当前位置: 仪器信息网 > 行业主题 > >

大气等离子体处理机

仪器信息网大气等离子体处理机专题为您提供2024年最新大气等离子体处理机价格报价、厂家品牌的相关信息, 包括大气等离子体处理机参数、型号等,不管是国产,还是进口品牌的大气等离子体处理机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气等离子体处理机相关的耗材配件、试剂标物,还有大气等离子体处理机相关的最新资讯、资料,以及大气等离子体处理机相关的解决方案。

大气等离子体处理机相关的资讯

  • 粉体材料表面改性良方一种——低温等离子体技术
    p style="text-align: justify text-indent: 2em "粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。/pp style="text-align: justify text-indent: 2em "改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。/pp style="text-align: justify text-indent: 2em "产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。/pp style="text-align: justify text-indent: 2em "改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。/pp style="text-align: justify text-indent: 2em "改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。/pp style="text-align: justify text-indent: 2em "改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。/pp style="text-align: justify text-indent: 2em "粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。/ppbr//p
  • 等离子体修饰碳纳米管在污染物处理方面取得进展
    低温等离子改性接枝是一种处理时间短、不产生化学污染、不破坏材料的整体体积结构、仅仅改变材料表面性能的处理技术。近年来,等离子体所“低温等离子体应用研究室”陈长伦、邵大冬、胡君、王祥科等所在的课题组利用低温等离子体技术对碳纳米管进行表面修饰改性组装,克服了碳纳米管的难溶性带来的制约等问题,大为提高了其实际应用程度。  该课题组在用低温等离子体技术对碳纳米管进行改性组装后,将其应用于环境污染物检测和治理研究方面,取得了一系列成果。  一是分别利用Ar/H2O,Ar/NH3,Ar/O2微波等离子体对碳纳米管进行表面处理,使其表面引入含氧、含氨基等功能基团,提高了碳纳米管的亲水性和分散性,使其可制备纳米溶液。这些经过处理的(表面修饰的)功能化材料对改善碳纳米管在生物、环境污染物吸附等方面,具有很好的应用前景。部分研究结果发表在Applied Physics Letter (2010, 96, 131504) Carbon (2010, 48, 939-948) The Journal of Physical Chemistry C (2009, 113, 7659-7665) Diamond & Related Materials (in press) 并受邀请在国际会议上做2次口头报告。  二是利用N2射频等离子体对碳纳米管表面进行活化处理,然后接枝上有机单体和天然高分子材料,制备碳纳米管/有机物复合材料。等离子体制备的复合材料表面具有各种功能基团,这些功能基团对持久性有机污染物(POPs)、有毒有害的重金属离子、放射性核素具有强的吸附、络合能力,因而提高了复合材料对污染物的吸附能力。部分研究结果发表在The Journal of Physical Chemistry B (2009, 113, 860-864) Chemosphere (2010, 79, 679-685) Plasma Processes and Polymers (in press,并被选为封面)。  三是碳纳米管由于尺度小,使其在吸附处理有机/无机污染物后,在回收和循环利用纳米材料方面具有很大的难度。采用传统的离心法需要高的转速,过滤法易导致过滤膜堵塞,如果吸附污染物的碳纳米管进入环境,会产生二次污染。针对上述问题,该课题组采用溶胶—凝胶法,首先在碳纳米管上组装上铁氧化物,然后利用N2射频等离子体对碳纳米管/铁氧化物表面进行活化处理,接枝上有机单体和天然大分子材料,制备出磁性多重复合纳米材料,该磁性复合纳米材料不仅具有高的吸附性能,且磁分离技术可以简单方便地把磁性复合纳米材料从溶液中分离出来,解决了固液分离的难题,同时可以大量的应用到实际工作中。部分相关研究成果发表在Environmental Science and Technology (2009,43,2362-2367) Journal of Hazard Material (2009,164, 923-928) Journal of Physical Chemistry B (jp-2009-11424k)。  该工作得到了国家自然科学基金,科技部973重大研究计划“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础”,中科院合肥物质科学研究院重大项目,合肥研究院人才项目和火花项目,中科院新型薄膜太阳能电池重点实验室基金等经费的支持。
  • “等离子体表面处理仪有奖问答”——2014年五洲东方公司系列有奖问答五
    2014年五洲东方公司系列有奖问答五 “等离子体表面处理仪网络有奖问答”活动开始啦!全部回答正确者即可获得由五洲东方公司提供的精美奖品一份。熟悉实验方法的网友不要犹豫了,快来参加吧!活动开始时间:2014年4月底。活动奖励:全部答全答对的网友将获得精美礼品一份。答题规则如下:我们会提供参考文章,您可以阅读完文章后答题。本次试题共5题,1-5题都必须答全。点击下载试题等离子体表面处理仪网络有奖问答问题.doc,,填写完整后,您可以:1)将问卷邮件至g.y_liu@ostc.com.cn。2)将问卷邮寄至北京五洲东方公司(“北京市海淀区北四环中路265号中汽大厦7层”,邮编:100083,刘广宇收)。奖品发放:收到问卷经审核后,将发放精美奖品。为了保证奖品能顺利发送到您的手中,请将您的所有联系方式全部填写全面。活动咨询电话:400-011-3699活动详情:等离子体表面处理仪有奖问答——五洲东方系列有奖问答五请关注下期有奖问答活动:2014年五洲东方公司系列有奖问答六所有活动信息请关注五洲东方官方网站www.ostc.com.cn首页公告栏。感谢您的参与!
  • 811万采购生物质谱、气质、电感耦合等离子体质谱光谱等仪器
    p style="text-align: justify "  日前,新疆生产建设兵团医院、河南科技大学、湖南省煤炭科学研究院发布采购项目招标公告。据统计,三个项目预算811万元进行7个类别的仪器采购,包括strong快速微生物质谱检测系统/strong、strong气相色谱质谱联用仪/strong、strong电感耦合等离子体质谱仪/strong、strong电感耦合等离子体发射光谱仪/strong、全自动组织处理机、全自动干燥仪、全自动溶剂萃取仪等。/pp style="text-align: justify "  详细情况如下:/pp style="text-align: justify "  项目名称:新疆生产建设兵团医院全自动快速微生物质谱检测系统采购项目/pp style="text-align: justify "  项目编号:BTJY00CGGK2019011/pp style="text-align: justify "  开标时间:2019年03月27日 11点30分/pp style="text-align: justify "  开标地点:兵团公共资源交易中心(新疆乌鲁木齐市新民路200 号创天大厦负一楼开标一厅)/pp style="text-align: justify "  预算金额:250 万元(人民币)/pp style="text-align: center "img title="111.JPG" src="https://img1.17img.cn/17img/images/201903/uepic/ce32a7a3-0daf-4bda-84d4-18ee2d629d6c.jpg"//pp style="text-align: justify text-indent: 2em "项目名称:河南科技大学食品国家级实验教学示范中心功能提升/pp style="text-align: justify "  项目编号:豫财招标采购-2019-103号/pp style="text-align: justify "  开标时间:2019年3月25日9时。/pp style="text-align: justify "  开标地点:河南省公共资源交易中心远程开标室(一)-2/pp style="text-align: justify "  预算金额:202 万元(人民币)/pp style="text-align: center "img title="222.JPG" src="https://img1.17img.cn/17img/images/201903/uepic/e7b0bf19-643e-4fde-bd3a-9ea346b46a7b.jpg"//pp style="text-align: justify text-indent: 2em "项目名称:湖南省煤炭科学研究院有限公司检测检验认证仪器设备采购项目/pp style="text-align: justify text-indent: 2em "项目编号:HNCT2019-021/pp style="text-align: justify text-indent: 2em "开标时间:2019年03月26日 10:00/pp style="text-align: justify text-indent: 2em "开标地点:湖南省公共资源交易中心,长沙市雨花区万家丽南路二段29号湖南省价格市场大楼(东临芙佳花园小区,南临富春山小区)/pp style="text-align: justify text-indent: 2em "预算金额:359.0 万元(人民币)/pp style="text-align: center "img title="333.JPG" src="https://img1.17img.cn/17img/images/201903/uepic/57782218-f068-435b-a17a-f0fef4fadb26.jpg"//pp style="text-align: justify "  /pp style="text-align: justify "  /pp/p
  • 西安光机所在等离子体研究方面取得新成果
    p  7月5日,国际应用物理类学术期刊《应用物理学杂志》(JAP)发表了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室等离子体学科研究论文A diffuse plasma jet generated from the preexisting discharge filament at atmospheric pressure,论文通讯作者为该所博士汤洁。文章的创新性和重要性受到了期刊编委会和评审专家的高度评价,被遴选为当期的封面文章和亮点文章。/pp  作为一种新型、经济、便捷的等离子体发生技术,大气压低温等离子体射流在材料加工与改性、薄膜层积、纳米颗粒制造、器械表面洗消、生物组织结构与功能恢复、微生物诱变育种等领域都具有独特的技术优势和良好的应用前景。均匀、弥散、大面积低温等离子体射流的研发,一直以来是该学科领域研究的重点和难点。该论文打破传统气体放电中采用降低电离率或提高预电离水平来获取均匀弥散等离子体的思维,建立不同学科领域(光学与等离子体)物质传播与输运相同或相似性理念,首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,通过巧妙合理的电极结构设计,在大气压环境中成功实现气体放电从细丝到弥散的转变,并基于Possion模型,阐释了气体放电中弥散等离子体形成机制。/pp  该成果为生成大气压均匀弥散等离子体提供了又一重要指导思想,将对低温等离子体技术应用的推广起到重要促进作用。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/9291bafc-42d5-4e1a-88a1-90fc9b5e86ea.jpg"//pp style="text-align: center "strong当期期刊封面/strong/p
  • 专家指出等离子体技术成热点研究方向
    “近年来,随着应用需求的不断拓宽,大气压放电等离子体技术成为目前电气工程领域最活跃的热点研究方向之一。”在日前举行的中国科协第66期新观点新学说学术沙龙上,清华大学教授王新新说,这项集基础研究与应用研究为一体的前沿课题,已成为当前国内外学术界和工业界探索的一个多学科强交叉的新研究领域。  据了解,物质除了固体、液体、气体三态以外,还有一种平常人不了解的聚集态——等离子体。等离子体主要由电子、离子、原子、分子、活性自由基及射线组成,占据了整个宇宙的99%。从19世纪中叶起,人类就开始利用电场和磁场,来产生和控制等离子体。  中国电工技术学会副理事长、中科院电工所所长肖立业介绍,根据等离子体中离子的温度与电子的温度是否达到热平衡,等离子体又可分为平衡态等离子体和非平衡态等离子体。目前,非平衡态等离子体技术的研究被广泛应用于高分子聚合物材料改性、生物医学、航空器动力推进等国民经济重要领域。  王新新说,该学科涵盖了高电压技术、电力电子技术、材料学等诸多技术领域,具有重要的应用预期和广阔的发展前景。  据了解,自上世纪90年代开始,国外放电等离子体技术及应用研究发展迅速,放电等离子体机理与特性的研究与应用产业衔接日益密切。  “国内研究起步较晚,大气压放电等离子体的科技开发与产业布局脱离,限制了这种绿色节能无污染技术的广泛应用。”中国电工技术学会副秘书长奚大华说,针对这一现状,目前多家科研单位正在对此进行联合研究。
  • 中国成立首个等离子体国家实验室
    中国首个航空等离子体动力学国家级实验室成立  5月12日,中国首个航空等离子体动力学国家级重点实验室在空军工程大学成立。对于大多数人来说,等离子体这种宏观的中性电离气体距离他们的生活实在是太遥远了。即使是热爱军事的网友,很多对这方面也仅仅是表面的了解。等离子体与军用航空的关系,流传最广泛的就是所谓的“俄罗斯战机使用等离子体隐身”这个说法了。  说到“等离子体隐身”,就要提到人类的载人航天。在一次次飞船、航天飞机返回地球的过程中,由于他们和大气层的剧烈摩擦,飞船表面产生了等离子层,形成了电磁屏蔽。很多中国人都会记得几次神舟飞船返回地球的时候都会有一段时间和地面暂时中断联系,就是这种现象的反映。当然,这种现象早就受到了军事技术人员的注意,就是有可能通过这种等离子体的电磁屏蔽来实现作战飞机的主动隐身。然而设想并不等于工程实践,实际上通过等离子体来实现隐身从工程角度来讲很难实现。因为想实现覆盖几十米长作战飞机的等离子层,要么会牺牲飞机的气动外形,要么会对飞机的电源和燃料提出了很难实现的要求。  现在对等离子体的研究,基本上已经可以确定。那种大气摩擦产生的热等离子,是不可能应用于飞机隐身的。即使在俄罗斯,现在也没有没有确凿的证据来证明有实用的等离子体飞机隐身技术。唯一在技术界流传广泛的,就是有传闻美国在B-2轰炸机上使用了一些由稳态电源或者微波产生的冷等离子体来实现隐身。这种传闻,和美国公开B-2采用飞翼和涂料来实现隐身的说法差异很大。由于B-2轰炸机涉及到美军的核心机密,等离子体隐身的说法只能是个疑问。  除了等离子体隐身,那么等离子体和军用航空的契合点又在哪里呢?  我们不妨再看看原来的那条新闻。不难发现,这个实验室的全称是“航空等离子体动力学国家级重点实验室”,里面有动力学这个关键词。而新闻中还提到:“这个实验室的成立,是推进我国在航空动力发展领域实现理论和技术创新的重要举措,并为解决制约航空装备发展和空军战斗力生成的瓶颈问题提供了重要的研究平台……”答案已经很明显了,等离子体研究与“航空动力”这制约中国航空装备发展和空军战斗力生成的瓶颈问题有着直接的关系。  一些公开的资料表明,等离子体在航空动力上,可以有效地提高燃烧稳定性和燃烧效率,极大改善航空发动机压气机增压比升高后的工作稳定性,从而实现推重比10甚至更高涡扇发动机的生产;而在飞机气动力上,等离子体可以减少飞机阻力,增加升力,提高战机的失速攻角和机动性。  例如在航空发动机上,风扇、压气机是航空涡扇发动机的核心部件。提高航空涡扇发动机的推重比,只能增加压气机的增压比,而随之带来的问题就是压气机出口面积急剧缩小、效率严重降低。而通过在压气机的特定位置上布置等离子体激励装置,则会有效改善发动机内气体的流动效果。  毫无疑问,等离子体动力学的研究在全球范围内都是一个非常超前的领域。以至于在公开的资料中,只知道等离子体对空气的流动会产生作用,但是其作用的机理却不清楚。那么国外的一些先进航空动力,例如F-119、F-135发动机,是否使用了等离子体技术,也是一个谜。不过这次我国成立等离子体国家级重点实验室,显示我国在航空动力、飞行器气动力研究方面,已经进入了最前沿领域。随着我国在等离子体动力学研究上的不断深入,中国在研制推重比10以上的先进航空发动机的技术积淀,将更为深厚,从而为先进战机、空天飞行器、大型军用运输机的发展奠定坚实的基础。
  • 美国绘制出等离子体波谱图,或将用于太空保护
    近日,美国科学家成功绘制出太空中等离子体波类似斑马线的波谱图,并证明了等离子体波是由围绕地球磁场线呈环状分布的质子激发产生的。等离子体波谱图的绘制可帮助科学家更准确地理解太空辐射和模拟太空环境,或有助于更好地保护宇航员和太空设备。  20世纪60年代,加州大学洛杉矶分校研究生克里斯托弗拉塞尔在范爱伦辐射带(围绕地球的含有高能粒子的圆环)检测到了神秘的等离子体波,它们普遍存在于近地空间,但科学家却一直无法解释这些等离子体波是如何产生的。现在,这一谜题已被解开。  据加州大学洛杉矶分校官网报道,该校地球物理学家尤里施普里茨领导的研究团队通过卫星观察到13个在太空中等间距分布的线,在赤道附近发现了结构稳定的类似斑马线的等离子体波波谱,根据上述结果绘制了等离子体波的模式图。研究人员还发现,围绕地球磁场线呈环状分布的质子能够为等离子体波提供能量,并证明等离子体波是由这些质子激发产生的。  赤道附近的等离子体波能使范爱伦辐射带内的粒子加速到高能状态,并使这些粒子消失在大气层内。这一现象可能对地球磁层、电离层和中高层大气有重要影响,其对太空中电子和离子的加速和扩散可能造成卫星通讯故障甚至使之完全失效,还可能伤害宇航员的健康。  施普里茨说:“等离子体波谱图的绘制有助于科学家更准确地理解太空辐射和模拟太空环境,以及更好地保护宇航员和太空设备。”  现在已经是空间物理和行星学教授的拉塞尔说:“施普里茨的工作非常有意义。我在1966年观察到的神奇现象终于得到了合理解释。”
  • 西安光机所等在激光等离子体光谱研究中获进展
    近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室汤洁研究员课题组联合美国劳伦斯伯克利国家实验室教授Vassilia Zorba团队,在激光等离子体光谱研究领域取得重要进展。相关研究成果发表在Cell Reports Physical Science上。激光诱导击穿光谱(LIBS)是基于原子发射光谱学的元素分析技术,在多元素分析、实时快速原位测量等方面具备优势,且在定性识别物质与定量物质成分分析等领域具有重要的应用前景。目前,该技术在深空深海探测、地质勘探、生物医药以及环境监测等领域广泛应用。D-LIBS即放电辅助LIBS技术,通常是将火花放电或电弧放电与LIBS技术相结合来实现。以上两种放电模式具有放电功率密度大和电子数密度高的特点,在辅助元素定性和定量分析方面具有独特的技术优势。因此,利用放电辅助可以显著增强LIBS信号强度,从而达到提高分析灵敏度的目的。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,导致能源浪费和环境污染相关问题。这一负面因素加大了安全隐患和运行风险,更不利于社会倡导的节能减排和环境保护要求,进而限制了D-LIBS技术的进一步应用。因此,开发一种“两低一高”(低环境危害、低能耗、高分析灵敏度)的D-LIBS技术仍是物质分析领域中难度较大的挑战。针对上述问题,该团队提出离子动力学调制方法,对克服传统D-LIBS放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该工作借助这一方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。关键创新点在于:(1)首次提出并利用激光诱导等离子体冲击波与外加电场空间零弧度耦合方式,实现有效放电区域全方位覆盖激光等离子体中粒子的扩散方向,离子的动力学特征从原始的向外扩散变更为放电空间内阳极和阴极之间的漂移运动。这种调制使得大部分离子被抓捕、约束在有效放电空间内,促进电能与激光等离子体耦合,大幅降低放电能耗。(2)突破传统D-LIBS方法,即仅在电容器放电过程中辅助LIBS,将放电增强LIBS拓展到电容器放电和充电的两个过程。采用直流电源与充电电容共同作用等离子体间隙的策略,使约束的带电粒子在电容放电结束后继续在电极之间漂移,并在毫秒尺度维持带电粒子电迁移运动特性,大幅延长等离子体寿命,进而实现火花和电弧放电的有序调控以及原子和离子光谱信号的选择性增强。上述研究有效解决了在D-LIBS中同时具备“两低一高”特性的关键技术难题。实验测试结果表明:与传统D-LIBS对比,该成果对于非平坦样品实现了在维持光谱信号2个数量级提升情况下,放电能耗降低了约1个数量级。结合经改进的小波变换降噪方法,D-LIBS中谱线信噪比、信背比以及稳定性相比原光谱均获得了显著提升。微量元素(Mg)的检出限从近百ppm降低至亚ppm量级。此外,与传统D-LIBS及其他LIBS增强技术相比,微量元素(Mg、Si)探测灵敏度提高近2个数量级。该研究有助于推动节能环保建设以及D-LIBS的广泛应用,同时,在低烧蚀激光功率密度的极端条件下,为D-LIBS微量或痕量元素定性与定量分析提供了有力的理论依据和技术支撑。研究工作得到国家自然科学基金、陕西省自然科学基金、瞬态光学与光子技术国家重点实验室自主课题、中科院光谱成像技术重点实验室开放基金等的支持。离子动力学调制LIBS增强原理和思路
  • AST接触角测量仪和等离子体表面处理仪诚招代理
    北京五洲东方科技发展有限公司的前身是成立于1988年的北京东方科技公司,是中国科学院东方科学仪器进出口集团公司的控股子公司。本公司是国外30多家知名企业的代理商,秉承"东方科技"品牌,公司为材料科学、生命科学研究和农业科学研究提供优质服务。本公司是美国AST公司在中国区的独家代理,为满足国内不断扩大的市场需求,并扩充现有渠道,现将其产品在全国范围内诚招区域合作伙伴。AST公司产品:接触角测量仪:Optima XE, VCA 3000等等离子体表面处理仪:PJ,PS-350,PS500,PS750等征聘代理商说明:1) 对电子行业、材料行业比较熟悉,并在相应地区有畅通的销售网络; 2) 遵守北京五洲东方科技发展有限公司区域管理制度;3) 能够保证稳定的最低销售额。 我公司以优惠的代理政策、合理的代理价格及一流的客户服务期待与您合作!联系方式:北京五洲东方科技发展有限公司地址:北京市海淀区北四环中路265号,100083联系电话:010-82388866-210传真:010-82388989
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 激光冷却造出零下273℃中性等离子体
    p style="text-indent: 2em text-align: left "据美国《新闻周刊》网站近日报道,科学家利用激光冷却,创造出温度达到零下273℃的中性等离子体,其比太空深处温度还要低。这一成果发表于《科学》杂志,显示了极端环境下(比如白矮星和木星中央)等离子体的新的可能性。/pp style="text-indent: 2em text-align: left "一般认为,激光可用于加热,但其实也可用于冷却物理系统。在实验中,英国莱斯大学的汤姆· 基利安和同事使用10台不同波长的激光器来冷却中性等离子体。等离子体是在固体、液体和气体之后,物质的第四种它通常在极热的地方(比如太阳内)产生。/pp style="text-indent: 2em text-align: left "研究人员先用一组激光器蒸发锶金属,这些激光器捕获并冷却了一组原子。然后,他们用第二组激光电离这些超冷气体,激光脉冲将这些气体转换成等离子体,这些等离子体迅速膨胀然后消散。/pp style="text-indent: 2em text-align: left "基利安解释说:“如果一个粒子(原子或离子)正在移动,我用一束激光来抵制它的运动,当该粒子从激光束中散射出光子时,就获得了动量来减慢速度。诀窍在于确保光子始终从与粒子运动相反的激光中散出来。”/pp style="text-indent: 2em text-align: left "1999年,基利安在美国国家标准与技术研究所进行博士后研究,开创了从激光冷却的气体中创造中性等离子体的电离方法。此后,他一直在寻求让等离子体更冷的方法,最新研究让他20年的追寻成为现实。目前,他们正努力制造更冷的等离子体。/pp style="text-indent: 2em text-align: left "基利安说:“我们将尝试开发新的温度探头来测量更冷的温度。如果能在不让密度变得太低的情况下,将温度降到足够低,该系统将形成结晶等离子体——维格纳晶体,据信白矮星中心的离子以这种状态存在。”/pp style="text-indent: 2em text-align: left "基利安表示,当科学家研究出如何冷却原子气体时,就打开了“超冷世界”的大门,这使他们能将原子气体冷却到比绝对零度(零下273.15℃)高出百万分之一摄氏度左右,“在此处,量子力学开始发挥作用”。通过研究超冷等离子体,有望回答有关物质在高密度和低温的极端条件下如何表现的基本问题。/p
  • 德国开发出等离子体快速消毒仪
    为解决医务工作者每天花大量时间洗手消毒的问题,德国研究人员最近开发出一种等离子体快速消毒仪,可在几秒钟内对皮肤进行一次安全快捷的消毒处理。  德国马克思普朗克宇宙物理学研究所研究人员在新一期英国《新物理学杂志》(New Journal of Physics)上报告说,等离子态是物质在固体、液体、气体之外的第四种存在状态,宇宙中的许多恒星就处于等离子态。研究人员将少量高温等离子态原子混入大量低温普通原子中,可以得到低温等离子态物质,它产生的自由基和紫外线等具有杀菌效果。  研究人员说,在此基础上开发出的消毒仪使用的等离子体可像空气一样与消毒对象全面接触。例如,人们将双手伸入消毒仪中,几秒钟之内就能对双手实施一次安全快捷的消毒,并可杀灭近年来多次引发感染事故的“超级细菌”耐甲氧西林金黄色葡萄球菌等。消毒过程中,除了需要电力之外,并不需要别的流体和容器。  研究人员说,如果按外科医生一次标准洗手程序需3到5分钟计算,那么在一个繁忙的工作日里医务人员可能要花上几个小时来洗手,如果使用这种等离子体消毒仪,可将这一时间缩短到10分钟。  在同一期杂志上,德国和日本研究人员还报告了另一种杀毒强度可调节的等离子体消毒仪,它形似手电筒,可以专门用来“照射”人体伤口,为缓慢愈合的伤口进行消毒。
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 合肥研究院低温等离子体灭菌机制研究取得进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近年来,低温等离子体技术在生物医学领域显示出巨大应用前景及优势,受到广泛关注。其中,低温等离子体灭菌是该技术在生物医学研究中的热点。目前,已有多个研究显示其在伤口消毒、医疗设备消毒、农产品安全及食品安全等领域都具有广阔的灭菌应用前景。中国科学院合肥物质科学研究院技术生物与农业工程研究所黄青课题组,在利用低温等离子体技术增强灭菌效果及有关灭菌机制研究方面取得新进展。/pp  黄青课题组关注微生物所处环境包括无机盐等对等离子体灭菌效果的影响。研究发现,维持生命活动所必需的常见无机盐离子——氯离子对低温等离子体灭菌效果产生重要影响,并根据等离子体处理时所用气体成分不同而不同。在氧气等离子体处理下,溶液中氯离子存在可显著促进灭菌效果,但在氮气或空气等离子体处理下,灭菌效果却明显下降。/pp  为探索其作用机制,研究人员对不同气体等离子体处理下溶液中氯离子的转变,及其对生成的多种活性氧基团的影响进行定量分析。研究表明,氯离子在氧气等离子体处理下会快速氧化生成活性氯,后者可进一步进入细菌胞内,引起细菌死亡,而在氮气或空气等离子体处理下,生成的活性氯与生成的过氧化氢、亚硝酸根等快速反应生成氯离子、硝酸根等产物,导致等离子体灭菌能力降低。对细胞膜通透性分析表明,氯离子通过调节等离子体处理下细胞膜的损伤而改变等离子体的灭菌效果。/pp  该研究有助于理解等离子体灭菌机制,并为今后实际应用中有目的地提高等离子体灭菌效果提供了依据。相关研究成果发表在emPlasma Processes and Polymers/em上。研究工作得到国家自然科学基金、安徽省自然科学基金及中科院青年创新促进会等的支持。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171109532114950624.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/eed5e7ee-6b7c-4248-a14d-db2226e5ed85.jpg" uploadpic="W020171109532114950624.jpg"//pp style="text-align: center "氯离子对等离子体灭菌效果的影响及作用机制/p
  • 197万!复旦大学和生态环境部电感耦合等离子体发射光谱仪采购
    一、项目编号:项目名称:电感耦合等离子体质谱仪采购项目预算金额:98.0000000 万元(人民币)最高限价(如有):98.0000000 万元(人民币)采购需求:1. 标的名称:包组1:电感耦合等离子体质谱仪采购项目2. 标的数量:包组1:1套3. 简要技术需求或服务要求:(1) 项目编号: CLF22SH01QY17(2) 最高限价: 人民币 ¥ 980,000.00元(3) 交货期限: 采购合同签订之日起至1个月内。(4) 本项目只允许采购本国产品;(5) 简要技术要求: a) 电感耦合等离子体质谱仪具备可搭配LC、自动进样器、全自动石墨消解系统、全自动微波消解系统等连用技术。 b) 可广泛应用于水质、土壤、大气颗粒物、固废、食品、动植物、食品接触材料、化妆品、半导体、高纯材料、矿产、石油化工、工业品、纺织等领域,且符合相关国家标准分析方法的要求。具体详见采购需求。 合同履行期限:自合同签订之日起至2023年10月前本项目( 不接受 )联合体投标。二、项目编号:0705-224002028052项目名称:复旦大学电感耦合等离子体发射光谱仪采购国际招标预算金额:99.0000000 万元(人民币)最高限价(如有):97.0000000 万元(人民币)采购需求:1、招标条件项目概况:电感耦合等离子体发射光谱仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028052招标项目名称:电感耦合等离子体发射光谱仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1电感耦合等离子体发射光谱仪1套自激式射频发生器,频率大于40MHz预算金额:人民币99万元 最高限价:人民币97万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 抗生素污染怎么办?低温等离子体技术来帮忙
    p  废水排放中的抗生素污染一直是个令人头疼的难题。日前,中国科学院合肥物质科学研究院技术生物与农业工程研究所等研发出了一种低温等离子体废水处理技术,能够对诺氟沙星为代表的喹诺酮类抗生素进行降解处理。相关成果发表在最近的环境领域类专业期刊《光化层》上。/pp  该所研究员黄青课题组与企业合作,利用自行研制的医疗废水处理一体机产生臭氧,对诺氟沙星进行降解处理,并利用表面增强拉曼光谱分析降解产物,研究了其降解诺氟沙星的效率及机理。/pp  此前,黄青课题组提出利用低温等离子体技术处理降解诺氟沙星的方案,并且发现处理过程中臭氧降解作用效果明显。为此,他们进一步研究臭氧对诺氟沙星的降解机理。研究人员发现,等离子体产生的臭氧可以快速降解诺氟沙星,同时臭氧对诺氟沙星的氧化降解主要体现在脱氟反应、羧基团和喹诺酮基团的断裂。/pp  “低温等离子体产生臭氧经济实用、简便易行、绿色环保、无二次污染、实用性高,对开发高效废水处理技术、推广等离子体医疗废水处理技术的应用化发展有着重要意义,这项研究拓展了低温等离子体技术在环保领域的应用。”黄青透露,目前有关技术与设备正处于市场化推广阶段。/pp  据了解,制药工业、养殖业及医院排放的污废水其成分非常复杂,不仅包括各种难降解有机物、各类细菌和病毒,还包含大量的抗生素。这些含抗生素的废水由于不经处理或者处理不达标排放至环境水体中造成细菌耐药性增强,严重影响生态平衡,同时对人体健康造成潜在威胁和风险。因此,研发新的既绿色环保又高效的抗生素废水处理技术和设备迫在眉睫。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/983e1d88-7823-40c7-9efd-ca47300d206e.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯!/spanbr//p
  • 牛津仪器纳米级等离子体工艺研讨会在京召开
    仪器信息网讯 2013 年5 月14 日,由牛津仪器等离子技术公司主办的“牛津仪器纳米级等离子工艺研讨会”在北京举行,来自广大企业及科研院所的160余名用户参加了此次会议。会议现场  会议就微纳米技术在科研领域的新发展、未来的加工趋势、微纳米结构及器件应用等内容进行了探讨和交流。牛津仪器商务发展总监 Frazer Anderson先生  牛津仪器商务发展总监Frazer Anderson先生首先介绍了牛津仪器及牛津仪器等离子体技术公司的基本情况。牛津仪器的业务主要分为纳米分析部、工业分析部和服务三大部分。其业务收入目前38%来自亚洲、32%来自欧洲、北美占27%,其他区域占3%。  牛津仪器等离子体技术公司属于纳米分析部,作为等离子体与沉积处理系统的领导供应商,成立于1982年,拥有超过30年的工艺经验,超过6000件的工艺库,能刻蚀、沉积或使用超过50%的元素周期表中的自然界元素。应用领域包括高亮度发光二极管(HBLED)、微机电系统MEMS、第三代光伏发电及下一代半导体技术等。拥有遍布全球的销售服务网络,并在英国、德国、中国、美国、日本、新加坡等设立了分公司与办事机构。中科院半导体所半导体集成技术研究中心主任 杨富华教授  杨富华教授介绍了中科院半导体所、半导体技术研究中心、纳米技术在中科院半导体所的应用、半导体所采用的牛津仪器等离子体技术公司的产品使用情况等。他表示举办这样的交流会对于科研人员更好的了解相关领域的前沿动态及技术交流很有帮助。等离子体技术对于未来的科研工作非常重要,我们的研究人员一定要懂得仪器的使用原理,更好的操作仪器,获取出色的研究成果。同时他提出对于仪器公司来说,要想提高在中国的市场占有率,需要在仪器质量、价格、服务及技术打包方案等方面做更多的关注。牛津仪器MEMS首席工艺科学家 Mark McNie先生  Mark McNie在报告中主要介绍了深硅刻蚀和低温纳米刻蚀技术在微机电系统(MEMS)中的应用。目前微机电系统的主要应用领域包括微机械、微流体、传感器及生物医药等领域。其发展趋势主要在于一体化和复杂化。台湾工研院微系统技术中心经理 Dr.Lin Ching-Yuan  Lin Ching-Yuan博士在报告中指出微机电系统(MEMS)的市场规模到2017年将达到210亿美元,其2011年的市场规模为102亿美元,年均复合增长率将达到13%。未来在消费品和生物应用领域将发挥重要的角色,晶圆级的组合结构设计、3D一体化设计将成为MEMS的发展趋势,MEMS技术在半导体及移动电话领域的应用需求依然强劲。牛津仪器首席技术官 Dr. Mike Cooke  Mike Cooke博士介绍了ALD(Atomic layer deposition)原子层沉积系统及其应用。ALD是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法,该技术作为一种先进的薄膜生长技术,已经在高介电和半导体薄膜生长等多方面得到了应用。新型高介电栅介质材料,纳米材料和纳米技术以及3D电子器件等是推动ALD发展重要的需求动力。  另外,此次交流会中Mike Cooke博士还就纳米薄膜加工工艺面临的问题及解决方案作了介绍。牛津仪器III-V族刻蚀应用首席工艺科学家 邓力刚博士  邓博士在报告中介绍了激光干涉、光谱发射技术在III-V族刻蚀中的应用,这两种技术均可以很好的用于刻蚀监测及控制刻蚀深度。III-V 族刻蚀工艺优化中应注意了解材料特点,保持腔体干净,另外好的掩膜对于获取良好的刻蚀结果也十分重要。牛津仪器HBLED产品经理 Dr.Mark Dineen  Mark Dineen博士介绍说PlasmaPro 1000 Astrea刻蚀设备,可以为PSS, GaN 和AlGaInP提供大批量刻蚀提供解决方案。牛津仪器在高亮度发光二极管(HBLED)产业中已具备15年以上的供应设备经验, HBLED制造业要求高产量、高性能和低使用者成本, PlasmaPro1000 Astrea大批量刻蚀设备完全符合以上要求。牛津仪器Ion Beam产品经理 梁杰荣博士  梁杰荣博士介绍说,Ion Beam(离子束)技术可广泛的用于金属、氧化物和半导体的刻蚀与沉积。随着离子源栅网设计技术的持续改进,将使离子束技术更好的用于纳米结构的精细刻蚀。高离子能量及低压操作将为高质量的光学涂层和金属沉积提供理想的环境。中科院半导体所 王晓东教授  王晓东教授介绍了Ion Beam Optofab3000 离子束沉积的应用情况。Optofab3000型离子束溅射系统的离子束能量可达几十至1000eV,被溅射出的原子带有10-20eV的能量,比蒸发镀膜高约100倍,薄膜的粘附性及致密度显著提高,靶材的表面原子逐层被撞出来,薄膜以原子层级生长,均匀性好。牛津仪器半导体设备部区域销售经理王宏主持会议  会议中,与会人员在听取报告后,还就自己感兴趣的问题同专家进行了沟通和交流。现场还特别设置了墙报展,各位专家分别将自己的研究内容同与会人员就行了探讨。现场交流撰稿编辑:秦丽娟
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如10keV),则应在设计上更多的考虑光栅衬底的影响,即必须使用自支撑结构或者薄衬底的光栅.该实验中使用了由德国 Microworks 公司制造的基底为10 μm 厚聚酰亚胺膜的光栅。如下图所示,源光栅 G0 周期为 2.4 μm,直径有效尺寸为 7 mm,金高度为 21-24 μm;相位光栅G1的周期为 4.0 μm,直径有效尺寸为 9 mm,镍条高度为 3.0 μm。分析光栅 G2 周期为 12 μm,直径有效尺寸为 35 mm,金高度为 17-22 μm。1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 牛津最新等离子技术App可用于等离子体刻蚀和沉积
    牛津仪器等离子技术最近更新的App包括一个明确和互动的元素周期表、详细的等离子体、离子束和原子层沉积工艺信息。它允许iPhone和iPad用户查阅工艺化学的相关信息,可以通过简单的周期表界面实现任何材料的刻蚀和沉积。  这个周期表App可以免费下载,将吸引大量的工业和学术界的用户。同时,它也是一个优秀的教学设备,可以展示单个元素属性和电子构型。
  • 第四届亚太地区冬季等离子体光谱化学会议
    第四届亚太地区冬季等离子体光谱化学会议(The 4th Asia-Pacific Winter Conference on Plasma Spectrochemistry,2010 APWC) 将于2010年11月26-30日在成都市望江宾馆举行。此次大会由四川大学、厦门大学和中科院贵阳地化所共同承办,并得到国家自然科学基金委的鼎力支持,大会名誉主席为厦门大学黄本立院士,大会主席为四川大学侯贤灯教授和厦门大学王秋泉教授。  本届会议拟就等离子体光谱、等离子体质谱、光谱分析仪器、便携式光谱仪器、光谱元素形态分析、光谱环境分析等多个领域的研究最新进展,以大会邀请报告、大会口头报告、报展、论文集、仪器展示等形式开展学术与技术交流。  国内征文截止日期延长至2010年9月30日。其它相关信息请登陆大会主页http://atc.scu.edu.cn/2010apwc/。  通讯地址:四川大学分析测试中心 邮编:610064  电话传真:028-85415695 85412798  Email: houxd@scu.edu.cn (侯贤灯) lvy@scu.edu.cn(吕弋)  第四届亚太地区冬季等离子体光谱化学会议组委会  2010年7月31日
  • MH-5000 便携式等离子体发射光谱仪
    佰汇兴业(北京)科技有限公司最新代理日本MICRO EMISSION MH-5000等离子体发射光谱仪,该仪器为一款利用液态电极等离子体来分析痕量金属的发射光谱仪,它通过向溶液施加电压以使其加热并蒸发,液体电极产生等离子体,溶液中的溶质被送入等离子体中产生发射光谱。它可以应用到冶金制造、工业废物处理和环境监测等领域中。特点:手持掌上型尺寸的实现(小型,便携式手持)操作简单,初学者也可快速入门电池驱动,可使用于现场测定同时测定多种元素检测极限0.1ppm~100ppm工程管理、土壤测定、水质测定、食品测定
  • 最小耐高温的等离子体晶体管问世(图)
    美国犹他大学的研究人员研制了迄今为止最小的等离子体晶体管,其可承受核反应堆的高温和离子辐射环境条件,有助于研制在战场上收集医用X射线的智能手机、实时监测空气质量的设备、无需笨重的镜头和X射线光束整形装置的X射线光刻技术。  这种晶体管有潜力开辟适用于核环境工作的新一类电子器件,能用于控制、指引机器人在核反应堆中执行任务,也能在出现问题时控制核反应堆,在核攻击事件中继续工作。  作为当代电子设备的关键组成元件,硅基晶体管通过利用电场控制电荷的流动来实现晶体管的打开或关闭,当温度高于550华氏度时失效,这是核反应堆通常工作的温度。而此次美研究人员将利用传导离子和电子的等离子体空气间隙作为导电沟道,研制了可在极高温度下工作的等离子体晶体管。它的长度为1-6微米,为当前最先进的微型等离子体器件的1/500,工作电压是其六分之一,工作温度高达华氏1450度。核辐射可将气体电离成等离子体,因此这种极端的环境更易于等离子体器件工作。
  • 出口增长63%!2020年等离子体刻蚀机海关进出口数据盘点
    自美国提出终断该国企业与华为多年的芯片供应以来,研制中国自己的国产芯片提上了我国的发展日程,也是当前中国市场最为紧迫的一项技术,关于芯片技术发展的讨论不仅在专业领域盛行,也成为了普通民众议论的焦点所在。而芯片的制造离不开半导体设备,其中刻蚀设备是其中的重中之重。据了解,目前我国已经突破了刻蚀设备的技术难关,其中中微公司的5nm刻蚀设备已成功销往海外,更是进入台积电的生产线。如今最先进的芯片制造主要使用干法刻蚀技术即等离子体刻蚀技术,相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。伴随着国际半导体行业的产能危机,国内等离子体刻蚀机需求或将爆发。通过分析海关等离子体刻蚀机的进口情况,可以从一个侧面反映出中国等离子体刻蚀机市场的一些情况。2020年是特殊的一年,新冠肺炎疫情在全球爆发,各行各业都受到了一定的影响,包括半导体产业。为了解过去近两年中等离子体刻蚀机的进出口情况,仪器信息网特别对2019、2020年1-12月,等离子体刻蚀机(商品编码84862041)进出口数据进行了分析汇总,为大家了解中国目前等离子体刻蚀机市场做一个参考。2019、2020年1-12月海关等离子体刻蚀机进出口数据统计统计年月进口量(台)进口金额(人民币:元)出口量(台)出口金额(人民币:元)2019年1-12月109712,685,798,98279353,896,8762020年1-12月127616,949,614,747122577,419,680从上表可以看到,2020年1-12月,我国共进口等离子体刻蚀机1276台,进口额约为170亿元,进口单价约为1328万元。而2019年同期,等离子体刻蚀机进口1097台,进口额约为127亿元,进口单价约为1156.4万元。与去年同期相比,2020年1-12月我国等离子体刻蚀机进口台数增加约16.3%,进口额增加约33.6%,进口单价提高约15%。从整体来看,2020年进口等离子体刻蚀机市场增长非常明显,同时进口单价也略有提高。而从出口情况来看,2020年1-12月,我国共出口等离子体刻蚀机122台,出口额约为5.8亿元,出口单价约为473万元。而2019年同期,等离子体刻蚀机出口79台,出口额约为3.54亿元,出口单价约为448万元。总体而言,我国等离子体刻蚀机出口量仍然很少,但2020年比上年同期出口金额明显增加约63%,出口数量增加约54%,出口单价也略有提高。2019、2020年1-12月等离子体刻蚀机进口量逐月数据图(单位:台)对2020年1-12月等离子体刻蚀机进口量逐月数据分析发现,并对比2019年同期数据可以明显看出,2020年等离子体刻蚀机进口数量明显有所增加,且逐月变化较为明显,其中2020年1月受国内新冠肺炎疫情影响,等离子体刻蚀机进口数量较去年有所下降,而则2~4月份迎来“报复性”增长,等离子体刻蚀机进口台数比去年同期多大约一半,5~7月每月进口数量与去年有所增长,但增幅有所下降,8月进口数量较去年同期有所下降,可能受国外新冠疫情影响,而9月进口量的大爆发可能是为了弥补8月份进口量不足的部分。10-11月平稳增加,但12月进口量再次下降,这可能来自于特朗普政府将中芯国际列入“实体清单”和冬季疫情反扑的多重影响。2019、2020年1-12月等离子体刻蚀机进口金额逐月数据图(单位:人民币/亿元)对2020年1-12月等离子体刻蚀机进口金额逐月数据分析发现,并对比2019年同期数据可以明显看出,除12月较去年进口金额有所下降以外,等离子体刻蚀机每月进口金额都较去年同期有所增加,其中,6、7、11月较去年增长幅度较小之外,但其他月份增幅明显。值得注意的是,9月进口额更是达到了去年同期的两倍以上,一个可能的原因是9月份台积电停止为华为代工芯片,华为大量订单转向国内代工厂生产,国内代工厂的扩大产能所导致。2019、2020年1-12月等离子体刻蚀机主要海关进口贸易伙伴数量(单位:台)2019、2020年1-12月等离子体刻蚀机主要海关进口贸易伙伴金额(单位:人民币/亿元)2020年1-12月等离子体刻蚀机海关进口贸易伙伴金额分布图根据海关数据,近两年我国主要从美国、日本、新加坡、韩国、中国台湾、马来西亚、英国以及德国等贸易伙伴进口等离子体刻蚀机。其中进口金额最高的前5个贸易伙伴分别是美国、日本、新加坡、韩国和中国台湾。从数据中可以看出,我国等离子体刻蚀机对美日依赖严重。2020年1-12月等离子体刻蚀机进口企业注册地数量分布(单位:台)2020年1-12月等离子体刻蚀机进口企业注册地金额分布(单位:人民币/亿元)通过海关进口等离子体刻蚀机的企业注册地数据,可以大致了解到进口等离子体刻蚀机在国内的“落脚地”。可以看出 ,2020年,江苏、上海、湖北、陕西等省市进口等离子体刻蚀机数量较多,而这些地区也是我国经济较发达,半导体相关行业比较发达的省份和地区。就海关进出口数据来看,等离子体刻蚀机在国内的市场潜力非常巨大,2020年尽管新冠疫情爆发给各行各业造成一定影响,但我国等离子体刻蚀机市场增长依然明显,但由于进口等离子体刻蚀机美日产品占据主流,受到美国贸易战影响较大,国内产线等离子体刻蚀机的“去美化”迫在眉睫。另一方面,由于国内掌握等离子体刻蚀机所涉及的核心零部件、研发人才等仍然相对较少,虽然在介质刻蚀机上的研究已逐渐达到国际先进水平,但难度较大的深硅等离子体刻蚀机的发展距美、日还有一定差距。同时,由于半导体设备企业与晶圆代工厂的工艺深度绑定,也使得等离子体刻蚀机为代表的半导体设备仍依赖进口,受制于人。不过,近年来随着以中微半导体、北方华创等国内等离子体刻蚀机厂商的崛起,国产刻蚀机在一定程度上也能满足部分企业的要求。未来,伴随着中美半导体产业的争夺和全面“去美化”的浪潮,等离子体刻蚀机的国内市场占有率将有望进一步提升。
  • 前十月进口额远超去年全年:等离子体干法刻蚀机海关进口数据分析
    自美国提出终断该国企业与华为多年的芯片供应以来,研制中国自己的国产芯片提上了我国的发展日程,也是当前中国市场最为紧迫的一项技术,关于芯片技术发展的讨论不仅在专业领域盛行,也成为了普通民众议论的焦点所在。而芯片的制造离不开刻蚀设备,其中等离子体刻蚀机更是先进制程中必不可少的设备,是重中之重。2021年是“十四五”开局之年,中国政府也推出了一系列激励政策来鼓励半导体产业发展,明确了半导体产业在产业升级中的重要地位,同时全球自2020年爆发的“芯片荒”在全球范围内愈演愈烈,却迟迟得不到缓解,各行各业都受到了一定的影响,受此影响包括仪器产业、新能源产业等在内的诸多产业都面临产品涨价、缺货的危机。危中有机,全球半导体行业的巨震却是中国半导体产业的发展契机。通过分析海关等离子体刻蚀机的进口情况,可以从一个侧面反映出中国等离子体刻蚀机市场的一些情况,进而了解到中国半导体产业的一些情况。为了解过去2021年中等离子体刻蚀机的进出口情况,仪器信息网特别对2021年1-10月,等离子体干法刻蚀机(商品编码84862041)进口数据进行了分析汇总,为大家了解中国目前等离子体刻蚀机市场做一个参考。2021年1-10月进口等离子体刻蚀机贸易伙伴变化(人民币/万元)贸易伙伴进口额(元)进口数量(台)均价(元/台)美国777014343651615058418日本621252727637416611035韩国328231684432710037666中国台湾18771365038921091421新加坡181269896211316041584马来西亚17790801177723104937英国544211135786977066德国203676120414967710中国1296367043240918荷兰632916423164582法国415082322075412波兰643071643072021年1-10月各贸易伙伴进口总额(人民币/元)2021年1-10月,中国进口等离子体干法刻蚀机总额约235亿元,总台数达1624台,其中美国进口金额最多约78亿元,台数达516台,占比高达33%,日本进口金额紧随其后约62亿元,374台,占比达26%。可以看出,目前等离子体刻蚀机主要来自于美国和日本,进口均价都超1500万元/台,此类等离子体刻蚀机以高端产品为主,主要用于生产。值得注意的是,波兰进口的一台等离子体刻蚀机仅6万多元,此设备可能是用于科研领域的低端产品或配件。从此前统计的【2020年等离子体刻蚀机海关进出口数据盘点】可以看出,2020年1-12月,我国共进口等离子体刻蚀机1276台,进口额约为170亿元,而今年仅前十个月就已超去年全年的进口额。这表明,今年我国晶圆代工厂的建设热度不减,这也和如今的半导体投资热、芯片荒有关。2021年1-10月等离子体干法刻蚀机进口数据(人民币/万元)从进口额的时间变化趋势可以看出,等离子体刻蚀机进口额在4-6月出现了一个高峰,进口额连续大幅度增长,而在七月份却断崖式下跌,直到回归正常水平。这一变化可能和疫情有关,在夏季全球疫情由于气温上升得到缓解,海关进口更畅通,而春秋季节气温较低,全球疫情出现反复。另一个可能的原因是海运费用暴涨导致六月以后进口额降低。2021年1-10月等离子体刻蚀机各注册地进口数据变化(单位/万元)2021年1-10月等离子体干法刻蚀机注册地进口额分布那么这些等离子体刻蚀机主要销往何处?通过对进口数据的注册地进行分析发现,陕西省、上海市和湖北省的进口额最多,分别为54亿元、43亿元和41亿元。等离子体刻蚀机主要应用于集成电路生产中,这表明这些地区在新建或改造集成电路生产线上投入较大,对等离子体刻蚀机的需求也在激增。我国在1-10月从韩国进口等离子体刻蚀机总额约33亿元,其中注册地为陕西省的进口额约19亿元,占比约59%。这表明,陕西省等离子体刻蚀机的进口可能和三星等韩国企业在西安的半导体生产线有关。
  • 敞开式等离子体辅助激光解吸质谱成像系统的构建和应用
    成果名称敞开式等离子体辅助激光解吸质谱成像系统的构建和应用单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。鉴于我国在质谱成像领域的研究基础较为薄弱,本项目拟从研究平台的搭建入手,开展等离子体辅助激光解析质谱成像研究。主要研究内容包括:1)利用DART、多波长激光以及三维移动平台搭建质谱成像研究平台,提高分辨率,为实际研究奠定基础。2)开发适用于成像平台的数据处理软件,并逐步改进和优化。3)探讨新型基质在质谱成像系统中的作用,以提高质谱成像检测结果。4)利用搭建的质谱成像研究平台,进行生命科学研究领域中相关样品组织的小分子目标物成像研究。目前,项目按照计划顺利进行。完成质谱成像平台的搭建和测试工作。将DART、多波长激光以及三维移动平台组合在一起形成了质谱成像技术平台,采用三维移动样品台自动控制样品分析位点, 质谱成像软件将样品位置和质谱数据整合在一起,可以绘出二维图像。并且改进激光仪器,提高激光的分辨率以提高质谱成像的分辨率。应用前景:质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。
  • 研究发现等离子体可有效破坏致命病毒传染性
    新浪科技讯 北京时间12月7日消息,据物理学家组织网报道,也许用不了多久,我们就可以利用一种与众不同的新方法对抗艾滋病毒、非典、肝炎和流感等致命病毒,因为研究人员已经证实,等离子体在破坏腺病毒的传染性和防止它复制等方面的效果不凡。研究发现,当病毒接触等离子体(除固体、液体和气体以外的第四种物质状态)仅仅240秒后,只有百万分之一的病毒仍在复制,实际上所有病毒的传染性都已被破坏。离子体可有效破坏致命病毒传染性  该研究成果发表在英国物理学会出版社(IOP Publishing)的《物理学学报D辑:应用物理学》杂志上,它是第一项着眼于病毒和已经显示出等离子体对根除皮肤上的细菌及净化水非常有效的研究。在医院里,等离子体产生装置能够杀灭依靠寄主生物体复制和传播的潜在致命病毒。从长远来看,可以直接吸入等离子体,用来杀灭肺里的病毒,或者用来清除抽出体外的血液里的任何病毒,然后把干净血液重新输入人体。德国马克斯-普朗克地外物理研究所的研究人员特意选择腺病毒,看一看它们是不是最难消除活性的一种病毒。例如,由这种病毒引发的疾病,只能通过治疗感染症状和并发症来治愈它,而不是把病毒本身作为攻击目标。  腺病毒主要会引起肺炎和支气管炎等呼吸道疾病,由于整个病毒被一层蛋白质包裹,因此很难破坏它的传染性。在这项最新研究中,腺病毒被稀释到特定浓度,然后让它们接触等离子体240秒,接着培养1小时。腺病毒受控组未接触等离子体,但接受了其他相同处理。随后用这两批腺病毒(接触等离子体的一组和受控组)感染两种不同的细胞系。为了检测一个细胞是否包含这种病毒,研究人员通过特殊处理,让该病毒产生一种在特定光线照射下能发出绿色荧光的蛋白质。目前还不清楚等离子体产生这种效果的机制,不过它们是等离子体和周围空气产生化合作用的结果,当我们的免疫系统遭到微生物袭击时,也会产生类似物质。(孝文)
  • 等离子体质谱仪灵敏度提高 研究建立激光方解石U-Pb定年技术
    方解石可以在多种地质环境中形成。方解石U-Pb年代学在诸多地学领域具有较大应用前景,如古气候、沉积学、成岩作用、断裂时代、成矿过程以及油气运移等方面。   早期方解石U-Pb定年主要基于同位素稀释法(ID),然后采用热电离质谱(TIMS)或多接收电感耦合等离子体质谱(MC-ICP-MS)进行测定。然而,这种分析方法耗时长,成功率低,需要样品溶解以及U和Pb的化学分离;其空间分辨率差,不适合用于具有环带变化的样品,因此未得到广泛应用。   自2014年激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)首次应用于化石中方解石胶结物U-Pb定年以来,该技术在解决一系列关键地质问题中得到广泛应用。与ID-TIMS相比,LA-ICP-MS具有空间分辨率高、分析速度快等优点,能快速测得样品的U-Pb比值。但方解石U含量普遍较低(5mg g-1),对仪器灵敏度具有挑战。采用高灵敏度扇形磁场电感耦合等离子体质谱仪(SF-ICP-MS)比四极杆电感耦合等离子体质谱仪(Q-ICP-MS)更具优势。   基于此,中国科学院地质与地球物理研究所多接收-电感耦合等离子体质谱实验室高级工程师吴石头和正高级工程师杨岳衡及合作者,通过系统优化Element XR SF-ICP-MS接口锥组、辅助氮气、铂电极圈等参数,将其灵敏度提高了5-10倍(图1),比国际上已报道的同类型仪器灵敏度高2-4倍。   基于此,研究建立了LA-SF-ICP-MS方解石U-Pb定年技术。采用国际标准物质Duff Brown Tank、JT和ASH-15对方法的分析精度和准确度进行了验证(图2)。通过改善的灵敏度,空间分辨率达到85-110微米,可以对大多数方解石进行U-Pb定年。研究还进一步证明,基于LA-ICP-MS二维元素成像技术选取样品定年区域可提高方解石U-Pb定年的成功率。   副研究员兰中伍及其合作者将该技术应用于埃迪卡拉纪盖帽碳酸盐岩上。Marinoan冰川杂砾岩和其上部的盖帽碳酸盐岩是支持雪球地球假说(snowball Earth)直接的岩石学证据,该岩石组合指示了古气候由冷到暖的变化,是多学科领域关注的前沿和焦点。前人从这套盖帽碳酸盐岩内陆续开展了沉积学、地层学、地球化学和地球生物学等方面的工作,但其复杂的沉积结构和异常低的δ13Ccarb值(–45‰)使得科学家对其成因较难做出合理解释。   了解方解石的形成机制和共生矿物形成的先后顺序有助于了解其和雪球地球假说之间的关系,并对地球化学数据做出合理解释。研究人员对宜昌三峡地区九龙湾剖面的Marinoan盖帽白云岩开展了激光剥蚀电感耦合等离子质谱(LA-ICP-MS)U-Pb同位素和REE分析。岩相学观察表明早期白云石孔洞和裂隙被晚期方解石脉/方解石单颗粒/黄铁矿/铁氧化物所充填,然后被石英胶结物所包裹(图3)。   通过对方解石进行U-Pb定年,在Tera-Wasserburg图解中得到了636.5 ± 7.4 Ma 下交点年龄(图4)。传递衰变常数和标样误差之后,年龄误差为17.8 Ma。因此,采样层位的沉积时代为636.5 ± 7.4/17.8 Ma。该年龄和前人从盖帽白云岩内白云石中测得的U-Pb年龄629.3 ± 16.7/22.9 Ma以及火山灰锆石U-Pb年龄635.23 ± 0.57 Ma在误差范围内相一致。新的年龄数据表明方解石在埃迪卡拉纪早期形成,不可能在埃迪卡拉纪晚期或者寒武纪热液活动中形成。   方解石REE组成总体上表现出La,Y和Gd正异常(δGd=1.1-1.96),高Y/Ho比值(大多数44)(图5)。Eu以正异常为主(δEu=1.02-1.38),少量表现出负异常(δEu=0.79-0.96)。高Y/Ho比值为海水沉积的特征,Eu正异常说明有热液活动的影响。从REE配分型式上可以看出有些方解石可能是从海水中形成的。这种情况下,甲烷的厌氧氧化(AOM)形成了方解石、黄铁矿、硫酸钡、铁氧化物,以及盖帽白云岩中的负δ13Ccarb值。负δ13Ccarb方解石和盖帽白云岩近于同期形成,甲烷水合物去稳导致甲烷泄露到大气中,引发冰川融化。有些方解石可能是在埃迪卡拉纪早期(ca. 632 Ma)热液活动中形成的。   研究成果发表于Science China Earth Sciences和Geological Magazine。研究工作得到国家重点研发项目、国家自然科学基金、岩石圈演化国家重点实验室开放基金、古生物学与地层学国家重点实验室开放基金,以及地质过程与矿产资源国家重点实验室开放基金的共同资助。 图1.三种锥组合(S + H、Jet + H和Jet + X)在不引入N2和引入少量N2条件下206Pb和238U的信号强度图2.ASH-15的下交点年龄和U含量结果图,其中下交点年龄结果以Tera-Wasserburg图表示;U含量变化以相对概率的形式表示。蓝色虚线为固定上交点207Pb/206Pb为0.832的等时线;黑色实线为未固定上交点的等时线。在不同时间内,共进行了2次独立分析图3.三峡地区九龙湾剖面陡山沱组底部葡萄状白云岩内矿物共生组合(BSE图像)。多种形态的方解石胶结物和黄铁矿充填在等厚状白云石内部的孔洞和裂隙内,后期被石英胶结物所包裹图4.方解石Tera-Wasserburg谐和图。回归线的上交点代表普通铅组成,下交点代表样品的年龄图5.葡萄状白云岩内方解石的REE配分型式
  • 德国在实验室制造出黑洞等离子体
    据美国物理学家组织网11月4日报道,德国马克斯普朗克核物理研究所和赫尔姆霍茨柏林中心的研究人员使用柏林同步加速器(BESSY Ⅱ)在实验室成功产生了黑洞周边的等离子体。通过该研究,之前只能在太空由人造卫星执行的天文物理实验,也可以在地面进行,诸多天文物理学难题有望得到解决。   黑洞的重力很大,会吸附一切物质。进入黑洞后,任何东西都不可能从黑洞的边界之内逃逸出来。随着被吸入的物体的温度不断升高,会产生核与电子分离的高温等离子体。  黑洞吸附物质会产生X射线,X射线反过来又会刺激其中的大量化学元素发射出具有独特线条(颜色)的X射线。分析这些线条可以帮助科学家了解更多有关黑洞附近等离子体的密度、速度和组成成分等信息。  在这个过程中,铁起了非常关键的作用。尽管铁在宇宙中的储量并不如更轻的氢和氦丰富,但是,它能够更好地吸收和重新发射出X射线,发射出的光子因此也比其他更轻的原子发射出的光子具有更高的能量、更短的波长(使得其具有不同的颜色)。  铁发射出的X射线在穿过黑洞周围的介质时也会被吸收。在这个所谓的光离化过程中,铁原子通常会经历几次电离,其包含的26个电子中有超过一半会被去除,最终产生带电离子,带电离子聚集成为等离子体。而现在,研究人员在实验室中重现了这个过程。  实验的核心是马克斯普朗克核物理研究所设计的电子束离子阱。在这个离子阱中,铁原子经由一束强烈的电子束加热,从而被离子化14次。实验过程如下:一团铁离子(仅仅几厘米长并且像头发丝一样薄)在磁场和电场的作用下被悬停在一个超高真空内,同步加速器发射出的X射线的光子能量被一台精确性超高的“单色仪”挑选出来,作为一束很薄但却集中的光束施加到铁离子上。  实验室测量到的光谱线与钱德拉X射线天文台和牛顿X射线多镜望远镜所观测的结果相匹配。也就是说,研究人员在地面实验室人为制造出了太空中的黑洞等离子体。  这种新奇的方法将带电离子的离子阱和同步加速器辐射源结合在一起,让人们可以更好地了解黑洞周围的等离子体或者活跃的星系核。研究人员希望,将EBIT分光检查镜和更清晰的第三代(2009年开始在德国汉堡运行的同步辐射源PETRAⅢ)、第四代(X射线自由电子激光XFEL)X射线源结合,将能够给该研究领域带来更多新鲜活力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制