当前位置: 仪器信息网 > 行业主题 > >

单通道太赫兹频域仪

仪器信息网单通道太赫兹频域仪专题为您提供2024年最新单通道太赫兹频域仪价格报价、厂家品牌的相关信息, 包括单通道太赫兹频域仪参数、型号等,不管是国产,还是进口品牌的单通道太赫兹频域仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单通道太赫兹频域仪相关的耗材配件、试剂标物,还有单通道太赫兹频域仪相关的最新资讯、资料,以及单通道太赫兹频域仪相关的解决方案。

单通道太赫兹频域仪相关的资讯

  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。  激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。  在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。  飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。  谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。  太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。  邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 2023年全球太赫兹组件和系统市场将达4.15亿美元
    Transparency Market Research最近的一份市场研究报告显示, 2014年,全球太赫兹组件和系统的市场规模为5600万美元,预计2023年该市场将达4.15亿美元,2015年-2023年之间复合年增长率为25.9%。  太赫兹技术在各种工业过程控制监控和质量控制过程中的应用等将刺激全球市场需求的增长。此外, 太赫兹设备在研究实验室中应用的增加也是推动这一市场增长的主要因素。太赫兹技术的进步和太赫兹组件在非破坏性测试和医学成像方面日益增长的使用等都将有望推动该市场的增长。  从组件方面来说,该市场可以划分为太赫兹源、太赫兹探测器等。截至2014年,太赫兹源占据最大的市场份额。不同应用领域中对高性能太赫兹源不断增长的需求正在推动这部分市场的增长 在系统方面,该市场可以划分为太赫兹光谱、太赫兹雷达和太赫兹遥感。此外,基于光谱学的系统还可以进一步被划分为时域光谱、频域光谱和成像扫描。截至2014年,光谱学系统占据最大的市场份额 在应用方面,该市场可以划分为工业过程控制、研究实验室应用、医学成像、非破坏性测试等。截至2014年,非破坏性测试是最具吸引力的部分,其次是在研究实验室的应用。2014年,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场份额 从地理位置上来说,截至2014年,北美市场占最大的份额。太赫兹技术在生物学和医学科学中应用的增加是推动市场增长的一个因素。此外,过程改进中对材料的检查和测试是太赫兹技术在欧洲和亚太地区的主要应用领域。  这个市场的一些主要厂商有Advantest Corporation (日本),Digital Barriers PLC (英国),Applied Research & Photonics(美国),EMCORE(美国),Teraview(英国),Bruker(美国),M Squared Lasers (英国),NEC(日本),Menlo Systems GmbH (德国),Techcomp Group (香港),Bridge12 Technologies(美国)和Microtech Instruments (美国)等。
  • EMCORE推出便携式太赫兹光谱仪PB7200
    2011年底,EMCORE公司推出最新PB7200便携式频域太赫兹光谱仪。此光谱仪是为那些需要在太赫兹频段以高分辨率研究物质特性的太赫兹研究者和应用开发者设计的。这项技术的主要应用在于炸药的识别和勘测以及对物质的无损检验。  EMCORE公司声称PB7200是第一个真正意义上能在100GHz到2.0THz以上频率范围内实现单一快速检测有着高频分辨率的经济的太赫兹系统,并采用了精确的隧道化,光纤连接的拥有先进光混合器做信号发生和检测的半导体激光器。除此之外,PB7200还集成了精密的数字控制硬件和软件,用来提供一个完全便携的太赫兹光谱仪。  “PB7200代表了太赫兹技术领域的最新突破,因为它在同类系统一半价格的基础上有着卓越的表现。它可以支持单频或者宽频范围内特殊光谱域内不同分辨率的工作。多用性使得它成为众多应用的有效工具。”EMCORE公司高级光学部门的Joseph Demers博士说道。
  • 2012年全球实验室太赫兹光谱市场约2000万美元
    太赫兹光谱的特性使其可以应用在各种行业,并且目前许多大公司已经在应用该技术。新竞争者的加入和技术本身的快速发展预示着其已经成长为分子光谱市场的一个主要部分。  太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。  在实验室应用方面,太赫兹光谱技术快速地被大公司采用进行质量分析和产品开发。英特尔公司采用该技术验证它在半导体和电子工业的实用性。许多大型制药公司正在使用该技术用于固体制剂的开发和QA&ndash QC。在临床和医学应用方面,太赫兹光谱也有显著的尝试,尽管其中许多工作目前还处于实验室研究阶段。  2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。2012年实验室太赫兹光谱需求的行业分布  半导体、电子产品、纳米技术行业所占份额最大,达25%;其次是制药行业,为23%;位于第三位的是学术研究领域,为21%;其他应用太赫兹光谱较多的领域还有临床和医学领域14%,政府机构为11%,还有6%的份额为其他行业分享。编译:刘丰秋
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 工物系唐传祥、颜立新课题组在太赫兹电子束研究中取得重要进展
    太赫兹(THz,1012Hz)是频率介于微波与红外之间的电磁波辐射,在基础科学和应用领域有重大需求。在需求最迫切的1-10THz频段,电子学和光学方法尚难以产生高功率、窄带宽且连续可调谐的THz辐射,因而被科学界称为“THz间隙”难题。加速器电子束可以通过多种机制产生高功率THz辐射。不考虑横向影响,当电子束长度远大于辐射波长时,电子束辐射不相干,辐射功率与电子数目成正比;而当电子束长度显著小于辐射波长时,束团电子的辐射场可相干叠加,此时辐射功率与电子数目平方成正比,远强于非相干辐射。如产生1THz的强相干辐射,需要大电荷量(如1nC)电子束长度显著小于1ps。由于空间电荷排斥力和束流传输非线性,大电荷量电子束难以压缩到足够短的长度,导致其产生的THz辐射功率和可调范围受到很大限制。因此,现有的加速器THz辐射用户装置通常采用较长的电子束(~ps量级),且工作在低增益模式,利用约束在谐振腔内的THz辐射在磁铁的扭摆下与高重频(几十MHz)电子束相互作用实现功率放大,造价较高且不易维护,很难在单条束线上实现1-10THz连续可调谐的高功率THz辐射。近十余年来,学术界开始探索电子束纵向整形或预聚束方法,试图跨越电子束辐射的低增益阶段,直接产生高功率相干THz超辐射。其中,电子束被纵向整形为具有周期性密度尖峰的电子微束团串,若其周期与辐射波长相同,则在磁铁的扭摆作用下,这些微束团的辐射也会相干叠加,从而产生相干超辐射。与单个超短束团不同,电子微束团串的辐射频谱集中在电子束密度调制频率及其谐波处,为窄带相干辐射。此时,辐射功率与电子数目和聚束因子(电子束纵向分布的傅里叶变换)都成平方正比关系。但这种可调THz微束团串的产生具有极大挑战,成为近年来领域研究热点。国际上多个知名加速器实验室开展了深入研究,在《物理评论快报》(Physical Review Letters)期刊上发表了近10篇研究论文。但迄今实现的电子微束团串频率调节范围仍十分有限。近日,清华大学工程物理系唐传祥、颜立新课题组在《自然光子学》(Nature Photonics)期刊上在线发表了国际首个覆盖“THz间隙”的电子束实验验证结果,首次产生了1-10THz宽频域范围连续可调的高聚束因子电子微束团串,解决了本领域长期存在的难题,为新型高功率可调窄带太赫兹辐射光源发展及应用铺平了道路。在该课题组近期提出的方案中,通过控制电子束自身的空间电荷力,可在1-10THz宽频域范围获得高聚束因子的可调电子微束团串,从而可直接产生覆盖“THz间隙”的高功率的THz超辐射。该方法通过驱动激光整形在加速器光阴极处产生具有初始密度调制的电子束,结合非线性空间电荷振荡在电子枪出口处产生周期性电流尖峰。在下游传输中,周期电流尖峰的空间电荷力作用于电子束自身,产生准线性的能量调制,进一步经色散段可转化为尖峰密度调制。调节加速管相位,给电子束施加不同的能量啁啾,经压缩可改变微束团间距,从而实现电子微束团串宽频域可调。该方案在清华大学加速器实验室获得了验证,首次成功产生了1-10THz连续可调谐的电子微束团串,聚束因子达到了创纪录的0.35。进一步模拟表明,利用1nC电荷量的该电子束经过3米长波荡器,可在1-10THz产生百μJ量级连续可调谐的窄带THz辐射。方案仅通过控制束流聚焦,无需增加额外调控器件,十分简单有效,且不受重复频率限制,因而可发展高平均功率窄带THz源。这是国际首个经实验验证的覆盖1-10THz的电子束产生方法,提供了有效解决“THz间隙”难题的紧凑加速器光源方案。电子束团串的实验产生(a)半周期非线性空间电荷振荡后的电子束密度分布和空间电荷力(b)实验束线,包括光阴极电子枪、加速管、磁压缩器、电子束和THz诊断设备(c)(d)关闭和开启磁压缩器测量的电子束纵向相空间(e)未通过偏转磁铁测量的电子束纵向分布。相关研究成果以“可辐射1-10THz高功率窄带太赫兹的宽频域可调电子束团串”(Widely tunable electron bunch trains for the generation of high-power narrow-band 1-10 THz radiation)为题在线发表于《自然光子学》(Nature Photonics)期刊。该工作通讯作者为工物系副教授颜立新,第一作者为工物系2016级博士生梁一凡,现就职于深圳综合粒子设施研究院。合作者有唐传祥教授、杜应超副教授、李任恺教授、施嘉儒副教授、程诚副研究员、黄文会教授和刘卓辕、田其立、李彤、林显彩等博士生。该工作得到了国家自然科学基金重点项目的支持。
  • 太赫兹技术在澳门海关“大显神通”,现在有个免费了解太赫兹的机会,赶紧来!
    近日,澳门海关利用太赫兹人体成像安检系统,以非入侵的检查方式,于关闸口岸截获多宗以隐藏方式偷运香烟入境个案,合共检获3,800支未完税香烟,海关已依法对涉案人员作出起诉。12月18日及19日,澳门海关于关闸口岸查获3起利用身体及随身背包作掩饰偷运未完税香烟个案,合共检获2,200支未完税香烟,涉案人士企图以隐藏方式蒙混过关,将香烟偷运入澳,最终被海关查获。针对有关情况,海关透过资料分析,加强关检执法力度,堵截私烟流入本澳。随后,于12月24日及25日,澳门海关再次透过太赫兹人体成像安检系统及X光机设备协助下,于上述同一口岸分别截获2名入境本澳人士,将香烟藏于身上、随身行李及手提汤壶藏香烟等方式,企图规避海关检查,2宗案件合共检获1,600支未完税香烟。想从原理到应用,系统地了解“太赫兹”吗?现在机会来了!会议介绍2021年1月5-6日(周二、周三),中国仪器仪表学会光学仪器分会、中国光学学会工程光学专委会、上海理工大学及仪器信息网将联合举办“太赫兹前沿进展国际交流论坛2021”网络会议。同时,本次会议也受到了庄松林院士的大力支持。会议围绕太赫兹光谱核心器件研发与应用进展,邀请国内外太赫兹领域的科研工作者、相关领域厂商研发及应用专家,聚焦太赫兹光谱研发、应用及技术转化的最新前沿进展。点击图片报名报名通道扫描下方二维码会议日程点击查看大图参会嘉宾(按报告时间排序)点击查看大图— END —
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。  仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。  太赫兹光电子学省部共建教育部重点实验室  首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。  目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。  本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。  山东科技大学太赫兹技术研究中心  山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。  目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。  主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。  超快光电子与太赫兹技术实验室  超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。  实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。  实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。  中国计量学院太赫兹技术与应用研究所  中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。  现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。  主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。  中科院太赫兹固态技术重点实验室  2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。  实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。  中物院太赫兹科学技术研究中心  2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。  中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。  此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。  研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 校园招聘 I 青岛盛瀚-青岛青源峰达太赫兹科技有限公司
    面对当下内卷的就业环境,这届年轻人开启了“找工作不看钱看什么”的人间清醒模式。那对于应届生同学来讲,想要一份高薪工作,投递什么岗位才合适呢? 目前我国正在大力发展高技术制造、新能源等产业,这些行业目前缺乏高技术人才,具备薪酬优势。机械工程、材料科学与工程、电子科学与技术,生物,化学,环境,材料,食品等业有机会进入高薪行业。 近期小编整理了一些理科工科好岗必投企业~欢迎大家来投递。 今日主推青岛盛澣关联公司【青岛青源峰达太赫兹科技有限公司】。 青岛青源峰达太赫兹科技有限公司由中国工程物理研究院流体物理研究所与青岛盛瀚色谱技术有限公司共同组建,属于国家级高新技术企业。青岛盛瀚色谱技术有限公司专业从事离子色谱仪及其核心部件的研发、 生产、销售和技术服务,在离子色谱细分领域国内仪器占有率 50%以上,产品远销世界 60 多个国家和地区,并建有面向仪器产业配套的公共服务平台,在仪器产业化领域具有深厚的积累。 青源峰达太赫兹科技有限公司高度重视研发工作,建有绵阳技术研发中心和青岛产品研发中心,汇聚海内外专业人才,硕、博士学历占比 90%以上,具备太赫兹基础技术、集成技术和应用技术的设计、研发能力。青岛青源峰达太赫兹科技有限公司成立以来以太赫兹相关技术研发为核心,积极与外部机构开展合作,现为“中国工程物理研究院博士定向委培单位”、“中物院流体物理研究所博士生实践基地”、“青岛市太赫兹光谱成像专家工作站”、“山东省计量测试学会会员单位”、“青岛大学产学研合作基地”以及“海洋观测与宽带通信技术协同创新中心”。 通过与外部科研机构的广泛合作,青源峰达公司已形成了立足太赫兹技术和产品研发,辐射其他波段光电产品研发能力的综合研发平台。公司已顺利完成高精度太赫兹时域光谱系统、快速太赫兹时域光谱系统、太赫兹三维层析成像系统等三款太赫兹系统的成果转化,并随后相继推出了太赫兹时域光谱教研系统、高速太赫兹时域光谱系统以及自动随形太赫兹无损检测系统三款新产品。在实现太赫兹光谱及成像系统产品化基础上,开展了高精度光纤延迟线、快速光纤延迟线、太赫兹源和探测器、飞秒激光器、集成太赫兹镜头、高精度二维扫描平台、样品仓单元、信号采集和处理单元、锁相放大器等核心部件的开发工作,是国内少数具备全链条太赫兹核心部件自主研发和生产能力的企业之一。 【岗位需求 1:光学工程师】 岗位职责:1.光学零件(透镜、棱镜、反射镜、光栅等)的仿真;2.光学零件(同上)的公差分析、图纸绘制、加工厂家寻找;3.光学零件的测试与验收;4.根据公司产品与研发需要,设计透射光路、反射光路和分光光路等;5.对设计的光路或系统进行仿真、分析与加工等;6.对设计的光路或者系统进行装调、实验与验收等。任职要求:1.光电工程、精密仪器、仪器仪表、测控技术与仪器等相关专业;2.精通 zemax 或 code v;SolidWorks 或者 CAD,Tracepro3.熟悉几何光学、光谱测量等基本原理;4.主导或参与过光谱仪或者紫外检测器或者荧光检测器全过程者优先考虑;5.硕士及以上学历。【岗位需求2:应用研发工程师】 岗位职责:1、调研行业应用需求,并做相关技术验证,就新应用场景制定全方位解决方案;2、客户现场考察,技术交流等,针对客户需求不断改进应用方案;3、产品整机及应用端测试与改进。任职条件:1.硕士及以上学历,光学、太赫兹、光电子等相关专业,了解光纤光学、光电探测原理;2、熟悉各种光纤光学仪器、器件,有光学系统搭建、调试与系统应用测试经验;3、协助销售开拓新的应用市场4、具有行业应用调研、开发经验优先考虑;5、具有 MATLAB,python,SolidWorks 等多种专业软件操作及数据挖掘能力。【岗位需求3:算法工程师】岗位职责:1.研究太赫兹前沿算法论文与代码复现2.熟悉机器学习与深度学习算法及原理3.之前熟悉python、matlab 、C++中任意两种编程语言任职条件:1.物理学、数学等理科背景优先考虑,接收应届硕士毕业生。【岗位需求4:FPGA工程师】岗位职责:1、FPGA的项目需求分析,任务书、概要设计、详细设计等开发文档的编写;2、负责根据系统设计要求进行FPGA代码的设计、验证与测试、维护;3、配合软硬件工程师进行产品设计过程中的软硬件联调和验证;任职条件:1、通信、信号与信息处理、计算机、电子技术及自动化等相关专业;2、有丰富FPGA设计经验,熟悉主流厂家芯片、国产FPGA芯片系列和开发工具;3、熟悉相关语言,能独立进行FPGA时序设计/分析/仿真;4、熟悉相关通信接口;5、熟悉DDR、PCIe、1000Basex、高速serdes等常用接口者优先录用。6、能够读懂原理图,有一定的硬件电路基础。 【联系方式】应聘公司:青源峰达太赫兹科技有限公司公司地址:山东省青岛市崂山区澳柯玛智慧产业园2号楼3层联系人:人力资源经理 王先生简历投递通道:https://www.instrument.com.cn/job/activity/toSoleIndex?id=143成立20周年,聚焦科学仪器行业&检验检测行业的,行业专属垂直招聘平台,让找工作变轻松。轻松选公司,每家都和行业相关专注于服务仪器厂商/代理商,检测机构,科研院所/高校,工业企业,学会/协会,政府机构等组织。轻松选职位,每个都和专业相关专注于提供真实有效的行业专属职位,覆盖高级管理,市场营销,技术研发,售前售后,检测分析,科研学术等就业机会。行业精英内推通道,欢迎联系“仪小才”,加微信rencaizhaopin1717。
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。  据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。  自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。  经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。  目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。  据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style="text-indent: 2em text-align: justify "strong仪器信息网讯 /strongspan style="text-indent: 2em "太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。/span/pp style="text-align: justify text-indent: 2em "太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。/pp style="text-align: justify text-indent: 2em "国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title="会议照片.jpg" alt="会议照片.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "会议现场/strong/pp style="text-align: justify text-indent: 2em "在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。/pp style="text-align: justify text-indent: 2em "会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title="刘海瑞.jpg" alt="刘海瑞.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "毫米波太赫兹产业发展联盟秘书长 刘海瑞/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-indent: 2em text-align: justify "随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title="揭牌.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌.jpg"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title="揭牌2.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌2.jpg"//pp style="text-indent: 0em text-align: center "strong揭牌仪式/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title="lingjiang .jpg" width="600" height="400" border="0" vspace="0" alt="lingjiang .jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong颁发理事单位牌匾/strong/pp style="text-indent: 2em text-align: justify "天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title="院长.jpg" alt="院长.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "天津大学精密仪器与光电子工程学院 院长 曾周末/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title="hemingxia.jpg" width="600" height="400" border="0" vspace="0" alt="hemingxia.jpg"//ppbr//pp style="text-align: center text-indent: 0em "strong赫兹光谱与测试工作组组长、天津大学 教授 何明霞/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title="张存林.jpg" width="600" height="400" border="0" vspace="0" alt="张存林.jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong首都师范大学 教授 张存林/strong/pp style="text-indent: 2em text-align: justify "大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title="年夫顺.jpg" alt="年夫顺.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国电子科技集团有限公司 首席科学家 年夫顺/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展/strong/pp style="text-align: justify text-indent: 2em "在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title="朱亦鸣.jpg" alt="朱亦鸣.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong上海理工大学 教授 朱亦鸣 /strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹波谱技术进展及其应用/strong/pp style="text-indent: 2em text-align: justify "太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title="黎华.jpg" alt="黎华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海微系统与信息技术研究所 研究员 黎华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:新型太赫兹激光光频梳及光谱应用/strong/pp style="text-indent: 2em text-align: justify "科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title="曲秋红.jpg" alt="曲秋红.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱检测应用研究及莱仪特检测平台/strong/pp style="text-indent: 2em text-align: justify "太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title="赵红卫.jpg" alt="赵红卫.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海高等研究院研究员 赵红卫/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱技术在生物化学中的应用研究/strong/pp style="text-indent: 2em text-align: justify "太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title="张彦华.jpg" alt="张彦华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:“蒲公英花开”——太赫兹谱数据共享平台/strong/pp style="text-indent: 2em text-align: justify "目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title="叶伟斌.jpg" alt="叶伟斌.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:测试太赫兹材料与器件电磁参数的技术与方法/strong/pp style="text-indent: 2em text-align: justify "毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title="邓玉强.jpg" alt="邓玉强.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院计量院 研究员 邓玉强/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹计量研究/strong/pp style="text-indent: 2em "太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title="heying.jpg" alt="heying.jpg"//pp style="text-align: center text-indent: 0em "strong全体与会代表合影/strongbr//p
  • 大恒科技牵头的国家重大仪器专项之太赫兹时域光谱仪开发通过验收
    3月13日,大恒新纪元科技股份有限公司(简称“大恒科技”)宣布,由公司牵头承担的国家重大科学仪器开发专项“基于飞秒激光的太赫兹时域光谱仪开发”项目进展顺利,进度和成果产出达到任务书要求的考核指标,顺利通过综合验收。“基于飞秒激光的太赫兹时域光谱仪开发”项目概述项目编号:2012YQ140005;项目组织单位:北京市科学技术委员会;项目牵头单位:大恒新纪元科技股份有限公司;项目第一技术支撑单位:首都师范大学;项目协作单位:北京大学、南京大学、中国科学院电子学研究所、上海理工大学、北京理工大学、清华大学、中国农业大学、北京农产品质量检测与农田环境检测技术研究中心、中央民族大学、北京中医药大学东直门医院、中国石油大学(北京)、东莞理工学院、中国科学院半导体研究所;项目起止年限:2012年10月至2017年9月;项目总体目标: 攻克太赫兹源、探测器等模块联用和集成关键技术,研发纳米金属薄膜宽频谱太赫兹源、Nb5N6超薄膜的室温太赫兹探测等关键部件,开发仪器操作平台软件与谱解析系统软件,通过系统集成和工程化开发,研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪;通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。该项目国家给予重大科学仪器设备开发专项资金人民币6,780万元,分阶段拨付,由牵头单位、第一技术支撑单位和协作单位共同使用。“基于飞秒激光的太赫兹时域光谱仪开发”项目验收情况该项目主要针对太赫兹时域光谱仪及各个关键模块进行了研究和开发,先后开发出具有自主知识产权的超快激光器、太赫兹源、太赫兹探测器等一系列核心产品,形成了四款各具特色的太赫兹时域光谱仪,打破了国外太赫兹技术在国内的价格垄断地位,具有较强的市场竞争力。目前太赫兹光谱仪已经在无损检测形成销售,该项目还在食品安全、民族医药、肾病检测、石油勘探、半导体材料等五个领域进行太赫兹的示范应用研究,进一步拓展了太赫兹时域光谱仪的应用,为太赫兹技术的产业化奠定了基础。关于大恒新纪元科技股份有限公司大恒科技于1998年12月14日注册成立,原名新纪元物产股份有限公司,1999年9月9 日更名为大恒新纪元科技股份有限公司;于2000 年11月29日在上海证券交易所上市(600288)。公司主营业务为光机电一体化产品、信息技术及办公自动化产品、数字电视网络编辑及播放系统、半导体元器件。据大恒科技业绩报告,2019年度实现营业收入33.06亿元,归属于上市公司股东的净利润7,308.76万元;2020上半年公司实现营业收入8.74亿元,实现归属于上市公司股东的净利润-2,201.73万元。
  • 我国太赫兹探测成像领域取得重大突破
    我国太赫兹探测成像领域取得重大突破  山东科学院自动化所研发出太赫兹探测成像仪  在好莱坞大片中,常常出现特种部队通过特种设备隔墙“看”到搜索目标的情景。日常生活中的很多时候,人们也希望自己的眼睛可以透视,能够“看”到被遮挡的另一侧的物体。如今,这种设想在我国正逐步成为现实。  记者从山东省科学院自动化研究所了解到,该所最近成功研制出一种特殊的仪器设备,能够让我们“看”到障碍物另一侧的状况。这一最新成果的达成,标志着我国超宽带与太赫兹探测成像领域取得重大突破,对于保障公共安全和国民经济发展具有重大意义。反恐防暴和人员救援的“好帮手”  5日,山东省科学院自动化研究所超宽带与太赫兹实验室内,一堵实验墙壁立于一台小巧的仪器和目标物之间。当工作人员打开该仪器时,神奇的一幕出现了仪器的显示屏上显示出该目标物的清晰轮廓和在房间内的相对位置 当物体移动时,显示屏上物体的图像也随之移动 当有人来到实验墙另一侧时,人的图像也会立刻呈现在屏幕上。  该研究所所长成巍告诉导报记者,这种神奇的仪器叫超宽带太赫兹探测成像仪(简称“太赫仪器”),可以透过墙壁“看”到屋内人员的分布和活动,以及混乱环境中的物体,可应用于反恐防暴斗争中犯罪分子的搜寻以及地震、塌方、火灾等灾害现场的人员救援等。  据介绍,太赫兹(即Terahertz,简写为 THz,1THz=1012Hz)泛指频率在0.1Thz至10THz波段内的电磁波,位于红外和微波之间。由于具有频率及空间分辨率很高、脉冲很短、时间分辨率很高、能量小不会对物质产生破坏作用等独特性能,在通信、雷达、无损检测等方面具有深远而重要的影响,因而被美国列为“改变未来世界的十大技术”之一。  在美国,太赫兹电磁波已经少部分用于机场人员的安检,物品安检则仍然使用X 光进行。  在现实生活中,人们熟悉的X光也具有透视功能,它与太赫兹电磁波有何不同呢?“X 光由于波长较短,光子能量较高,因而对人体照射会造成肌体不同程度的损伤,但太赫兹电磁波却不会造成任何损伤。”成巍说,由于光子能量较高,X 光穿透物体后难以反射成像,而太赫兹电磁波却不存在这一短板,因而可以将相关仪器做得更小,即使一个人也可以轻松携带,大大方便了人员使用。煤矿和航空航天安全的“保护神”  正是看到太赫兹技术广阔的应用前景,山东省科学院自动化研究所的研究团队制定了研发蓝图,在太赫兹的多个应用领域展开技术攻关。该团队从前文介绍的超宽带太赫兹探测成像仪起步,正在进一步研究应用于煤矿探测的太赫兹透射成像雷达和碳纤维复合材料无损检测装备等。  “每年我国瓦斯爆炸和突水引起的矿难事故严重威胁着人们的生命和财产安全。如果有一种仪器,能够穿透岩石、土壤和煤层,在煤矿开采时实时地预测到岩层后大量水和瓦斯的存在,将降低事故发生的概率。”成巍说,该研究所的太赫兹透射成像雷达研制成功后,将针对目前煤矿中导水裂隙进行探测,提供清晰图像,为煤矿的危险防治提供技术与设备支撑。  值得一提的是,随着碳纤维复合材料大量应用于飞机、卫星及运载火箭,采用新技术、新装备开展碳纤维复合材料的无损检测,对于保障我国航空航天的安全尤为重要。太赫兹成像技术在检测碳纤维复合材料内部缺陷方面,具有许多其他检测技术不具备的独特优势。通过对比材料的实物照片和相应方法重构的THz透射图像,能清晰地分辨出材料内部的情形,这样就可以提前检测出通过其他手段不易发现的内部缺陷和耗损,这将大大减少安全事故的发生。目前,该项技术已完成了前期调研和技术规划,进入研发阶段。  据了解,《国家“十二五”科学和技术发展规划》已将太赫兹技术列为“需求导向的重大科学问题”研究领域,并加大了资金支持。目前,山东省科学院自动化研究所的相关成果已经达到国际先进水平,必将为我省乃至我国在太赫兹技术领域的研究揭开新的一页。
  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。  太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。  由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。  为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。  课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 太赫兹技术在生物医学领域应用研讨会通知
    近年太赫兹技术受到广泛关注,其在生物医学工程领域的应用,如生化检测、医学成像诊断、生物组织检测等方向不断取得突破。为交流研讨太赫兹技术在生物医学领域应用最新进展,推动太赫兹仪器技术发展,中国仪器仪表学会将召开学科前沿沙龙系列活动——太赫兹技术在生物医学领域应用研讨会,邀请太赫兹领域的科学家、技术研发专家、应用领域专家就技术前沿、产业趋势和热点问题进行演讲和交流对话。主办单位:中国仪器仪表学会承办单位:中电科思仪科技股份有限公司     中国电子科技集团公司第四十一研究所     电子测试技术重点实验室     中国仪器仪表学会光学仪器分会会议日期:2023年9月19日报到,20-21日会议会议地点:中电科思仪科技股份有限公司(山东省青岛市黄岛区香江路98号)会议日程:9月19日 14:00—20:00 会议报到(世贸海悦大酒店)9月20日 09:00—17:00 会议召开9月21日 09:00—12:00 参观思仪科技大会报告嘉宾会议报名:会议费1000元/人,请扫描下方二维码进行报名缴费。报名截至日期:9月17日。对公转账信息开户名称:中国仪器仪表学会开 户 行:工行北京北新桥支行汇款账号:0200004309014464348备注:太赫兹研讨会+姓名联系人:齐琳(中电科思仪科技股份有限公司),13706306289,邮箱:qilin@ceyear.com张真(中国仪器仪表学会),13811973718,邮箱:zhangzhen@cis.org.cn
  • 太赫兹检测技术让毒品无处藏身
    如果没有搜查许可,一般难以打开封装的邮件进行检查,所以犯罪分子有时使用装在厚纸袋内的国际邮件来走私毒品和兴奋剂。日本研究人员日前开发出了一种太赫兹波检测仪,在不开封的情况下就能探测到邮件内的这类违禁品。  太赫兹波是一种波长介于红外线与微波之间的电磁波,能够穿透塑料制品、衣物和皮肤。  日本名古屋大学教授川濑晃道领导的研究小组发现,太赫兹波能够穿透国际邮件的封装纸,当它扫描到纸袋内的毒品和兴奋剂时,只有特定波长的太赫兹波被吸收。如果这种波遇到的是普通药物和食品,由于后者含有的成分更多,因此会有波长范围更广的太赫兹波被吸收。依据上述特征,检测人员就能发现毒品和兴奋剂的&ldquo 身影&rdquo 。  名古屋大学的研究小组通过提高太赫兹波的强度,制作出一种灵敏度很高的检测仪。其样机约为50厘米见方,能够将装在邮件厚纸袋内的20种毒品和兴奋剂与普通药物、食品区分开。除了违禁药物外,该检测仪还能探测出炸药,因而有望用于反恐。  这种检测仪的样机造价约为3000万日元(1日元约合0.06元人民币),研究小组准备将其成本降至目前的十分之一左右,在2至3年后达到实用化水平。
  • 香山科学会议呼吁加快太赫兹技术生物医学研究
    很多患者在医院检查病情时,需要做X光、CT、核磁共振等一系列检查。太赫兹(THz)波,一个尚未充分开发的电磁波段,或许将会改变这种状况。  4月8日&mdash 9日,在以&ldquo 太赫兹波在生物医学应用中的科学问题与前沿技术&rdquo 为主题的第488 次香山科学会议上,与会专家指出,由于太赫兹波具有反应物质结构与性质的指纹特性,并且光子能量低,远远小于X射线能量,不会对生物大分子、生物细胞和组织产生有害电离,特别适合于对生物组织进行活体检查。因此,相较于现有医学成像技术,太赫兹波光谱成像技术具有更独特、更适用的物理特征。  太赫兹波是频率在0.1&mdash 10THz的电磁波,处于宏观电子学向微观光子学过渡的波段。国际上,太赫兹生物医学研究随着欧盟2000年设立的国际联合项目&ldquo THz-Bridge&rdquo 正式启动。美国政府将太赫兹技术评为&ldquo 改变未来世界的十大技术&rdquo 之一,日本将其列为&ldquo 国家支柱十大重点战略目标&rdquo 之首,并将生物医学应用列为主要方向之一,欧洲也连续10年将生物医学应用作为首要研究方向。  本次会议的执行主席之一姚建铨院士介绍说,围绕太赫兹技术生物医学应用研究,国际上已经开展了很多大型国际合作项目。目前,国内外在太赫兹技术生物大分子、细胞、组织、器官等生物监测及生物效应研究方面,已取得部分代表性成果。  本次会议的执行主席之一杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。&ldquo 这次会议就是研讨太赫兹技术和生物医学前沿的交叉,推动这个领域的深入研究与合作。&rdquo   针对太赫兹技术在生物医学方面的应用,吉林大学教授崔洪亮介绍,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。  太赫兹技术最终应用到生物医学领域,还需要落实到具体的医疗设备上,在产业化上形成一定规模。  &ldquo 我国检验医学现有的核心技术和临床设备主要都被国外垄断,国产品牌市场占有率极低。&rdquo 第三军医大学西南医院府伟灵教授对此忧心忡忡。他指出:&ldquo 目前,太赫兹波侦检分子与细胞的检测理论和关键技术是我国第一个与全球同步开展的研究,将从新的视角为检验医学领域提供分子和细胞侦检的革命性科学手段,有望阐明和提供全新的检验医学理论与技术体系,形成太赫兹波&mdash 检验医学优势新学科和产业基础。&rdquo   中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。  &ldquo 可以说,太赫兹技术在生物医学微观领域,将为揭示生物大分子之间、细胞之间的相互作用物质规律,呈现这些作用和活动的物性特征,最终解释各种生命现象提供革命性科学方法 在生物医学宏观层面,将为疾病的诊断、治疗、评估、监测和预警及后续药物设计、研发、生产和评价带来革命性改变。&rdquo 对太赫兹技术的未来,天津大学教授姚建铨院士充满信心。  然而,国内太赫兹波生物医学研究刚刚起步,缺乏学科间深入有效的交叉融合,缺乏全国性的学术战略发展规划,还不具备国际竞争力。在相关科研支持方面,目前我国只有6项与太赫兹波生物医学相关的国家自然科学基金项目。  &ldquo 国内目前有多个团队正在开展太赫兹波生物医学研究,但还缺乏交叉融合、联合攻关、体系研究的平台、团队和技术支撑,实现实质性突破任重道远。&rdquo 会议执行主席之一、中国工程物理研究院刘仓理研究员呼吁,这不仅需要研究人员奋起直追,也需要在国家层面上给予规划、支持和协调。
  • 中国首台太赫兹人体安检仪投用 连蚂蚁都不放过
    鼠标轻点,仅需2.8秒即完成人体360度立体成像,实现无辐射、无接触安检通关“秒过”。国内首台具有完全自主知识产权的太赫兹人体安检仪在深圳问世,昨日起,全天候服务于深圳机场安检。  昨日中午12点50分,记者经许可来到出港安检11号通道。只见在过道一侧,摆放着一台银灰色立式圆形“怪物”。在安检人员引导下,一位乘客走进这台通透式物体,乘客站立不动,只需双手举过肩。随着工作人员轻点鼠标,仪器无声地开合一次。不足3秒钟,旅客即放行通过。而在显示仪器上,该旅客的360度人体影像被清晰地记录下来,并显示“右侧裤袋有一只手机”。因为该旅客已经通过常规安检,因此,可以放行。  记者在记录器上看到,被记录的有“左臂有纹身”、“上装领口有珍珠装饰物”、“左裤袋有一枚硬币”等等。  现场执勤的工作人员也好奇地围过来看新鲜。现场技术人员介绍说,乘客只需要站立约两三秒钟,身上携带的任何物品都会暴露无遗。  负责现场安检执勤的宝安国际机场安全检查站旅检二大队副大队长林春宣告诉记者,目前,这台仪器尚属于常规安检后的一个“保险”,从试运行效果看,完全可以识别肉眼无法直接“透视”的非金属携带物。“一旦民航局颁布统一标准,待仪器软件完善及人员培训完成后,将来可以完全取代常见的旅客安检门,且效率更高、准确性更强。”  据悉,这台太赫兹人体安检仪的问世,标志着我国在太赫兹安检领域已达到国际领先水平。据介绍,目前,基于标本库的不完整性,这台仪器只能自主识别出70%的携带物,随着数据库的充实,将来完全可以实现100%智能识别。  记者获悉,该检测仪的辐射剂量为日常使用手机的十分之一,可忽略不计 成像分辨率小于5毫米,即一个蚂蚁大小的物体都能被辨识。未来可广泛用于机场、海关、高铁、地铁等领域。目前,该仪器我们已在国内申请40余项发明专利,且正在向美国申请9项国际发明专利。  深圳机场有关人士介绍,根据民航局及省市相关要求,G20杭州峰会期间深圳机场安保升级,从9月4日至6日,每天5:30至23:30,这台太赫兹人体安检仪全天投入使用,从而间接为G20杭州峰会安保贡献一份力量。
  • 天津大学何明霞教授:主攻太赫兹工业无损检测 多领域推进产业化
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。天津大学何明霞教授本次会议中,天津大学何明霞教授分享了《太赫兹科学技术应用近年新进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请何明霞教授分享其团队在太赫兹技术及应用拓展方面的系列研究成果。1、成果简介基于太赫兹时域光谱技术的多层非极性复合材料检测系统太赫兹电磁波介于微波与红外之间(0.1THz -10 THz ),处于电子学与光子学的交叉领域,被誉为人类认识世界的“第三只眼睛”、“改变世界的十大科技”。太赫兹具有光子能量低、穿透性强、指纹谱特征、高信噪比、高分辨率、宽频带、瞬态性等独特优势,近年来在工业无损检测领域发展迅速。太赫兹时域光谱技术(THz-TDS)是一种新型的脉冲全息光谱技术,可获取物质的折射率、吸收系数、介电系数等多个物理参数信息。相比于红外光谱、拉曼光谱,太赫兹光谱覆盖了生物大分子、有机分子等物质独特的特征谱信息;相比于X射线,太赫兹辐射能量低,对人体安全;相比于超声检测、涡流检测,太赫兹检测为非接触式、穿透性更强,可表征多涂层的信息。利用新型的太赫兹技术进行物质光谱检测分析、无损扫描成像及超薄样品测厚应用,弥补传统检测手段不足之处,完成更高精度、更快速安全的检测。本团队基于高信噪比、高灵敏度、安全、快速的太赫兹时域光谱技术,开展在非极性电介质材料缺陷探测成像及微米级多涂层测厚领域相关研究。迭代开发智能化工业机器人手臂及协作控制系统,实现对非极性材料内部缺陷三维层析无损扫描成像,对多层的微米级别超薄涂层厚度可进行每单层的精准测量表征。系统覆盖太赫兹波谱宽度为0.1THz -3THz,太赫兹光纤长度10m,工作重复频率10Hz;无损扫描成像层数可达3层,平面扫描范围180×180mm,空间机械臂延伸测量半径为1.3m,最快扫描速度500mm/s;涂层测厚层数可达3层,最小测厚值可达10μm,绝对精度2μm;且满足空间、异形曲面移动多点位精准快速无损检测需求,具有全自动处理、高精度测量、多层厚度实时计算等优势,为超薄涂层类复合材料提供更加精准、高效和可靠的测量方式,适用于汽车工业、航空航天、锂电池电极、非金属管道、泡沫塑料等多领域无损检测场景。2、产业化探索智能化机器人手臂空间异形曲面无损检测系统在未来是考虑多个领域产业化的,拥有在材料检测、无损探伤、医疗检查,以及文物资料研究等多个领域发展的潜质。太赫兹时域光谱技术本身是一个多领域快速发展的检测技术,其测量方式依赖于平面扫描或者曲面扫描载荷技术,配合样本的空间建模,以完成自动化样本数据有序测量。具体到应用领域,需要根据样品的尺寸、规格以及空间特征,设计低成本、易便携、方便取样的测量装置。比如可以对皮肤表面进行快速扫描成像、对曲面的陶瓷文物信息鉴定等,这些有待合作单位的具体要求。3、课题组未来研究计划太赫兹波在电磁波谱中处于电子学向光子学的过渡区,也是宏观经典理论向微观量子理论的过渡区,其具有光子能量低、穿透性强、指纹谱特征等独特优势。太赫兹时域光谱技术利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,检测过程快速、安全、精度高,且光谱具有物质特征峰,在物质鉴别分析、工业无损检测、产线在线质量监测、安检扫描成像等领域应用潜力巨大,弥补传统检测手段的缺陷不足。本研究团队重点主攻方向为太赫兹工业无损检测方向,分析、利用太赫兹时域光谱,建设标准太赫兹光谱数据库,实现物质太赫兹光谱检测分析、微米级多涂层太赫兹精准测厚及材料内部无损探测成像等多方面太赫兹无损检测研究。4、合作需求关于非极性材料无损扫描探测成像、物质太赫兹光谱检测分析及超薄涂层测厚方面,涉及生物医药、锂电池电极、半导体、复合材料、文物艺术品等领域检测需求可探索合作研究。联系方式:曲秋红 15122743715(手机、微信)附专家及课题组简介何明霞,博士,天津大学精密仪器与光电子工程学院电子物理学与仪器科学与技术专业教授、博导,首届“中国生物物理学会太赫兹生物物理分会”副会长兼秘书长、“毫米波太赫兹产业联盟”太赫兹光谱与检测工作组组长、中国仪器仪表学会图像科学与工程分会秘书长、中国光学学会光电技术专业委员会委员,是“天津大学太赫兹光子学”组建者之一和核心骨干。主要研究方向∶太赫兹光谱技术与成像应用和太赫兹生物效应研究。致力于太赫兹时域光谱技术实用化、多种非极性材料的太赫兹光谱成像无损检测及太赫兹生物医学基础研究,是国内最早将太赫兹光谱技术用于癌症组织、生物组织的研究者。太赫兹光谱技术与成像应用团队以高信噪比、高灵敏度、宽带、安全、快速的太赫兹时域光谱技术为核心,结合汽车工业、航空航天、管道塑材、生物医药、食品安全等领域实际应用需求,开展物质太赫兹光谱检测分析、太赫兹标准光谱数据库建设、非极性材料无损扫描成像、微米级多涂层系统精准测厚、太赫兹辐射成分鉴定以及实用化技术应用产品开发等研发工作。搭建太赫兹光谱与成像系统应用平台,完成三维层析太赫兹光谱快速扫描成像测厚设备及智能化工业机器人手臂空间异形曲面无损检测系统的开发,适用于各类涂层的微米级厚度测量和材料内部缺陷的无损检测,如汽车车身涂层、锂电池隔膜、锂电池电极、泡沫塑材、非金属管道、生物组织样品等,相关研究成果及产品拥有自主知识产权20余项。团队研发并已投入市场应用的全国产化高灵敏度太赫兹相机,适用于现有多种主流太赫兹源辐射探测,对非极性物质材料成像清晰,可在安检成像领域推广使用。针对太赫兹光谱检测市场需求,正进行应用标准化和实用数据库的工作,建立多类物质的开源太赫兹标准数据库,实现物质太赫兹光谱的定性与定量分析检测。
  • 滨松开发出全球首款基于超材料天线的太赫兹图像增强器
    据麦姆斯咨询报道,近日,滨松光子(Hamamatsu Photonics)开发出全球首款太赫兹图像增强器。该产品具有实时无损成像能力,可应用于食品异物检测和人体扫描等领域。滨松开发的太赫兹图像增强器“THz-I.I.”这款图像增强器“THz-I.I.”是基于滨松多年来开发的成像技术。该公司表示,“THz-I.I.”具有高分辨率和快速响应等特点,允许对通过目标物体传输或从目标物体反射的太赫兹波脉冲进行实时成像。太赫兹波在电磁波中的位置“THz-I.I.”概述图像增强器是主要为星光下的夜视(弱光情况下的辅助视觉)而开发的一种图像增强管。典型的图像增强器包括将入射光转换为电子的光电阴极、放大电子的微通道板、将电子转换为光的荧光屏,所有这些都密封在真空管之中。通过选择光电阴极材料,可以将包括可见光和不可见光在内的入射光转化为电子,然后在真空中进行倍增。这使得能够对发光现象进行高速、高分辨率和高灵敏度成像。滨松一直在与丹麦技术大学(Technical University of Denmark)进行合作研究,以开发利用小型超材料天线将太赫兹波转换为电子的光电转换技术。这种光电转换技术应用于滨松的成像技术,在“THz-I.I.”输入窗口的内表面形成超材料天线。滨松还重新设计了天线结构,以提高将太赫兹波转换为电子的效率——电子在真空中被有效地倍增。太赫兹图像增强器“THz-I.I.”工作原理太赫兹图像增强器“THz-I.I.”主要参数滨松评论说:“我们已经成功开发了一种快速响应、高分辨率的太赫兹图像增强器——THz-I.I.,能够对穿过目标物体或从目标物体反射的太赫兹波进行实时成像。这种太赫兹图像增强器还可以通过改变天线设计以匹配所需的应用,从而对任何频段的太赫兹波进行成像。”该太赫兹图像增强器有望扩大无损检测的应用范围,例如:(1)食品生产中的异物(指甲和薄膜等)的快速在线检测,(2)使用传统的X射线检测技术通常很难检测到污染物。由于太赫兹波对人体无害,“THz-I.I.”也有望应用于安检领域的人体扫描仪,在火车检票口和活动场地入口处进行安全检查时,这将被证明是非常有效的人体扫描手段。在科学研究领域,“THz-I.I.”将用作获取太赫兹光束轮廓或调整太赫兹光学系统的工具。滨松说:“作为未来的目标,我们将继续推进‘THz-I.I.’具有更高的实际使用灵敏度,目标是在一年内开始交付该产品的样品。”
  • 我国大力发展太赫兹技术!太赫兹技术(大同)研究院揭牌成立
    p style="text-indent: 2em text-align: justify "太赫兹波又称远红外波,曾被评为“改变未来世界的十大技术”之一,它是电磁波段中最后一段未被人类充分认识和应用波段。由于频率高、脉冲短、穿透性强,且能量很小,对物质与人体的破坏较小,所以与X射线相比,太赫兹成像技术和波谱技术更具优势,在空间探测、医学成像、安全检查、宽带通信等方面具有广阔的前景。/pp style="text-indent: 2em text-align: justify "7月7日,太赫兹技术(大同)研究院、大同东华科技有限公司在山西省大同市正式揭牌成立,为大同转型发展蓄势赋能。山西省委常委、大同市委书记张吉福,大同市市长武宏文,山西省投资促进局党组书记、局长杨春权及两大平台相关负责人进行揭牌。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 537px height: 356px " src="https://img1.17img.cn/17img/images/202007/uepic/03fdaf1d-fe27-44c3-be23-ef3886ecd362.jpg" title="88ca67ee0af44026a65ab96cdb949524.jpg" alt="88ca67ee0af44026a65ab96cdb949524.jpg" width="537" height="356"//pp style="text-indent: 2em text-align: justify "据了解,太赫兹技术(大同)研究院是大同聚力建设12大科技创新平台的重要平台之一,主要由毫米波与太赫兹技术北京市重点实验室和毫米波太赫兹产业发展联盟组建;大同东华科技有限公司的总部东华软件股份公司成立于2001年1月,以应用软件开发、计算机信息系统集成、信息技术服务等为主要业务,拥有千余项自主知识产权的软件产品。/pp style="text-indent: 2em text-align: justify "武宏文表示,大同将致力把太赫兹技术(大同)研究院打造成一流的国家级研究院。同时,大同将与大同东华科技有限公司在高端制造、信息技术应用、大数据等领域进行深度合作,加强技术研发、加快成果转化、加速产业孵化,着力打造大同成功转型的“四梁八柱”。/pp style="text-indent: 2em text-align: justify "据悉,大同近年来启动建设了大同市国际能源革命科技创新园,引进了12大科技创新平台,集聚了28名两院院士、77名高科技领军人才,转化落地了太赫兹技术测温安检门、煤矿废弃巷道压缩空气储能等一大批高科技转型项目,推动大同发展步入创新驱动快车道。/pp style="text-indent: 2em text-align: justify "揭牌仪式上,杨春权表示,全省投资促进系统将以项目招商、落地为核心,坚持“项目为王”理念,精准招商,为大同项目落地投产见效提供全方位“保姆式”服务。/p
  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 屹持光电提供高速线性太赫兹相机样机展示
    为满足广大用户在无损检测及质量控制等领域的需求,上海屹持光电将提供新型THz线性扫描成像系统样机展示,展示时间:2017年7月1日-2017年10月1日,欢迎业内各位专家前来参考指导! Terasense推出的新一代THz线性扫描成像系统——高速线性扫描太赫兹成像系统,搭配Type-2太赫兹源,成像效果得到显著提高。此太赫兹成像系统具有超快的响应速率,可以应用于速度高达15m/s的传送带生产过程中。(可参考视屹持官网频链接:新型线性扫描THz成像系统) 线性太赫兹成像系统由两部分构成:太赫兹线性相机和太赫兹源。新型太赫兹线性扫描系统搭配高功率太赫兹源(输出功率110mW),输出口配置有特殊的平板喇叭锥设计,经过曲面反射镜,使得太赫兹源发射出的THz光束均匀且有效的覆盖到THz相机的每个像素。100GHz(波长3mm)的太赫兹源决定了成像的空间分辨率为1.5mm,这个分辨率足够满足于大多数工业应用。 应用领域:高速线性THz成像系统可以应用于非金属材料的无损探伤、箱包检测、食品药品及化妆品等异物快速检测、木材建材缺陷快速检测、农牧业和文物等无损检测。 垂询电话:021-62209657,更多相关信息欢迎关注上海屹持官方网站了解详细信息: http://www.eachwave.com/
  • 德国研制可探测宇宙射线小型太赫兹激光仪
    新华社柏林电 德国两家科研机构2010年5月28日报告说,它们合作开发出一种可探测宇宙射线的小型太赫兹激光仪,由于重量轻,该设备可以在科研用飞机上使用,从而方便科学家研究宇宙奥秘。  德国航空航天中心与保罗・ 德鲁德固体电子研究所在一份新闻公报中说,科学家常常借助先进的波谱学方法研究宇宙中的各种微粒,由此探寻恒星和行星演变的来龙去脉。这些微粒发射出的射线常常在0.3到10太赫兹的频率范围内,介于微波和红外线之间。科学家尤其对包含众多信息的4.7太赫兹左右的射线感兴趣,但这些射线会被地球大气层吸收,因此在地面无法测量到,需要将有关设备运到高空进行探测。  德国新研制的这种太赫兹激光仪输入功率只有240瓦,总重量仅15千克,设备核心部件是一个只有几毫米大小的量子级联激光器。
  • 毫米波太赫兹安检仪器评奖活动 投票通道开启!为您心仪的仪器投一票吧!
    section powered-by="xiumi.us" style="margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica="" pingfang="" hiragino="" sans="" microsoft="" yahei="" letter-spacing:="" white-space:="" background-color:="" text-align:="" justify-content:="" overflow-wrap:="" break-word=""section style="margin: 0px padding: 0px 10px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto "section powered-by="xiumi.us" style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important "section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important justify-content: center display: flex flex-flow: row nowrap "section style="margin: 0px padding: 8px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 289.531px vertical-align: top border-style: solid border-width: 2px border-radius: 0px border-color: rgb(249, 110, 87) flex: 0 0 auto height: auto align-self: flex-start "section powered-by="xiumi.us" style="margin: 0px 0px -8px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important transform: translate3d(8px, 0px, 0px) text-align: right justify-content: flex-end "section style="margin: 0px padding: 6px 16px 6px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 285.531px vertical-align: top border-width: 0px background-color: rgba(229, 65, 24, 0.247059) box-shadow: rgb(0, 0, 0) 0px 0px 0px "section powered-by="xiumi.us" style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 17px text-align: center "p style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important "投出您宝贵的一票,即可下载/pp style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important "“毫米波太赫兹安检白皮书抢先版”/p/section/section/section/section/section/section/section/sectionpbr//pp style="text-indent: 2em text-align: justify "毫米波太赫兹安检技术日益成熟,在地铁、机场、医院、会展等应用场景开展了多种试用和应用,其产业化发展将迎来快速增长。为了加强技术交流,分享科技成果,促进企业产品推广,进一步焕发市场活力,联盟举办 “2020年度毫米波太赫兹安检仪器产品评奖”活动。/pp style="text-indent: 2em text-align: justify "本次大奖评选活动投票环节的时间为10月-11月,设置了strong入围奖、特等奖、专项奖等多个奖项/strong。评选方式分为“网络评选”和“专家评审”两个部分,其中“网络评选”即为大众在网上为自己最喜爱的产品投票的总数,strong网络选票在评选中的权重为20%/strong。此外,各产品系列中,strong网络总得票数获得第一的即获得相应产品系列年度最佳人气奖项/strong。/pp style="text-indent: 2em "br//pp style="text-indent: 0em text-align: center "span style="font-size: 20px color: rgb(227, 108, 9) "strong产品介绍(排名不分先后)/strong/span/pp style="text-align: center "strongbr//strong/pp style="text-align: center "strongNo.1 被动式太赫兹人体安检系统/strong/pp style="text-align: center "strong江苏亨通太赫兹技术有限公司/strong/pp style="text-indent: 2em text-align: justify "被动式太赫兹人体安检系统,采用被动式扫描成像技术,突破快速扫描、微弱信号检测、人工智能识别等关键技术,实现对人体的非接触式、无停留隐匿物检测,实现非接触式安检防疫一体化,一人一档管理便于回看与追溯。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/202010/uepic/5846525d-5c1c-47cb-a62c-a794ad2c0a82.jpg" title="1.png" width="146" height="194" style="width: 146px height: 194px "/ img src="https://img1.17img.cn/17img/images/202010/uepic/9d1818e5-2b77-4c7f-a89d-abc486faf250.jpg" title="4.png" width="259" height="195" style="width: 259px height: 195px "//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202010/uepic/fb19521e-8458-4229-8c41-e2acfdf7ac0f.jpg" title="3.png" width="215" height="160" style="width: 215px height: 160px "/ img src="https://img1.17img.cn/17img/images/202010/uepic/af4bfa19-f833-44c5-a699-bec3fb20174c.jpg" title="2.png" width="285" height="159" style="width: 285px height: 159px "//pp style="text-align: center "strongbr//strong/pp style="text-align: center "strongNo.2 ZHS-4毫米波人体安检设备/strong/pp style="text-align: center "strong欧必翼太赫兹科技(北京)有限公司/strong/pp style="text-indent: 2em text-align: justify "本产品采用逆圆柱扫描模式(天线阵列不动,被检人低速旋转)工作,360度全方位扫描,成像速度快,检出率高,误报率低,可组网工作,适合政府部门、企事业单位内保需要。/pp style="text-align: center"img style="width: 171px height: 301px " src="https://img1.17img.cn/17img/images/202010/uepic/9b1912d3-da75-4d50-8656-ea1434169f17.jpg" title="6.png" width="171" height="301"/ img src="https://img1.17img.cn/17img/images/202010/uepic/60b7fe58-d799-4166-a6bc-45c61b6e3418.jpg" title="5.png" width="179" height="300" style="width: 179px height: 300px "//ppbr//pp style="text-align: center "strongNo.3 太赫兹人体安检系统 TeraSnap B03/strong/pp style="text-align: center "strong博微太赫兹信息科技有限公司/strong/pp style="text-indent: 2em "span style="text-align: justify text-indent: 2em "TeraSnap B03由博微太赫兹公司自主研制,主要针对轨道交通等行业客流量大、通行效率要求高、环境空间有限等条件下所面临的安检需求,在已有产品研发经验与技术积累的基础上,积极研制新一代的太赫兹人体安检系统。/span/pp style="text-align: center"img style="width: 228px height: 173px " src="https://img1.17img.cn/17img/images/202010/uepic/164866ab-6403-4ec2-9978-a605be247ab6.jpg" title="2.png" width="228" height="173"/ img src="https://img1.17img.cn/17img/images/202010/uepic/11c99a97-5e00-46b5-b2cf-4af7c725e2d9.jpg" title="1.png" width="308" height="174" style="width: 308px height: 174px "//pp style="text-align: center"img style="width: 252px height: 192px " src="https://img1.17img.cn/17img/images/202010/uepic/da1feeec-73f9-4403-9b07-18b267f2a8d7.jpg" title="4.png" width="252" height="192"/ img src="https://img1.17img.cn/17img/images/202010/uepic/12360c92-6fb8-432d-ac8c-dd656cdf7ae3.jpg" title="3.png" width="290" height="193" style="width: 290px height: 193px "//ppbr//pp style="text-align: center "strongNo.4 被动式THz人体安检仪/strong/pp style="text-align: center "strong北京航天易联科技发展有限公司/strong/pp style="text-align: justify text-indent: 2em "被动接收人体自身辐射的太赫兹波,实时监测隐匿在衣物内的各类违禁品的被动式THz人体安检仪可实现无辐射、非接触、不停留的快速安检,安检过程视频可视化,智能识别金属、非金属等各类违禁品,并实现实时分级报警,特别适用于公共交通、公共场所等安防领域。/pp style="text-align: center"img style="width: 242px height: 212px " src="https://img1.17img.cn/17img/images/202010/uepic/cf1b7f9a-42d9-4114-8966-e00b3750d815.jpg" title="6.png" width="242" height="212"/ img src="https://img1.17img.cn/17img/images/202010/uepic/85b758d9-db02-4f55-93a2-2b1f04e9cf6f.jpg" title="7.png" width="292" height="197" style="width: 292px height: 197px "//pp style="text-align: center"img style="width: 138px height: 236px " src="https://img1.17img.cn/17img/images/202010/uepic/4631e638-f9f8-4b2b-8dde-3678f9590ecf.jpg" title="5.png" width="138" height="236"/ img src="https://img1.17img.cn/17img/images/202010/uepic/5c662a83-ab36-4aab-857d-be3456503b93.jpg" title="8.png" width="411" height="238" style="width: 411px height: 238px "//pp style="text-align: justify "br//pp style="text-align: center "strongNo.5 E波段主动式毫米波人体安检仪/strong/pp style="text-align: center "strong中国电子科技集团公司第十四研究所/strong/pp style="text-align: justify text-indent: 2em "T-safe X2型毫米波人体安检仪由“中国雷达工业发源地”中国电科十四所自主研发,采用E波段毫米波信号对人体进行三维成像检查,图像分辨率高,危险品识别准确,是目前国内已量产的工作频段最高的主动式毫米波人体安检仪。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/202010/uepic/90981b17-565f-42de-9a26-365c72b75040.jpg" title="1.png" width="182" height="309" style="width: 182px height: 309px "/ img src="https://img1.17img.cn/17img/images/202010/uepic/aaf76c68-1378-488d-84ae-49152189bfd8.jpg" title="2.png" width="231" height="308" style="width: 231px height: 308px "//pp style="text-align: center"img style="width: 245px height: 257px " src="https://img1.17img.cn/17img/images/202010/uepic/019c472b-d7d3-44b7-8d04-78807b341339.jpg" title="3.png" width="245" height="257"/ img src="https://img1.17img.cn/17img/images/202010/uepic/2281bff2-9f33-4ef4-95fb-c5196300886a.jpg" title="4.png" width="205" height="258" style="width: 205px height: 258px "//ppbr//pp style="text-align: center "strongNo.6 毫米波人体安全检查仪MW1000AA/strong/pp style="text-align: center "strong同方威视技术股份有限公司/strong/pp style="text-align: justify text-indent: 2em "MW1000AA毫米波人体安全检查仪是同方威视技术股份有限公司自主研发制造的新型人体安检仪。系统采用安全的主动式毫米波技术,以非接触方式对体表进行快速查验,可自动探测出藏匿于衣物下及人体体表的嫌疑物。/pp style="text-align: center"img style="width: 381px height: 204px " src="https://img1.17img.cn/17img/images/202010/uepic/34c741f4-b2f1-4c98-838b-444daae6b6f3.jpg" title="8.png" width="381" height="204"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202010/uepic/35d40399-5b68-49c2-9757-d6d68e4c6f38.jpg" title="6.png" width="346" height="193" style="width: 346px height: 193px "/img src="https://img1.17img.cn/17img/images/202010/uepic/1fd8364b-9332-45b2-a3c1-1821789757db.jpg" title="7.png" width="260" height="194" style="width: 260px height: 194px "//ppbr//pp style="text-align: center "strongNo.7 太赫兹人体安全检查仪TH1800B/strong/pp style="text-align: center "strong同方威视技术股份有限公司/strong/pp style="text-align: justify text-indent: 2em "TH1800B太赫兹人体安全检查仪是同方威视技术股份有限公司推出的新型人体安检仪。产品通过太赫兹波可穿透一般衣物的特性对人体体表进行远距离、非接触式查验,能够快速、有效地探测出藏匿于体表衣物下的多种金属、非金属嫌疑物。/pp style="text-align: center"img style="width: 242px height: 182px " src="https://img1.17img.cn/17img/images/202010/uepic/0e810143-1f88-42d6-aeca-15e8970e3473.jpg" title="2.png" width="242" height="182"/ img src="https://img1.17img.cn/17img/images/202010/uepic/ffbc6a25-e2df-4f0b-9693-76dd3adf8876.jpg" title="5.png" width="372" height="179" style="width: 372px height: 179px "//pp style="text-align: center"img style="width: 269px height: 153px " src="https://img1.17img.cn/17img/images/202010/uepic/760913ae-9c5f-43f6-a17e-e1cc77f10ee2.jpg" title="3.png" width="269" height="153"/ img src="https://img1.17img.cn/17img/images/202010/uepic/9cd7411c-157e-42e2-9e7e-cf0b2daf0028.jpg" title="4.jpg" width="379" height="127" style="width: 379px height: 127px "//ppbr//pp style="text-indent: 2em "查看以上产品详情,请点击「毫米波太赫兹产品推荐手册——安检产品篇」/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/span style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline "a style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/202010/attachment/d781e3b6-fb40-4d02-8791-c64f323aaabb.pdf" title="毫米波太赫兹产品推荐手册——安检篇.pdf"毫米波太赫兹产品推荐手册——安检篇.pdf/a/span/pp style="line-height: 16px text-indent: 2em "br//pp style="line-height: 16px text-indent: 0em text-align: center "strong style="color: rgb(227, 108, 9) font-size: 20px text-align: center white-space: normal "投票方式/strong/psection powered-by="xiumi.us" style="margin: 5px 0px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica="" pingfang="" hiragino="" sans="" microsoft="" yahei="" letter-spacing:="" text-align:="" white-space:="" background-color:="" overflow-wrap:="" break-word=""section style="margin: 0px padding: 0px 5px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 15px color: rgb(249, 110, 87) line-height: 1.3 letter-spacing: 1px "p style="text-align: center"img style="max-width: 100% max-height: 100% width: 211px height: 204px " src="https://img1.17img.cn/17img/images/202010/uepic/2502e52e-6306-4b1a-9874-91de96f2a86d.jpg" title="二维码.jpg" alt="二维码.jpg" width="211" height="204"//pp style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important text-align: center "strong style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important "扫二维码|参与投票/strong/p/section/sectionpbr//psection powered-by="xiumi.us" style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica="" pingfang="" hiragino="" sans="" microsoft="" yahei="" letter-spacing:="" white-space:="" background-color:="" text-align:="" justify-content:="" font-size:="" overflow-wrap:="" break-word=""section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 23px vertical-align: top height: auto "section powered-by="xiumi.us" style="margin: 8px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important "section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important height: 3px background-color: rgb(132, 35, 35) "section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/sectionsection powered-by="xiumi.us" style="margin: 0px 0px 10px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica="" pingfang="" hiragino="" sans="" microsoft="" yahei="" letter-spacing:="" text-align:="" white-space:="" background-color:="" overflow-wrap:="" break-word=""section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center font-size: 14px color: rgb(140, 140, 140) line-height: 1.6 letter-spacing: 2px "p style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important text-align: center "投票开始,选出您心目中的最佳产品吧!/p/section/sectionpbr//pp style="line-height: 16px text-indent: 2em "br//psection powered-by="xiumi.us" style="margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica="" pingfang="" hiragino="" sans="" microsoft="" yahei="" letter-spacing:="" white-space:="" background-color:="" text-align:="" justify-content:="" overflow-wrap:="" break-word=""section style="margin: 0px padding: 0px 10px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto "section powered-by="xiumi.us" style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important "section style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important justify-content: center display: flex flex-flow: row nowrap "section style="margin: 0px padding: 8px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 289.531px vertical-align: top border-style: solid border-width: 2px border-radius: 0px border-color: rgb(249, 110, 87) flex: 0 0 auto height: auto align-self: flex-start "section powered-by="xiumi.us" style="margin: 0px 0px -8px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important transform: translate3d(8px, 0px, 0px) text-align: right justify-content: flex-end "section style="margin: 0px padding: 6px 16px 6px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 285.531px vertical-align: top border-width: 0px background-color: rgba(229, 65, 24, 0.247059) box-shadow: rgb(0, 0, 0) 0px 0px 0px "section powered-by="xiumi.us" style="margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 17px text-align: center "p style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important "投出您宝贵的一票,即可下载/pp style="margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important "“毫米波太赫兹安检白皮书抢先版”/p/section/section/section/section/section/section/section/section
  • 捷报频传! 太赫兹国际科技产业基地项目荣获 “安全文明工地”称号
    捷报频传! 太赫兹国际科技产业基地项目荣获 “安全文明工地”称号近日,从河北徐水经济开发区管理委员会传来喜讯,华讯方舟集团旗下太赫兹国际科技产业基地项目得到了河北省及河北徐水经济开发区管理委员会、相关部门的一致好评和省、市领导及开发区建设、监理单位的高度认可,荣获2018年度“安全文明工地”称号。 立足高起点 夯实项目堡垒华讯方舟集团太赫兹国际科技产业基地项目于2017年8月8日正式签约,该项目建设总投资50亿元,旨在从太赫兹成像安检、太赫兹辐射源与探测器、太赫兹生物波谱检测+微流控芯片、太赫兹通信、太赫兹医疗设备五大领域发力,打造全球最具规模的太赫兹产业基地。据悉,该项目建成后,将直接面向雄安、河北乃至全国的人体安检、通信、航空航天、检测行业未来发展的太赫兹器件需求,开展太赫兹器件研发、生产的应用技术研究,推进太赫兹技术产品在各个领域的应用。创新拼搏进取 创造业界多个奇迹自太赫兹国际科技产业基地项目前期建设开始,就以实际行动创造了载入史册的“徐水奇迹”“华讯奇迹”。签约之初,河北华讯天谷置业团队早期虽只有几位同事,但在彭辉总经理的带领下,依靠日夜连续作战的拼搏精神和高效的工作作风,仅用1个月的时间便完成从摘地到环评整个流程,华讯方舟集团徐水项目以最快速度正式入驻,堪称业界奇迹。2017年10月16日,河北太赫兹国际科技产业园开工仪式在徐水区成功举行,保定市常务副市长李俊岭,徐水区的相关领导及华讯方舟集团常务副总裁冯军正、河北天谷置业总经理彭辉等集团高层出席开工仪式。河北省省委书记、省长等省市领导通过现场直播观看开工仪式,并给予高度评价。天时地利人和 以身作则落到实处河北保定市徐水经济开发区历史底蕴深邃、区位交通优越和工业基础雄厚, 2012年7月被省政府批准为省级经济开发区, 2015年河北保定市徐水经济开发区被列入省市重点项目9项之一。华讯方舟集团多年来坚持在太赫兹领域巨资投入,持续投入数亿元科研经费,使得太赫兹技术处于国内一流、国际领先行列,在太赫兹领域拥有多项国内第一和世界第一,也正是基于天时地利人和的时代背景下,该项目自开工以来,项目组工作人员及施工人员严格重视项目的各项工作落实,以身作则并顾全大局,狠抓安全质量管理工作,始终从集团利益、社会效益角度出发,坚持开展安全文明标准化建设,将文明施工纳入重点抓手工作之一,如今,各种安全设施配备到位,真正达到了安全生产零事故、文明施工达标的管理目标。此次“安全文明工地”荣誉称号的获得,不仅为华讯方舟集团在河北地区树立起了良好的企业形象,同时也收获了诸多无形、宝贵的社会财富,是对项目人员持续推进建设施工安全文明管理的切实肯定。赋予天谷生机 憧憬人文未来据了解,接下来徐水区政府还将和华讯方舟集团展开更为深入的合作,共同打造天谷小镇。天谷小镇以釜山文化为基础,融入华讯方舟特色文化,营造优美的人文环境,打造集康养、旅游、居住、休闲度假为一体的大型低密度生活区,涵盖釜山文化公园、企业家会所、时尚购物广场、国际医疗中心、文化会议中心等,天谷特色小镇,矢志创建北京的后花园、雄安的先锋花园、保定的城市名片。
  • 太赫兹技术已“成年”,或成“弯道超车”排头兵——访中央民族大学教授杨玉平
    p style="text-indent: 2em text-align: justify "太赫兹(THz)波段位于微波和红外之间,处于电子学向光子学的过渡区域,具备独特的特性,具有穿透性好、带宽大、光子能量低等特点。在诸多重大民生工程、国防及公共安全领域具有广阔的应用前景,被多国定义为“改变世界的十大技术之一”。/pp style="text-indent: 2em text-align: justify "太赫兹技术在全球发展已超过30年,在国内也已经超过20年,技术已初见成效,在药物检测、癌症诊断、标记物识别、安检安防、无损检测、航空航天、飞机涂层、文物检测等多个领域崭露头角,已经成为诸多领域关注的焦点之一。/pp style="text-indent: 2em text-align: justify "杨玉平,现任中央民族大学教授,博士生导师,长期从事太赫兹光谱表征方面的工作,发表论文90多篇次,申请软件著作权4项、专利6项,出版专著1部、教材1部。先后主持国家重大仪器设备开发专项任务、国家自然科学基金项目等。/pp style="text-indent: 2em text-align: justify "杨玉平教授多年来将太赫兹光谱与成像技术应用于生物、医药、化学等领域,其团队检测了大量的中药、西药以及民族医药,形成了庞大的数据库。团队还设计了太赫兹的生物传感器,可以完成对DNA以及癌症标记物的检测,在现代医学中起到了重要作用。/pp style="text-indent: 2em text-align: justify "strong太赫兹技术的前景受到了多方的关注,但真正了解的并不多,太赫兹技术近十年来发展非常迅速,那么——/strong/pp style="text-indent: 2em text-align: justify "太赫兹技术目前已经发展到何种程度?属于什么时期?/pp style="text-indent: 2em text-align: justify "在哪些领域已经实现应用?/pp style="text-indent: 2em text-align: justify "还有多久可以实现全面产业化?存在的瓶颈是什么?/pp style="text-indent: 2em text-align: justify "与国际相比,我国的太赫兹技术处在怎样的水平?/pp style="text-indent: 2em text-align: justify "针对以上问题,仪器信息网特别采访了中央民族大学杨玉平教授,请她就以上问题分享了其观点和想法。/pp style="text-indent: 2em text-align: justify "strong以下是采访详细视频:/strong/pscript src="https://p.bokecc.com/player?vid=E173E126F22BC2A09C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script
  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p  中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。/pp  频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。/pp  天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。/pp  石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。/pp  如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。/pp  此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。/pp  图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。/pp  该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title="1.jpg"/ /pp style="text-align: center "图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title="2.jpg"//pp style="text-align: center "图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title="3.jpg"//pp style="text-align: center "图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。/p
  • 青源峰达太赫兹研发团队在光学领域期刊《Photonics》发表文章
    近日,青岛青源峰达太赫兹科技有限公司高级产品经理刘平安联合中国计量大学李向军副教授在SCI期刊《Photonics》上发表了题为“Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All‐Dielectric Metasurface”的研究性论文。Photonics期刊2022年影响因子为2.536。文章设计了一个角度复用的低折射率介质超表面,用于增强乳糖的太赫兹吸收光谱。首先设计并优化了ABS树脂正方形的单元结构。利用青岛青源峰达太赫兹科技有限公司的QT-TO1000 太赫兹三维层析成像系统及电动角度转盘(2-DD01)改变太赫兹波的入射角度,试验探究了介质表面的共振峰随角度平移情况。在介质超表面制备不同厚度的α-乳糖薄膜,研究其增强效果。多角度复用低折射率介质表面吸收光谱的共振峰幅度随样品的吸收光谱变化很大。结果表明,谐振峰相连的包络线形成的增强吸收谱比没有超表面结构的乳糖薄膜吸收谱强45倍。提出的介电超表面在测量薄膜太赫兹吸收谱方面具有很大的潜力,可用于检测痕量物质。▲ 太赫兹三维层析成像系统及电动角度转盘装置示意图▲ 基于介质表面多角度复用的太赫兹吸收增强检测原理图(a)具有多个入射角α的介质表面的角复用原理(b)介质表面的单元结构▲ 太赫兹波入射角和单元结构参数对反射谱和Q值变化的影响α=20-40°,w = 120-200μm▲ α-乳糖的介电常数和表面涂覆乳糖膜的响应特性 (a)α-乳糖的介电常数(b)乳糖涂层石英衬底的反射 (c)透射和(d)吸收▲ 基于角度复用的太赫兹吸收光谱增强介电表面(a)介电表面单元结构 (b)无α-乳糖涂层介电表面反射和(c)透射 (d)涂覆3μm厚α-乳糖涂层的介电表面的反射和(e)与无涂层对比 (f)涂覆3μm厚α-乳糖涂层的介电表面的吸收特性▲ 不同入射角下乳糖涂层介质表面的电场分布(a)入射角为15°,共振频率为0.511THz(b)入射角为25°,共振频率为0.527THz(c)入射角为35°,共振频率为0.534THz(d)入射角为45°,共振频率为0.545THz▲ 研究介质表面的多极分解的散射功率其中P、M QE、QM、ET和MT分别是电偶极子、磁偶极子、电四极子、磁四极子电环形偶极子和磁环形偶极子(a)入射角为15°,共振频率为0.511THz (b)入射角为25°,共振频率为0.527THz (c)入射角为35°,共振频率为0.534THz (d)入射角为45°,共振频率为0.545THz▲ 不同厚度的乳糖涂覆的电介质表面的增强吸收光谱(a)1μm (b)1.5 μm (c)2μm (d)2.5μm (e)3μm (f)比较结果
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制