当前位置: 仪器信息网 > 行业主题 > >

单细胞分离提取系统

仪器信息网单细胞分离提取系统专题为您提供2024年最新单细胞分离提取系统价格报价、厂家品牌的相关信息, 包括单细胞分离提取系统参数、型号等,不管是国产,还是进口品牌的单细胞分离提取系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单细胞分离提取系统相关的耗材配件、试剂标物,还有单细胞分离提取系统相关的最新资讯、资料,以及单细胞分离提取系统相关的解决方案。

单细胞分离提取系统相关的资讯

  • 美谷分子发布DispenCell 单细胞分离系统新品
    DispenCell专为快速、简单、温和地分离单细胞而开发,可应用于细胞株开发、CRISPR编辑的细胞筛选、稀有细胞分离、单克隆抗体筛选和单细胞基因组学等多种单细胞分离场景。基于阻抗技术的分离方式可以更加温和的处理细胞样品,小于0.1psi的分离压力让自动分离也能拥有高细胞活率。DispenSoft软件可提供即时可追溯的克隆性证明图谱,搭配CloneSelect Imager FL高通量单克隆验证系统,在第0天即可准确检测到单细胞并验证单克隆性。DispenCell主机紧凑小巧,可放置在生物安全柜等无菌环境中,软件操作界面简单直观,易于学习和使用。1. 温和高效DispenCell可实现对细胞样品更加轻柔的处理,小于0.1psi的分离压力与手动移液相当,但效率更高(~5min/96孔板)。分离过程无激光照射,保证细胞的完整性,因此,细胞活性和生长得以保持。2. 克隆性证明DispenSoft单细胞分析软件可提供即时和可追溯的克隆性证明图谱,允许用户在细胞分配后立即检查克隆性。3. 基于阻抗的分离吸头DispenCell 配有一个检测细胞通过的感应吸头,随着每个细胞的通过将触发一个独特的信号并被软件记录。无菌一次性分离吸头可确保清洁的单细胞分离,且无交叉污染,经认证不含动物源产品和细胞毒性材料。4. 小巧、简单、易用DispenCell体积小巧,可放置在生物安全柜等无菌环境中工作。仪器和软件操作简单,易于设置,无需清洁和校准,样品制备简单,易于学习和快速上手使用。简化工作流程的组合解决方案单细胞分离和单克隆验证在很多应用中都至关重要!例如细胞株开发过程,不仅需要分离和处理大量的单细胞,还需要验证单克隆性并形成证据来用于最终申报。CloneSelect Imager FL 和 DispenCell 的组合,能够提供高效的过程以及可信的证据,在第 0 天即可自信地验证单克隆性。CloneSelect Imager FL 单克隆验证系统全新的 CloneSelect Imager FL,在标准白光成像基础上,增加了高对比度多通道荧光技术,可在第 0 天准确的检测到单细胞并验证单克隆性。通过比较汇合度分析来识别和验证基因编辑。• 数字化记录单细胞证据,以便提交给监管机构• 在多个时间点对细胞进行非侵入式成像,以监测克隆形成• 使用高分辨率白光成像进行筛选• 通过动态分析提供实时结果• 可进行自动化整合
  • 新品发布!亲眼见证单克隆性——CloneSelect高通量单细胞分离系统
    众所周知,细胞株开发在单抗领域是一个至关重要的环节。现有的细胞株开发流程存在很多弊端,如单细胞分离效率低下、单细胞存活率低以及缺乏单克隆性证据等。近日,Molecular Devices推出了新品CloneSelect高通量单细胞分离系统c.sight及f.sight两款仪器,它们能提高单细胞分离的效率及活率,且增加单克隆性的可信度。系统采用一次性分离槽设计,省却清洗验证程序,降低交叉污染的风险。此外,系统具备除静电装置,保证高精度的接种,尤其是针对PCR孔板。CloneSelect高通量单细胞分离系统高效接种单个活细胞至微孔板后,用CloneSelect Imager细胞生长分析系统对孔板进行成像记录单个细胞及后续的细胞分离过程。结合单细胞接种前后的图像,以及单细胞在微孔内增殖最终形成细胞团的序列图像,可以为细胞株的单克隆性提供更高的可信度保证。CloneSelect高通量单细胞分离系统的高效率和高活率,可以在不增加工作量的前提下提升细胞筛选的通量,从而有助于发现更多更优质的细胞株或者稀有细胞。主要特点: • 单细胞分离、成像并接种至96或384孔板 • 克隆成活率提高至最多8倍 • 一次性无菌微流控分离槽确保细胞健康无污染 • 明场或荧光分离细胞 工作原理: 使用专有的喷墨式单向分离槽及微流控技术和智能图像分析技术将单个活细胞高效地接种至微孔板或PCR板,轻柔而高效地分离单个细胞。使用高分辨率的明场或荧光成像对细胞进行成像和分析,记录细胞分离过程的连续5张图像,用于增加单克隆性的可信度。应用领域:单细胞分离/分选,用于细胞株开发 单个B细胞技术,用于抗体发现 筛选稀有活细胞,如干细胞、基因编辑的细胞等 单细胞测序,尤其是转录组测序。 下载产品资料请联系美谷分子仪器
  • 诱导多能干细胞克隆效率低?这台温和、自动化的单细胞分选系统帮您搞定,分离效率高达100%!
    人类诱导多能干细胞(hiPSCs)是一类可用于疾病建模、药物开发和组织工程领域的多能诱导干细胞。与CRISPR-Cas9等功能强大的基因编辑技术结合后,可根据不同患者的特性进行疾病相关遗传变异的研究和识别。 然而,培养hiPSCs的步骤较为繁琐,细胞对异常的处理和操作非常敏感,任何操作的问题都有可能导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。基因编辑建立单细胞衍生的hiPSC克隆过程中常用的技术往往过于复杂或粗暴,导致单细胞克隆效率低下。此外,它们在确保衍生培养物单克隆性方面存在局限性。为此,英国iotaSciences公司推出了可实现100%单细胞分离的isoPick单细胞可视化分选系统,有效解决了培养hiPSCs单克隆过程中的困难。 如右上图所示,单细胞可视化分选系统isoPick采用纳升级的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选;确保分选所得的单细胞样品中只有一个单细胞,结果可验证、可追踪;分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。单细胞可视化分选系统isoPick可全自动进行单细胞的分选、拾取并转移1.5 µ l至200 µ l的液体至PCR管或96孔板中。 使用isoPick从GRIDs内分选hiPSC单细胞置于Laminin-521,Vitronectin-N, Synthemax和iMatrix (Laminin-511)4种不同基质且含有培养基的96孔板中。以第7-10天内的时间计算得出的单细胞克隆效率可以发现,无论使用的包被基质或hiPSC细胞系,平均克隆效率均70%(上图),明显高于其他通常使用的方法(包括FACS),表明isoPick对敏感单细胞的温和处理,能够确保细胞的高存活率和更好的克隆生长效果。 isoPick使用户能够以快速、高效、自动化的方式从多样、异质的细胞群体中分离单个细胞。GRID腔室非常适合用于观察和记录单个细胞的分离过程。 用户可将单个细胞分离并直接置入96孔板用于细胞克隆。相比传统方法,这种方法用简单的线性工作流程,显著提高了细胞分离与克隆效率,操作流程高度自动化,可以将样品无缝衔接单细胞组学的后续操作。单细胞可视化分选系统的优势:全自动化流程操作非常简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧文献举例: 单细胞可视化分选系统相关文献发表于Cell、Advanced Science、Small Methods、Nature Communications 等期刊,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师参观试用!
  • “力”所能及——多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的创新应用
    瑞士Cytosurge公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、纳米位移台系统合为一体的单细胞操作系统,能够在单细胞水平上为研究者提供很大的便利,可应用于单细胞力谱、单细胞质谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。本文将从单细胞实验方法和多功能单细胞显微操作系统FluidFM BOT结构出发,详细介绍多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的应用。 一. 单细胞实验方法简介 在细胞生物学实验中,由于细胞的异质性,每个细胞互相之间都存在一定差异,因此在单细胞层面研究细胞性质可以获得更加准确的结果。近年来,多种单细胞研究技术不断涌现,应用于医学诊断、组织工程和药物筛选等领域。 对于细胞力学测定,原子力显微镜(AFM)能够对单个细胞或生物分子进行高分辨成像和力谱测定,但是细胞与探针的结合过程不可逆,无法实现连续、快速的检测。 对于细胞分离/分选技术,可选的有玻璃细管、光镊、流式细胞分选和磁珠分选等方法,然而有的从表面分离细胞时容易损伤细胞,有的无法从同类细胞群中分离出单个细胞。 对于细胞注射与提取,可选用纳米喷泉探针、纳米针和碳纳米管等,然而这些方法无法实现飞升以下量的含量注射,且注射时间较长。 多功能单细胞显微操作系统FluidFM BOT,针对细胞力学测量、分离/分选、注射与提取等应用,在结合以上技术的优势的同时克服了这些技术固有的问题,是一套多功能的单细胞研究系统,在单细胞研究领域发挥着巨大作用。 二. 多功能单细胞显微操作系统FluidFM BOT结构 简单来说,多功能单细胞显微操作系统FluidFM BOT是AFM与微流控的结合,主要由AFM扫描头、压力控制器与微流控探针组成(图1)。AFM扫描头装载于倒置显微镜上,整体结构大致与普通AFM相同,主要区别是探针中间有微流通道,后端连接液体池,前端探针有一小孔,用于液体的流入流出。微流通道内径小于细胞,防止细胞进入堵塞;探针则有多种不同孔径和不同的弹性,可根据不同应用以及不同样本更换所需探针。图1 FluidFM BOT系统图示。(a)微流控系统与AFM的结合应用;(b)(c)(d)探针的特殊设计。 三. 单细胞力学应用 传统AFM用于单细胞力学测量时,需要对探针进行一定处理以粘附细胞,后再与需要和细胞相互作用的表面、分子或其他细胞相结合,有时会产生多个细胞粘附,且反复测力会导致细胞被破坏,使得每次测量都必须准备新的探针,实验效率较低。 多功能单细胞显微操作系统FluidFM BOT通过将AFM与微流控相结合,使单细胞力学实验更高效,更简洁。对于已经结合在表面的固定细胞,可根据细胞尺寸安装适用的探针,从上方接触需要测量的细胞,通过微流控系统施加负压吸起细胞,获得力-距离曲线;也可以吸取悬浮细胞,与表面或其他固定细胞接触后,测量力-距离关系。这种方法能够提供远比蛋白结合牢固的多的吸附力,能够将细胞牢固的固定在探针上面,因此能够用于直接从基质上分离;另一方面,由于没有生物处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。 单个细胞测量完成后可移动探针至细胞板其他孔内,施加正压将其释放,再回到实验孔吸取下一个细胞,意味着单个探针可以进行多次测量。 细胞粘附是许多生理过程的重要步骤,细胞粘附力的测定可以为组织形态发生、胚胎发育、肿瘤、免疫反应和微生物膜等研究提供重要信息。多功能单细胞显微操作系统FluidFM BOT支持真核和原核细胞与细胞板/培养皿表面、抗菌/粘性/抗体包被的表面或其他细胞的粘附力测量(图2)。图2 不同细胞在不同环境下的粘附力-距离曲线。(a)探针接近、暂停、吸取并拉伸细胞的过程中探针偏转随时间的变化;(b)Hela细胞与纤连蛋白包被的表面的粘附力-距离曲线;(c)不同接触时间下大肠杆菌与PLL表面的粘附力-距离曲线;(d)大肠杆菌与PLL表面的分离距离与接触时间的关系;(e)酿脓链球菌与玻璃表面的粘附力-距离曲线,表示多个球菌的连续分离;(f)单个细胞与单细胞层的粘附力-距离曲线。 Sankaran等人[1]使用多功能单细胞显微操作系统FluidFM BOT来研究在共价和非共价的表面整合素受体对细胞粘附力的影响。通过测定发现两者均可有效增加细胞的粘附能力,并且效果近似(图3)。图3使用FluidFM BOT测定共价键与非共价键的整合素受体之间RGD的区别。(a)实验示意图;(b)粘附力测定前后示意图;(c)粘附力-距离曲线;(d)大粘附力。 多功能单细胞显微操作系统FluidFM BOT还可用于测量细胞的应力以研究细胞骨架的性质。Sancho等人[2]将10μm的小胶球吸附于探针上,之后使用探针去压细胞直到探针压力达到2 nN,通过压痕曲线来分析细胞骨架变化。通过对比发现过量表达MSX1的细胞硬度显著高于普通细胞(图4)。图4 使用FluidFM BOT测定HUAEC中MSX1过表达对细胞骨架的影响。(d)实验示意图;(e)吸附10μm珠子;(f)下压时空白细胞的力学谱线;(g)下压时MSX1过表达细胞的力学谱线,凹陷更深、斜率更高,表示其刚度相对更高;(h)胶体压痕法的测量结果。 四. 其他应用 多功能单细胞显微操作系统FluidFM BOT可用于细胞内注射与提取(图3),通过力学测量,可以控制探针刺入细胞质或细胞核内进行飞升别含量的液体注射或提取。此外,FluidFM BOT系统还可用于细胞分离以及细胞延展性研究。图5 FluidFM BOT系统的细胞内注射过程。(a)探针对准细胞;(b)探针刺破细胞膜,注入含荧光染料的目标液体;(c)探针与细胞分离,注射完成。 多功能单细胞显微操作系统FluidFM BOT克服了现有单细胞技术的短板,将多种单细胞应用相结合,高通量、高效率地获取单细胞层面的详细数据,研究多种细胞性质,尤其适合应用于医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等领域。 多功能单细胞显微操作系统FluidFM BOT在Quantum Design中国子公司与北大生科院共建实验室成功安装,为了更好的服务客户,Quantum Design中国子公司提供样品测试、样机体验机会,还等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作! 参考文献:[1]. Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy, ACS Nano 2017, 11, 4, 3867–3874.[2]. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7, 46152 (2017).
  • 单细胞分离的特点应用以及小技巧
    单细胞分离采用类似喷墨打印机以及一次性分配分离槽,温和高效地接种单细胞,使用明场高分辨率成像或可选荧光分选细胞,每个单细胞分离捕获 5张图像,单克隆性,提高工作效率,保持并增强细胞活率,且防止交叉污染。  采集单细胞分离的证据,在接种细胞时记录5张连续图像,以96或384孔板的形式提供直接的单克隆性图像证据,提高克隆形成率,与传统方法相比,在克隆形成率上可实现高达8倍的提升。  保持细胞健康和无菌,正如克隆生长实验所见,通过温和的分离维持细胞活性,并使用无菌的一次性单向分离槽防止交叉污染,简便、快速、可选择以及无损分离单细胞,简化遗传和克隆培养、分析中分离过程。快速高效接种单个活细胞至微孔板分离系统的主要功能为高效柔和地分离或分选活的单细胞。该系统通过微流控技术柔和地形成细胞液滴,同时利用白光和荧光成像实时分析细胞数量和荧光强度,将符合要求的单细胞液滴准确接种至96孔板。  主要特点  1.分离效率85%,单细胞活率75%;  2.记录分离前后的连续5张图像,用于支持细胞株的单克隆性;  3.采用一次性分离槽,省却系统的清洗验证,减小交叉污染的风险;  4.采用白光成像和荧光成像,可根据细胞直径、圆度以及荧光强度筛选出感兴趣的细胞;  5.内置除静电装置,消除微孔板静电,确保细胞液滴接种至微孔正中间,尤其是PCR板。  单细胞分离系统可代替传统的有限稀释法,高效地将单个活细胞接种至微孔板中。得益于分离系统的高效率和高活率,可以将每块微孔板中可获得的单克隆细胞团提高至多8块,从而在相同的工作量下可筛选更多的细胞克隆,从中发现更多更优质的细胞株。分离过程中记录的连续5张图像,可以与后续的孔板成像的图像证据互相补充,从而提高单克隆性的可信度。  应用范围:连接不同管径大小的毛细玻璃针,可分离捕获各种非贴壁状态的单细胞和微粒等,如细菌、酵母、藻类细胞、植物花粉、原生动物单细胞、悬浮细胞、血液细胞、免疫细胞、卵细胞、各种悬液中单细胞及特殊标记的单细胞等。  单细胞分离的小技巧  1. 缩短制备单细胞悬液的时间,以保留细胞活力  2. 考虑使用细胞筛来过滤出细胞团块或双细胞  3. 注意缓冲液的选择,包括分选和收集溶液  4. 如果您打算在分选后培养细胞,请使用对数生长期的细胞,并确定最佳培养条件  5. 在分选转染后的细胞时,通常在转染后72小时进行,以提高细胞群的生存能力  6. 如果采用荧光抗体来分离稀有细胞,请在染色前离心抗体,以便去除任何可能被误认为是靶细胞的荧光颗粒  7. 对于单细胞基因组学应用,在分选后别忘了离心平板,以确保细胞在孔的底部  8. 选择一种可靠的分析技术来评估分选细胞的数量和质量
  • 深度了解Namocell单细胞分离仪
    公司简介:Namocell是一家总部位于美国硅谷的专注于世界先进的单细胞分选技术的生物仪器公司。该公司自主研发的微流体单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床的上应用。我们的产品已在细胞株的构建,单克隆抗体的筛选,细胞基因编辑,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组等多方面得到广泛的应用。目前Namocell单细胞分离仪已经被世界各大知名研究机构及生物制药公司广泛应用于生命科学研究的各个领域,例如美国国家卫生研究院(NIH),斯坦福大学,麻省理工大学,Genentech,Merck,Biogen等。在国内,目前也已经有多家高校、科研院所和生物公司采用Namocell的产品进行单细胞方面的工作。一、技术原理:美国Namocell公司的单细胞分离仪(NamocellSingleCellDispensers)采用先进的微流体技术以及灵敏的光学检测系统,在精确地鉴别细胞的同时又能对目的细胞进行单细胞的分离分选,最终在96孔板或者384孔板中得到结果。Namocell单细胞分离仪完美结合了三种重要技术,实现快速、高效、准确地分离并获取单细胞:1.流式细胞术:细胞检测方式采用流式细胞术,利用激光激发,荧光和散射光的接收来判断细胞特性,检测精度高;2.微流控技术:采用微流控芯片检测分离细胞,在极低的鞘液压力下()进行分选,如手工般轻柔,保持细胞活性,零损伤;3.液滴分配技术:可以让筛选得到的所需细胞,从微流控芯片中将含有单个细胞的液滴直接滴至96孔板或384孔板。二、产品特性特性1.轻柔---保护细胞活性Namocell单细胞分离仪发挥微流体技术的低鞘液压力优势,在整个分离过程中系统给流体的加压小于2psi,对细胞极其轻柔,保护细胞活性,促进细胞后续生长。以下是Namocell与两款传统的FACS流式细胞仪进行细胞铺板生长情况对比,结果显示,用Namocell单细胞分离仪进行单细胞铺板的结果普遍优于用FACS铺板的结果。特性2.灵活---适用各种样本浓度Namocell采用微流控芯片进行细胞分选,系统死体积小,样本浪费少。因此对于少量珍贵细胞样本,比如细胞数量少于一百个,也可轻松完成单细胞分离。Namocell独创的富集分选模式,可以在细胞密度很高的状态下进行(2x108cells/mL)挑选含量极低的()目标细胞。特性3.快速---96孔板只需1分钟Namocell单细胞分离仪是目前市场上最快速的单细胞分离系统:1.分选速度快:可在1分钟内完成96孔板分选,6分钟内完成384孔板分选。2.整体流程速度快:开机无需任何调试,无需微球进行复杂的dropdelay校准,一键即可在2分钟内自动完成初始化,开始进行细胞分选,更换样本只需1分钟,分选结束后关机只需2分钟。特性4.轻巧---整机小巧,方便移动整机体积小巧,轻便。尺寸是50×36×20cm,重量9kg,相当于小型家用微波炉的体积与重量,不占实验室空间,方便移动。尤其对于无菌要求高的实验,可以将Namocell单细胞分离仪放进超净台中使用。特性5:无菌---一次性芯片,杜绝交叉污染细胞分选的实验绝大多数需要无菌环境,Namocell单细胞分离仪在设计上为无菌要求做到了三重保护:1.体积小巧:方便整机置于超净台中进行细胞分选操作;2.一次性芯片,零污染:从根本上杜绝了样本之间相互污染的可能性,用户可在同一台仪器上分离细胞、细菌、酵母等生物样本,而无需为样本交叉污染而担忧;3.专属管路,无残留,无堵塞:Namocell采用的专属管路设计,确保样本在检测前不会流经共用通道。完全杜绝了FACS常见的系统堵塞以及样本残留在管路中的现象。特性6:轻松---使用简单,无需专人维护Namocell单细胞分离仪只有一个硬件开关,是真正的“一键启动”,并且启动后无需预热,无需调校,开机后可立即使用。使用极其简便,每一步都有软件自动提示,无需特殊培训,也无需流式经验,能够让每个人都成为细胞分选高手。三、应用领域Namocell单细胞分离仪已经广泛应用于生命科学的各个领域。在生物制药领域,用于细胞株构建、抗体药物开发;在肿瘤医学方面,用于稀有循环肿瘤细胞的分离;在植物学领域,用于原生质体的分离;在CRISPR基因编辑领域,用于工程细胞株的开发以及iPSCs的单克隆细胞培养;在单细胞分析方面,用于单细胞测序和单细胞质谱的前处理过程等等。了解更多内容,请关注Namocell官网。
  • 多功能单细胞显微操作系统FluidFM BOT的原理与应用介绍
    瑞士Cytosurge AG公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、细胞培养系统合为一体的单细胞操作系统,采用不同孔径的微型纳米注射器,可实现单细胞注射(Injection)、活细胞内物质提取(Extraction)、单细胞分离(Isolation)、粘附力测定(Adhesion)、纳米打印(Nano-printing)等多种功能,全程机械臂操纵,将污染风险和人为误差降到低,提高工作效率与实验可重复性,具有高度自动化、操作速度快与操作度高等特点,能够在单细胞水平上为研究者提供大的便利,可应用于单细胞质谱、单细胞力谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。北京大学生命科学学院公共仪器中心的多功能单细胞显微操作系统FluidFM BOT,是国内套多功能单细胞显微操作系统,于2020年9月顺利安装于金光楼126室并开始试运行,由公共仪器中心覃思颖老师负责接样测试与维护管理。目前本中心的FluidFM BOT系统已成功应用于单细胞注射与物质提取(小鼠体外培养原代海马神经元、昆虫叶蝉细胞、MDA-MB-231细胞等)、单细胞分离(植物细胞原生质体、U2OS细胞等)与粘附力测定(细菌侵染细胞时细菌的粘附力、血管内皮细胞对不同基底的粘附力等)等多方面科研需求。以下是多功能单细胞显微操作系统FluidFM BOT的多个功能应用与实例介绍。FluidFM BOT结合原子力系统、微流控系统于一体(https://doi.org/10.1021/nl901384x)FluidFM BOT功能应用单细胞注射实例FluidFM BOT可以将多种不同类型的可溶性物质注入细胞核或细胞质中,可量化注射体积(fL别),可实现批量注射(每小时注射超过100个细胞),尤其适用于使用传统方法难转染的细胞,且对细胞几乎没有损伤。CHO细胞的Lucifier Yellow染料注射C57小鼠体外培养原代海马神经元DIV7的Dextran染料注射(北大生科院数据)活细胞内物质提取实例FluidFM BOT系统的活细胞内物质提取功能十分温和,可直接用微型纳米注射器吸取活细胞的细胞质或细胞核中的物质,无需经过化学或生物学手段进行破膜处理,不会产生裂解的细胞碎片,不会对内部细胞器造成任何破坏,可用于电镜成像、酶活检测、核酸表达检测、代谢组学、基因测序等多方面研究。活细胞提取物可结合电镜观察、酶活测定、转录检测等分析手段(http://dx.doi.org/10.1016/j.cell.2016.06.025)HeLa细胞的细胞质物质提取单细胞分离实例FluidFM BOT可进行无损细胞分离,对于悬浮细胞,可将细胞吸取并转移释放即可。对于贴壁细胞,可在探针的样品池中加入消化液如胰酶,对指定位置的细胞进行消化,然后再进行吸取与转移释放。FluidFM BOT实现的单细胞分离存活率很高,结合单细胞注射可实现快速转染细胞并建立单克隆细胞群,对于工程细胞株的建立十分有效。植物原生质体的单细胞分离(北大生科院数据)贴壁细胞CHO的单细胞分离粘附力测定实例FluidFM BOT系统通过负压将细胞吸附在探针针孔处,对细胞的吸附力比蛋白结合更加牢固,能够直接将细胞从基底上分离。这种方法不需要激活细胞的任何信号通路,可以得到接近细胞原生的数据。不同的探针针孔直径(2、4、8um)可适用于不同大小的细胞粘附力测定,我们甚至可使用孔径为300nm的探针进行更小个体的吸附与粘附力测定,目前在本中心的FluidFM BOT系统已成功应用于金黄色葡萄球菌侵染大鼠肠上皮细胞时的细菌粘附力测定(nN别)。不同大小的单细胞粘附力测定(https://doi.org/10.1038/s41598-019-56898-7)纳米打印实例FluidFM BOT系统还是一台纳米打印设备,可以在实验器材上铺设特定的基底膜,如打印亲水或亲脂性物质,从而实现对细胞贴壁的操纵,构建不同的细胞模式,实现对细胞信号转导机制、肿瘤细胞群落迁徙、神经细胞树突或轴突形成的研究。CMD基底打印cRGDfK的细胞贴壁生长Pattern研究(DOI: 10.1021/acs.langmuir.8b03249)多功能单细胞显微操作系统在高性能单元的监控下,通过全自动的工作站实施操作,可确保实验的平稳、顺利的进行。探针有多种孔径规格可选,也可结合FIB技术进行探针定制,结合不同的探针可实现各式各样的应用,以上仅展现部分应用,更多的新功能有待各位老师与同学结合自己的课题需求进行探索与发掘,欢迎大家联系前来测试样品!
  • 连发3篇hiPSC文章,单细胞可视化培养系统颠覆传统,分离效率高达100%!
    人类诱导多能干细胞 (hiPSC) 是通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞进行重新逆分化得到的多能干细胞。传统的hiPSC细胞系构建与培养过程操作复杂、耗材昂贵且费时费力。特别是对于异质编辑细胞池中构建的克隆hiPSC系的培养,受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件要求苛刻,操作步骤繁琐,无法充分保证单克隆性。为应对hiPSC细胞系构建与培养过程中的诸多挑战,iotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化培养系统isoCell,构建了用于 hiPSC细胞系培养的平台。该平台采用全自动化流程,操作条件温和,对单细胞无损伤,具有高通量、自动化、高成活率等优势,可确保分选出的细胞100%为单细胞。柏林医学大学多能干细胞和类器官研究中心的Harald Stachelscheid团队使用isoCell在Stem Cell Research期刊上发表了三篇构建不同功能的hiPSC细胞系的科研应用文章,展示了isoCell在hiPSC细胞系构建和培养方面的优势。图1 单细胞可视化培养系统isoCell实物图 1. 以isoCell为核心的hiPSC细胞培养平台isoCell系统组成的细胞培养平台是基于GRID技术的高度自动化的实验平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小(耗材少),光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。图2 GRID实物图 isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落,在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。图3 isoCell操作流程图 2. 生成具有 SLC16A2:G401R 或 SLC16A2 敲除的 iPSC系X染色体相关的AHDS综合征的发病特点是由编码甲状腺激素转运蛋白MCT8(单羧酸转运蛋白8)的SLC16A2基因突变引起精神运动发育严重受损。该团队使用CRISPR/Cas9技术(靶向 SLC16A2 的外显子3)将AHDS患者错义变体G401R和新型敲除缺失变体 (F400Sfs*17) 引入男性健康供体的hiPSC系(BIHi001-B)。通过isoCell培育成功地获得了SLC16A2基因敲除的hiPSC单克隆细胞系(BIHi001-B-7)和(BIHi001-B-8),并证明了这些新细胞系在模拟 MCT8 缺陷对人类神经发育的影响方面的实用性。文章以Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out为题发表于Stem Cell Research期刊上。图4 WB验证SLC16A2 敲除的hiPSC系无法表达SLC16A2蛋白 3. 生成 THRB-GS(E125G_G126S) 和 THRB-KO 人类 iPSC 系以研究非典型甲状腺激素信号传导THRB是一种依赖甲状腺激素 (TH) 结合来调节基因表达的核受体。相同的受体也可以介导细胞质中信号通路的激活。目前尚无法区分这两种机制中的哪一种是造成 TH 生理效应的原因。该团队结合基因编辑与isoCell的单细胞培养基技术,成功建立了一种在 THRB DNA 结合域中具有两个突变 (E125G_G126S) 的hiPSC 细胞系(BIHi001-B-2/3),该突变消除了THRB的核受体作用,因此可以用该细胞系专门研究THRB的信号通路激活作用。该团队还生成了 THRB 敲除细胞系(BIHi001-B-6)以消除所有 THRB 效应。通过比较WT结果和这两种细胞系,将甲状腺激素的影响归因于潜在的机制。文章以Generation of THRB-GS(E125G_G126S) and THRB-KO human iPSC lines to study noncanonical thyroid hormone signalling为题发表于2024年2月的Stem Cell Research期刊上。图5 基因测序验证BIHi001-B-2/3和BIHi001-B-6细胞系敲除或突变了对应基因 4. 使用 CRISPR-Cas9 生成了两个 BAX/BAK 双敲除人类诱导多能干细胞系 (iPSC)脑缺血损伤很多是由于脑缺血状态下细胞凋亡导致的。Bcl-2基因相关的X 蛋白 (BAX) 和BCL2 拮抗因子(BAK)是 BCL2 家族的两个促凋亡因子,BAX 和BAK是线粒体凋亡的执行基因,与细胞凋亡密切相关。该团队使用 CRISPR-Cas9技术构建了两个 BAX/BAK 双敲除人类诱导多能干细胞BIHi005-A-17和BIHi250-A-1,并通过isoCell培养获得了对应的hiPSC单克隆细胞系。所得细胞系核型正常,具有典型的形态并表达未分化状态的典型标记,并通过基因技术验证了细胞系已敲除BAK基因。在后续的研究中,研究人员就可以将该BAX/BAK 双敲除的hiPSC细胞系广泛应用于脑缺血等细胞凋亡相关领域的发病机制与治疗干预机制研究中。文章以Generation of two human induced pluripotent stem cell lines with BAX and BAK1 double knock-out using CRISPR/Cas9为题发表于2024年4月的Stem Cell Research期刊上。图6 通过基因测序及WB验证BIHi005-A-17和BIHi250-A-1以敲除BAK与BAX基因 5. 结论以isoCell构建的hiPSC细胞培养平台可以对hiPSC细胞进行全自动化且温和地单细胞培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且节省培养耗材。isoCell的培养条件温和,在以上案例中协助科研人员构建了多个基因改造hiPSC单克隆细胞系,成活率高。 单细胞可视化培养系统isoCell的优势:✔ 全自动化流程✔ 操作条件温和,对单细胞无损伤✔ 全培养、分析流程可追踪✔ 单细胞率高达100%✔ 单克隆细胞系构建成活率高✔ 结构紧凑,体积小,节省耗材单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验:为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师通过拨打电话010-85120280、发送邮件info@qd-china.com、点击此处或扫描下方二维码参观试用!扫描上方二维码/点击此处,即刻咨询/体验! 用户名单用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)“使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”相关产品1、单细胞可视化分选培养系统—isoCellhttps://www.instrument.com.cn/netshow/SH100980/C551413.htm
  • 2023第一站:单细胞显微操作系统落户西湖大学!助力单细胞测序等研究高效发展
    多功能单细胞显微操作系统——FluidFM OMNIUM,是瑞士Cytosurge公司研发推出的一款将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级中空探针,轻松实现单个细胞水平、fL级别超高精度、自动化的细胞操作。近日,Quantum Design中国公司在西湖大学完成了单细胞显微操作系统FluidFM的安装工作,并对用户进行了相关知识和设备操作的全面培训。该设备的顺利验收,将助力西湖大学在基因编辑、细胞系构建、活细胞单细胞测序等研究方向取得更进一步的发展。西湖大学单细胞显微操作系统FluidFM理论培训现场西湖大学单细胞显微操作系统FluidFM上机操作培训现场西湖大学单细胞显微操作系统FluidFM培训现场:实验细节的热烈讨论 西湖大学单细胞显微操作系统FluidFM培训现场:西湖大学于珍珍老师独立上机操作演示 FluidFM OMNIUM单细胞显微操作系统由瑞士cytosurge公司自主研发推出的,该技术打开了传统细胞实验手段无法触及领域的大门,突破了单细胞研究、药物开发、细胞系开发中的障碍,主要功能包括单细胞提取、单细胞分离、单细胞注射、单细胞力谱等。深度应用于CRISPR基因组编辑、单克隆细胞系开发、病毒学、神经科学和生物力学等领域。FluidFM OMNIUM单细胞显微操作系统落户中国后,已经助力中国的科研工作者发表了多篇优异的文章:&bull W. Chen, O. Guillaume-Gentil, P. Y. Rainer, C. G. Gä belein, W. Saelens, V. Gardeaux, A. Klaeger, R. Dainese, M. Zachara, T. Zambelli, J. A. Vorholt & B. Deplancke. Live-seq enables temporal transcriptomic recording of single cells. (2022) Nature. &bull Y. Cui, X. Lyu, L. Ding, L. Ke, D. Yang, M. Pirouz, Y. Qi, J. Ong, G. Gao, P. Du & R.I. Gregory. Global miRNA dosage control of embryonic germ layer specification. (2021) Nature.&bull Y. Guo, F. Mei, Y. Huang, S. Ma, Y. Wei, X. Zhang, M. Xu, Y. He, B.C. Heng, L. Chen & X. Deng. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. (2021) Bioactive Materials. 瑞士Cytosurge单细胞显微操作系统FluidFM OMNIUM外观图 Quantum Design中国与瑞士Cytosurge公司已达成大中华区的合作协议。Quantum Design中国专业、成熟的售后团队,具备超卓的Cytosurge系列FluidFM OMNIUM产品售后服务能力。“不仅提供先进的产品,还提供先进的售后服务”这将是Quantum Design中国区别于其他科研仪器供应商的重要特征,也正成为越来越多科学工作者选择Quantum Design中国的重要原因。 FluidFM OMNIUM产品已在国内各大高校和科研单位落户,在相关生命科学领域尤其是单细胞水平研究方面发挥着极其重要的作用。国内FluidFM用户已遍布北京大学、西湖大学、上海交通大学医学院附属儿童医院、中国海洋大学、山东中医药大学、五邑大学(粤港澳大湾区实验室)等。
  • 单细胞可视化分选技术全新来袭,分离效率高达100%!
    近年来,随着单细胞组学、单细胞克隆研究的持续走热以及循环肿瘤细胞研究的不断深入,如何高效、准确地进行单细胞分选成为研究工作中的桎梏。传统单细胞分离手段无法保证所得的样品内只有一个单细胞,导致下游的实验出现误差。英国iotaSciences公司经长期的技术积累研发推出的新型单细胞可视化分选系统-isoPick,可确保分选所得的样品中只有一个单细胞,分离效率高达100%,且结果可验证、可追踪,有效化解了单细胞分选的难题。 近日,Quantum Design中国与IotaSciences公司正式成为战略合作伙伴,将单细胞可视化分选系统-isoPick引进中国,旨在为中国研究人员提供一个可靠且功能强大的单细胞分选平台和全新的解决方案!单细胞可视化分选系统-isoPick 单细胞可视化分选系统-isoPick基于创新的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选。分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。isoPick也可将单细胞样品按照特定的体积直接转移到96孔板或PCR管中,无缝衔接到单细胞下游应用,确保后续单细胞组学信息完整性。单细胞可视化分选系统的优势:全自动化流程操作简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧部分发表文献:单细胞可视化分选系统已发表于Cell、Advanced Science、Small Methods、Nature Communications等期刊,如下为具有代表性的文献:Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.用户名单:样机试用:为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师预约参观试用!
  • 国内首套FluidFM BOT多功能单细胞显微操作系统顺利落户北京大学
    2020年9月,国内套FluidFM BOT多功能单细胞显微操作系统在北京大学生命科学学院顺利安装并交付使用。北京大学多功能单细胞显微操作系统培训现场在单细胞组学研究如火如荼的今天,对单个细胞进行简单、准确的操控分析,包括单细胞基因编辑、单细胞质谱、单细胞力谱、细胞系构建等是该领域亟待解决的难题。FluidFM BOT是瑞士科技公司Cytosurge开发的单细胞显微操作平台,它有的微型纳米注射器以及液体微流控技术使得FluidFM BOT可以轻松实现对单细胞内容物的自动化无损提取,整机操作方便,提取的样本品质高。 有的微型纳米注射器同时FluidFM BOT多功能单细胞显微操作系统还可以实现对单个细胞进行注射、分离,单细胞粘附力测定、3D打印等诸多功能,真正实现了多功能单细胞显微操作。多功能详情:单细胞注射无损注入的将不同类型的物质准确注入到细胞质或者细胞核。量化的fL别注射。注射后细胞存活率95%。每小时可注射100个细胞。 单细胞提取在不改变细胞生存环境的情况下实现单个细胞的活细胞提取。可单提取细胞质或细胞核,或者同时提取提取细胞质和细胞核。提取后细胞仍可存活。 细胞分离无论悬浮或者贴壁细胞均可分离或者分选。整个过程对细胞无损伤。细胞粘附力测定直接测定单细胞粘附力负压抓取微球进行细胞应力实验生物膜基底纳米打印打印纳米精度的各种生物分子所构成的复杂图案纳米精度的高密度点打印能够快速建立使用诸如蛋白、DNA等物质
  • 共探单细胞技术在微生物领域发展,长光辰英第二届微生物功能单细胞分离研讨会在杭州顺利召开
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec296395-275f-46fc-bea1-5b15c8fc0771.jpg" title="image001.jpg" alt="image001.jpg"//pp style="text-align: justify text-indent: 2em "strong仪器信息网讯 /strong2020年12月22日,由长春长光辰英生物科学仪器有限公司分公司长光辰英(杭州)科学仪器有限公司主办的“2020年第二届微生物功能单细胞分离研讨会”在杭州顺利召开。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1ea571b9-7b49-4024-8683-59d48132155a.jpg" title="合影 单细胞02.jpg" alt="合影 单细胞02.jpg"//pp style="text-align: justify text-indent: 2em "本次会议以“微生物拉曼分选技术与应用”为主题,以科学性、专业性、前瞻性为特色,汇聚了来自北京、广州、上海、江苏、南京等地的微生物领域知名专家学者与青年学生六十余人。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3eca1e8a-a8f1-4b15-96ff-058dcecea113.jpg" title="image003.jpg" alt="image003.jpg"//pp style="text-align: justify text-indent: 2em "会议深入探讨了单细胞技术在微生物领域的最新研究成果及应用需求与前景,旨在进一步推动单细胞技术及国产高端光学装备在微生物研究领域的创新应用,促进科研成果转化。/pp style="text-align: justify text-indent: 2em "会议开始,上海交通大学特聘教授、中国微生物学会环境微生物学专业委员会主任周宁一教授进行了精彩的开幕致辞,并围绕“环境微生物学研究进展与存在的问题”做了大会主旨报告。在环境微生物研究中,传统方法(如培养法、宏基因测序等)存在一定的局限性,单细胞技术可逐一表征微生物细胞在其原生微生物群落中的特性,为研究未/难培养微生物提供了一种新方法。周宁一教授回顾了自首届微生物功能单细胞分离研讨会(2019年6月)以来,多个研究团队应用单细胞拉曼光谱技术与可视化分选技术的最新研究成果,认为在单细胞层面对微生物群落进行研究将是未来的重要科研方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6be1efe8-3d26-4a8b-8260-1277e4bb7713.jpg" title="image004.jpg" alt="image004.jpg"//pp style="text-align: center text-indent: 0em "周宁一教授开幕致辞/pp style="text-align: justify text-indent: 2em "会议学术报告环节分别由南京农业大学生命科学学院院长蒋建东教授及上海交通大学唐鸿志教授主持。广东省微生物研究所杨永刚研究员、浙江大学沈超峰副教授、复旦大学全哲学教授、中科院长春光机所李备研究员、浙江大学吕镇梅教授、中科院苏州生物医学工程技术研究所宋一之研究员、中国水产科学研究院东海水产研究所迟海副研究员分别作了精彩的学术报告,分享了各自的研究进展及所在领域对单细胞技术的应用需求,引起了与会者的热烈交流与讨论。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec0449eb-f231-4a9c-91b6-f6803362d802.jpg" title="image005.jpg" alt="image005.jpg"//pp style="text-align: center "span style="text-indent: 0em "蒋建东教授主持学/spanspan style="text-indent: 0em "术报告/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/efe09b16-1349-4cd5-bb5a-930852eba356.jpg" title="image006.jpg" alt="image006.jpg"//pp style="text-align: center text-indent: 0em "唐鸿志教授主持学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/0f1204c5-3c23-4261-af9f-15720b2bd03c.jpg" title="image007.jpg" alt="image007.jpg"//pp style="text-align: center text-indent: 0em "杨永刚研究员做题为《胞外电子传递功能菌的单细胞示踪和挑选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c9ef28d0-5a24-4c1d-9408-bbf232fc1e39.jpg" title="image008.jpg" alt="image008.jpg"//pp style="text-align: center text-indent: 0em "沈超峰副教授做题为《基于拉曼光谱分析休眠状态下的多氯联苯降解菌》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/95470f83-d423-43ef-9743-dea80b5e6750.jpg" title="image009.jpg" alt="image009.jpg"//pp style="text-align: center text-indent: 0em "全哲学教授做题为《基于拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/8a8c8e62-113f-4159-9608-b3212913967e.jpg" title="image010.jpg" alt="image010.jpg"//pp style="text-align: center text-indent: 0em "吕镇梅教授做题为《污染物降解混合菌群中功能菌的发现与分选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a1b431f9-30ca-4e26-b38a-34ec9feca4bc.jpg" title="image011.jpg" alt="image011.jpg"//pp style="text-align: center text-indent: 0em "宋一之研究员做题为《单细胞表型分析与分选在微生物研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/dd8c68a8-45f6-4540-b3d3-fc6957bf749b.jpg" title="image012.jpg" alt="image012.jpg"//pp style="text-align: center "span style="text-indent: 0em "迟海副研究员做题为《水产品中副溶血性弧菌快速检测技术研究》的学术报告/span/pp style="text-align: center"br//pp style="text-align: justify text-indent: 2em "会上,李备研究员介绍了单细胞拉曼分选技术在微生物领域中的作用与意义,重点介绍了自主研制的拉曼分选系统在病原菌鉴定、微生物代谢监测、肠道菌群分析、深海微生物的原位观测等方向的应用进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/429e94b6-e9a4-4158-9974-9f9a2a9eded0.jpg" title="image013.jpg" alt="image013.jpg"//pp style="text-align: center text-indent: 0em "李备研究员做题为《拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: justify text-indent: 2em "在随后开展的圆桌讨论环节中,各位专家学者围绕对单细胞拉曼分选的个性化需求、单细胞分选在环境微生物领域的实际应用价值、微生物拉曼数据库构建的方式及意义、共聚焦三维成像在微生物研究中的应用需求等具体问题进行了深入探讨,指出了微生物领域对单细胞研究技术的共性需求,认为免标记单细胞原位识别技术与适应微生物单细胞形态特征(尺寸小、形态各异等)的分离技术的缺乏,是目前微生物单细胞研究领域的限制因素。将共聚焦拉曼光谱系统与可视化单细胞精准分选系统相结合,对接后续微生物单细胞培养组、基因组、代谢组等研究,将为复杂环境下微生物生态、菌群互作、代谢机制及功能研究提供有力工具。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/fe99a60c-569a-4937-850f-c610e746958b.jpg" title="image014.jpg" alt="image014.jpg"//pp style="text-align: center text-indent: 0em "圆桌会议讨论/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9b851baa-b912-47a1-9783-006a06725222.jpg" title="image015.jpg" alt="image015.jpg"//pp style="text-align: justify text-indent: 2em "会议茶歇环节,与会者参观并试用了辰英科仪的单细胞领域系列产品,包括可视化单细胞分选仪、拉曼单细胞分选仪、超快共聚焦三维成像系统等。工作人员重点讲解了仪器性能、优势以及应用方案,并针对来宾关注的问题进行了现场解答,得到了到场专家及同学们的一致好评。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/341de611-dbe6-411b-abff-3003eea43ae7.jpg" title="image016.jpg" alt="image016.jpg"//pp style="text-align: center text-indent: 0em "辰英科仪副总李文杰向专家介绍仪器/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/3a57c3a7-fedc-4ef9-88f3-2be0cb7e5778.jpg" title="image017.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/6b4139da-8dc5-4be2-b30d-efe413118d6a.jpg" title="image018.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/bb45fa5b-c11a-4b7a-ab63-763dbb9db6ef.jpg" title="image019.jpg"//pp style="text-align: justify text-indent: 2em "未来,单细胞拉曼分选技术与应用研讨会将陆续在其他省份举办,届时欢迎更多各领域的专家学者参与到大会研讨中来,共同推进前沿光学技术与生物应用的创新融合。希望各位专家老师给予我们更多的意见与支持,辰英科仪将始终致力于国产原创性生物医学高端仪器的研发与制造,为探索生命科学提供有力工具,为共同推动人类健康事业发展贡献力量。/pp style="text-align: justify text-indent: 2em "strong关于长光辰英(杭州)科学仪器有限公司/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/309fe1e5-616e-4e1f-b087-0f8c3baba387.jpg" title="image020.jpg" alt="image020.jpg"//pp style="text-align: justify text-indent: 2em "长光辰英(杭州)科学仪器有限公司成立于2020年11月18日,是由辰英科仪与杭州长光产业技术研究院联合创办的企业,注册资金3000万。/pp style="text-align: justify text-indent: 2em "辰英(杭州)将建设单细胞创新技术平台,为长三角及全国的科研工作者提供前沿单细胞系列装备及技术服务。/p
  • 320万!复旦大学高端超速单细胞流式分离仪采购项目
    项目编号:0705-224002028066项目名称:复旦大学高端超速单细胞流式分离仪采购国际招标预算金额:320.0000000 万元(人民币)最高限价(如有):313.6000000 万元(人民币)采购需求:1、招标条件项目概况:高端超速单细胞流式分离仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028066招标项目名称:高端超速单细胞流式分离仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1高端超速单细胞流式分离仪1套激光器配置:配置至少四个独立激光器,至少包括:488nm、633nm、405nm、561nm激光器预算金额:人民币320万元 最高限价:人民币313.6万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 320万!复旦大学高端超速单细胞流式分离仪采购项目
    项目编号:0705-224002028066项目名称:复旦大学高端超速单细胞流式分离仪采购国际招标预算金额:320.0000000 万元(人民币)最高限价(如有):313.6000000 万元(人民币)采购需求:1、招标条件项目概况:高端超速单细胞流式分离仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028066招标项目名称:高端超速单细胞流式分离仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1高端超速单细胞流式分离仪1套激光器配置:配置至少四个独立激光器,至少包括:488nm、633nm、405nm、561nm激光器预算金额:人民币320万元 最高限价:人民币313.6万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 中科院能源所利用单细胞拉曼分选-测序耦合系统 首次精确到一个细菌细胞的环境菌群scRACS-Seq
    摘要:2021年5月,中国科学院青岛生物能源与过程研究所荆晓艳博士等人应用星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节)在美国微生物学会会刊《mSystems》在线发表题为“One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE)”的文章。单细胞拉曼分选耦合测序(RACS-Seq)是剖析环境菌群功能机制的重要手段,但拉曼分选后单个细菌细胞基因组的覆盖度通常低于10%,极大限制了其应用。近日,中国科学院青岛生物能源与过程研究所单细胞中心基于星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),首次实现了精确到一个细菌细胞、全基因组覆盖度达93%的环境菌群scRACS-Seq,为环境微生物组原位代谢功能研究提供了一个强有力的新工具。土壤是地球上最重要的生态系统之一,土壤微生物组的代谢活动支撑着农业与畜牧业,也在地球元素循环、全球气候变化中起着关键性作用。同时,土壤菌群也是地球上最多样与最复杂的微生物组之一,而其中大部分微生物尚难以培养,因此,单个细胞精度的拉曼分析-分选-测序(Single-cell RACS-Seq,简称scRACS-Seq)策略,是剖析土壤等环境菌群之代谢机制的重要手段。然而针对环境菌群的scRACS-Seq一直以来存在两大瓶颈,一是难以无损、快速地获取具有特定拉曼表型的单个细胞;二是难以获得高覆盖度的单细胞基因组数据。这已经成为scRACS-Seq技术体系在复杂菌群中得以广泛应用的关键瓶颈。针对这一业界共性难点问题,单细胞中心荆晓艳、公衍海和徐腾等组成的联合攻关小组,基于前期发明的RAGE-Seq技术(Raman-activated Gravity-driven Encapsulation and Sequencing Xu, et al, Small, 2020,点击查看),从液相拉曼分析稳定同位素底物饲喂的土壤菌群出发,将特定拉曼表型的细菌单细胞精准分离并包裹到皮升级液滴中,进而耦合下游基因组测序。结果表明:(i)土壤菌群中细胞代谢活跃的低丰度物种(如Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp. 和 Pseudomonas spp.等)可经耦合重水饲喂与标记的RAGE-Seq精准地识别和分选,其单细胞基因组覆盖率可高达〜93%;(ii)同样,基于RAGE-Seq,含类胡萝卜素的土壤微生物细胞(如Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., 和Pedobacter spp.等)能实现单个细胞分辨率、高基因组覆盖度的代谢重建,从而完整、深入地挖掘其类胡萝卜素合成途径;(iii)这些“原位”合成类胡萝卜素的土壤微生物细胞中,既有代谢活跃的,也相当部分是惰性的,表明基于纯培养的策略势必错失这些代谢惰性的功能微生物,因此“原位”、单细胞精度的功能细胞识别和分离,对于全面、客观的菌群功能剖析和资源挖掘具有重要意义。精确到一个细胞的拉曼分析-分选-测序(scRACS-Seq)此外,该工作还通过组分与状态均精确可控的人工菌群,建立了系统且严格的scRACS-Seq质量评价与控制体系。基于该体系,发现该技术能将不同拉曼表型的细菌单细胞从菌群中快速、精准分离,在保证单细胞拉曼光谱质量的同时,分选准确性达100%。此外,以来自于靶标细胞周围水相的空液滴为阴性对照,发现靶标细胞序列中被菌群中其他细胞DNA污染的概率极低。上述工作定量证明了scRACS-Seq的灵敏度、特异性和可靠性。借助星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),scRACS-Seq可以在复杂菌群中以单个微生物细胞的分辨率建立新陈代谢与基因组的联系,从而精确回答“谁在做什么,为什么”。该系统广谱适用于细菌、古菌、真菌和动植物细胞,正服务于涵盖各种复杂生态系统的研究和应用。
  • 单个活细胞&细胞器操纵新突破丨多功能单细胞显微操作技术首次实现活细胞间线粒体移植
    前所未有的全自动高精度单细胞操纵平台!多功能单细胞显微操作FluidFM技术首次将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级别中空探针,完美实现了单个细胞水平、fL级别超高精度、全自动化的细胞及细胞器的操作。是一套超温柔,纳米级,全自动的细胞操纵方案。这项技术将传统细胞显微操作实验无法触及领域的大门彻底打开,科学家可以在单个细胞上实现前所未有的精妙操纵。其主要功能包括单细胞提取、单细胞分离、活细胞细胞器移植、单细胞注射、单细胞力谱等。图1 FluidFM技术整机外观及原理示意图在活细胞中也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。1从活细胞中提取线粒体在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构最终被拉断,并在悬臂中呈现为球状线粒体(图2)。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生独立的球形线粒体,而管状结构的其余部分放松并恢复。图2 提取线粒体后的FluidFM悬臂探针的显微图像及示意图2线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了最佳的两步走方案:第一步,用FluidFM技术直接提取线粒体,第二步,将提取的线粒体注入到新的宿主细胞中。该方案的成功率高达95%,而且保持了细胞活力,其优点是细胞器在细胞外停留的时间短(1分钟),并且通过FluidFM采样的线粒体最大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。保持了线粒体和细胞的纯度,避免了其他因素的影响。作者标记供体细胞的线粒体(su9-mCherry)和受体细胞的线粒体(su9- BFP),能够观察移植细胞线粒体网络的实时状态(图3)。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内首次观察到融合事件而后扩展到线粒体网络。综上所述,作者建立了将线粒体转移到单个培养细胞的方法。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。图3 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是独一无二的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。,时长00:07单个线粒体移植视频该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 如何同时对单细胞进行多组学研究
    大多数全基因组分析提供了大量细胞的平均水平,但是最近的技术进步可以克服这个局限。开创性的单细胞分析现在能够对基因组、表观基因组、转录组、蛋白质组和代谢组谱系进行分析。Cell旗下的Trends inBiotechnology综述了为同一的细胞提供复杂的谱系,将不同维度的分析组合成多组学分析的方法。  策略  和活细胞荧光成像不同,组学的方法比如新一代测序和质谱是破坏细胞进行分析的。第一代单细胞分析选择了一种类型的生物大分子(比如DNA、 RNA、染色质、蛋白或代谢产物)就会丢弃其它所有的材料。而现在证实了一个概念:不同的组学可以在同一个细胞进行平行分析。例如,基因组/转录组或基因 /蛋白水平。现在已经确定了如图所示的多组学单细胞分析的五种基本策略。  结合  在相同或相似的生物分子上的实验分析可以合并成一个单一的操作。例如,基于纳米孔测序方法和单分子实时(SMRT)技术所获得的动力学曲线,不仅反映了DNA序列,也进行了 DNA甲基化检测。同样,精心优化质谱检测可以提供相同细胞的蛋白组学和代谢组学数据。要从单个细胞获得高品质的集成文件,进一步提高检测的效率将是必不可少的。  组分分离  不同种类的生物分子可以在从相同的细胞裂解液提取、分离、和独立分析。例如,最近的一项研究用生物素标记的寡聚dT接头沉淀总RNA,进行 RNA测序文库制备,而游离的DNA可扩增后进行DNA测序。这种策略严重地依赖分离的质量,因为所有留在错误组分中的材料都丢失了。  分别处理  当精确的生化分离不可行时,细胞裂解液可以分别被独立处理。最近的一项研究通过将裂解液分别进行多步定量PCR反转录RNA分析和对DNA抗体报告基因的定量PCR分析。从概念上来说分别处理不如生化组分分离,因为有一些材料不可避免地丢失在错误的组分中。它是进行不同分析的最一般的策略。  转换  不同组学之间的生化转换使得它们能一起分析。例如,亚硫酸氢钠处理将DNA甲基化转换成DNA序列信息,可以进一步与GpC甲基转移酶处理结合来捕获DNA甲基化和单细胞核小体定位。它也可以通过对连接细胞核中三维空间接近的DNA片段的操作,获得单细胞染色体结构的信息。  预测  作为对上述实验策略的补充,也可以对一个或多个组学直接检测,而后通过计算机的方法来预测其它的。这五种策略的设为计更加全面的多组学分析提供了一个框架,因为它们可以以许多不同的方式相结合。  应用  单细胞多组学分析能发现其它方法难以处理的问题。  复杂组织和整个器官的数据驱动的分析可能会挑战我们目前的细胞类型的概念。随着分辨率和单细胞分析的吞吐量,我们可以找出无数的细胞状态,而不是少数的稳定和不同类型的细胞。  多组学分析的另一个关键的应用程序是在医药上。许多肿瘤、肿瘤部分区域在耐药、复发和转移、变化上不同,综合数据集可以提供足够详细的图谱来识别的肿瘤内差异的生物学基础。在平行的多组学分析可以帮助发现不同的耐药性,例如基于遗传和表观遗传学的改变,从而有助于自适应和个性化治疗。  第三个多组学谱系的应用是在生物技术和生态系统中研究不可培养微生物。这些细菌通常很难获得足够纯的群体进行大量分析,而单细胞的操作是综合分析的关键,例如将一定的蛋白组学和相关的代谢谱系联系起来。  最后,测量同一细胞内的细胞状态的不同方面的能力有望揭开细胞的基因组、表观基因、转录组、蛋白质组与代谢组之间的相关联系 可以揭示DNA甲基化、染色质于转录起始之间的复杂关系。  结语  第一个单细胞多组学的检测已经存在了,这预示了单细胞系统生物学是一个令人兴奋的新领域。文章预测,关注单细胞作为生物学的核心将为基础科学提供见解,在生物技术和生物医学方法提供有效的应用机会。
  • 让单克隆细胞成活率更高!单细胞可视化分选培养系统-isoCell重磅来袭
    近年来,随着单细胞组学、单细胞克隆研究的持续走热、循环肿瘤细胞研究的不断深入,如何高效、准确地分选单细胞成为研究工作中的桎梏。作为单细胞分选与培养领域领先者,英国iotaSciences公司推出了单细胞可视化分选培养系统-isoCell,不仅确保分选所得的样品中只有单个单细胞,分离效率高达100%,更进一步实现了将挑选出的单个细胞自动化地、直接地培养成单克隆细胞系,且分选与培养过程全程可验证、可追踪,保证每一个单克隆细胞系均来自单细胞。Quantum Design中国作为iotaSciences公司的战略合作伙伴进一步将单细胞可视化分选培养系统引进中国,为中国研究人员提供可靠且功能强大的单细胞分选与培养技术和解决方案。 单细胞可视化分选培养系统-isoCell iotaSciences公司特有的网格式单细胞腔室技术(GRID技术)是单细胞可视化分选培养系统-isoCell自动化分离和培养单细胞解决方案的核心。该技术每个腔室尺寸微小、光学清晰度卓越且无边缘效应(如下图所示),可以清晰地查看腔室内的细胞数量与形态。设备创新性的将GRID技术与可视化分选相结合,确定腔室内只有单个细胞,通过自动化地微流控技术从GRID腔室挑选出单个细胞用于下游应用,也可以在GRID腔室内将单个细胞直接培养成单细胞系,单克隆细胞系成活率高。 单细胞的分选与培养操作流程高度自动化保证了单细胞的高活性与单克隆细胞系的高成活率,且全流程可视化监控确保了每一个单克隆细胞系均来自单个细胞。单细胞可视化分选培养系统-isoCell的优势:☛ 全自动化流程☛ 操作条件温和,对单细胞无损伤☛ 全培养、分析流程可追踪☛ 单细胞分离效率高达100%☛ 单克隆细胞系构建成活率高☛ 直接转移到PCR管或96孔板☛ 结构紧凑,体积小 文献举例: 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications 等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询!用户名单 用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)”使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。“
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar = 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(1分钟),并且通过FluidFM采样的线粒体大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。在提取和移植之前,作者通过在探针中填充不混溶的C8F18来确保提取液在提取过程中保持在孔径附近。因此,只有很小的体积(0.5 - 2pL)被注入到宿主细胞中(图3B)。除了标记供体细胞的线粒体(su9-mCherry)外,还标记了受体细胞的线粒体(su9- BFP),这样就能够观察移植细胞线粒体网络的实时状态。在上述两种移植方案(移植和纯化后注射)中,宿主-线粒体网络的管状状态不会因注射过程而产生影响。此外,标记可以让作者可视化地监测线粒体地移植,观察线粒体地融合。 无论移植方法是细胞到细胞(图3I),还是注射纯化线粒体(图3J),都可以观察到这些过程。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内次观察到融合事件。如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • 技术线上论坛|6月8日《科学家首次实现单个活细胞中细胞器的操纵!多功能单细胞显微操作技术是如何做到的?》
    [报告简介] 单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。 线粒体和复杂的内膜系统是真核细胞的重要特征,是细胞中能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。到目前为止,对活细胞内的细胞器进行操纵十分困难,将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。 本报告分为两部分:1. 来自ETH的Dr. Christoph G. Gäbelein使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪发现被移植线粒体与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。本次报告Dr. Christoph G. Gäbelein将对上述文章和数据进行详细分享。2. 2020年9月,国内套FluidFM多功能单细胞显微操作系统在北京大学生命科学学院顺利安装并交付使用。期间,在北京大学生命科学学院公共仪器中心光学成像平台覃思颖老师和Quantum Design中国工程师胡西博士的帮助下,成功举办多场workshop,FluidFM多功能单细胞显微操作系统助力北大发表多篇paper。本次报告中,覃思颖老师将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]06月08日 下午15:00-16:00 [主讲人介绍]Christoph G. Gäbelein,ETHChristoph是一名来自ETH的青年科学家,科研中他一直致力于将FluidFM单细胞显微操作技术应用于更多的生命科学场景中。在过去两年间,他以一作或参与者的身份发表了FluidFM多篇文章:2022 Mitochondria transplantation between living cells2022 Injection into and extraction from single fungal cells.2021 Single cell engineering using fluidic force microscopy.2021 Genome-wide molecular recording using Live-seq.Christoph对于FluidFM技术的应用具备丰富而完善的经验,文章也是高产的,目前Christoph已经成为了FluidFM技术领域的专家。本次Webinar,Christoph将介绍他应用技术的新成果,并详细阐述从活细胞中提取、注射线粒体,将定量的线粒体移植到细胞中,同时保持它们的活力的技术细节。Christoph的座右铭是:Curiosity-driven young scientist interested in fundamental cell biology 覃思颖,北京大学生命科学学院公共仪器中心光学成像平台工程师。2016年于北京大学获得生物物理学博士学位,博士期间以作者在Nature Materials发表论文,博士后期间入选届北京大学博雅博士后项目。2019年加入北京大学生科院公共仪器中心,负责原子力显微镜、多功能单细胞显微操作系统、共聚焦显微镜等大型仪器的技术支持与运行管理,在多尺度生物样品的原子力制样与成像力学检测、单细胞注射与分离等显微操作、生物荧光成像与图像处理分析等方面有着丰富的经验,为校内外100余课题组提供技术服务,辅助课题组在Nature、Cell、Nature Cell Biology等国际期刊发表论文30余篇。本次报告将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[应用简介]1. 从活细胞中提取线粒体 为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 μm2)和圆柱型探针(A=1.6 μm2)(图1B)。实验结果表明,使用这两种探针都可以对单个线粒体及多个线粒体进行提取或大量抽提。图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 对线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。 本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。图2(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar = 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5 µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 将线粒体移植至新细胞 研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。 虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(1分钟),并且通过FluidFM采样的线粒体大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。在提取和移植之前,作者通过在探针中填充不混溶的C8F18来确保提取液在提取过程中保持在孔径附近。因此,只有很小的体积(0.5 - 2pL)被注入到宿主细胞中(图3B)。 除了标记供体细胞的线粒体(su9-mCherry)外,还标记了受体细胞的线粒体(su9- BFP),这样就能够观察移植细胞线粒体网络的实时状态。在上述两种移植方案(移植和纯化后注射)中,宿主-线粒体网络的管状状态不会因注射过程而产生影响。此外,标记可以让作者可视化地监测线粒体地移植,观察线粒体地融合。 无论移植方法是细胞到细胞(图3I),还是注射纯化线粒体(图3J),都可以观察到这些过程。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内次观察到融合事件。 如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。 综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论 FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。 该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 单细胞基因测序市场分析
    p  span style="color: rgb(0, 112, 192) "什么叫做单细胞基因测序(Single-Cell Sequencing)?/span/pp  一句话说,就是单个细胞水平上对基因组进行测序。2013年,自然杂志把年度技术授予了单细胞a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "基因测序/span/a(Single Cell Sequencing),认为该技术将改变a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "生物界和医学界/span/a的许多领域。/pp  span style="color: rgb(0, 112, 192) "我们为什么要进行单细胞基因测序?/span/pp  传统的测序方法,无论是基因芯片或者二代基因测序技术(Next Generation Sequencing,NGS)都需要从超过10万个细胞中提取一大堆(bulk)DNA或者RNA,而提供的信息是一大堆细胞的平均值。但是传统的方法,对于理解人体细胞的多样性有着明显的局限性。/pp  在人体的每一个组织中,比如说,肾脏组织,拥有着大量不同的细胞类型,每一种细胞类型有着独特的起源和功能。每一个细胞的谱系和发展的状态又决定了每个细胞如何和周围的细胞和环境如何反应,把基因测序应用到单个细胞层面,对于我们理解细胞的起源,功能,变异等有着至关重要的作用。/pp  关于二代基因测序已经详细在我们的前期两篇深度报告中进行了介绍,在本篇报告中,我们将详细解读单细胞基因测序,以及该技术对癌症,辅助生殖以及免疫学等领域带来的新的突破。/pp  strong一、单细胞基因测序行业:刚启程,面临引爆点/strong/pp  BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。根据GENReports的报告,关于单细胞分析的文章发表在过去的几年也有着爆发性的增长。/pp style="text-align: center "  图2:单细胞分析的文章发表数量/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/006c9fd7-a2cd-46b2-a028-18b51b5ea3cd.jpg"//pp style="text-align: center "  资料来源:GEN,民生证券研究院/pp  其中,传统的单细胞基因组学主要是由基因芯片和PCR主导的,随着二代基因测序的成本以超摩尔定律下降,目前单细胞基因组学逐渐由二代基因测序技术接棒。/pp  和qPCR在90年代的发展一样,目前所有的刺激因素(高度的科研兴趣,生物医药巨头公司的关注等)正在解锁这个市场,单细胞基因测序行业正面临引爆点。/pp strong 二、单细胞基因测序的基本流程:单细胞分离--基因组扩增--测序和分析/strong/pp  单细胞测序,简单地说,主要经过如下的步骤:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。/pp style="text-align: center "  图3:单细胞测序的步骤/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/782ee757-3c06-4a1b-9103-4c7336ac2929.jpg"//pp style="text-align: center "  资料来源:Recent advances and current issues in single-cell/pp style="text-align: center "sequencing of tumors,民生证券研究院/pp  2.1 单细胞的捕捉和分离/pp  单细胞测序的第一步是单细胞的分离和提取,目前的方法主要有如下几种方法:流式细胞术,激光捕获显微切割技术以及微流控技术。/pp style="text-align: center "  图4:单细胞分离的三种方式:流式细胞术,激光捕获显微切割以及微流控技术/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/ea66e087-c9b2-4930-a4d3-50025543fe8b.jpg"//pp style="text-align: center "  资料来源:Technologies for Single-Cell Isolation,民生证券研究院/pp  1)流式细胞术 (Flow Cytometry)/pp  是指通过对于悬浮于流体中的细胞或者其他颗粒进行定量分析和分选的技术。在各种流式细胞仪中,大家主要讨论的是荧光活化细胞分类计FACS(Fluorescence Activated Cell Sorting)系统分离单细胞。定量原理:待测细胞经特异性荧光染料染色后,加入样品管中,经过测量区,由染色后的细胞在激光照射下的荧光产生的电信号来进行定量分析 分选原理:通过流束形成含有细胞的带电液滴来实现的。/pp  2)激光捕获显微切割技术Laser Capture Microdissection(LCM)/pp  LCM技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。其基本原理是通过一低能红外激光脉冲激活热塑模-乙烯乙酸乙烯酯(EVA)膜,在直视下选择性地将目标细胞或组织碎片粘到该膜上。/pp  3)微流控技术(Microfluidics)/pp  微流控技术是一种用于精确控制微量液体的技术。微流控芯片是实施该技术的平台,通常通过细微的管道对液体实施操控,微流控对液体的操控尺度, 刚好适合于单细胞样品的处理操作。/pp  2.2 全基因组扩增 (Whole Genome Amplification. WGA)/ 全转录组扩增 (Whole Transcriptome Amplification,WTA):单细胞测序的难点/pp  2.2.1 主要的三种全基因组扩增技术,各有优势/pp  由于在单细胞中的DNA和RNA的数量非常小(几个pg),用传统的测序仪无法检测,所以科学家们必须首先对这些分子进行扩增,同时尽量的减少错误。目前的全基因组扩增技术主要有三种:简并寡核苷酸引物PCR扩增(DOP-PCR),多重置换扩增(MDA) 和基于多次退火和成环的扩增循环(MALBAC)。/pp  1)基于PCR技术的全基因组扩增技术,例如DOP-PCR(简并寡核苷酸引物PCR扩增)/pp  DOP-PCR是一种部分随机引物法, 其引物构成为3& #8242 -ATGTGG-NNNNNN-CCGACTCGAG-5& #8242 ;主要 利用3& #8242 端ATGTGG这6个在人体中分布频率极高的碱基作为引导, 以6个碱基的随机序列来决定特异的扩增起始位点,从而达到扩增整个基因组的目的。/pp  2)多重置换扩增(MDA)/pp  MDA是一种等温的链置换扩增反应, 其使用随机的6碱基引物在多位点和模板链结合, 接着利用 phi29DNA 聚合酶很强的模板结合和置换能力实现对全基因组的扩增。/pp style="text-align: center "  图5:DOP-PCR和MDA全基因组扩增技术简介/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/d9b0aef0-e3b1-4c63-8313-c20796064bb3.jpg"//pp style="text-align: center "  资料来源:Single-cell genome sequencing: current state/pp style="text-align: center "of the science,民生证券研究院/pp  3)MALBAC(Multiple annealing and looping-based amplification cycles)基于多次退火和成环的扩增循环/pp  通过采用特殊引物,使得扩增子的结尾互补而成环,从而达到近乎线性的扩增,该技术是哈佛大学谢晓亮教授团队发明的。/pp style="text-align: center "  图6:MALBAC全基因组扩增的示意图/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/83e2f828-d990-4b9c-afd6-bd692fc52888.jpg"//pp style="text-align: center "  资料来源:Single-cell sequencing by Doug Brutlag,民生证券研究院/pp  表1:三种类型的全基因组扩增方式比较/pp style="text-align: center "img width="600" height="302" title="QQ截图20160302115018.jpg" style="width: 600px height: 302px " src="http://img1.17img.cn/17img/images/201603/noimg/297e4e6e-a134-4101-a297-456cd703c3af.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "  资料来源:Single-Cell Sequencing Technologies: Current and Future,/pp style="text-align: center "民生证券研究院/pp  Navin 在研究报告中指出(来源:Cancer genomics: one cell at a time),对于检测CNV(Copy Number Variation)的时候,DOP-PCR以及MALBAC较有优势,另一方面, MDA方法一般用来检测点突变。Gawad et al., (2015)更是指出,三种全基因组扩增技术并没有明显的胜者,具体方法的使用取决于研究的目的。/pp  2.2.2 全转录组扩增/pp  一个哺乳动物的单细胞大约含有10pg的RNA,其中mRNA大约在0.1-0.5pg,并不能满足目前测序平台的要求,所以需要进行全转录组扩增技术。/pp  单细胞中提取的RNA首先经过逆转录出cDNA,然后对逆转录生成的cDNA进行扩增。目前主要的转录组扩增技术主要包括如下几种:传统的PCR,改进的PCR,T7-in vitro 体外转录组扩增以及Phi29聚合酶扩增。/pp  三. 单细胞测序的主要应用:癌症,辅助生殖以及免疫学领域/pp  当单细胞被分离,细胞内的DNA/RNA被提取和扩增后,二代基因测序(Next Generation Sequencing)可以用来进行后续的测序。当把基因测序应用于单个细胞层面,在下游应用领域有着先天独到的优势。/pp  3.1单细胞基因测序技术有助研究癌症起因和治疗/pp  首先谈一下癌症的异质性:中晚期的肿瘤或由一系列的肿瘤克隆组成,每一种克隆有着独立的变异,形态和药物反应。对于肿瘤克隆精准的诊断非常重要,因为一个占据原发性肿瘤5.1%的亚克隆种群在复发的时候可能成为主要的致病因素。/pp style="text-align: center "  图7:肿瘤的异质性/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/88b49609-3a47-4577-ad2a-7e9b36b6a4dc.jpg"//pp style="text-align: center "  资料来源:Illumina,民生证券研究院/pp  实体瘤由一系列不同的细胞组成,包括癌症纤维细胞,内皮细胞,淋巴细胞,巨噬细胞等。同时,实体瘤由多个肿瘤克隆亚种群构成,使得临床样本的分析更加复杂。当多个肿瘤克隆同时存在时,标准方法检测的要么是平均信号要么是主要的克隆群体(并不一定是最致病的)的信号。/pp  而同时,肿瘤的异质性和癌症产生抗药性以及转移密切相关,所以,单细胞测序开始用来检测肿瘤内基因异质性,对于癌症起因以及后续治疗的研究非常关键和重要。/pp  例如,Navin et al.(2011), 利用单细胞基因测序的方法(流式细胞术提取细胞-全基因组扩增-NGS),在某个乳腺癌肿瘤组织中检测了100个乳腺癌细胞的CNVs,覆盖度大约6%,发现了三种完全不一样的克隆亚种群。/pp  除了肿瘤细胞,单细胞基因测序同样可以应用于循环肿瘤细胞(Circulating tumor cells)和外周血播散肿瘤细胞DTC(disseminated tumor cells),该部分内容将在后续的研究报告中深入讨论。/pp  3.2 单细胞基因测序助力辅助生殖/pp  PGS(Pre-implantation Genetic Screening)是胚胎注入前遗传学筛查,主要是通过检测胚胎的23对染色体结构、数目,来分析胚胎是否有遗传物质异常 PGD(Pre-implantation Genetic Diagnosis),主要用于检测胚胎是否携带遗传缺陷的基因,关于PGS/PGD的介绍,请参考我们之前的行业深度《基因+大数据的颠覆:从癌症基因测序到辅助生殖》。/pp  PGD过程中,目前主要有三种方式获得活检材料:1)卵子的第一极体和第二极体 2)培养至第3天胚胎卵裂期的卵裂球细胞(一般取1-2个细胞) 3)培养第5天左右的囊胚细胞。/pp  例如,牛津大学的Dr.Dagan Wells团队,通过对囊胚细胞进行单细胞基因测序,选择健康的胚胎植入。另外,谢晓亮教授团队通过对女方卵细胞极体细胞进行测序,结合胚胎选择,选择正常的胚胎移植。/pp style="text-align: center "  图8:卵母细胞减数分裂产生极体的过程/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/a1c2724b-0f2c-4b27-9eca-d304dccd613c.jpg"//pp style="text-align: center "  资料来源:Genome Analyses of Single Human Oocytes,民生证券研究院/pp style="text-align: center "  (注:其中PB1和PB2是第一极体和第二极体)/pp  3.3 单细胞基因测序打开免疫报多样性研究之门/pp  用单细胞基因测序分析免疫细胞的原因是现存的多样的病原体导致了免疫细胞的高度异质性,传统的检测方法,取样来自一大堆细胞,低估了单个免疫细胞的多样性,所以我们需要更加精确检测单个免疫细胞的遗传物质,从而理解机体复杂的免疫机制。正如开篇提到的Juno收购的单细胞基因测序公司AbVitro致力于T细胞和B细胞的基因测序。/pp  图9展示了对单个T细胞受体基因测序(TCR Sequencing)的流程。TCR & #945 和& #946 mRNA经过逆转录,扩增,重叠延伸,目的基因被选择性地进行PCR扩增以及后续的分析。/pp style="text-align: center "  图9:TCR Sequencing过程/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201603/noimg/04e7c357-80bd-4709-89dc-92ee07a28fa9.jpg"//pp style="text-align: center "  资料来源:Pairing of T-cell receptor chains via emulsion PCR,/pp style="text-align: center "Illumina,民生证券研究院/pp  四. 单细胞基因测序未来的发展之路/pp  在目前来看,单细胞基因测序还处在非常初级的阶段,也面临很多技术的挑战,包括:如何高效的分离细胞,全基因组无偏差的扩增,以及下游的数据分析等。但各大生物医药巨头都已经目光锁定了这个方向,除了今年初Juno收购AbVitro(单个T细胞和B细胞进行基因测序),去年八月BD公司收购了单细胞测序公司Cellular Research。Illumina也通过和Clontech合作,推出了单细胞RNA测序服务。/pp  我们认为,未来的基因测序一定朝着更精准,更微观的方向前进,如今,单细胞测序正面临着一场革命,在单个细胞层面让我们在前所未有的水平理解基因组学,表观基因组学和转录组学的多样性。/pp  背景案例:/pp  2016年1月,肿瘤免疫疗法的领头羊公司Juno宣布以1.25亿美金的股票和现金收购波士顿的一家单细胞测序公司:AbVitro Inc.。 AbVitro公司的技术起源于哈佛大学George Church的实验室,AbVitro的技术包括对单个T细胞和B细胞进行基因测序,帮助科学家们理解T细胞受体(T cell receptor & #945 和& #946 链的基因的复杂性。/pp  图:Juno收购AbVitro之后的布局/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/6ef1eca1-dc46-4600-9c6d-d95f77a85f9e.jpg"//p
  • 高效构建hiPSC系的全自动化神器,单细胞可视化分选培养系统,让单细胞培养不再复杂!
    人类诱导多能干细胞 (hiPSC) 是一类通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞重新逆分化得到的多能性干细胞。hiPSC的出现为科学家构建复杂的疾病模型和推进药物发现提供了有利的工具。 然而,传统的hiPSC细胞系的构建与培养过程往往操作复杂且耗时耗力。特别是从异质编辑细胞池中构建的克隆hiPSC系的培养受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件苛刻,操作步骤繁琐,不能充分保证单克隆性。 为应对hiPSC细胞系构建与培养过程中的诸多挑战,IotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化分选培养系统isoCell来构建 hiPSC系的分选与培养平台,并在不同培养基条件下对hiPSC进行了单细胞分选与培养研究。图1 单细胞可视化分选培养系统isoCell实物图 以isoCell为核心的hiPSC细胞分选与培养平台 isoCell是一款基于GRID技术的高度自动化细胞分选与培养平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小,光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落。并且,isoCell可在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。 图2 GRID实物图 材料与方法 在分别铺了Laminin-521、Vitronectin-N和iMatrix 细胞培养基质的60毫米培养皿上制备的GRID网格以待使用。制备hiPSC的单细胞悬浮液,并使用 isoCell全自动地将细胞铺在GRID上(种植)。 使用isoCell自带的显微镜鉴定每个GRID室并标记每个包含单个细胞(第 0 天)的室,将该培养皿放入培养箱培养。在第3天,将标记的含有单个细胞的GRID小室加满600 nl培养基。从第5天开始,每天观察标记单细胞的GRID小室,并对选中的GRID小室补充培养基。最后,使用isoCell观察并标记构成了hiPSC单细胞群落的GRID小室,使用isoCell全自动收获标记的GRID小室中的hiPSC细胞(通常在 6-8 天之间)。 图3 以isoCell为核心的hiPSC细胞分选与培养平台工作流程图 高效的hiPSCS细胞分选与培养平台 按照上述的工作流程,利用三种不同的培养基质(包括 VTN-N、LMN-521 和 iMatrix)构建并培养了两个独立的hiPSC细胞系,并评估所得细胞的克隆效率。如图4所示,两个不同的hiPSC测试系在不同培养基质条件下,均在GRID室中显示出非常高的克隆效率,这表明采用GRID小室低容量培养方法和细胞的自动化温和处理可产生非常适合单细胞高效生长的培养环境。 图4 GRID中的单细胞 hiPSC 克隆效率(克隆效率表示培养第5天时单细胞长成细胞群落数占第0天单细胞数的百分比) 结论 以isoCell构建的hiPSC细胞分选与培养平台可以对hiPSC细胞进行全自动化且温和地单细胞分选与培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且isoCell的分选与培养条件温和,hiPSC单克隆细胞系成活率高。 单细胞可视化分选系统isoCell的优势:- 全自动化流程- 操作条件温和,对单细胞无损伤- 全培养、分析流程可追踪- 单细胞分离效率高达100%- 单克隆细胞系构建成活率高- 直接转移到PCR管或96孔板- 结构紧凑,体积小 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年五篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608. 样机体验 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询! 用户名单 用户评价 路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司) “使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”
  • 多功能单细胞显微操作技术在病毒研究中的应用 ——在单病毒粒子--单细胞水平上研究病毒的感染
    病毒的感染研究通常是在大量细胞实验中进行的,一般要将许多培养细胞同时暴露于病毒中,这就使得研究单个病毒侵入事件和研究病毒在单个细胞之间的感染传播十分困难。多功能单细胞显微操作FluidFM技术通过温和的、微通道和力反馈控制的探针,将单个病毒粒子突破性的沉积在选定的单个细胞上,从而实现前所未有的控制,在单个病毒粒子--单个细胞水平上研究病毒感染。FluidFM技术可以帮助阐明关于毒性、病毒复制或宿主免疫应答的基本问题,从而促进新型抗病毒药物和疫苗的开发。放置单个病毒粒子单个病毒粒子可以被放置在您选择的细胞上的确切位置注入单个病毒粒子直接将单个病毒粒子注入特定细胞的细胞质或细胞核中测量生物量的变化测量细胞硬度的变化和单细胞力谱对感染细胞进行分离、提取和分析分离被感染的细胞,或进行单细胞活细胞提取,进而进行测序、质谱等分析观察和监测通过集成的成像系统和追踪软件对细胞进行长时间连续监测 FluidFM技术如何提升您的病毒学实验? 1. 在病毒感染方面获得全新的视角FluidFM技术为病毒学研究引入了新的实验可能性,允许在贴壁细胞培养中控制病毒粒子与您所选择的细胞进行的相互作用。这为我们提供了全新的视角:细胞进入和感染机制方面;细胞反应、病毒协同性和病毒生命周期阶段;增殖,扩散率和细胞间感染方面FluidFM操作病毒的工作原理 2. 量化宿主防御和病毒协同性通过在细胞上放置一定数量的病毒粒子,宿主细胞对病毒的防御就可以被量化。因此,可以研究感染概率、宿主防御的局限性以及病毒粒子之间的合作关系。1个病毒粒子通过FluidFM微管的空心悬臂准备放置。图片由苏黎世联邦理工学院P. Stiefel提供。4个病毒粒子沉积在一个选定的单细胞上。图片由苏黎世联邦理工学院P. Stiefel提供。 3. 监测病毒在细胞间传播FluidFM技术一体机集成了CO2和温度控制的活细胞模块,同时也集成了成像模块。这保证了受感染细胞的细胞培养环境,并与软件支持的自动追踪功能一起,允许长时间观察受感染或操纵受感染细胞。这使得我们可以详细了解病毒感染是如何从宿主细胞传播到邻近细胞乃至传播到其他培养细胞的。 4. 将单个受感染细胞导入正常培养基,或将单个正常细胞导入处理培养基轻柔地从贴壁或悬浮培养中取出单个细胞,以高的精度定位地将其放入另一个孔板中,这样的操作可以充分保证细胞的活力。使得将单个感染细胞引入健康培养基后的进一步研究成为可能。同样的方法也可以用于将健康细胞、耐药细胞或药物处理后的细胞放置于受感染的培养基中。分离单个细胞 5. 单细胞活细胞的提取,以便进一步分析FluidFM技术可以根据形态学或荧光标记从培养物中分离出单个细胞。在保持完全存活的情况下,这些感兴趣的细胞可以在新的培养皿中扩增,或进行进一步的蛋白质组学或转录组学分析。甚至可以进行单细胞活细胞检测,如Live-Seq、TOF等。 6. 从感染的单细胞中获得单细胞力谱FluidFM探针集成了力学反馈功能,允许定量的机械相互作用,可达pN别的力学分辨率。测量由单个细胞感染引起的生物物理变化,如硬度的变化,粘附力的变化,甚至质量的变化。因此,FluidFM可以将病毒在宿主细胞上引起的形态变化与机械变化联系起来。单个细胞从完全贴壁、融合的培养状态中被拽离出来,并记录单细胞力谱。视频由德国Würzburg大学医药与牙医科学院A. Sancho和J. Groll提供参考文献:[1]. Koehler, M., Petitjean, S.J.L., Yang, J., Aravamudhan, P., Somoulay, X., Lo Giudice, C., Poncin, M.A., Dumitru, A.C., Dermody, T.S. & Alsteens, D. Reovirus directly enganges integrin to recruit clathrin for entry into host cells. (2021) Nature communications, 12, 2149.[2]. J. Yang, J. Park, M. Koehler, J. Simpson, D. Luque, J.M. Rodriguez & D. Alsteens. Rotavirus Binding to Cell Surface Receptors Directly recruiting a-integrin. (2021). Advanced Nanobiomed Research.[3]. Guillaume-Gentil, O., Rey, T., Kiefer, P., Ibáñez, A. J., Steinhoff, R., Brönnimann, R., Dorwling-Carter, L., Zambelli, T., Zenobi, R., & Vorholt, J. A. (2017). Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. Analytical Chemistry, acs.analchem.7b00367.[4]. Guillaume-Gentil, O., Grindberg, R. V., Kooger, R., DorwlingCarter, L., Martinez, V., Ossola, D., Pilhofer, M., Zambelli, T., & Vorholt, J. A. (2016). Tunable Single-Cell Extraction for Molecular Analyses. Cell, 166(2), 506–516.[5]. Guillaume-Gentil, O., Zambelli, T., & Vorholt, J. A. (2014). Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on a Chip, 14(2), 402–414.[6]. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Dörig, P., Zambelli, T., & Vorholt, J. A. (2013). Force-controlled fluidic injection into single cell nuclei. Small, 9(11), 1904–1907.[7]. P. Stiefel, F.I. Schmidt, P. Dörig, P. Behr, T. Zambelli, J. A. Vorholt, and J. Mercer. Cooperative Vaccinia Infection Demonstrated at the Single-Cell Level Using FluidFM. Nano Letters, 2012.
  • 光学成像平台 | FluidFM 技术在活细胞单细胞组学领域的进展讲座及上机培训
    多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、细胞培养系统合为一体的单细胞操作系统,采用不同孔径的微型纳米注射器,可实现单细胞注射(Injection)、活细胞内物质提取(Extraction)、单细胞分离(Isolation)、粘附力测定(Adhesion)、纳米打印(Nano-printing)等多种功能,更多功能及应用请参考如下文章。点击了解更多详情:多功能单细胞显微操作系统FluidFM BOT的原理与应用介绍本次讲座与培训将介绍FluidFM技术的原理及应用,着重讲解在活细胞单细胞组学领域的进展,Live-Seq技术可直接在活细胞无损提取细胞内容物进行测序工作,能够提供更加原生和真实的测序信息,让单细胞的基因表达动力学研究成为可能。报告信息:应用讲座:5月25日北京大学金光楼311上午09:30—10:30上机培训(扫码报名,名额有限):5月25日北京大学金光楼126下午13:00—17:30报告人: 胡西 博士报名注册:点击此处或扫描下方二维码即可报名扫码即刻报名报告人简介:胡西,Application Scientist of Quantum Design China,加州大学洛杉矶分校博士后。主要负责单细胞显微操作设备的技术支持和市场推广活动,并具有丰富的流体力显微镜(FluidFM)的操作经验。主办单位:凤凰工程北大基地光学成像平台协办单位:Quantum Design 中国科研进展文章导读:单细胞测序在疾病诊断和细胞异质性研究中发挥着重要作用。然而目前的单细胞测序手段需要将细胞消化并裂解才能够进行,而细胞状态在这一操作中不可避免的会发生改变,因此很难掌握细胞真实的基因表达情况, 尤其对于基因通路上表达变化的检测为不利。近期苏黎世联邦理工学院使用FluidFM创建了一种原位活细胞基因测序方法,这种方法能够在不杀死细胞的情况下完成对细胞的测序工作。通过这种技术该团队成功完成单细胞RNA基因测序,并通过这种方法检测到了细胞的基因表达和细胞周期状态变化。下面本文就这项工作的具体内容进行阐述。1. Live-Seq测序技术简述由于单个细胞的RNA总量仅有10 pg。为了实现无损的单细胞测序,该团队先使用FluidFM对现有的scRNA-Seq单细胞测序的方法进行了优化。为了尽可能的接近Smart-Seq的测试条件,该团队采用了先将缓冲液吸入探针,然后再进行细胞提取的操作。这样可以确保所提取的RNA能够先与缓冲液混合,从而避免RNA的降解。通过这一方法,该团队成功实现了IBA细胞的测序,证明了这种方法的可行性(图1)。图1. Live-Seq技术a. Live-Seq技术的示意图和代表图片,黑色箭头指代液面;b. IBA细胞测序的质量控制图(n=10)。2. Live-Seq技术分析细胞系和细胞状态为了证实Live-Seq的有效性,该团队对多种细胞系进行了测序,这其中包括IBA细胞、小鼠脂肪干细胞和祖细胞(ASPCs)以及脂多糖处理的RAW264.7细胞和Mock处理的RAW264.7细胞。通过对这些细胞系进行测序发现,该方法能够区分上述细胞系,并且在特征基因检测中能够找到每种细胞所对应的特征基因,证明了Live-Seq方法的有效性(图2)。图2. Live-Seq单细胞测序区分细胞型及细胞状态a. 实验方法示意图,使用LPS和PBS对RAW细胞进行处理;b. 前500个高度易变基因的tSNE图;c. 前十的细胞型、细胞状态差别基因的热图;d. 小鼠基因图谱预测,使用前100个标记基因的团簇;e. Live-Seq对比scRNA-Seq的锚点分析,显示两者没有显著差异。3. Live-Seq技术对细胞的活力基本没有影响Live-Seq技术的优势在于提取过程中不会破坏细胞。通过对提取前后的测序对比可以发现,提取组与空白组之间的团簇没有显著性差异。并且通过对细胞形态的观察中,发现细胞的形态基本没有改变,并且多数细胞仍然能够正常分裂(图3)。图3. Live-Seq对细胞活力的影响a. 细胞实验的示意图;b. Live-Seq测序后不同时间点(1h,4h)的scRNA-Seq的tSNE图;c.不同时间点scRNA-Seq所有能够发现差异的基因(共12个);d.不同时间点的细胞形态图片。4. Live-Seq技术能够记录细胞下游分子表型事件由于Live-Seq对细胞生理状态影响小,因此能够监测在细胞代谢过程中的基因变化。通过对比LPS处理的巨噬细胞周期实验中发现,Live-seq技术与对照组的细胞代谢水平相比没有明显变化,因此这种方法测量的数据十分接近细胞代谢中基因表达的真实水平。通过测序对比LPS处理与空白的测序结果发现Nfkbia与Tnf的表达为相关。这一结果也验证这种测序方法在检测细胞下游表型时的优势。图4. Live-Seq技术的单细胞纵向分析a. 实验示意图;b. 不同处理细胞的mCherry强度变化;c. 3~7.5h之间mCherry强度变化;d. Tnf-mCherry强度变化的线性回归模型;e. Nfkbia与Tnf在Live-Seq测序中的表达关系;f. Nfkbia与Tnf在scRNA-Seq测序中的表达关系;g. Live-Seq测序中细胞处于S期的评分;h. Live-Seq测序中细胞周期的mTnf-mCherry强度变化;i.Tnf-mCherry的荧光强度增量(3~7.5h)。5. Live-Seq技术对同一细胞多次测序Live-Seq技术的无损性甚至能够实现对单个细胞的多次测序。通过对单个细胞两次提取后细胞活力变化的观察中发现,细胞的活力即使在2次提取后仍没有发生明显的变化,基因型分析也没有发现明显的基因表型改变。图5. Live-Seq对细胞的多次提取j.连续测序的示意图和代表图像;k.Live-Seq的tSNE图;l.整合Live-Seq和scRNA-Seq的tSNE图。6. 总结Live-Seq是一种十分具有前景的单细胞测序的新方法,得益于FluidFM技术的无损提取的优势,Live-Seq技术除了能够实现传统测序的功能外,还降低了细胞的损伤,能够提供更加原生和真实的测序信息。这种特点甚至让单细胞的基因表达动力学研究成为可能。相信随着这种技术自动化的提高,将为单细胞测序技术带来更多可能。参考文献:[1]. Genome-wide molecular recording using Live-seq, Wanze Chen, Orane Guillaume-Gentil, Riccardo Dainese, Pernille Yde Rainer, Magda Zachara, Christoph G. Gäbelein, Julia A. Vorholt, Bart Deplancke, bioRxiv 2021.03.24.436752;doi: https://doi.org/10.1101/2021.03.24.436752
  • Nature、Cell等高水平文献带您解析:单细胞组学研究过程中保持细胞存活的全新方案!
    目前,单细胞组学分析大都依赖于将细胞裂解的方案,单细胞活检是少有的非侵入性的单细胞分析方法,它允许研究人员在不杀死细胞的情况下获取细胞的转录组信息,单细胞组学通过分离和分析单个细胞的分子成分来阐述细胞异质性。从单细胞活检中获得的基因表达谱是裂解方案获取细胞转录组的全面升级 (Chen et al., Nature, 2022)。FluidFM OMNIUM在单细胞组学研究中的特征:多功能单细胞显微操作系统- FluidFM OMNIUM,可以自动、高效的完成单细胞提取或单细胞注射实验,可有效应用于原位活细胞基因测序Live-seq和单细胞活检,让研究人员能够在不杀死细胞的情况下对细胞进行转录组测定,从而为单细胞转录组学带来新的范式。在表型分型前记录细胞转录组。记录随时间推移的转录事件,以揭示分子成分如何影响细胞行为。直接链接单个细胞的历史和生长轨迹,揭示过去的细胞状态和了解细胞的谱系决定。在接受特定疗法之前和之后,对异质性疾病的单细胞进行活检,以确定用于早期药物开发的分子标签。FluidFM OMNIUM进行单细胞活检的显著优势:无创单细胞活检在不改变基因表达、细胞表型或细胞间相互作用的情况下获得可靠的结果。通过活检对单细胞进行连续和实时监测FluidFM提取保留细胞活力:在相同的运行中从相同的细胞中提取几次或随时间周期性地提取。分析时间序列基因表达单细胞转录组序列分析Live-seq活细胞单细胞测序和单细胞活检是如何进行:Live-seq活细胞单细胞测序方法将FluidFM OMNIUM系统与高灵敏度的低输入RNA-seq方案配对。FluidFM OMNIUM可以从活单细胞的细胞室中提取亚皮升体积,然后分离提取物进行进一步分析。通过避免破坏性方法(如细胞裂解),可以在同一细胞上进行进一步的下游分子和表型分析,甚至随着时间的推移进行转录组分析。这将为您的转录组学、代谢组学、蛋白质组学或任何其他组学研究引入发展路径分析而不是终点分析。专属的——在FluidFM操作软件中内置了专属的Live-seq应用工作流程。易用的——仅需在电脑界面上用鼠标进行指向和点击的操作即可。先进的——空心的、具有力学感应的FluidFM探针(请参考下面FluidFM探针图)FluidFM探针:用金字塔的横截面可以看到镂空的中间通道。FluidFM技术进行单细胞组学研究相关文章:使用Live-seq进行全基因组测序来自中国科学院深圳先进技术研究院的陈万泽研究员等展示了Live-seq活细胞单细胞测序技术的建立,这是一种利用FluidFM技术提取RNA并保留细胞活力的单细胞转录组分析方法。通过使用巨噬细胞暴露于脂多糖(LPS)的模型,他们能够根据影响巨噬细胞LPS反应异质性的能力进行全基因组排序。此外,研究表明Live-Seq可用于连续描绘LPS刺激前后单个巨噬细胞的转录组。这使得细胞轨迹的直接映射成为可能,并将scRNA-seq从终点法跨越到突破性的时间分析方法。W. Chen, O. Guillaume-Gentil, P. Yde Rainer, C. G. Gä belein, W. Saelens, V. Gardeaux, A. Klaeger, R. Dainese, M. Zachara, T. Zambelli, J. A. Vorholt & B. Deplancke. Live-seq enables temporal transcriptomic recording of single cells. (Aug 2022) Nature, doi:10.1038/s41586-022-05046-9.单细胞提取质谱联用来自ETH的Guillaume等利用FluidFM技术,通过亚皮升分辨率无损定量地提取细胞内液,然后进行飞行时间质谱分析。通过这种方法,他们从单个HeLa细胞质中检测和鉴定了几个代谢物。通过13C-Glucose摄取实验进行了验证,这表明代谢物采样结合质谱分析是可能的,同时保留了生理环境和被分析细胞的活力。O. Guillaume-Gentil, T. Rey, P. Kiefer, A.J. Ibáñ ez, R. Steinhoff, R. Brö nnimann, L. Dorwling-Carter, T. Zambelli, R. Zenobi & J.A. Vorholt. Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. (May 2017) Anal Chem., 89(9), 5017-5023. doi:10.1021/acs.analchem.7b00367.单细胞提取后细胞内分子成分分析来自ETH的Guillaume等证明了使用FluidFM以亚皮升的分辨率对单细胞的细胞质和核质部分进行定量采样,然后对从细胞质或细胞核中提取的可溶性分子进行全面分析,包括检测酶活性和转录丰度等。O. Guillaume-Gentil, R.V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli & J.A. Vorholt. Tunable Single-Cell Extraction for Molecular Analyses. (Jul 2016) Cell, 166(2), 506-516. doi: 10.1016/j.cell.2016.06.025.相关产品1、多功能单细胞显微操作系统- FluidFM OMNIUM
  • Quantum Design:助力科学家实现单细胞精准操作
    p style="text-align: justify text-indent: 2em "2019第十三届中国科学仪器发展年会(ACCSI2019)于4月18日-19日在青岛召开,在被称为“科学仪器行业奥斯卡颁奖盛典”的颁奖晚会上,QUANTUM量子科学仪器贸易(北京)有限公司的瑞士Cytosurge多功能单细胞显微操作系统获得 “2018年科学仪器优秀新产品”大奖。会议期间Quantum Design中国子公司市场专员马文睿接受了仪器信息网的采访,就新品的创新之处、应用领域等方面进行了详细介绍,同时也对仪器信息网与本次大会提供的展示平台表示感谢。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong详细内容请点击视频观看:/strong/span/pscript src="https://p.bokecc.com/player?vid=CF0FBA8EADF69B419C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptp style="text-align: justify text-indent: 2em "QUANTUM量子科学仪器贸易中国子公司亮相本次大会的新产品——瑞士Cytosurge多功能单细胞显微操作系统,采用了瑞士ETH苏黎世联邦理工学院的最新技术—Fluid FM 流体力学显微镜。FluidFM是将微量注射与原子力显微镜技术相结合的最新型显微镜。它能够在细胞表面实现精准的移动和fL级的流体移动控制,因此在技术层面上拥有非常优越的单细胞操纵能力。该技术将原子力系统、微流控系统和细胞培养系统集成在一起,可以帮助科学家们实现单细胞层面上的精准操作。另外该机器创新之处主要是:1、定位非常准确,可以对单细胞的细胞质核细胞核进行无损提取与包括精准注入;2、该系统精度非常高,可以将注射目标物体积进行量化,精度可达生物学飞升级别;3,该仪器将多种功能,包括单细胞提取、单细胞注入和单细胞分离等功能进行高度一体化。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C301181.htm" target="_blank"img src="https://img1.17img.cn/17img/images/201905/uepic/cd3baabf-5431-4352-aed4-b4c3fad0286e.jpg" title="Cytosurge单细胞显微操作系统.jpg" alt="Cytosurge单细胞显微操作系统.jpg"//a/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) text-decoration: underline text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C301181.htm" target="_blank"瑞士Cytosurge多功能单细胞显微操作系统i(点击查看仪器参数)/i/a/span/strong/pp style="text-align: justify text-indent: 2em "这款Cytosurge多功能单细胞显微操作系统主要可以解决科学家在单细胞研究中遇到的问题,其主要研究领域与应用领域覆盖精准医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等方面。在单细胞提取、单细胞注入和单细胞分离等方面均可以解决以前不能解决的一些问题,比如可以通过这款仪器高效、高速、温和、低损伤的方式解决以前很难解决的基因转染、基因编辑问题。相信该仪器的微量、精准、低损伤的方式和技术能够为传统生物学研究,包括给科学家带来一些新的可能,突破之前的技术壁垒,帮助研究更上一层楼。/pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 112, 192) " span style="text-decoration: underline " /span/spanbr//pp style="text-indent: 0em text-align: center "span style="color: rgb(192, 0, 0) "strongspan style="text-decoration: underline "扫码关注span style="text-decoration: underline color: rgb(0, 112, 192) "3i生仪社/span,生命科学资讯给你好看!/span/strong/span/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/78af9918-993b-411c-b0b6-de400cd071f8.jpg" title="小icon.jpg" alt="小icon.jpg"//p
  • 浅谈单细胞测序:相关概念及发展历程
    近期我们梳理了分子诊断技术中测序部分,测序技术根据样本类型不同包含:DNA测序、RNA测序、单细胞测序、甲基化测序等。本期开始我们将从以下几个方面逐一介绍单细胞测序技术:单细胞测序技术概念及发展历程、单细胞测序技术操作流程、单细胞全基因组测序技术、单细胞全转录组测序技术、单细胞测序技术的应用。单细胞测序技术单细胞测序(Single cell sequencing,SCS)技术是指在单个细胞水平上对转录组或基因组进行扩增并测序,以检测单细胞在基因组学、转录组学、表观组学和蛋白组学等多个组学的数据。主要涉及:单细胞基因组测序、单细胞转录组测序和单细胞表观基因组测序。单细胞基因组测序(图1A):是将分离的单个细胞的微量全基因组DNA进行扩增,获得高覆盖率的完整的基因组后进行高通量测序,用于揭示单细胞中的遗传变异,如单核苷酸变异(SNVs)、拷贝数变异(CNVs)和基因组结构变异(SVs),细胞群体差异和细胞进化关系。单细胞转录组测序(图1B):是将分离的单个细胞的微量全转录组RNA进行扩增后进行高通量测序,用于在单细胞中生成基因表达、基因融合和选择性剪接的图谱,此技术被认为是截至 2020 年定义细胞状态和表型的金标准。[1]单细胞表观基因组测序(图1C):是检测DNA序列不变的情况下表型的可遗传变化,包括DNA甲基化、组蛋白修饰、染色质可及性等。在真核生物中,5-甲基胞嘧啶(5mC) 在基因组中广泛分布,并通过抑制转座因子在调节基因表达中发挥重要作用[2]。通过对单个细胞中的 5mC 进行测序,可以揭示来自单个组织或群体的遗传相同细胞的表观遗传变化如何产生具有不同表型的细胞。单细胞亚硫酸氢盐测序是DNA甲基化研究的金标准。图1 单细胞测序技术应用范围示意图[3]A:单细胞基因组测序应用范围;B:单细胞转录组测序应用范围;C:单细胞DNA甲基化测序应用范围;为什么要做单细胞测序呢?多细胞生物在细胞的分裂和分化过程中必然会带来不同细胞间的差异,形成遗传信息的异质性。传统的检测方法获得的信息来自于数百万甚至更多细胞的混合样本,因此得到的结果反映的是一群细胞中信号的平均值,或者只代表其中占优势数量的细胞信息,导致不同细胞间异质性信息被忽视。而单细胞测序可以检测单个细胞异质性、识别稀有细胞、揭示细胞间差异情况。[4]图2 单细胞测序(上)与传统混合细胞测序(下)对比示意图单细胞测序技术发展2009年汤富酬等完成首例哺乳动物单细胞RNA转录组测序后,单细胞测序经历了十几年突飞猛进的发展,同时,随着测序技术的更新迭代,各厂商基于不同检测原理开发出的单细胞分析系统不断推陈出新,单细胞测序逐渐实现了从低通量到高通量检测的转变。2017年“人类细胞图谱计划(Human Cell Atlas,HCA)”的正式公布,是高通量单细胞研究产业化的重要里程碑。图3 单细胞研究发展重大历程[5]单细胞测序技术流程最初单细胞测序是采用不同方法将单个细胞分离出来,独立构建成文库进行测序。但此法分离细胞通量低(仅检测数十个细胞且不足以反应真实情况)且成本较高。随着测序技术的发展,出现了基于标签(barcode)的单细胞识别技术,即不需要分离单个细胞,仅需对每个细胞加上单独的标签序列,通过一次建库测序即可,此方法使得单细胞测序进入了高通量时代,单细胞分离和测序的成本大大降低。与传统混合细胞测序不同的是,单细胞测序起始样本中核酸含量极低,需要对筛选出的细胞扩增后才能满足后期测序实验,目标是在尽量减少序列扩增偏差的前提下增加核酸总量利于后续分析。单细胞测序技术操作流程包括:样本细胞筛选、核酸提取及扩增、测序文库构建、测序和数据分析。图4 单细胞测序(上)与传统混合细胞测序(下)技术流程对比示意图参考文献[1] Tammela,Tuomas Sage,Julien (2020). "Investigating Tumor Heterogeneity in Mouse Models". Annual Review of Cancer Biology. 4(1):99–119.doi:10.1146/annurev-cancerbio-030419-033413.[2] Zemach A, McDaniel IE, Silva P, Zilberman D (May 2010). "Genome-wide evolutionary analysis of eukaryotic DNA methylation". Science. 328 (5980): 916-9. Bibcode:2010Sci...328..916Z. doi:10.1126/science.1186366. [3] Jialong Liang , Wanshi Cai , Zhongsheng Sun.Single-Cell Sequencing Technologies: Current and Future[J].Journal of Genetics and Genomics 41 (2014) 513-528[4] Eberwine J, Sul JY, Bartfai T, Kim J ,The promise of single-cell sequencing[J]. Nature Methods. 2014,11 (1): 25–7. doi:10.1038/nmeth.2769[5] 基因慧《2020单细胞行研报告》
  • 单细胞转录组测序的最新进展盘点
    单细胞转录组分析(scRNA-seq)尽管是一项相当年轻的技术,但商业化的scRNA-seq平台正在不断涌现,而生物信息学方案也越来越多。现在就让我们来盘点一下最新的研究进展。 SPLiT-seq:成本低至一美分 艾伦脑科学研究所的副主任Bosiljka Tasic指出,全基因组的单细胞分析目前很受欢迎。它让人们了解整个系统中的单个组分,也就是单细胞。与PCR和原位杂交等技术不同,全基因组分析无偏向地告知了细胞正在表达什么,而不需要你去选择分析什么。 现在有许多平台和技术可用于制备测序用的单细胞RNA。这些技术大体是在微孔板的各个孔中分离单个细胞,或者使用微滴来充当单个细胞的反应室。无论采用哪种方式,Tasic认为关键是在分析的某个时刻将细胞分离并添加条形码,这样才能将RNA序列分配到它们当初来源的那个细胞。 Bosiljka Tasic联合华盛顿大学的Georg Seelig团队开发出一种称为SPLiT-seq的技术,其中细胞本身作为反应室。这种技术将细胞或细胞核固定,以便捕获RNA,不过洗涤试剂可以进进出出。通过一系列合并和分离的步骤,它开展逆转录并连接条形码标签,最终进行裂解和PCR(使用条形码引物)。 SPLiT-seq技术于今年3月发表在《Science》杂志上。据Tasic介绍,这是一种低成本的技术,每个细胞的建库成本低至一美分(约合人民币七分钱),大大降低了实验室开展单细胞分析的门槛。“真正强大的是它几乎无需任何特殊仪器,”Tasic补充说。 研究团队利用SPLiT-seq技术对出生后第2天和第11天小鼠大脑和脊髓组织的细胞核进行分析。他们成功地鉴定出100多种细胞类型,其基因表达模式与细胞功能、区域特异性和分化阶段相对应。这些数据可用于创建基因表达图谱,与艾伦研究所的其他参考图谱互补。snDrop-seq:单核RNA测序 加州大学圣地亚哥分校的张鹍(Kun Zhang)团队则关注人体组织的单细胞分析。“你需要将细胞彼此分离,才能开展各种单细胞分析,”他说。不过,大脑组织很难解离,“这就使结果存在很大的偏向性,因为有些细胞分离,而有些细胞则彼此相连。相比之下,提取完整的细胞核则相对简单”。 他们采用了一种经过改进的snDrop-seq方案,希望破坏微滴中的核膜,并尽量避免RNA降解。“常规的Drop-seq或10X Genomics方案不行,因为膜不会破裂,”张鹍解释说。目前有几种方法可以完成这项任务,比如改变微流体芯片,让核膜在机械力作用下分解。“我们实际上提高了温度来破坏核膜。” 他们同时开展了snDrop-seq和scTHS-seq,后者为染色质开放性检测。“这使得我们能够在RNA水平和染色质水平上比较这些单细胞,”张鹍指出。他们能够重建各种脑细胞的表观遗传图谱,并利用单细胞多组学方法将风险因素与特定的细胞类型相关联,了解神经元、小胶质细胞和少突胶质细胞对阿尔茨海默病、自闭症或精神分裂症等病的贡献。Smart-seq2:处理少量样本 Wellcome Sanger研究所的Adam Reid及其同事想要了解疟疾生命周期中的遗传控制。 通过测序不同步的单细胞并分析转录组,他们发现寄生虫阶段的发育实际上有很大的变化。“如果对大量RNA进行测序,这一点并不明显,”研究人员谈道。 他们对低通量的Smart-seq2方案进行了修改,目标是分析每个阶段的100个细胞。 Reid表示,与高通量的10X Genomics或Drop-seq平台相比,“你可以获得更多关于哪些基因表达以及表达丰度如何的信息”。 引起疟疾的疟原虫非常小,含有极少量的RNA,并且基因组偏向性非常明显,GC含量 低至20%,而哺乳动物大约是35-40%。因此,建库的试剂往往不能很好地发挥作用,不过通过增加PCR循环次数和尝试不同的酶,研究人员还是很好地解决了这一问题。生物信息学工具:ASAP 人们也许会对scRNA-seq望而却步,因为需要购买复杂的仪器和掌握生物信息学流程。有时,生物学家和信息学家之间的沟通“非常糟”,瑞士生物信息学研究所的负责人Bart Deplancke回忆说。在准备开展脂肪组织的单细胞转录组学研究时,他们有许多数据集需要处理,却发现其合作者往往无法开展。 于是,他们着手安排合作,让两类研究人员能以更直观的方式观察和处理数据。他们开发出一个名为Automated Single-cell Analysis Pipeline(ASAP)的平台。这是一个基于Web的完整流程,提供了标准工具,包括过滤、降维、聚类、差异表达和功能富集。它能够与各种数据库交互,并以2D或3D显示结果。“对于每个步骤,我们都提供了基本教程,它将告诉你每种分析工具能做什么,”Deplancke说。 他指出,“即使是生物信息学家也很喜欢用,因为它能够快速处理和查看数据。然后他们与生物学家一起观察数据,提出一些新的假设,并通过实验或计算手段来进一步证明它。”
  • 流式进展|清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统
    原标题:清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统——01——研究背景单细胞质谱检测技术为单细胞化学特性分析提供了一种强有力的免标记分析手段,并在癌症分析、药物刺激、免疫分析等临床应用中展现出潜在价值。然而单细胞质谱往往需要进行必要的预处理操作,如将目标细胞从混合细胞群体样本中分离出来以提高质谱检测的准确性;除盐操作去除细胞常见缓冲液中的非挥发性盐,降低基质效应提高质谱检测灵敏度。目前这些预处理往往是通过多种设备或手动操作完成,效率较低;开发有效的一步式预处理方法对于单细胞质谱分析意义重大,但目前这方面的研究较为缺乏。为此,清华大学的王文会教授团队提出一种基于阻抗流式细胞术IFC的“一步式”分选除盐质谱预处理系统,经过处理的细胞样本可直接兼容现有的免标记质谱流式、液滴微萃取等单细胞质谱分析手段。研究工作以“Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single Cell Mass Spectrometry”为题发表在期刊Small上,并被选为Frontispiece。本工作基于IFC原理设计微流控芯片结构,结合压电驱动实现一步式单细胞分选除盐操作,将目标细胞从细胞群中分离出来的同时实现其外基质的置换。经实验验证,系统的分选效率99%、除盐效率99%,并被证实了在癌细胞和血细胞的分离、癌变细胞与正常细胞的分离与质谱检测方面的功能。图1. 基于阻抗流式细胞术的“一步式”分选除盐质谱预处理系统示意图——02——研究内容本工作中搭建了具有四层结构的微流控芯片,如图1所示。利用IFC进行细胞的电学及尺寸特性表征实现不同细胞的识别,待其流经分选区域时由压电执行单元对目标细胞进行分选,通过合适的流速配比,执行单元将目标细胞推至作为下鞘液的质谱兼容的挥发性盐溶液中,同时实现样本的分选与除盐。芯片采用两套电极,其中第1套用于单细胞电学表征,第2套用于表征确认除盐效率。图2. 微流控芯片结构及其工作流程示意图以商用均一性较好的6 μm和10 μm直径的PS微球对系统的分选效率进行了表征。在约9000个样本的实验中,系统展现出了99.53%的分选成功率,同时样本中的10 μm微球纯度由2.48%提升至92.23%,实现了约37倍的富集效率,如图3所示。此外在模拟血液中CTCs分离的实验中,在HeLa癌细胞与人体外周血单核细胞PBMC的混合样本中分选出HeLa细胞,其纯度由15.78% 提升至87.34%,展示出巨大的临床应用潜能。图3. 微流控系统的分选性能评估从定量的角度,以270 mM NaCl溶液作为样本液、去离子水作为下鞘液为例验证了系统的除盐效率,单次分选操作引入的NaCl物质的量仅为0.77±0.16 pMol,即使在300 cells/s的分选通量下除盐效率也能够达到99.62%;同时在实际的细胞样本测试中可以看出,未经除盐的样本信号被完全淹没,而经过该系统除盐后的能够清晰分辨单细胞的典型代谢与脂质峰,证实了系统优秀的除盐性能。图4. 微流控系统的除盐性能评估该系统进一步用于正常乳腺上皮细胞MCF-10A和癌变的乳腺癌细胞MDA-MB-468的分选与检测。通过双频点的锁相检测,分别表征了两类细胞的电学特性,并据此进行了分选操作,结果表明MCF-10A细胞的纯度由 10.64% 提升至77.78%,展现出了约7.31 倍的富集效率。此外将收集到的细胞样本直接与免标记质谱流式装置级联实验,同时表征了两类细胞的代谢特征,结果表明,部分显著差异表达的代谢和脂质可能是致使细胞电学特性差异的原因,充分验证了系统在多模表征与临床分析中的应用价值。图5. 正常细胞与癌变细胞的电学与代谢特性表征分析——03——总结展望本工作提出的基于IFC的一步法单细胞样品质谱预处理方法极大地方便单细胞质谱分析,突破了复杂操作和不必要的损耗。作为一个独立的样品制备模块,本微流控系统能够兼容多种质谱分析方法,为高效的质谱样品制备提供新的范式,进而为单细胞的多模态(如电学特性、代谢特征)表征提供新的思路。论文信息Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry ;Junwen Zhu, Siyuan Pan, Huichao Chai, Peng Zhao, Yongxiang Feng, Zhen Cheng, Sichun Zhang, Wenhui Wang * (王文会,清华大学);Small, 2024, https://doi.org/10.1002/smll.202310700作者简介本工作的完成单位为清华大学精密仪器系、精密测试技术与仪器全国重点实验室。精仪系王文会教授为通讯作者,精仪系博士研究生朱焌文为第一作者。清华大学张四纯教授、程振助理研究员、清华大学博士生潘思远、柴惠超、赵鹏、丰泳翔为论文工作做出了重要贡献。本研究得到了国家自然科学基金的资助。【相关阅读】有望提高2个数量级微流控介电泳分离通量!清华大学王文会Advanced Materials封面成果速递https://www.instrument.com.cn/news/20240604/722338.shtml 3i流式KOL|清华大学王文会教授团队在阻抗流式细胞术上取得系列进展https://www.instrument.com.cn/news/20231030/689623.shtml
  • 星赛生物携手墨卓生物战略合作|共聚单细胞技术应用
    仪器信息网讯 2023年2月17日,青岛星赛生物科技有限公司(以下简称“星赛生物”)与墨卓生物科技(浙江)有限公司(以下简称“墨卓生物”)宣布达成战略合作,在墨卓生物总部举办了战略合作签约仪式,双方将基于各自在单细胞多组学领域的技术优势,共同创新开发及推广基于单细胞技术的产品和应用,推动单细胞相关技术在科研、临床、微生物等方向上的广泛应用。星赛生物联合创始人兼董事长马波研究员和墨卓生物创始人兼COO刘寒博士分别代表双方签署战略合作协议,星赛生物联合创始人徐健研究员、墨卓生物创始人兼CTO郑文山博士、墨卓生物销售总监徐亚骏、墨卓生物医学总监严青博士共同见证了本次签约仪式。墨卓生物创始人兼COO刘寒博士表示:非常高兴此次能与星赛生物达成战略合作,星赛生物创新的开发了基于“拉曼组”的检测平台,大大提高当前单细胞多组学数据的价值和效率其独特的单细胞拉曼耦合测序技术(scRACS-Seq)、单细胞拉曼耦合培养技术(scRACS-Culture)、通量流式拉曼分析和分选技术(FlowRACS),实现了单细胞代谢功能的“先筛后养”,对于人体、动植物和微生物组的机制解析和资源挖掘,具有重大的价值。墨卓生物与星赛生物的强强联合必将加强挖掘单细胞相关技术深度,扩宽单细胞市场的广度,期待一同为构建单细胞产业生态系统,做出重要的、深远的贡献。星赛生物联合创始人兼董事长马波研究员表示:墨卓生物具备深厚的微流控和单细胞技术积淀,不断深耕技术,赋能产品,开发具有高性价比的一站式的高通量单细胞多组学测序解决方案。同时也给市场提供了针对微生物单细胞测序的优秀产品MobiMicrobe,这与星赛生物的坚持原创,不断创新的理念不谋而合。本次战略合作将利用星赛产品在拉曼组解析和单细胞拉曼分选上的领先优势,结合墨卓产品在高通量基因组与转录组测序上强大的创新能力,联合建立“代谢功能靶向性的高通量单细胞多组学”仪器体系与系统解决方案。关于墨卓生物创新驱动、卓鉴未来,墨卓生物创立于美国波士顿,落地中国浙江,汇集了由国际一流科学家和跨国医疗器械公司高管等组成的一批优秀人才。墨卓致力于用创新微流控和单细胞测序技术赋能科学研究与精准医疗。目前已经成为拥有微流控、测序、生化、硬件开发、生信等关键技术,推出单细胞测序与数字PCR双技术平台,在液体活检、伴随诊断、生命科学研究等多领域并行发展的科研+IVD解决方案领跑者。关于星赛生物星赛生物(Single-cell Biotech. Co., Ltd.)专注于单细胞维度医疗器械与科学仪器的研发与产业化。致力于在单个细胞(微生物、人体、动植物)的精度构建代谢功能和基因组之间的关联,着力打造国产高精尖生命科学仪器品牌,竭诚为客户提供原创、一体化、全方位的“单细胞代谢成像-分选-测序-培养”解决方案。开发的基于拉曼组、元拉曼组、RAGE、pDEP-RADS等新原理和原创部件,克服了单个细菌细胞之拉曼分离可靠性低、核酸扩增容易污染、全基因组测序覆盖度不均等关键技术难点,开发首台“单细胞拉曼分选-测序耦合系统”(RACS-Seq®),实现了菌群单细胞功能检测、分选、测序与培养之完整流程的仪器化。针对微生物感染药敏性快检这一临床紧迫需求,开发“临床单细胞拉曼药敏快检仪”(CAST-R™),实现了临床样品出发3小时微生物鉴定和药敏性表型定量测定,以及拉曼分选后单个临床耐药大肠杆菌细胞的测序(90%基因组覆盖度)和培养,目前已经进入医院检验科应用示范。此外,我们还推出了高通量流式拉曼分选仪(FlowRACS®),可对流动状态的活体细胞进行非标记式、单细胞精度、高通量分选,拉曼全谱分选通量国际领先(500 cells/min);单细胞微液滴分选系统(EasySort®),可开展保持样品原位状态的活性单细胞精准分选,实现样品单细胞观测监测、捕获操纵、分离提取等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制