和 E)使用常规荧光显微镜、STORM 和 TEM 在人脑中测量的轴突直径(纵向切片)和面积(横向切片)。误差线表示具有标准偏差的平均值。*P .0012、AD 患者脑样本中老年斑和神经原纤维缠结的STORM图像图2、AD患者大脑样本中老年斑和神经原纤维缠结的STORM图像。(A1) AD 患者新皮质中老年斑的代表性图像(Ab 的免疫组织化学检测)。(A2) 同一患者的新皮质切片中整个老年斑块的常规荧光显微镜图像对 Ab 进行免疫染色。(A3) 同一区域的风暴图像。插图(1 和 2)显示了聚合 Ab 分支的分布和大小的特写细节。(A4) 老年斑中 Ab 纤维(黑色箭头)的比较 TEM 图像。(B1) AD 患者新皮质中神经原纤维缠结的代表性图像(p.Tau 的免疫组织化学检测)。(B2) 在同一患者的新皮质切片中,整个退化神经元的胞体内神经原纤维缠结的常规荧光显微镜图像被 Ab 沉积包围。(B3) 通过结合传统荧光显微镜 (Ab) 和 STORM (p.Tau) 对同一神经元进行成像。插图(3 和 4)显示了胞体中 p.Tau 聚集体的蜂窝结构和轴突中的丝状组织的特写细节。(B4) 神经原纤维缠结中 Tau 丝(白色箭头)的比较 TEM 图像。03—研究总结本文中,作者结合了超分辨率显微镜和神经病理学技术来分析人脑切片。迄今为止,组织中纳米结构的成像主要依赖于透射电子显微镜,这是一项耗时的技术,需要超薄组织切片 (50-70 nm) 进行严格的样品制备,并限制了免疫靶向多样性和3D采集。相反,STORM在样品制备,广阔的观察领域,多分子标记和3D采集方面具有光学荧光显微镜的优势,而图像采集和重建仅需几分钟。人脑样本的 STORM 成像进一步打开了全面了解常见神经系统疾病的大门。这种技术的便利性应该会直接扩展其在人脑超分辨率成像方面的应用,为当前神经科学面临的挑战提供更好解决方案。04—超高分辨率显微成像系统 iSTORM前文中提及的随机光学重构显微镜(STORM)技术,目前已成功实现商用,有需要STORM技术进行实验研究的专家老师们,请文末填写问卷,即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务哦~超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在 20 nm的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及超分子结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大性突破。图3、超高分辨率显微成像系统iSTORM。超高分辨率显微成像系统 iSTORM 具有 20 nm超高分辨率、3通道同时成像、3D同步拍摄、实时重构、2小时新手掌握等特点,已实现活细胞单分子定位与计数,并提供荧光染料选择、样本制备、成像服务与实验方案整体解决方案,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:P. Codron, F. Letournel, S. Marty, L. Renaud, A. Bodin, M. Duchesne, C. Verny, G. Lenaers, C. Duyckaerts, J.-P. Julien, J. Cassereau and A. Chevrollier (2021) Neuropathology and Applied Neurobiology 47, 127–142 STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 新研究提供调控大脑疾病中有毒蛋白质的分子机制
    所周知,细胞会自然衰老和死亡,但细胞蛋白质的适当调节对我们衰老时保持大脑健康至关重要。在神经退行性疾病中,蛋白质聚集体(或错误折叠蛋白质的团块碎片)扩散到邻近的细胞,但对这些有毒物质是如何转移的科学家们仍然知之甚少。  近日,发表在《美国国家科学院院刊(PNAS)》上的一项研究中,来自美国罗格斯大学新布伦瑞克分校的研究人员首次从分子水平上了解了在阿尔茨海默症和帕金森病等神经退行性疾病模型中,有毒蛋白质是如何调控的。在这项研究中,研究人员对秀丽隐杆线虫模型进行了研究,线虫受到压力的神经细胞可以将神经毒性蛋白质以囊泡的形式挤压出来,这些囊泡被称为exoophers。研究人员还研究了特定的压力如何影响exoophers被挤压出来。他们发现,形成exoophers需要特定的细胞信号,而出人意料的是,禁食可以显著增加exoophers的产生。此外,这项研究还发现了三种在禁食期间增加exoophers产生的细胞途径。  该研究第一作者、罗格斯大学新布伦瑞克分校分子生物学和生物化学系博士后研究员Jason Cooper说“在神经退行性疾病中,有毒蛋白质会扩散到邻近细胞以促进细胞死亡。鉴于在衰老和神经退行性疾病中管理蛋白质聚集体的重要性以及对这些聚集体如何转移的生物学知之甚少,对转移机制的详细了解可能会揭示以前的未被识别的治疗靶点”。   论文链接:  https://www.pnas.org/content/118/36/e2101410118
  • “小贝开讲”之生物类似药申报中聚集体检测分析技术
    时间:2018年5月10日 15:00 - 16:00内容简介:近年来,随着一批“重磅炸弹”药物专利期的临近,生物类似药开发在国内外如火如荼的开展着。生物药物区别于化学药,由于其复杂的结构和生产工艺,很难做到和原研药完全一致,因此在生物类似药的申报中,需要对其各项特性指标进行全面表征和测定,确保其在质量、安全和有效性上与原研药保持一致。而聚集体的检测作为一项关键指标,需要在药物开发和生产过程中能够及时的检测出来,否则会影响药物的疗效,甚至会引起患者严重的免疫原性反应,如何有效的检测聚集体呢?本次讲座主要从常见聚集体检测分析方法,分析超离检测技术的特点以及国外药企在药物申报过程中对于单抗聚集体检测分析案例分享等三方面讲解,让你在生物类似药申报中提供更充分可靠的数据。主讲人简介:宋明敏离心机应用专家目前负责离心机产品线及分析型超离技术的应用开发。拥有多年生物制药行业研发,生产及质量管理经验。涉及领域包括抗体、疫苗和重组蛋白等生物制剂生产工艺开发、GMP认证及分析检测等。
  • Nature重磅发现:衰老的根源在核糖体?衰老加剧核糖体暂停,破坏蛋白质稳态
    自然生命,有情众生,都难逃衰老的命运。从微观的调度来看,衰老会导致细胞适应性的下降和蛋白质功能的丧失。然而,衰老导致蛋白质聚集的机制还没有被完全理解。实际上,科学家们已经知道,随着年龄增长的蛋白质聚集是一个与许多疾病相关的问题。因此,深入研究这些疾病的基本生物学,了解导致它们的机制,可以帮助我们选择更好的治疗方法。衰老的根源在于核糖体?Nature最新研究发现,衰老加剧核糖体暂停,破坏共翻译蛋白质稳态!近日,斯坦福大学的研究人员在国际顶尖学术期刊 Nature 发表了题为:Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis 的研究论文。该研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。该论文开辟了一个新的研究方向,将衰老如何导致蛋白质聚集的问题追溯到了核糖体的年龄依赖性损伤。核糖体(Ribosome)是细胞内普遍存在的一种细胞器,主要由rRNA和蛋白质构成,“中心法则”中mRNA翻译成蛋白质这一过程就发生在核糖体。其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。因此,核糖体也被称为细胞内蛋白质合成机器。核糖体的结构和功能本研究的第一作者 Kevin C. Stein 博士表示:“衰老伴随着细胞蛋白平衡的失调,这是许多与年龄相关的蛋白质错误折叠疾病的基础。然而,衰老是如何破坏蛋白质平衡的仍不清楚。由于新生多肽对蛋白平衡网络构成了巨大的负担,我们假设,衰老过程中翻译效率的改变可能有助于推动蛋白平衡的崩溃。”在这项最新研究中,研究团队发现衰老改变了秀丽隐杆线虫和酿酒酵母的翻译延伸过程的动力学。在衰老的线虫和酵母的特定位置(例如多碱基区域)核糖体暂停被加剧,导致核糖体碰撞增加,从而触发核糖体相关质量控制(RQC)。事实上,长寿的酵母突变体减少了年龄依赖的核糖体暂停,并且延长了寿命,具体与更大通量的RQC途径相关。研究人员还发现,线虫中显示年龄依赖核糖体暂停的新生多肽在年龄依赖的蛋白聚集体中强烈富集,进一步将核糖体翻译停顿与蛋白平衡崩溃联系起来。研究衰老对翻译动力学和协同翻译的影响通过结合实验和计算数据分析,研究人员发现核糖体的功能会随年龄的增长而退化,与此同时,有缺陷的蛋白质也会不断增加,使得原本会阻止蛋白质聚集的质量控制失效保护机制无法发挥作用。斯坦福大学生物学和遗传学教授、本研究的通讯作者 Judith Frydman 博士说道:“蛋白质在生命中最脆弱和最关键的时刻——也就是它最容易发生错误折叠的时候——恰恰是它形成的时候。”衰老加剧了酵母中核糖体在多碱基区域的暂停研究团队使用了一种称为核糖体图谱的技术,这种技术可以让他们准确地看到在翻译过程中核糖体是如何在mRNA上移动的。他们观察到,在年龄较大的细胞中,核糖体的周期性移动变得更慢,并且核糖体性能的下降与年龄相关的错误折叠蛋白质聚集的增加相一致。核糖体暂停后,被截断的新生多肽的年龄依赖性聚集对此,论文第一作者 Kevin C. Stein 博士解释道:“有两种情况,衰老导致核糖体碰撞的增加和停滞,但细胞失去了处理它的安全网络。”核糖体暂停和截断的新生多肽在衰老过程中的聚集本研究的另一位主要作者 Fabián Morales-Polanco 博士兴奋地表示,这个发现只是一个非常迷人的未来的开端,这开创了一个新的研究方向,也随之而来了无数个等待回答的问题,并可能因此产生数百篇论文。总而言之,这项研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。 论文链接:https://www.nature.com/articles/s41586-021-04295-4
  • 安捷伦科技推出具有先进蛋白质大小测量功能的液相色谱解决方案
    安捷伦科技推出具有先进蛋白质大小测量功能的液相色谱解决方案1260 Infinity 多检测器 Bio-SEC 解决方案为大分子生物治疗药物开发提供无可比拟的分析性能 2014 年3月14日,北京 — 安捷伦科技公司(纽约证交所:A)宣布推出 1260 Infinity 多检测器 Bio-SEC 解决方案,该解决方案是整个 Infinity 液相色谱系统系列中的最新创新成果。新一代体积排阻色谱 (SEC) 系统具有先进的光散射检测功能、完全生物惰性的仪器、高分离度的色谱柱以及直观的软件。这些特点将素有“蛋白质聚集体分析的黄金标准”之称的 SEC 的分析速度、灵敏度以及重现性推向了全新的水平。 安捷伦液相分离事业部业务开发经理 Helmut Schulenberg-Schell 说:“大分子蛋白质生物治疗药物的开发对于人类临床治疗来说是一个重大突破,但是为了成功开发药物,生物制药行业亟需严格的研究、测量和分析技术,以充分确保这些化合物的安全性和有效性。我们强大的全新 SEC 液相色谱解决方案能够为生物制药研究者提供前所未有的稳定分析性能和无可比拟的可重现性。” SEC 可用于蛋白质大小测量和聚集体以及生物结合体研究。那些在重组蛋白质和单克隆抗体生物制剂中积聚的“错误折叠”蛋白质即使浓度非常低,但也是有毒性的,会导致致病效应。在药物开发生命周期的每一个阶段,包括从早期研究,到临床配制,再到大规模生产,都必须对这些错误折叠蛋白质进行鉴定和修复。 多检测器 Bio-SEC 解决方案具有先进的检测性能和完善而直观的软件,能够为您提供最佳灵敏度和准确性。在整个药物开发生命周期中,采用该技术将大大简化并加速工作流程,节省将生物治疗药物推向市场的宝贵时间和金钱。 如需了解关于全新 1260 Infinity 多检测器 Bio-SEC 解决方案以及安捷伦全套 Infinity 系列液相色谱产品的更多信息,请访问 www.agilent.com/chem/infinity。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news
  • 天美公司助力聚集体科学国际研讨会暨聚集诱导发光研究20周年会议
    “聚集体科学国际研讨会暨聚集诱导发光(以下简称‘AIE’)研究20周年”会议于2021年7月25日至28日在广州市黄埔区盛大召开。此次会议由华南理工大学、广东省大湾区华南理工大学聚集诱导发光高等研究院、华南理工大学材料与器件国家重点实验室、广东省分子聚集发光重点实验室、华南理工大学聚集诱导发光研究中心、国家人体组织功能重建工程技术研究中心香港分中心、香港中文大学(深圳)联合举办。本次会议邀请了来自31家海内外高校专家学者通过线上及线下结合的形式,共同探讨聚集诱导发光领域的创新发展大计。 唐本忠院士致开幕词“聚集诱导发光(Aggregation-Induced Emission,AIE)”作为中国原创的科学概念,自中国科学家唐本忠院士2001年首次提出至今,已经走过了20年的科研发展历程,在智能材料、液晶显示、发光二极管、指纹检测、化学传感器、生物诊疗与成像等诸多领域取得了广阔的应用。会议主题旨在进一步增强AIE的学术交流,探讨该领域面临的科学问题和未来发展方向。天美(中国)科学仪器有限公司携爱丁堡公司应邀作为赞助商之一,全程参加了此次会议。天美公司会议展台与会期间,众多研究学者及老师们莅临展台,了解和咨询稳态瞬态发光的先进技术及广泛应用;同时,对老用户提出的关于稳态瞬态荧光光谱仪的各类使用问题进行解答。通过为期四天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为仪器行业的知名供应商,将始终秉承助力科研领域的发展,一如既往的支持AIE产业的创新研究,为广大用户提供更加优质的服务。
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • AFM技术文章:通过边带KPFM(Sideband KPFM)对分子聚集体进行电势成像
    充分发挥潜力通过边带KPFM对分子聚集体进行电势成像Ilka M. Hermes, Andrea CerretaPark Systems Europe GmbH, Mannheim, Germany 功函数是一种材料特性,可用于区分复合材料中的单一成分或用于区分样品与基体。开尔文探针力显微镜(Kelvin probe force microscopy,KPFM)能利用已知的探针功函数,以纳米分辨率去成像样品表面功函数分布。在这里,我们介绍了Park Systems 研究型原子力显微镜中新开发的边带KPFM(Sideband KPFM)。边带KPFM显著提高了电势的灵敏度和空间分辨率,从而提高了KPFM测量的准确性和可靠性。 半氟化烷烃由两个链段组成–(CF2)xF和(CH2)yH 嵌段。FxHy 在水中和固体基质上以不同的形态自组装。因此,对半氟化烷烃(如F14H20)的研究有助于对自组装的一般理解。由于F14H20的电偶极子导致F14H20与衬底之间存在明显的表面电势差,所以开尔文探针力显微镜(KPFM)非常适合于自组装F14H20结构的纳米级可视化研究。 KPFM是一种扫描探针显微镜技术,它能同时捕捉样品的表面形貌和表面电势。对于KPFM,振荡的导电探针在扫描样品表面的同时会施加交流电压,用来检测由表面电势局部变化引起的针尖和样品之间的静电力变化。为了最小化所侦测到的静电力,外加直流偏压可以抵消扫描的每个点上针尖和样品之间的接触电势差。基于外加直流偏压,在KPFM信号中重构了样品的表面电势分布。如果已知导电探针的功函数,那么电势分布就可以转换为样品的功函数分布。静电力的检测方法决定了KPFM中表面电势的分辨率和精度。 在非共振KPFM中,交流电压以远离悬臂共振的频率调制静电力,用于形貌成像(图1a)。然后通过交流频率下的振幅来检测力。通过施加与针尖和样品之间的电势差所相匹配的直流偏压,可以消除交流频率下的振幅,从而消除静电力。然而,KPFM信号对长程力的依赖性降低了测量的灵敏度,因为样品和悬臂之间的非局部相互作用可以叠加在局部信号上。 对于边带KPFM,我们采用低频交流电压(2-5kHz)来调制静电力梯度。调制力梯度引入了悬臂共振左右两侧的频率边带(图1b)。与非共振KPFM类似,边带KPFM通过施加与电势差相匹配的直流偏置来抵消这些边带的振幅。通过检测短距离的力梯度来取代长程力梯度,可以减小长距离串扰,提高横向分辨率和局部电势灵敏度。图1:非共振KPFM(a)和边带KPFM(b)的频谱示意图。边带KPFM检测电极阵列在F14H20上进行测量之前,为了测试边带KPFM的电势分辨率和精度,我们在金电极阵列的相邻电极上施加了不同的电压(0V和-2V)(图2a)。图2b中样品形貌和边带KPFM电势的叠加说明了在两个电极上检测到的不同电势:左侧电极显示约0V的亮电势对比度,右侧电极显示约-2V的暗电势对比度。图2c是更详细的分析电势图像的线轮廓。在这里,我们发现测得的电势与外加电压是一致的。因此,我们检测到两个相邻电极之间存在2V压差,以及从电极到基板的急剧过渡。因此,我们证明了边带KPFM能够以很高的电势灵敏度和空间分辨率捕获施加在样品上的全电压。图2: a)电压分别为0和-2V的金电极阵列。b) 边带KPFM电势和形貌的三维叠加显示了两个电极的两种不同电势随外加电压的变化。c) 边带KPFM电势沿红线分布在两个电极上,表明测得的电位与外加电压一致,空间分辨率高。F14H20分子聚集体的KPFM研究 为了比较边带KPFM和更常用的非共振KPFM,我们绘制了半氟化烷烃(F14H20)自组装聚集体的表面电势分布图。在这里,分子的电偶极子在聚集体和亚硝酸盐之间引入了一个显著的电位偏移。图3:使用非共振和边带KPFM对相同的F14H20成像。横截面(红色)可以体现边带KPFM的横向和电势分辨率明显提高。 非共振和边带KPFM测量结果表明,边带KPFM的空间分辨率和电势分辨率都有所提高。对于边带KPFM,我们观察到基板和F14H20之间的潜在对比度为700-750mv,以及确定的横向分辨率,甚至可以成像聚集体中的小间隙。另一方面,非共振KPFM显示大约300mv的电势差,表明局部电位灵敏度较低。此外,边带KPFM捕获的清晰边缘在非共振KPFM中模糊,突出了边带KPFM优越的空间分辨率。 F14H20分子聚集体的柔软性对扫描探针技术的表征提出了新的挑战。然而,边带和非共振KPFM可以与Park Systems的非接触模式相结合,从而允许对这些软分子结构进行稳定的形貌成像。总结 边带KPFM,可扩展在Park NX研究型设备中,对测量如F14H20类似的软样品以及半导体和金属材料提供准确的表面电势研究。对静电力梯度的依赖性显著提高了横向分辨率和电势灵敏度,使边带KPFM成为纳米尺度表面电势定量表征的理想技术。Source:1. Silva, G. M. C., Morgado, P., Lourenço, P., Goldmann, M. & Filipe, E. J. M. Spontaneous self-assembly and structure of perfluoroalkylalkane surfactant hemimicelles by molecular dynamics simulations. Proc. Natl. Acad. Sci. 116, 14868 LP – 14873 (2019).2. Abed, A. El, Fauré, M.-C., Pouzet, E. & Abillon, O. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface. Phys. Rev. E 65, 51603 (2002).3. Zerweck, U., Loppacher, C., Otto, T., Grafström, S. & Eng, L. M. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005).
  • 【经典文献赏析】微流成像颗粒分析技术(MFI)和光阻法(LO)对比研究
    国家食品药品检定研究院(NIFDC)和烟台大学药学院等科学家在期刊Journal of Pharmaceutical Sciences发表文章:Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration.文章中,使用光阻法(LO)和微流成像颗粒分析技术(MFI)分析了来自国内批准的17种商业单抗隆抗体药物中,205个样品的亚可见颗粒。每种方法进行了633次测试。在测试中,冻干粉或注射器包装的样品具有显著更高的颗粒浓度,且MFI的颗粒计数通常高于LO计数。通过研究数据表明,LO无法检出蛋白质半透明颗粒的数量是MFI方法高于LO计数的原因。研究背景基于单克隆抗体(mAb)生产工艺的复杂性,因此需要对其关键质量属性(CQA)进行控制和监测,同时为了确保药物产品的安全性和有效性,还需证明CQA在生产过程的一致性。这些CQA包括可见颗粒(VPs)和亚可见(SVPs)颗粒的测量。然而过去并没有对治疗蛋白质产品中的亚可见颗粒(0.1-100μm)的颗粒进行积极的检测。有研究表明,治疗性蛋白质产品中的蛋白质有聚集并形成SVPs的倾向,且这种聚集会引起治疗效果的降低和潜在的免疫原性风险。欧洲药典(EP)2.9.19、美国药典(USP)788和中国药典(ChP)0903等药典专论中对SVPs进行颗粒计数限值。且USP1787建议使用4-100μm粒径范围内的形态测量,这可能有助于理解粒子来源为固有的、内在的/外在的,以降低SVPs带来的风险。光阻法(LO)是USP788规定的主要检测方法,用于量化两个尺寸范围(≥10μm和≥25μm)的SVPs。该技术确定了颗粒的大小和数量,但由于其检测原理,无法区分不同类型的颗粒,例如蛋白质聚集体、硅油液滴等。许多研究表明,LO可能无法检测到半透明的蛋白质聚集体,从而低估了样品中的总颗粒。也有一些报告表明,样品的折射率(RI)会影响LO结果。随着USP787和USP1787的发布,要求在计数/浓度和形态方面表征2-10μm的SVPs。流式成像显微镜(FIM)技术已成为量化与LO技术相同大小范围内的SVPs的替代方法,它可以检测半透明的蛋白质聚集体,即通过使用直接对颗粒进行成像的FIM,还可以获得形态信息。这使得该技术能够将蛋白质聚集体与其他颗粒(如硅油滴、气泡和其他外在和内在的颗粒杂质)区分开来。本文中FIM技术使用的是ProteinSimple的微流成像颗粒分析技术(MFI)。到目前为止,比较这两种技术的研究都使用了标准微珠、蛋白质模拟物或有限数量的治疗性mAb样品。但没有对多批不同的商业治疗性mAb进行并排比较。在本研究中,使用LO和MFI方法分析了17种国家药品监督管理局批准的mAb药物产品。通过分析200多批mAb商业药物产品提供了一个独特的数据集,以检验MFI法和LO方法之间的粒子数计数差异和二者关联。样品准备表1列出了17种生物制药mAb药物产品的清单。对于每种药物产品,最多可获得50个批次。不同批次的相同药物被视为研究中的不同样本。对于药物的不同批次,它们分别标有数字1、2、3等。因此,研究中共有205个样品,如表1所示。每个批次由LO和MFI测试3到9次。总共对205个样本使用两种方法进行了1266次测试(633次使用LO方法,633次使用MFI方法)。研究结果如图所示,对使用MFI和LO测量的205个样品的颗粒计数进行了分析。由于颗粒形成是从较小尺寸到较大尺寸的动态过程,且USP1787要求对2-10μm颗粒进行表征(因为这个尺寸范围可能具有免疫原性)。所以使用MFI和LO检测了≥2μm、≥5μm、≥10μm的颗粒计数,以及2-10μm的颗粒计数。结果显示,在205个样本的633次运行中,22个样本的运行子集显示LO计数高于MFI计数。对于其余样本,MFI方法的计数高于LO方法。从结果中可以看出,来自注射器和冻干样品的样品在所有尺寸范围内的颗粒计数都明显高于瓶中液体。特别是在≥2μm尺寸范围内,根据之前的报告,硅油滴可能是这个尺寸范围内高计数的主要贡献者。2-10μm尺寸范围的计数与≥2μm尺寸范围的计数具有非常相似的趋势。这是因为粒子数的多少由较小的粒子数支配。冻干形式的药品在重构时可能会形成气泡,蛋白质容易吸附到气泡从而形成蛋白质颗粒。根据早期研究,MFI方法优于LO方法的一个优势是MFI比LO方法可以检测到更多的半透明蛋白质聚集体。因此,与LO方法相比,MFI方法通常检测到更多蛋白质溶液中的颗粒(如上图所示)。为了验证MFI方法在检测半透明蛋白质聚集体方面优于LO,首先需要在MFI测试获得的结果中将蛋白质颗粒与其他颗粒分开。这可以通过利用MFI软件对粒子的各种尺寸、形态和图像强度信息等不同范围的参数来区分不同类型的粒子。利用参数的组合充当过滤器以分离样品中的蛋白质和其它颗粒。例如参数AR反映了粒子的圆度,AR=1表示正圆,AR1表示非圆。通常,硅油滴和气泡的AR值接近1,而蛋白质颗粒的AR值较低。蛋白质颗粒图像通常具有相对较小的强度变化(暗度),而硅油滴、气泡和固体材料碎片通常具有明确的暗边缘。硅油滴、气泡或固体材料碎片的颗粒图像的强度变化(整个颗粒的暗度变化)大于蛋白质颗粒的强度变化。粒子图像的暗度变化可以通过参数Intensity STD来反映。因此可以采用AR0.8或AR≥0.8且Intensity STD≤100的过滤器来区分样品中的蛋白质颗粒和其他污染物颗粒,例如硅油滴和固体材料的碎片。为了显示统计显著性,上图使用了三种粒子计数相对较高且MFI计数和LO计数之间差异较大的样本。LO 和MFI检测了单个样品药物Atezolizumab的5个批次。结果显示,两个计数方法在所有运行中都相对一致,MFI的计数略高。对于药物 Daratumumab,如图B所示,在11个批次中,两个计数方法对于大多数运行来说都是一致的,其中一个批次的MFI计数要高得多。通过应用过滤器,可以确定MFI计数高的原因是蛋白质颗粒的计数高。从以上两个例子中可以看出,在同一种药物中,不同批次的颗粒计数MFI和LO方法的结果一般是一致的,MFI计数略高于LO计数。有几个批次具有较高的MFI计数,这是由于高计数的蛋白质颗粒引起的。不同批次的相同药物的蛋白质颗粒计数可能不同。图C显示了来自注射器包装的两个Golimumab样品的计数。6次运行中的蛋白质颗粒计数是一致的,而非蛋白质颗粒的计数在不同批次中是可变的。大量MFI计数高于LO计数,主要原因是蛋白质颗粒计数高。这也证实了早期的研究。对于这种药物,在所有6次运行中,非蛋白质颗粒的趋势和LO的总计数非常吻合。为了确定使用MFI观察到的更高计数是否与半透明蛋白质聚集体的数量有关。因为在示例中,从总MFI计数中分离出的非蛋白质颗粒计数接近LO计数。因此需要比较MFI的总计数与LO的计数以及MFI的计数与LO的非蛋白质部分之间的相关性。首先,将所有270次MFI运行中≥5μm的MFI计数与LO计数作图,相关性较低(图A)。当将MFI计数的非蛋白质颗粒与总LO计数作图时,相关性显著提高(R2从0.781到0.933),这表明蛋白质、半透明颗粒的数量是导致MFI计数高于LO的主要因素。因此证实了MFI在检测蛋白质半透明颗粒方面优于LO。结 论本研究使用LO和FIM方法测量了来自17种商业mAb药物产品的205个样品(批次)中≥2μm、≥5μm、2-10μm、≥10μm的SVPs。结果显示,冻干粉或注射器包装状态的样品显示出明显更高的颗粒浓度,尤其是在≥2μm尺寸范围内的颗粒计数。且MFI粒子计数通常高于LO计数(205个样本中的183个样本)。通过使用AR 0.8 or AR ≥0.8 and Intensity STD ≤100过滤器将样品中的蛋白质颗粒与其它污染物颗粒分离,审查了不同批次相同药物中LO和FIM计数的差异。MFI显示药物中的某些批次具有显著高的颗粒计数,被证实是由大量蛋白质颗粒引起的。同时,与瓶装液体相比,注射器的颗粒计数最多可高出10倍,瓶装液体主要归因于非蛋白质颗粒,主要是硅油液滴。MFI方法计数升高的原因是蛋白质、半透明颗粒而导致。将MFI的总计数与LO的总计数作图,并将MFI计数的非蛋白质部分也与LO的计数作图。结果相关性有很大改善。结果表明,与LO方法相比,蛋白质半透明颗粒的数量是MFI方法计数升高的主要因素。以上表明,虽然LO方法是被广泛接受的微粒分析工具,但它不足以测量生物制药中的所有粒子,证明了MFI等正交工具的必要性。由于MFI的优势,可以开展实验室间验证研究,以测试将MFI技术引入mAb的释放控制和稳定性研究的可能性。因此目前药典对SVPs的要求可以通过MFI等新技术的应用进行优化。获取资料请扫二维码
  • 斯坦福医学院案例cell分享 | MST技术检测蛋白的二聚体亲和力
    Part 1研究背景在生物化学中,蛋白质二聚体是由两个蛋白质单体或单个蛋白质形成的大分子复合物,它们通常是非共价结合的。蛋白质二聚体是一种蛋白质四级结构。有些蛋白需形成同源或者异源二聚体才能发挥其特定的功能,且不同聚集体的亚型与不同靶蛋白特异性结合,如14-3-3蛋白。对聚集体的状态维持和解离研究能更加清楚的了解生物学过程,并且开发特异性的靶标药物,用于疾病的治疗。由于聚集体是蛋白的四级结构组成部分,因此,一般来检测聚集体的亲和力需要先形成蛋白单体,也就是极低的蛋白浓度,对于很多互作方法来说无法实现检测。下方这篇Cell文献介绍了MST成功检测蛋白的二聚体亲和力以及小分子对聚集过程的影响。Part 2研究内容美国斯坦福大学Paul A. Khavari小组使用葡萄糖解聚DDX21二聚体来调节mRNA剪接和组织分化。2023年1月出版的《Cell》杂志发表了这项成果。https://doi.org/10.1016/j.cell.2022.12.004IF: 64.5 Q1葡萄糖是一种普遍的生物能量来源,此外,研究发现,葡萄糖可能重塑分化所需蛋白质的功能,使分化过程得以实现。DDX21是一种DEAD-box RNA解旋酶,为同源二聚体状态,DDX21调节黑素细胞干细胞的分化。然而,DDX21在表皮分化中的功能尚未不清晰。在该研究中,作者发现,葡萄糖结合DDX21的ATP结合域,改变其构象,进而造成DDX21解离。在分化过程中,DDX21以葡萄糖依赖的方式定位于mRNA内含子中特定的模体,并促进关键的促分化基因的剪接。为了更清楚地了解葡萄糖对DDX21二聚化的影响,作者需检测(不)结合葡萄糖时DDX21二聚体亲和力。MST技术上机检测的浓度可以低至pM-nM,保证DDX21为单体状态,进而获得准确的二聚体亲和力结果。此外,MST对缓冲成分没有要求,并且是检测达到平衡状态时的亲和力。因此,可以将葡萄糖作为缓冲成分加入到体系中,并且使葡萄糖和DDX21达到平衡后再进行检测。MST亲和力结果表明,葡萄糖显著抑制DDX21二聚化(降低了近7倍)。图1:微量热泳动(MST)检测DDX21的二聚化(黑色)以及存在350uM葡萄糖(红色)或者半乳糖(蓝色)时亲和力。Part 3技术优势在这篇工作中,通过MST技术确定了DDX21形成二聚体的亲和力,以及葡萄糖与DDX21的作用。对于分子互作亲和力的检测,MST上机浓度极低,保证蛋白的单一状态,同时节省样本。当检测多个分子互作时,可以孵育达到平衡,获得准确的多元的亲和力。
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 401787)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attributes for adeno‐associated viral vectors. Biotechnol Bioeng. 2021 1–18.United States Pharmacopeia 787.Subvisible particulate matter in therapeutic protein injections. 788. Particulate Matter in Injections. 789. Particulate Matter in ophthalmic solution. 1787. Measurement of subvisible particulate matter in therapeutic protein injections. 1788. Methods for the determination of subvisible particulate matter. Rockville, MD: United States Pharmacopeial Convention 2020年版药典,0903 不溶性微粒检查法Abhiram Arunkumar, Nripen Singh. Ultrafiltration behavior of recombinant adeno associated viral vectors used in gene therapy. Journal of Membrane Science, volume 620,2021Jared S. Bee, Yu (Zoe) Zhang, et al. Impact of Time Out of Intended Storage and Freeze-thaw Rates on the Stability of Adeno-associated Virus 8 and 9. Journal of Pharmaceutical Sciences (2022) 1−8 Vineet Gupta, Lorena R. Antunez, et al. Development of a high-throughput RT-PCR based viral infectivity assay for monitoring the stability of a replicating recombinant Lymphocytic Choriomeningitis viral vector. Journal of Virological Methods 301 (2022) 114440
  • 微流控芯片技术在蛋白质药物质控中的应用前景
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "药品标准直接关乎药品质量,它是从源头上控制药品的安全性,有效性及质量可靠性的尺度。随着生物技术药物的发展,生物制品安全问题也越来越引起人们的重视。目前经批准的生物技术药物主要为重组蛋白质药物与单克隆抗体,该类药物的开发已成为当今生物技术及制药工业中最为活跃的领域之一,显示出巨大的社会效益和经济效益。但由于该类药物的结构复杂,用量很小,且生物体内有大量相似物质的干扰,其为质量控制和检测增加了难度。它需要应用生物化学、免疫学、微生物学和分子生物学等多门学科的理论和技术,进行综合性监测分析和评价,确保生物技术药物的安全有效性。而微流控芯片的研究和发展给蛋白质药物质控开拓了新的思路。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 微流控是一个快速发展的跨学科领域,融合贯穿了物理、化学、生物医学和微系统工程学科等。所谓“微流控芯片”,又称芯片实验室(Lab-on-a-Chip),是指把生物和化学领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基于一块几平方里面的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术。其最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。结合不同分析检测手段(如:光学检测法、电化学检测法以及质谱检测法等),对样品进行快速、准确、高通量以及多维度分析。它不仅使生物样品于试剂的消耗降低至纳升甚至皮升级,而且使分析速度大大提高,分析费用大大降低。充分体现了当今分析设备微型化、集成化和便携化的发展趋势。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 随着蛋白质药物研究的发展,对产品进行质量控制也趋于自动化和微型化,实时快速地对产品进行分析测定,为医药、临床病理等蛋白质领域研究提供了强有力的手段。微流控芯片作为一种集成、快速、高效、高通量、试剂用量小的微型实验室,将极大地促进蛋白质药物质控的研究。我们希望能够通过建立相应的微流控芯片平台,针对重组蛋白质药物或单抗药品一些关键质量属性(如:电荷变异体分析、糖基化鉴定、聚集体和片段分析等),通过研制具有溯源性的高准确度测量装置和方法,提高测量结果的准确度和精准度,支撑蛋白质药物的安全性、有效性评价以及服务产业发展。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 310px " src="https://img1.17img.cn/17img/images/202011/uepic/968aed89-2fd2-4dd2-8585-b5b54bbc4bad.jpg" title="图片12.png" alt="图片12.png" width="550" height="310" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: center text-indent: 0em "图1:微流控芯片-质谱联用平台。在芯片上集成不同的功能单元, 分别进行药物灌输、生物/化学反应、样品预富集及ESI-MS在线检测。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: right "(文稿:张炜飞)/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/8750474c-7644-477e-be6c-8cc21824717b.jpg" title="11.jpg" alt="11.jpg"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "欢迎各位专家、同仁报名参会!/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:http://tdmsqs.ncrm.org.cn。/p
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 科学创新 | Food Hydrocolloids:解析核桃蛋白高内相乳液的流变特性
    想象一下,我们有一种特别的油水混合物,这种混合物中油的比例超过了,被称为高内相乳液(简称HIPEs),这种凝胶状混合物因其独特性,可用作替代高油产品如部分氢化油或蛋黄酱,甚至作为可食用的3D打印油墨。通常,我们需要添加表面活性剂来保持其稳定,但市面上多数是化学合成的,营养价值有限。因此,研究人员转向天然大分子如蛋白质、多糖作为替代稳定剂。然而,天然稳定剂面临环境因素的挑战,如温度、酸碱度的影响,需进一步研究以优化其稳定性和流动特性,以便更广泛应用。2023年10月,西华大学食品与工程学院陈祥贵教授课题组在《Food Hydrocolloids》发表题为“High internal phase emulsions stabilized by walnut protein amyloid-likeaggregates and their application in food 3D printing”的研究成果(IF=10.7),研究了核桃分离蛋白(WPI)固化的高内相乳液(HIPEs)及其淀粉样聚集体(WPIA)的流变性能,并测试了WPIA稳定的HIPEs作为可食用食品油墨用于3D打印的打印性能,为蛋白质类淀粉样纤维聚集对稳定HIPEs流变特性的影响提供了重要的实验视角。研究团队首先通过特殊方法制备了核桃淀粉样蛋白聚集体(WPIA),并使用了两种不同的染料来标记蛋白质和油滴,借助SOPTOP CLSM600激光共聚焦扫描显微镜观察HIPEs中油滴的形态和微观结构,发现乳化剂浓度和酸碱值(pH值)对高内相乳剂在酸性环境(pH 3.0)下,核桃分离蛋白能有效稳定高内相乳液,形成了以固体颗粒为乳化剂的Pickering型HIPEs。相比之下,核桃分离蛋白稳定的HIPEs具有更好的储能能力和较低的屈服应力。在中性pH 7.0下,虽然核桃分离蛋白的稳定效果减弱,核桃蛋白淀粉样聚集体(WPIA)仍可一定程度上维持乳液结构,而单独的核桃分离蛋白由于溶解性差,在中性环境中几乎不能稳定HIPEs。 WPI和WPIA在pH 3.0下稳定的HIPEs以及在pH 7.0下WPIA稳定的HIPEs的CLSM600镜下图像相比于普通倒置荧光显微镜,共聚焦显微镜能够提供更高的分辨率和图像清晰度,减少背景信号的干扰,提高图像的对比度。同时,激光光源具有较高的亮度和穿透性,对于观察HIPEs这类结构复杂或者较为不透明的样品更有优势。此外,研究团队还发现WPI和WPIA在pH 3.0稳定的HIPEs都表现出优良的3D打印性能,为同一蛋白质在不同聚集情况下形成的HIPEs性能提供了一系列有价值的见解,也为扩大核桃蛋白在食品工业中的应用提供了一种新方式。论文信息He C, Xu Y, Ling M, et al. High internal phase emulsions stabilized by walnut protein amyloid-like aggregates and their application in food 3D printing[J]. Food Hydrocolloids, 2024, 147: 109444.DOI: 10.1016/j.foodres.2023.112858
  • Cell 主刊:高内涵筛选助力攻克毒性蛋白质病难题
    毒性蛋白质病(Proteinopathy)通常由细胞内或细胞外沉积大量折叠变异的蛋白质(Misfolded protein)所致。在蛋白合成和成熟过程中的任何一个环节出现问题,如蛋白突变、折叠以及翻译后修饰出现异常都有可能会导致蛋白质病的发生。虽然蛋白质病这个术语对很多人来说还比较陌生,但现已证明其和多种严重的神经性疾病,如阿尔兹海默症、帕金森病和肌萎缩性侧索硬化症(ALS)的发生密切相关。靶向蛋白质病的研究也为屡屡受挫的神经退行性疾病治疗提供了新的曙光[1,2]。高内涵整体解决方案的优异体现在七月的Cell主刊中,研究将目光转至由MUC1基因移码突变导致的肾病(MUC1 kidney disease ,MKD)[3]。与神经性退行性疾病类似,MKD目前尚无有效治疗手段。结合细胞系、小鼠模型、病人组织和日益火热的类器官来源样本,研究证实MUC1突变蛋白(MUC1-fs)会大量聚集在细胞内,并最终激活未折叠蛋白应答(Unfolded protein response UPR),诱发细胞损伤和毒性。因此,MKD也属于蛋白质病的一种。针对该发病机制,研究实施基于高内涵平台的高通量筛选,并成功获得能特异清除突变MUC1蛋白的小分子药物BRD4780。该研究不仅深入我们对蛋白转运异常发生机制的了解,也为多种毒性蛋白质病提供了新的治疗策略和切入点。在七月的研究热点版块中,Nature Review Drug Discovery专门针对发现进行了解析[4]。该研究也体现了珀金埃尔默高内涵整体解决方案的高效应用。成像平台Opera Phenix配合CellCarrier Ultra系列微孔板主导高内涵筛选的同时,并通过水镜优势参与了基于上述四种样本的所有荧光拍摄和动态追踪分析细胞凋亡进程。针对类器官样本的拍摄,PreciScan功能被用于提速拍摄进程和排除不需要的图像采集和分析。所有的荧光分析由Harmony软件完成,尤其是‘spot’分析功能的应用。a疾病解析通过MKD病人和体外模型等样本,研究使用抗体染色方式分析野生型MUC1和对应突变产物的组织和细胞分布。在不同来源的样本中,值得一提的是基于病人诱导性多能干细胞(induced pluripotent stem cells , iPS cells)建立的类器官(Organoid)样本。基于干细胞技术的类器官模型建立和分析也是近年来高内涵的优势应用方向之一[5]。与病人的切片结果一致,野生型MUC1主要分布在类器官的顶膜部位,而突变蛋白则分布在细胞内。进一步研究证明聚集在细胞内的突变MUC1会诱发细胞应激,活化ATF6-UPR通路并最终导致细胞损伤,表明MKD是蛋白质病。基于MKD病人的肾类器官模型染色,图片由Opera Phenix拍摄。红色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;蓝色为E-cadherin;黄色为Na/K ATPase标记基底外侧膜。b高内涵筛选为了发现能有效清除突变蛋白的药物,研究针对病人样本建立永生化细胞系,并利用Opera Phenix开展大规模、多指标高内涵筛选。在初筛中,研究关注能清除突变蛋白并无显著细胞毒性的药物,并在此基础上细化筛选药物浓度开展二轮筛选。通过两轮筛选后,研究通过特异性、mRNA水平调控和是否能抑制ER应激药物thapsigargin的细胞毒性三个指标来进一步分析候选药物。高内涵筛选流程图最终,从3713种化合物中,研究成功发现BRD4780满足上述的指标,能有效特异清除突变蛋白的同时不影响MUC1转录水平,并能保护病人模型细胞系不受thapsigargin的应激压力。进一步的实验证明BRD4780能工作于类器官模型和小鼠模型,是非常有潜力的MKD治疗药物。左图:基于细胞系的染色结果,黄色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;灰色指示细胞核。右图:对应的统计分析和细胞数变化分析。c机制研究为了解析MUC1突变体亚细胞聚集原理和BRD4780工作机制,研究利用成像技术进行大量共定位研究,并发现病人来源细胞系中MUC1突变体滞留在内质网和高尔基体之间的早期分泌通路中,并与运货受体TMED9有显著的共定位趋势,且这个现象能进一步在多种模型和病人组织中重现。通过动态成像追踪,研究证明BRD4780能将滞留的突变蛋白从早期分泌途径中释放出来,并促进其进入溶酶体降解途径。基于细胞系的亚细胞共定位研究,分析基于Harmony软件的‘spot’ 分析功能。基于细胞系、小鼠模型、病人组织和类器官来源样本的荧光染色分析,红色指示TMED9;绿色指示突变体MUC1蛋白;灰色指示细胞核。* 荧光图片均由Opera phenix 拍摄。非常有意思的是,在病人样本中研究同时也发现TMED9蛋白水平的上升,而BRD4780处理同样能降低TMED9蛋白水平。此外,通过CRISPR技术敲除TMED9能表型模拟BRD4780的处理效果,清除突变蛋白。因此,TMED9参与了MUC1突变体在早期分泌途径的滞留和积累,并可能是BRD4780的直接作用靶点。针对此,研究采取细胞热移位测定法(Cellular thermal shift assay,CETSA)证实细胞内BRD4708和TMED9存在直接相互作用。凭借其能在生理条件下进行细胞水平分析的优势,CETSA成为了内源蛋白-药物相互作用分析技术的生力军,是表性筛选下游药物解析的利器。基于CETSA方法在细胞水平确认BRD4708能直接结合TMED9综合上述的发现,研究向我们阐释了MKD的发病以及BRD4780的作用机制。通过直接结合TMED9,BRD4780将突变的MUC1蛋白从内质网和高尔基体之间的早期分泌通路中释放出来,加速溶酶体对其的清除。令人兴奋的是,在具有很好的药理性质的同时,BRD4780不仅能作用于MKD,还能作用于其他多种膜相关蛋白导致的毒性蛋白质病,如UMOD突变相关的慢性肾病和色素性视网膜炎等,是非常有潜力的候选药物。MKD的发病机制和BRD4780的作用机制图同时,该研究也是高内涵两大应用领域的精华案例。首先是亚细胞水平成像应用,研究中涉及到的大量定位、共定位研究和动态追踪蛋白转运过程都是高内涵的优势应用场景。其次,更为关键的是,该研究也是成像筛选主导的药物发现案例。从疾病模型表型的建立到靶向逆转疾病相关表型的筛选,和最后下游的药物机制研究,都离不开珀金埃尔默高内涵解决方案。高内涵解决方案,伴随着机器学习的逐渐成熟,将成为创新药物研发行业的新鲜血液[6]。参考文献1. Ganguly G, et al.Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer' s disease and Parkinson' s disease. Drug Des Devel Ther. 2017 Mar 16 11:797-810.2. Scotter EL, et al.TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics. 2015 Apr 12(2):352-63. doi: 10.1007/s13311-015-0338-x.3. Dvela-Levitt M, et al.Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019 Jul 25 178(3):521-535.e23.4. A novel approach to reverse proteinopathies https://www.nature.com/articles/d41573-019-00133-55. Czerniecki SM, et al.High-Throughput ScreeningEnhancesKidneyOrganoid Differentiation from HumanPluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell. 2018 Jun 1 22(6):929-940.e4.6. Machine learning brings cell imaging promises into focus https://www.nature.com/articles/d41573-019-00144-2关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 太空飞行对人体蛋白质组的影响|对话Seer公司Daniel Hornburg博士
    随着航天技术的发展,人类对太空的探索日益深入。在太空环境中,宇航员的身体会发生一系列复杂的生理变化。为了更好地监测和保护宇航员的健康,利用前沿的生命科学技术来研究太空环境对人体的影响已成为一个重要课题。蛋白质是生命的基石,在一个有机体中执行所有的基本功能。在太空生物学研究中,蛋白质组学技术展现出巨大的应用潜力。Seer公司成立于2017年,是蛋白质组学分析领域的代表企业之一,拥有独特的纳米粒子技术,能够实现深度、快速、大规模的蛋白质组学分析,其提供的产品组合包试剂、耗材、自动化仪器和数据分析软件。Seer也陆续与高分辨质谱仪器供应商如赛默飞、布鲁克等达成合作,允许seer提供赛默飞Orbitrap和布鲁克timsTOF质谱系统作为整体工作流程的一部分,为用户提供完整的解决方案。本文摘录整理了Seer公司首席科学家Daniel Hornburg博士在the Medicine Maker的采访内容。文中与Hornburg博士就蛋白质组学技术在太空生物学研究中的应用进行讨论,重点关注其对于监测宇航员生理状态、找出生物响应机制等方面的意义。Seer公司正在对宇航员的蛋白质组学开展研究,希望这些发现能让科学家更多地了解蛋白质在太空环境下的工作方式以及如何应对疾病。Daniel Hornburg博士在蛋白质组学和生物标志物领域有着丰富的研究经验,他也是HUPO 2022蛋白质组科学与技术奖获得者,其在纳米-生物相互作用方面的跨学科研究奠定了Seer Proteograph产品的基本原理,并推动了跨学科研究和技术开发的进展。Daniel Hornburg博士问:你(和Seer公司)是如何对太空产生兴趣的?我一直被对理解世界运转机制的渴望所驱动。当我还小的时候,我想成为一名宇航员或科学家。作为一名科学家,我仍然对太空旅行和天文学充满着好奇,但我已经研究生物分子超过15年了,这些分子涵盖从肽到蛋白质再到脂质和代谢产物等生命的组成成分。在Seer,我的团队通过开发和使用新的技术来更快、更深入和更精确地检测成千上万种生物分子,推动跨学科研究。Seer正在构建定量探索蛋白质组的平台技术,我们认为这是生物学的下一个前沿。与基因组相比,蛋白质是动态调节的,生化复杂,并且更接近表型 因此,分析蛋白质组为我们提供了一个机会,可以以更详细、更直接的方式来理解人类健康和疾病。样本如血浆中的蛋白质,其丰度分布在多个数量级中。事实上,只有22种蛋白质构成了99%的血浆蛋白质质量。蛋白质丰度的有挑战性的动态范围使得无论是检测通量还是对低丰度部分蛋白质组的覆盖深度的扩展在技术上都面临很大的挑战。我们相信,大规模深入定量血浆蛋白质组将使科学界能够发现新的生物标志物,这些标志物可以提供受试者健康状态的信息,并与基因组信息一起扩展我们对疾病的机制理解。问:太空环境如何影响宇航员的蛋白质?迄今约有600人进入太空,这些宇航员科学家本身通常都会成为每次新任务的实验对象。宇航员数据集非常独特,包含详细的生理学信息。实验方法和技术每年都在发展,我们的认识也在不断深入。利用当前一些较新的数据定量工具,我们有一个非常好的机会来进一步研究人类蛋白质组。蛋白质是所有细胞的功能性构建块,并介导几乎所有的生物过程。与所有的生理反应一样,疾病中也都涉及到蛋白质的作用。例如,如果宇航员由于微重力而出现肌肉萎缩,那么很可能就涉及到降解其他蛋白质复合物的蛋白质。当压力导致炎症水平升高时,这一过程就会受到循环血液中的细胞因子等信号蛋白质的调节。即使是一个被打乱的昼夜节律也会与蛋白质组的改变有关。我们才刚刚开始理解诸如太空等环境是如何重编程我们的蛋白质组的。航天医学研究转换学院(TRISH)是一个由贝勒医学院、加州理工学院和麻省理工学院组成的学术联盟。TRISH与NASA紧密合作,开发和资助创新型健康研究和技术开发,具有两个目标:i)帮助宇航员保持健康 ii)将太空健康研究的知识和投资应用于惠及地球上的所有人。迄今,只有有限数量的记录在案的研究调查了太空飞行对人体蛋白质组的影响。由于技术限制,记录在案的少量人体研究所依赖的分析工具并未提供足够深入的洞察力。研究蛋白质组的子集确实提供了有价值的信息,但我们对极端环境如何影响人体生理学的系统级理解还存在一个空白。利用当前一些较新的数据定量工具,我们有一个非常好的机会来进一步研究人类蛋白质组。问:关于Seer与NASA、康奈尔医学院和SpaceX的合作,您能透露什么信息?Seer于2021年开始与SpaceX和TRISH合作,以了解人类在太空旅行期间会发生什么变化。Seer贡献的是利用我们开发的新型纳米颗粒工作流进行的深层血浆蛋白质组学探索,同时利用非标记质谱法进行检测。其他合作伙伴正在探索人类健康的不同分子层面 例如,康奈尔医学院正在研究宇航员的微生物组。最终,研究人员将结合分子层面得到一个更完整的图片,了解太空的力量如何影响人类。2021年9月,SpaceX发射了其激励4号任务,在近地轨道上度过了三天时间。我们的合作伙伴从四人乘员(两男两女)中采取了发射前和返回后样本。Seer目前正在分析这些样本,确定飞行如何改变了血液的分子组成。我们的纳米颗粒技术可以压缩并捕获血浆中极大的(及通常无法进入的)分子信息量所形成的所谓蛋白层,使其对下游检测器如质谱仪更易检测。 然后,我们使用机器学习来解释这些信号,这些信号告诉我们每个样本的分子组成,并揭示宇航员的生物分子状态。 然后,我们可以在四名宇航员之间比较飞行后分子信息,也可以与他们的飞行前分子信息进行比较。这告诉我们低重力、更高水平的辐射和太空的其他方面如何在分子水平上影响人体,这反过来又可以帮助我们为未来的太空任务做准备。问:理解生物学如何对极端环境做出反应,将如何有益于生物医学研究?生命很复杂,研究人体如何对太空的压力做出反应,不仅可以帮助我们为未来的任务做准备,而且还可以更好地理解一些生物分子的生理和病理作用。例如,与RNA分子或基因组相比,由于蛋白质与表型的联系更近,我们预期蛋白质将动态响应扰动,提供身体状态的快照及其如何适应变化环境。重要的是,以规范化和统一的方式向公开访问数据库贡献数据,为所有医学研究者设置了一个很好的先例,无论他们是研究太空适应还是正常人体生理学问:你们工作中面临的最大挑战是什么,如何应对这些挑战?我们的技术可以定量成千上万种蛋白质。一个关键挑战是,到目前为止,我们只研究了少数几个受试者,而且他们的人口统计学信息非常狭窄,且我们只在飞行前后采样了几个时间点。 有限的多样性和样本数量从统计学的角度来看提出了挑战。 一些变化将是微妙的,需要在任务期间进行更频繁的采样以及从更多的生物重复(宇航员)中才能变得明显。尽管我个人认为这是一个去太空的绝佳理由,但当前的研究将产生我们可以在地球上进行后续实验以验证的假设。 最终,我们会增加在太空进行的多组学研究的数据点和“多样性”,以便准确地从个体推广到人群,但我们必须从某个地方开始学习和进步。
  • 蛋白质理性设计学术研讨会 暨Discovery Studio 4.5软件培训(免费)
    尊敬的老师和同学,您好! 创腾科技有限公司将联合华南理工大学生物科学与工程学院于2015年7月3日在广州举办为期1天的“蛋白质理性设计学术研讨会暨Discovery Studio4.5软件培训”,将为大家提供一个蛋白质理性设计领域面对面讨论与交流的机会与平台。 随着2013年诺贝尔化学奖的揭晓,美国三位科学家Martin Karplus, Michael Levitt与Arieh Warshel因其发展的分子模拟方法对生命科学领域发展的贡献而获奖,这从根本上承认了计算机模拟预测在生物学领域的贡献,分子模拟工具已经成为了生命科学家不可或缺的预测工具。Discovery Studio(简称DS)作为面向生命科学领域的综合性分子模拟平台,在生物制药、生物领域的应用已日趋成熟与完善,也为蛋白质理性设计提供了最先进的分子模拟工具。 研讨会将邀请中国科学院广州生物医药与健康研究院的刘劲松研究员和暨南大学生命科学技术学院的姚冬生教授分享他们在蛋白质理性设计领域的成果、经验与最新进展。同期的培训会,创腾科技技术支持专家将以Discovery Studio4.5软件的基础操作和应用为核心,以蛋白质理性设计为基础,针对蛋白质理性设计中所涉及的技术进行介绍与上机操作,包括:基于蛋白的一级序列预测蛋白的三维结构、蛋白-小分子/蛋白相互作用预测、通过虚拟氨基酸突变设计亲和力更高或稳定性更高的蛋白、预测并引入新的二硫键提高蛋白酶的稳定性、预测蛋白结构表面易聚集的位点并进行突变优化等等。会议基本信息会议时间:2015年7月3日(周五)会议地点:华南理工大学生物科学与工程学院1楼机房具体地址:广州市番禺区外环东路382华南理工大学大学城校区会议主题:蛋白质理性设计日程安排详情请登入创腾科技网站:www.neotrident.com 培训电脑参加7月3日下午培训的学员需自带手提电脑,手提电脑推荐配置如下:DS4.5安装所需的系统环境:Windows 7 (Professional & Enterprise完整版)64位;硬件要求:- Processor: Intel-compatible processor ≥2 GHz with x86_64 architecture- RAM: ≥4 GB of memory- Disk space: ≥20 GB disk space - Graphics card: ati or nvida independent graphics recommended- Mouse: Standard Microsoft 3-button mouse or 2-button wheel mouse关于软件安装、卸载的特别说明此次安装的DS4.5软件仅限于2015年7月3日培训使用! 7月2日下午 14:00-17:00,7月3日上午8:00-13:00,由北京创腾科技有限公司的工程师在华南理工大学生物科学与工程学院1楼机房,负责为下午参加培训的学员安装DS4.5软件,并在培训结束后统一卸载。 对于安装过软件的学员,在培训结束后,需积极配合工程师的卸载工作,并承诺不将软件用作文章发表或者其它任何商业用途,对于不配合软件卸载工作、将软件用于文章发表或者其它任何商业用途的学员,北京创腾科技有限公司将保留追究其法律责任的权利。 对于确认报名参加此次培训的学员,均视作已阅读、知晓并同意以上全部内容。报名方式报名详情请登入创腾科技网站:www.neotrident.com 额有限,报名从速,额满为止。为保证研讨会质量,广州学术研讨会计划招生40名学员,额满为止。
  • 岛津推出LC/MS/MS 颗粒蛋白前体和颗粒体蛋白肽方法包
    岛津从即日起推出《LC/MS/MS 颗粒蛋白前体和颗粒体蛋白肽方法包(英文)》。该方法包(仅适用于LCMS-8080)是通过用老鼠生物样品或肽的胰蛋白酶消化物中所提取出的蛋白质来对颗粒蛋白前体和颗粒体蛋白肽进行分别定量的MRM 分析,方法包提供了包括分析条件及化合物信息的方法文件。 这一方法包包含了血清(例子)的样品前处理方案,所以即使对有过LC/MS/MS分析经验但不熟悉蛋白质分析的研究人员来说,仍可轻松地使用这一方法包和疾病模型或转基因动物模型的血液样本来对血液中的颗粒体蛋白肽和颗粒蛋白前体进行定量。此外,因为样品前处理方案也可以用于除血清外的生物样品,本产品有助于从事于老鼠细胞和组织分析的人员。本产品不仅适用于正在研究诸如肥胖和糖尿病等生活方式疾病的研究人员,也适于首次安装LC/MS/MS 的蛋白质研究人员。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 聚焦第八届中国蛋白质组学会议上的厂商
    相关新闻:第八届中国蛋白质组学大会在重庆开幕  仪器信息网讯 2013年9月8-10日,由中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)主办,军事医学科学院放射与辐射医学研究所、重庆医科大学、蛋白质组学国家重点实验室、北京蛋白质组研究中心承办的&ldquo 第八届中国蛋白质组学大会&rdquo 在重庆市国际会展中心召开,会议吸引了世界各地学者近千人参会。  蛋白质组学研究始于上世纪90年代,1998年中国开始开展蛋白质组学研究。2008年中国将蛋白质科学研究设施国家重大科技基础设施项目列入国家高技术产业发展项目计划,项目分北京设施和上海设施,总投资18亿元。截至目前,国家蛋白质科学中心(上海)今年即将投入使用,而国家蛋白质科学中心(北京)预计将于2015年8月全面投入使用。此外,中国人类蛋白质组计划也于今年启动。中国蛋白质组学研究如火如荼,而这其中也少不了蛋白质组学研究相关仪器、设备及试剂耗材供应商的&ldquo 声影&rdquo 。  来自相关机构的调查显示,2017年全球蛋白质组学市场将达到172亿美元,年复合增长率14.2%,其中涵盖从样品处理到最终检测等试剂、仪器等。据Bio-Rad生命科学部全球产品经理Sricharan Bandhakavi介绍,随着技术的进步,我们已经可以鉴定出很多的蛋白,但这些蛋白在机体中的作用和功能是如今科学家们关注的重点,在已鉴定的蛋白和其功能之间建立联系也是各厂商研发的重点。  本次会议共有38家企业参展,展示蛋白质组学研究相关的产品,以下为部分参展厂商:赛默飞AB SCIEXGE医疗GE 医疗展示的蛋白质纯化设备布鲁克沃特世Bio-RadBio-Rad展示的最新蛋白质纯化仪安捷伦默克化工赛多利斯Sigma-Aldrich马尔文好创生物好创生物ESI离子源产品尼康岛津北京谱之源New Object(兴悟杰)毅新兴业华利世伯楷安生物拜普诺(撰稿:杨娟)
  • 张丽华团队新成果 发展相变蛋白质的共价键标记和成像方法
    近日,中科院大连化物所蛋白质折叠化学生物学创新特区研究组(02T5组)刘宇研究员团队和生物分子高效分离与表征研究组(1810组)张丽华研究员团队合作,通过发展新型仿生荧光共价键探针和质谱表征方法,发现了蛋白质聚集态界面具有化学反应活性,可用于相变蛋白质的标记与成像。  蛋白质在人体内的相变过程会诱发多种退行性疾病,例如帕金森症、阿尔兹海默症、渐冻人症和老年性心衰等。针对上述疾病,刘宇团队致力于发展新型化学生物学工具用于观察蛋白质的相变过程和疾病的早期诊断,张丽华团队一直关注胞内相变蛋白质的质谱组学解析。然而,致病蛋白质通常由于发生相变处于无序结构状态,其特异性识别和检测具有挑战性。因此,发展新的化学方法识别和捕捉相变致病蛋白质对疾病的早期诊断和治疗有着重要的意义。  在前期工作(Anal. Chem.,2021)的基础上,该合作团队保持了红色荧光蛋白骨架分子对相变蛋白质分子的选择性结合能力和荧光激活效应,通过模仿Kaede光转化荧光蛋白的作用机理,逆向设计了具有迈克尔加成反应活性的新型荧光分子探针。该类新型探针可与早期错误折叠的蛋白结合发出红色荧光,在进一步相变聚集过程中发生迈克尔加成反应,荧光信号进而由红光转为绿光。团队通过定点突变技术和高分辨质谱分析,揭示了相变蛋白和探针分子的共价反应机制,蛋白质错误折叠过程中半胱氨酸的微环境变化、蛋白聚集紧实度的不同、探针反应活性强弱等因素均会影响该反应的进程。基于该化学特性,团队拓展了基于孔雀绿的新型荧光变色分子,并论证了该共价键反应的普适性和可调控性。同时,团队使用该探针,展示了细胞内蛋白质组在药物刺激下从早期错误折叠到晚期聚集的相变过程。该工作首次揭示了蛋白质相变界面的化学反应活性,对未来设计质谱探针和药物分子提供了新的策略和思路。  上述成果于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作得到国家自然科学基金、辽宁省兴辽人才计划、大连市科创基金、博士后面上基金、国家重点研发计划等项目的资助。
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录  过去需几年时间完成的工作现在仅用几天即可完成  据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。  结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。  为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。  为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。  高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。  但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。  该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • STED显纳镜显示线粒体蛋白质的合成情况
    人类线粒体DNA编码了13种重要的多肽,这些多肽是连接氧化磷酸化(OXPHOS)复合物的多亚基复合物的组成部分,这些复合物主要存在于内陷的嵴膜上。内界膜(IBM)含有丰富的动态接触位点,用于从细胞膜导入蛋白质的移位酶。大多数OXPHOS亚单位采用核编码,因此必须通过外膜在与内界膜的接触位点处从胞浆中导入。由于大多数OXPHOS成分导入后需与mtDNA编码的成分整合组装,那么线粒体内翻译发生于何处?由于线粒体编码的成分也是这些复合物的组成部分,所以蛋白质合成发生于何处?题图:以STED显纳镜分辨率拍摄的人类线粒体网络截面。(更多细节见图1)。本论文采用了基于点击化学的方法,并结合受激发射损耗显纳镜(STED)来解决以上问题。报告显示,在培养的人类细胞中,大部分线粒体蛋白质的合成是在嵴膜上检测到的,且在空间上与RNA加工和成熟的位点相分离。图1:图片显示了人类线粒体网络截面,以共聚焦显微镜和STED显纳镜的分辨率拍摄,用775nmSTED激光器损耗AF594,用660nmSTED激光器损耗AF532。这些图片是显示新合成蛋白质的亚线粒体位置的关键图像。绿色的荧光信号代表新合成的线粒体蛋白,品红色是线粒体内界膜中发现的线粒体蛋白(TIM23)的免疫荧光抗体。阅读完整文章:Zorkau M., Albus C., Berlinguer-Palmini R., Chrzanowska-Lightowlers Z. & Lightowlers R.Zorkau M., Albus C., Berlinguer-Palmini R., Chrzanowska-Lightowlers Z. & Lightowlers R.High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cellsPNAS February 9, 2021 118 (6) e2008778118 https://doi.org/10.1073/pnas.2008778118了解更多:徕卡显微
  • UC伯克利分校研究人员证明将 RiPP 生物合成酶重定向到蛋白质和骨架修饰的底物
    大家好,本周分享一篇发表在ACS central science上的文章,题目是Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates,通讯作者是来自UC伯克利分校的Matthew B. Francis教授和Alanna Schepartz教授。核糖体合成和翻译后修饰多肽 (RiPP,Ribosomally synthesized and post-translationally modified peptides) 是肽衍生的天然产物,具有强效的抗菌、抗病毒和抗癌特性。RIPP 生物合成始于核糖体合成的多肽,其 N 端先导序列 (~20–110 aa) 会招募一种或多种能够对相邻 C 端底物序列进行多种翻译后修饰 (PTM) 的内源酶。环化脱水酶和脱氢酶是其中研究得非常充分的 RiPP 酶。这些酶共同催化分子内环化和随后的芳构化反应,在多肽链中安装恶唑啉/恶唑和噻唑啉/噻唑杂环。Naismith 及其同事设计了一个环化脱水酶家族,先导肽与脱水酶催化剂的 N 端而不是与底物多肽的N端相融合。这些酶,尤其是LynD Fusion (LynD-F)和 MicD Fusion (MicD-F),以不依赖先导肽的方式发挥作用,以促进含有 C 末端上Ala-Tyr-Asp (AYD) 识别序列的多肽环化脱水。此外, Schmidt 和同事证明了两种脱氢酶 ArtGox 和 ThcOx 也接受无先导肽底物。总而言之,与基于嵌合先导肽或先导肽交换的方法不同,这些酶代表了一种完全无先导的途径得到安装噻唑和恶唑键的多肽。在本文中,作者报告了使用 MicD-F和 ArtGox共同作用来处理含有多种翻译相容的氨基苯甲酸衍生物和 β-氨基酸的多肽底物,得到含恶唑啉/恶唑和噻唑啉/噻唑杂环的骨架。作者在测试中发现,MicD-F 和 ArtGox 在 +1 位点(环化反应位点前一个残基)和-1位点(环化反应位点后一个残基)均接受具有不同结构的底物,且-1 位点对非α-氨基酸单体的耐受性低于 +1 位点。作者进一步实验证明,RiPP 生物合成酶可以重定向到完整的折叠蛋白。他们发现MicD-F 和 ArtGox 可以在蛋白质loop和linker安装杂环骨架,而不会破坏天然的三级折叠。即使插入的 CAYD 序列在mCherry(一种大的 β-桶蛋白)的C 末端,或是嵌入在二聚体 α-螺旋束蛋白 Rop中的loop区,仍然可以得到折叠完好的球蛋白产物,其中含有构象受限的、完全非天然的杂环骨架。作者认为他们的研究代表了第一个在环化位点旁边含有多种非α-氨基酸单体的多肽中进行无前导azol(in)e生物合成的例子,以及第一个含有翻译后安装的杂环的折叠蛋白。作者还通过计算揭示了这些杂环限制构象空间的程度;它们还在合成中消除了肽键——这两种特征都可以提高稳定性或增加接头序列的功能,这在新兴的生物治疗药物中很常见。作者认为这项工作提出了一种扩展蛋白质组的化学多样性的一般策略。本文作者:Cyao责任编辑:LDY原文链接:https://pubs.acs.org/doi/full/10.1021/acscentsci.1c01577文章引用:DOI:10.1021/acscentsci.1c01577
  • 牛奶里的蛋白质含量,你了解吗?
    牛奶里的蛋白质含量,你了解吗?近日,我们中国家喻户晓的品牌蒙牛伊利出大事了。一篇名为《深扒蒙牛伊利6大罪状,媒体不敢说,那就我来说》的文章刷屏全网。国产的牛奶的品质越来越受到大家的质疑,不仅质疑其参数的真伪,更质疑其国内与出口欧美的牛奶质量标准的不一致性。同时也造就了越来越多的人追求进口品牌的牛奶,特别是产地为欧洲的奶制品。此举为何人之过?牛奶中的蛋白质是供给机体的重要营养成分,其含量的准确测定非常重要。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed 专为精确测定氮/蛋白质含量而设计-- 60、80或120位自动进样转盘或90位机械臂坩埚进样-- 专利EAS REGAINER 和 REDUCTOR 还原技术,确保使用寿命更长-- 可采用CO2 作为载气,使用成本更低-- 燃烧炉与热导检测池10年质
  • 北京蛋白质组研究中心第二期蛋白质组信息学培训班(第一轮通知)
    时间:2014年5月20-23日  地点:北京蛋白质组研究中心(北京市昌平区科学园路33号,中关村生命科学园内)  主办单位:  北京蛋白质组研究中心(BPRC)  蛋白质组学国家重点实验室(SKLP)  中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  北京蛋白质组研究中心是蛋白质组学国家重点实验室,国际联合研究中心,国际人类肝脏蛋白质组计划(HLPP)执行总部。建立了世界上最大的人类蛋白质组数据库及数据管理平台,和国际领先的蛋白质相互作用网络构建和分析平台。对人类肝脏蛋白质组进行了系统的生物信息研究,包括蛋白质鉴定、修饰、定位、相互作用网络、代谢通路及肿瘤标志物发现等研究。讲师团队长期致力于蛋白质组数据分析及相关知识发现,为国际人类肝脏蛋白质组计划提供了全方位的生物信息支持。2012年,集体获中国电子学会电子信息科学技术奖一等奖:蛋白质组学计算方法的研究及其支撑平台的构建和应用 2007年,集体获北京市科学技术一等奖:蛋白质组支撑技术及其在人类重要疾病与生理过程研究中的应用。  前言  本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。  培训对象  从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  迫切希望提升生物信息分析能力的学者  培训内容  质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。  课程安排时间培训内容2014年5月20日9:00-10:00蛋白质组信息学概论10:00-12:00质谱数据处理-搜库与质控13:00-15:00蛋白质组定量分析(以无标定量为主)15:00-16:00蛋白质翻译后修饰分析16:00-17:00蛋白质鉴定上机实习2014年5月21日9:00-11:00质谱数据深度挖掘11:00-12:00蛋白质定量上机实习13:00-15:00蛋白质组数据分析/生物标志物发现15:00-17:00蛋白质组数据分析上机实习2014年5月22日9:00-10:30 蛋白质组数据库/数据提交10:30-12:00数据库及数据提交实习13:00-15:00蛋白质组软件包的使用(TPP等)15:00-17:00TPP安装及使用实习2014年5月23日9: 00-10:30蛋白质相互作用网络和蛋白质组学知识挖掘的基础知识10:30-12:00蛋白质相互作用的生物信息学资源介绍13:00-14:00Cytoscape软件使用介绍14:00-17:00蛋白质相互作用数据分析上机  培训费  4月18日前注册:每人4200元,学生3900元。  4月19日至5月20日之间注册:每人4500元,学生4200元。  其他优惠:同一单位2人以上参加,每人优惠200元。  提前注册截止日期:2014年4月18日,以银行汇款凭证为准。  网上注册地址: http://61.50.138.116/training/cn/  培训费用包含:培训资料、培训期间的午、晚餐。  可协助安排住宿,住宿费用自理。需住宿的学员请在网上注册时填写住宿信息。  报到时间和地点  报到:5月19日全天,北京扬子江药业海诺康会馆(北京市昌平区生命园路16号,中关村生命科学园内) 20日8:30-10:00,北京蛋白质组研究中心。  住宿:北京扬子江药业海诺康会馆,标准间298元/天(含早餐)。  学生报到时须持学生证。  学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。  注意事项  培训结束后颁发北京蛋白质组研究中心和蛋白质组学国家重点实验室培训证书,需要中国生物化学与分子生物学会继续教育证书的学员报到时需要另交1张2寸免冠照片及20元工本费。  中心通过了ISO/IEC 17025实验室认可,为社会各界提供科研技术服务。参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站: http://www.bprc.ac.cn/guidance/list.php?catid=27  汇款信息  帐 号:0200004909200041055  账户名称:北京蛋白质组研究中心  开户银行:工商银行北京市永定路支行  注:汇款时请务必注明&ldquo 信息学培训班&rdquo 和学员姓名。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。  如需发票请注明发票抬头,培训结束后统一开具发票(培训费、注册费、会议费、技术服务费等),有其他特殊要求请声明。  联系方式  联系电话: 注册:周建平(010)80705277  咨询:史冬梅(010)80705888  传 真:(010)80705155  电子邮件:bprctrain@163.com  通信地址:北京市昌平区科学园路33号(102206)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制