当前位置: 仪器信息网 > 行业主题 > >

超短脉冲测量分析仪

仪器信息网超短脉冲测量分析仪专题为您提供2024年最新超短脉冲测量分析仪价格报价、厂家品牌的相关信息, 包括超短脉冲测量分析仪参数、型号等,不管是国产,还是进口品牌的超短脉冲测量分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超短脉冲测量分析仪相关的耗材配件、试剂标物,还有超短脉冲测量分析仪相关的最新资讯、资料,以及超短脉冲测量分析仪相关的解决方案。

超短脉冲测量分析仪相关的论坛

  • 【分享】我国超短脉冲激光测量研究达到国际领先水平

    日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题 “飞秒脉冲激光参数测量新技术研究”通过了专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在1飞秒内,光只能走0.3微米,相当于一根头发丝的百分之一!飞秒脉冲是人类目前在实验室条件下能获得的在可见光至近红外波段的最短脉冲,它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到很广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。

  • 【原创】ROHS分析用多通道脉冲幅度分析仪应用

    1、 核物理,如X射线荧光分析仪; 2、 精细化学分析,如色谱分析仪、光谱分析仪、表面成分分析等; 3、 环境监测,分析空气中悬浮颗粒的数目、水(纯净水)或油(食用油、高级润滑油)中的颗粒物等; 4、科学研究,可利用脉冲高度分析仪来确定入射射线的能量频谱; 5、核医学,如骨质疏松的测量; 6、一般性振动和高频振荡的测量,如脉搏检测分析仪。

  • 【国产好仪器讨论】之钢研纳克检测技术有限公司的脉冲红外热导氧氮氢分析仪(ONH-3000)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C141210%2Ejpg&iwidth=200&iHeight=200 钢研纳克检测技术有限公司 的 脉冲红外热导氧氮氢分析仪(ONH-3000)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器原理: 原理简介:金属、合金及陶瓷等无机材料中的O、N、H等气体元素对材料的性能至关重要。定量分析材料中的O、N、H元素,目前广泛采用的是脉冲加热熔融-惰气保护还原热导红外检测原理,在载气气氛下,将试样在脉冲炉石墨坩埚中加热至特定温度,试样中O元素转换为CO或CO2后由载气载出,而后用红外吸收法测定;N和H以分子形式释放后由载气载出,进入热导池分别定量分析。ONH-3000氧氮氢分析仪是北京纳克分析仪器有限公司最新推出的具有领先水平的高技术氧氮氢分析仪。该仪器配置有两个独立的分别检测高氧和低氧的红外检测池,一个检测氮和氢双重范围的热导检测池。脉冲炉采用循环水冷却,样品在高功率脉冲炉的石墨坩埚中加热可达3000℃以上高温,该仪器具有灵敏度高、性能好、测量范围宽和分析结果准确可靠等优点。ONH-3000氧氮氢分析仪是为快速、准确测定固体无机材料中氧、氮、氢的含量而专门设计制造的,分析过程中可自动实现从低范围到高范围的切换。 仪器参数 1.测量范围:氧0.0~2%; 氮0.0~2%; 氢0.0~0.1% 2.灵 敏 度:氧0.1μg/g; 氮0.1μg/g; 氢0.01μg/g 3.精 密 度:氧2μg/g或2%; 氮2μg/g或2%; 氢0.2μg/g或2% 4.分析方法:氧:红外吸收法; 氮:热导法; 氢:热导法 5.样品称量:一般约1g,可根据样品含量改变称样量。 6.分析时间:一般为3分钟。 7.载 气:氧氮分析为高纯氦气;氢分析为高纯氮气; 动 力 气:普通氮气或压缩空气。 8.仪器结构:模块式结构,由主机、计算机、打印机*、电子天平*、冷却循环水*等模块组成。 注:*为选配件。 9.检测系统:氧分析采用固态红外检测器,氮、氢分析采用高精度热导检测器。 1)检测器:采用抗氧化NTC热敏电阻元件; 2)信号处理:采用小电流控制技术,防止热敏元件在不通载气条件下氧化; 3)恒温控制:采用高精度恒温控制系统; 4)参比气路:采用稳定性良好的微流量控制; 10.流量控制:采用高精度电子流量控制技术,带Anti-Overshoot System; 11.熔融加热炉:电流0-1500A,功率:8KVA,最高温度高于3000℃。 12.校正:两种方法 1)快速校正 2)多次分析结果校正。 13.电源:220VAC&plus....【了解更多此仪器设备的信息】

  • 如何测量纯水的90度脉冲

    在实验中,碰到一个问题:测量纯水中氢原子的自旋晶格弛豫时间时,需要知道氢的90度脉冲。但是由于水有很强的阻尼效应,实践中按照标准办法难以判断是否是90度脉冲。大家有什么建议吗?谢谢

  • 理化专用影像测量分析仪

    理化专用影像测量分析仪

    国内首创,主要用于力学性能测试方面的,尺寸测量,面积分析仪,角度、弧度,布氏硬度制测定、断后延伸率的测量等等,代替了力学实验室里用的所有测量工具,如卡尺等,更能准确的测量分析仪。功能介绍:1、 落锤、摆锤冲击断口分析、膨胀值测定2、 断后延伸率:拉伸试验断后延伸率测定、断口收缩率测定3、 硬度值测定:布氏硬度、维氏硬度测定4、 动态断裂试验测量。5、 裂纹扩展试验测量6、 等比例分段测量等用于理化实验室物理性能试验中对试验测尺分析。http://ng1.17img.cn/bbsfiles/images/2011/09/201109101047_315566_1632196_3.jpg

  • 低场脉冲核磁共振分析测量仪的了解

    看到一些关于低场脉冲核磁共振的基础知识,跟大家分享一下,我还以为磁场强度越高的核磁共振检测效果越好呢,原来低场脉冲核磁共振也很有用途[em31]

  • 【求助】怎样针对脉冲信号测量发光光谱??

    [size=4]我的实验过程中,样品需要用一个连续激光和一个脉冲激光同时辐照,测量其发光光谱,因为脉冲激光的强度相对较弱,因此为了得到比较好的光谱信号,我想测量样品的发光光谱时,只对脉冲激光的那个时间段测量。我用的脉冲激光的长度大概几个纳秒,如果能在这个范围,或者几百纳秒的范围内记录光谱就会得到比较好的信号,也就是说和光谱的测量和脉冲激光的脉冲同时进行。我现在有一个oceanoptics的HR4000光纤光谱仪,有什么办法可以实现我想要的测量要求哪??[/size]

  • 实验分析仪器--质量分析器种类及性能特点分析

    质量分析器是利用电磁场(包括磁场、磁场与电场组合、高频电场、高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子按空间位置、时间先后或运动轨道稳定与否等形式分离的装置。[b]1.质量分析器种类[/b]质量分析器依据不同方式将离子源中生成的样品离子按质荷比m/z的大小分开。质量分析器主要分为:扇形磁场,飞行时间质量分析器,四极杆质量分析器,离子阱,傅里叶变换离子回旋共振分析器。扇形磁场是历史上最早出现的质量分析器,其利用不同质荷比的带电离子在稳定磁场内偏转的半径不同,将离子分开检测。飞行时间质量分析器则是利用不同质荷比的离子经加速电压加速后,飞过一定距离所需的时间不同,即质荷比小的离子飞行速度快,先到达检测器,质荷比大的飞行速度慢则后到,从而获得分离。四极杆、离子阱、傅里叶变换离子回旋共振、轨道阱等质量分析器是利用离子囚禁技术来实现对带电离子的捕获、储存、筛选及分离,即根据离子振动频率的方式来区分。质荷比小的离子,频率较大,质荷比大的离子,频率较小。四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,离子进入后,在交变电场作用下产生振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子有稳定的运动轨迹,能通过四极杆电极到达检测器,其他离子则由于振幅大而撞到极杆上,实现不同质荷比离子的分离检测。离子阱质量分析器由一个环形电极和两个端盖电极组成,当环电极施加射频电压,两个端电极接地时,就会形成一个电势阱,使离子能够长时间地囚禁于阱内,通过调整扫描参数,使离子运动的频率增加,当和外加频率共振时,离子从外场吸收能量、轨迹变大、抛出阱外而被检测。傅里叶变换离子回旋共振(FTICR)质量分析器是根据磁场中离子回旋频率来测量离子质荷比(m/z)。彭宁阱(Penning trap)捕获的离子被垂直于磁场的振荡电场激发形成一个更大的回旋半径,当回旋的离子束接近一对捕集板时,捕集板上会检测到感应电流信号。通过傅里叶变换,可以将这些电流信号转换成质谱信号。轨道阱(orbitrap)质量分析器是近年来发展的一种新型的质量分析器,其是利用作用在纺锤形电极上的静电场将离子束缚,通过测定离子轴向场的谐振运动频率来确定其质荷比。[b]2.质量分析器性能指标[/b]衡量一个质量分析器性能主要有5个指标:质量分析范围、分析速度、传输效率、质量精度和质量分辨率。质量分析范围决定了质量分析器可以分析离子的m/的上下限。通常用Th或u来表示一个离子带一个单位的正电荷,即z=1。分析速度又称扫描速度,用来描述质量分析器分析某段特定质量范围的速度。通常用每秒可以分析的质量单位(u/s)或每毫秒可以分析的质量单位(u/ms)表示。传输效率指的是可以到达检测器和进入质量分析器的离子数目的比值。传输效率包括在分析器的其他部分的离子丢失,如通过质量分析器前和后的电子透镜所丢失的离子。质量精度是指质谱仪测量m/z精确度的描述,它主要是指理论值m/Z理论和测量值m/Z测量值之间的差距。它可以用毫质量单位即mmu来表示,也可以用百万分之一([img=CodeCogsEqn(1).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392876602.gif[/img])来表示。质量精度在很大程度上与仪器的稳定性和分辨率有关。质量分辨率,或者也可以说是分辨能力。分辨率指的是仪器可以获得两个具有微小质量差别的离子所对应信号的能力。两个质量峰被认为区分的条件是:当使用磁场或离子回旋共振分析器时,两个峰之间的峰谷的强度不高于两峰之间较弱峰强的10%,当使用四极杆、离子阱、TOF时,不高于50%。如果用△m来表示两个具有质量分别为m和m+△m的质谱峰可以被分开的最小质量,则分辨率R的定义为R=m/△m。[table][tr][td][b]项目[/b][/td][td][b]扇形磁场(magnetic)[/b][/td][td][b]飞行时间(TOP)[/b][/td][td][b]四级杆(quadrupole)[/b][/td][td][b]离子阱(ion trap)[/b][/td][td][b]傅里叶变换离子回旋共振(FTICR)[/b][/td][td][b]轨道阱(orbitrap)[/b][/td][/tr][tr][td]质量范围[/td][td]20000Th[/td][td]1000000Th[/td][td]4000Th[/td][td]6000Th[/td][td]30000Th[/td][td]50000Th[/td][/tr][tr][td]分辨率[/td][td]100000[/td][td]5000[/td][td]2000[/td][td]4000[/td][td]500000[/td][td]100000[/td][/tr][tr][td]质量精度[/td][td]10[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392926197.gif[/img][/td][td]200[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393329357.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393370078.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393225800.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393208659.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394336945.gif[/img][/td][/tr][tr][td]离子进入方式[/td][td]连续[/td][td]脉冲[/td][td]连续[/td][td]脉冲[/td][td]脉冲[/td][td]脉冲[/td][/tr][tr][td]工作压力[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394700923.gif[/img]Torr[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394998738.gif[/img]Torr[/td][td][img=CodeCogsEqn(21).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394184126.gif[/img]Torr[/td][td][img=10的-3.gif]http://www.ewg1990.com/upload/image/20190116/10%E7%9A%84-33576495.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395141047.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395961052.gif[/img]Torr[/td][/tr][/table]表1常见质量分析器性能参数[b]3.质量分析器的特点及联用[/b]每个质量分析器都有其优缺点。如扇形磁场质量分析器重现性好,能够较快地进行扫描,但在目前出现的小型化质量分析器中,其所占的比重不大,因为如果降低磁场体积和重量将极大地影响磁场的强度,从而大大削弱其分析性能;四极杆质量分析器结构简单,易加工,成本低,但是其分辨率不高,杆体易被污染,维护和装调难度较大;离子阱质量分析器体积小,可在较高压力下(如0.1Pa)工作,能方便地进行级联质谱检测,尤其在质谱仪器小型化研制中具有无可比拟的优势;傅里叶变换离子回旋共振质量分析器具有更高的灵敏度和分辨率,但价格昂贵;飞行时间质量分析器最大的特点是检测离子的质量范围较大,适用于大分子化合物的分析。为了将质量分析器的优势最大化,可以把不同的质量分析器按一定顺序结合来实现仪器的通用性,在同一台质谱仪器上实现多种功能,如四极杆飞行时间质量分析器、离子阱-飞行时间质量分析器、离子阱-傅里叶变换离子回旋共振质量分析器等。质量分析器的联用可以分析由第一级质量分析器筛选出的离子碎裂后的碎片谱图。从筛选出的离子获得的碎片具有时间依赖性,可以在其后的质量分析器观察到。同时这些仪器允许碎裂的离子继续进行下一级的碎裂,形成多级碎片([img=CodeCogsEqn(10).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395559110.gif[/img]),并且被检测到

  • 【资料】ROHS有害物质元素分析仪

    产品说明:XR-306系列能量色散X荧光分析仪完全满足欧盟RoHS指令和RoHS标准的要求,各项技术性能指标均已达到国际同类产品水平。X荧光分析仪可以应用于任何需要分析Na以上到U的元素或化合物成分分析的领域,例如建材(水泥、玻璃、陶瓷)、冶金(钢铁、有色金属)、石油(微量元素如S、Pb等)、化工、地质采矿、商品检验、质量检验甚至人体微量元素的检验等等。是常量分析和痕量分析的可靠工具,在大专院校和科研单位也是常备仪器。产品概述:(一)XR-306能量色散X荧光光谱仪原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射。如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。(二)XR-306能量色散X荧光光谱仪特点1.无需制样即可直接测量. 2. 所有元素可以同时测量,且短短几分钟即可完成分析,可以应付大批量待测样品. 3. 检出限低,完全可以满足WEEE和ROHS指令要求. 4. 无损分析. 分析样品不被破坏,分析快速,准确,便于自动化。 5. 没有人为误差,谁操作都得到一样的结果. 6. 操作简单,可以单键完成操作.7.分析的元素范围广,从Na到U均可测定; 8.荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便; 9.分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级, 10、连续测试重复性极强,测试数据稳定可靠(三)能量色散光谱分析仪与波长色散光谱分析仪的区别能量色散分析仪只有一个探测器,它对测量X射线能量范围是不受限制的,而且这个探测器能同时测量到所有能量的X射线。也就是说只要激发样品的X射线的能量和强度能满足激发所测样品的条件,对一组分析的元素都能同时测量出来。一般有以下三种基本类型的探测器可用于测量X射线:密封式或流气式充气探测器、闪烁探测器、半导体探测器。 能量色散的条件是当样品被激发后产生的X射线通过窗口进入探测器探测器把X射线能量转换成电荷脉冲,每个X射线光子在探测器中生成的电荷与该光子的能量成正比。该电荷被转换成电压脉冲,当这些电压脉冲经充分放大后,被送入脉冲处理器,脉冲处理器把这些代表着各个元素的模拟信号再转换成为数字信号,由计算机进行分类,分别存入多道分析器(MCA)的相应通道内,一般使用1024-2048道MCA。这些通道覆盖了分析的整个能量范围。 波长色散分析仪是用多个衍射晶体分开待测样品中各元素的波长,由此对元素进行测量。晶体被安装在适当位置,以满足布拉格定律的要求。 X射线荧光分析和其它光谱分析一样,也是一种相对分析。这就是说,要有一套参考标样,这些参考标样能够在可能感兴趣的范围内覆盖所测元素。首先对这些标样进行测量,记录欲分析元素的强度,建立浓度(含量)、强度(CPS)校准曲线,存入处理数据的计算机,供以后分析同一类型未知样品时使用。 最简单的校准线是直线,强度与浓度的依赖关系反映仪器的灵敏度。 另外由于校准线要在很长一段时间内使用,所以应对仪器的漂移作出调整,尽管这种漂移不大,但它确实存在。这可以通过对每个分析元素选用高、低两个参考点来实现。制备若干被称作SUS(调整样)的特殊样品,它们含有适量的分析元素,有很好的长期稳定性。利用它们可以求出高、低强度值。

  • 【原创】X射线脉冲星导航原理

    X射线脉冲星导航系统由X射线成像仪和光子计数器(探测器)、星载原子时钟、星载计算设备、导航模型算法库和脉冲星模型数据库组成。从X射线脉冲星导航原理框图中可以看到,脉冲星导航定位和姿态测量分别在两个环路中实现,前者的输入信息为光子计数器提取的脉冲信号和相位,输出为卫星位置、速度和时间信息 后者的输入信息为X射线成像仪提取的脉冲星角位置,输出为卫星姿态角分量。 1.X射线脉冲星导航定位 基于X射线脉冲星的卫星自主导航定位的实现流程如下: (1)脉冲到达时间测量 星载探测器接收X射线光子,光子计数器输出脉冲信号和相位信息 脉冲信号进入原子时钟的锁相环路,修正本地时钟漂移,标定和输出脉冲到达时间。 (2)脉冲到达时间转换改正 调用基本参数数据库和脉冲星模型数据库,对罗默(Roemer)延迟、歇皮诺(Shapiro)延迟、爱因斯坦(Einstein)延迟、光行差延迟和星际色散效应等误差项进行改正,转换得到在太阳系质心坐标系中的脉冲到达时间测量值。 (3)脉冲到达时间与预报时间对比 调用脉冲星模型数据库,提取标准脉冲轮廓和脉冲计时模型,由脉冲计时模型预报脉冲到达时间 整合测量脉冲轮廓,并与标准轮廓进行相关处理,得到脉冲到达时间差(基本观测量)。 (4)卡尔曼滤波处理 利用多颗脉冲星组成基本观测向量,构造脉冲星导航定位测量方程,调用卫星摄动轨道力学方程、星载时钟系统状态方程和卡尔曼滤波器,得到卫星位置、速度和时间偏差估计。 (5)导航参数预报 利用导航定位偏差估计值,可以修正卫星近似位置、速度和时间等参数 分别采用数值积分方法和星载时钟模型短时预报卫星位置、速度和时间等导航参数,输出到卫星平台控制系统,自主进行轨道控制和钟差修正。 2.X射线脉冲星姿态测量 利用X射线脉冲星信号测定卫星姿态的方法与星体跟踪器类似,区别在于是用X射线代替可见光观测。一旦X射线成像仪提取脉冲星影像,脉冲星在探测器平面和星体坐标系的角位置也就随之确定。由于脉冲星相对于太阳系质心坐标系的位置已精确测定,因此可以进行星体坐标系与太阳系质心坐标系之间的旋转变换。于是,可以直接提取坐标变换的欧拉角信息,或利用姿态四元素方法进行滤波估计,最终获得卫星俯仰、滚动和偏航等姿态信息,并输出到卫星平台控制系统,自主进行飞行姿态控制。

  • 世界最快激光脉冲定格超速运行电子原子(图)

    2012年10月22日 07:10 新浪科技微博 http://i1.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070621.jpg世界最快激光脉冲定格超速运行电子原子http://i3.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070632.jpg世界最快激光脉冲定格超速运行电子原子  新浪科技讯 北京时间10月22日消息,据物理学家组织网报道,世界最快的激光脉冲能够定格正在超速运行的电子和原子,美国亚利桑那大学的物理学家利用这种脉冲已经捕捉到分子分裂、电子从原子里逃逸出来的动态画面。他们的研究有助于我们更好地了解分子过程,并最终在很多可能的应用中控制它们。  1878年,当时的一系列照片立刻解决了一个长期存在的谜题:是不是正在飞奔的马始终都有一部分身体接触到地面?结果证明不是。爱德华-穆布里奇在赛马跑道旁拍摄的这一系列图片,标志着高速摄影时代的开始。大约134年后,亚利桑那大学物理学系的研究人员解决了一个类似的谜题,这次是一个超速运行的氧分子取代了马,超快、高能激光脉冲取代了穆布里奇的感光乳剂板。阿尔文-桑德胡及其科研组利用持续时间仅为0.0000000000000002秒的极端紫外线光脉冲,设法定格氧分子在很短时间内被高能击中后产生的超速动作。由于科学家正在试着从电子级别更好地了解量子过程,甚至最终控制这一过程,设计出新的光源,组合出新分子,或者是设计出新型超速电子元件,以及无数其他可能的发明,因此观察原子和分子里发生的极短事件变得越来越重要。  虽然桑德胡的科研组在产生世界最短光脉冲方面,并不是世界纪录保持者,但他们是最先把这些当做工具,用来解决很多悬而未决的科学问题的人。该科研组的最新成果,是展示氧分子在吸收过多能量而无法保持两个原子之间的稳定性后,突然裂开的实时快照系列。该研究成果发表在《物理评论快报》上。揭开这么短时间内的分子过程,有助于科学家更好地了解地球大气层里的臭氧形成和被摧毁背后的微观动态。桑德胡把这一原理比喻成是设法给快速飞向击球手的棒球拍照。他说:“如果我们利用常规相机,拍到的照片会非常模糊,或者棒球根本显示不出来。但是我们想很详细地研究这个球,它的表面、它的缝合线,以及在任何特定时间它的确切位置。要做到这些有两种方法。你可以制造一个拥有很快快门,能够在球做任何运动前迅速开启和关闭的相机。或者利用称之为动态镜检查(Stroboscopy)的技术,你用光照射这个棒球很短时间,并在这个时间内给它拍照。”  但是用原子或者电子取代棒球时,这种类比是不成立的。因为微观物体的运行速度非常非常快,利用机械或者电子元件根本捕捉不到它们。桑德胡称,定格原子级别的动作的唯一方法,就是利用持续时间只有几毫微微秒或者阿秒(比毫微微秒短1000倍)的光脉冲。举例说明这种光脉冲的持续时间,就是1阿秒相对于1秒,相当于1秒相对于宇宙的年龄。为了产生阿秒时长的光爆,必须发出持续时间只有毫微微秒的强烈激光脉冲。桑德胡实验室采用的毫微微秒激光脉冲释放的能量是1太瓦,相当于整个美国的电力网,只是前者持续时间非常短暂。虽然毫微微秒激光脉冲足以分辨分子运动,例如我们眼睛里的视紫红质,它们能在200毫微微秒内改变结构,对进入眼睛的光子做出响应,但是毫微微秒激光脉冲在捕捉更亮、运行速度更快的电子运动时,并不用“切开”它。  桑德胡实验室的研究生尼兰加-施瓦伦说:“我能在激光脉冲产生的强电场环境下,实时研究氦的原子结构发生了什么变化。”桑德胡科研组把这项有关阿秒电子动力学的突破性研究的成果,发表在早些时候的《物理评论快报》上。在他们的最新研究中,该科研组已经解决一个长期存在的争论,即被高能光子击中后,氧原子分裂需要1100毫微微秒。以前对这一现象的测量结果存在很大不同,最大相差100倍。这项研究的另一个创新之处,是它为测量电子摆脱超受激原子需要多长时间提供了方法。迄今为止这一过程只进行了理论模拟。桑德胡的科研组发现,这种自发电子发射发生在大约90毫微微秒内。他解释说:“我们经常假设,如果你把足够多的能量输入到一个分子里,就能迫使电子挣脱它的束缚。但是我们通过研究观察到,分子把过剩能量转移给周围的其他电子和附近的原子,试图与它们分享能量,保住它的电子,直到它突然分裂的最后一刻。”  研究生、这篇论文的第一作者亨利-提莫斯应用阿秒激光研究氧分子的动态。他说:“我们对受激分子的物理性质了解的不多,这是因为它们很难用数学方法进行模拟。你促使氧分子达到这种高能状态时,它有多种途径可以用来释放过剩能量。我们能够对每条路径进行单独分析,并分析电子脱离原子时会出现什么情况。”据桑德胡说,追踪分子、原子和电子的运动,对了解天然或人造物体的物理及化学过程非常重要。他解释说:“高能紫外线持续轰击我们的大气层,刺激它里面的分子。导致这些分子分裂成过激原子,这促使臭氧形成或分解。这些现象对了解上层大气的化学性质有分歧。能够测量最短时间段内分子内的电子和原子的动态,对我们更好地了解这些分子的基本相互作用有帮助。不过更重要的是,它将为我们提供控制或改变这些原子或分子的动态性质的方法,因为现在我们已经拥有一种光脉冲,它能对实时运动产生影响。我们不再只是在这些现象发生后,才开始研究它们之间的相互作用。事实上我们正在设法了解这种互动,并力求控制它,例如控制某一方向的化学反应。”  迄今为止产生的最短激光脉冲持续67阿秒。据桑德胡说,就连持续时间更短的“仄普托秒”激光脉冲也并非不可能产生,但是现在阿秒是人们关注的焦点。他说:“我们正在研究阿秒,是因为我们想了解比分子运动更快的过程。影响我们的生活的实际方面和我们身边的技术,都受到电子和电子运动的制约。未来我们感兴趣的问题,是很多电子彼此结合在一起,结果会出现什么情况?现在这方面的试验具有很大挑战性,理论性模拟根本不可能实现。这也是我们拥有高能和短时分辨率的原因。事实上现在我们已经能够实时查看这些过程。”(秋凌)

  • 【转帖】能量色散光谱分析仪与波长色散光谱分析仪的区别

    能量色散分析仪只有一个探测器,它对测量X射线能量范围是不受限制的,而且这个探测器能同时测量到所有能量的X射线。也就是说只要激发样品的X射线的能量和强度能满足激发所测样品的条件,对一组分析的元素都能同时测量出来。一般有以下三种基本类型的探测器可用于测量X射线:密封式或流气式充气探测器、闪烁探测器、半导体探测器。 能量色散的条件是当样品被激发后产生的X射线通过窗口进入探测器探测器把X射线能量转换成电荷脉冲,每个X射线光子在探测器中生成的电荷与该光子的能量成正比。该电荷被转换成电压脉冲,当这些电压脉冲经充分放大后,被送入脉冲处理器,脉冲处理器把这些代表着各个元素的模拟信号再转换成为数字信号,由计算机进行分类,分别存入多道分析器(MCA)的相应通道内,一般使用1024-2048道MCA。这些通道覆盖了分析的整个能量范围。 波长色散分析仪是用多个衍射晶体分开待测样品中各元素的波长,由此对元素进行测量。晶体被安装在适当位置,以满足布拉格定律的要求。 X射线荧光分析和其它光谱分析一样,也是一种相对分析。这就是说,要有一套参考标样,这些参考标样能够在可能感兴趣的范围内覆盖所测元素。首先对这些标样进行测量,记录欲分析元素的强度,建立浓度(含量)、强度(CPS)校准曲线,存入处理数据的计算机,供以后分析同一类型未知样品时使用。 最简单的校准线是直线,强度与浓度的依赖关系反映仪器的灵敏度。 另外由于校准线要在很长一段时间内使用,所以应对仪器的漂移作出调整,尽管这种漂移不大,但它确实存在。这可以通过对每个分析元素选用高、低两个参考点来实现。制备若干被称作SUS(调整样)的特殊样品,它们含有适量的分析元素,有很好的长期稳定性。利用它们可以求出高、低强度值。

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 电能质量分析仪产品介绍

    LCT-FB300型三相便携式电能质量分析仪是对电网运行质量进行检测及分析的专用便携式产品。电能质量分析仪 可以提供电力运行中的谐波分析及功率品质等数据分析,同时能够对大型用电设备在起动或停止的过程中对电网的冲击进行全程监测。同时配备了大容量的存储器.  ★ 32位DSP处理器与32位ARM双CPU内核,16位AD三通道并行数据总线,高速采集512点每周波,采用小波分  析算法,计算更加精确。  ★ 可测量三相电压、三相电流的谐波(2~50次)、序分量、电压波动和闪变、 电压偏差、功率因数、有功、  无功、频率;  ★ 软锁相功能:避免了现场畸变电压对电能质量测量的影响;  ★ 320*240大屏幕汉字显示;  ★ 实时监测、定时记录,参数自校正功能;  ★ 具有谐波超限,可设定报警、跳闸功能, 多种通讯模式,适合构成网络;  ★ 512M数据存储 连续1个月数据存储每1分钟一存;  ★ RS232/RS422/RS485、10M网口。

  • 【转帖】脉冲电镀技术与脉冲电源

    脉冲电镀技术与脉冲电源兰为国 2006-05-24 09:45:41 在能源紧张、耗材昂贵、资源短缺、竞争激烈的新形势下,我们怎样才能立于不败之地?省钱等于赚钱才是硬道理。那么怎样才能省钱呢?降低成本就能省钱。表面处理行业,首先是个电老虎,而因为电的问题没解决好,电镀行业电的成本占经营成本的20%,耗材占经营成本的30%;氧化行业电的成本占经营成本的33%,耗材占经营成本的20%;有没有既能省电,又能节省材料,又能提高生产效率的设备,来帮助我们提高生产力呢? 高频脉冲电源是大家向往以久的设备。上世纪,我们国家表面处理行业的前辈们,就已提出这一脉冲工艺技术,而在国外更早已普遍应用了。 一、什么是脉冲电镀 脉冲电镀所依据的电化学原理,主要是利用脉冲电压或脉冲电流的张弛(间隙工作),增强阴极的活性极化和降低阴极的浓差极化,从而有效地改善镀层的物理化学特性。 在脉冲电镀过程中,电流导通时,接近阴极的金属离子充分地被沉积,而电流关断时,阴极周围的放电离子又恢复到初始浓度。脉冲电镀时的导通电流密度,远远大于直流电源电镀时的电流密度,这将使金属离子处在直流电镀实现不了的极高过电位下电沉积,其结果不仅能改善镀层的物理化学特性,而且还能降低析出电位较负金属电沉积时析氢副反应所占比例。 二、脉冲电镀的特点 能得到致密、均匀和导电率高的镀层。这是采用电子电镀最最可贵的,无论是硅整流还是可控硅整流都难以实现的。 降低浓度极化,提高阴极的电流密度。从而提高镀速(频率越高,镀速越快),缩短了电镀时间,为企业创造更好的效益。 减少镀层的孔隙率,增强镀层的抗蚀性。由于均匀脉冲有张有弛,使得镀层的致密性得到非常有效的改善,孔隙率降低,几乎是完美无缺,抗蚀能力得到加强。 消除氢脆,改善镀层的物理特性,由于采用脉冲电源镀层和被镀物的导电率极高,致密性极好,几乎不会出现氢脆现象,经电镀后的表面光洁平整。 降低镀层的内应力,提高镀层的韧性。由于脉冲电流电镀的一瞬间,电流及电流密度是非常之强大,此时金属离子处在直流电源电镀实现不了的极高过电位下电沉积(吸附能力极强),大大提高镀层的韧性。 减少镀层中杂质,提高镀层的纯度。因为在电镀的瞬间,脉冲电流只对金属离子作用,好比是过滤,这样,将有用的金属离子送到被镀物上沉积,而滤其杂质,提高镀层的纯度。 降低添加剂的成份,降低成本。由于脉冲电镀的均匀,致密性好,光洁度高,存放时间长,一般镀件免加添加剂,有要求的镀件,也可少加添加剂。 脉冲电镀中金属的电结晶。在金属电结晶过程中,晶核形成的几率与阴极的极化有关,阴极极化越大,阴极过电位越高,则阴极表面吸附原子的浓度越高,晶核形成的几率越大,晶核尺寸越小,使得沉积层的晶粒细微化,这就是脉冲电镀能获得细致光滑镀层的本质原因。 三、脉冲电源的特点 节电:效率≥90%,比硅整流省电达40%左右或比可控硅电源省电达20%左右。 节料:由于它的工作原理与普通电源不一样,因此在达到相同表面要求的前提下,可节料达15%左右。 节时:由于采用高频脉冲工作方式,电镀完全是在过电位下的电沉积,因此可节约时间达10%左右,提高工效。 高频脉冲电源采用N+1方式多个并联,(硅整流或可控硅电源不可以),大功率、大电流可任意并用,效率更高。 高频电源的稳定性:由于采用了最新现代半导体双极型器件(IGBT智能模块),其可靠性、安全性、稳固性和长时间工作寿命都大大加强和延长,这也是硅整流或可控硅电源无法比拟的。 高频脉冲电源:其工作时,脉冲顶部非常之平,完全是一条直线,纹波可小到0.5%,关断时可对被镀件进行瞬间退镀整平,因此克服了硅整流或可控硅电源的脉动波纹及被镀件表面的高低区,不会形成高的地方镀层厚,低的地方镀层薄的现象。 四、脉冲电源参数及选择 1.脉冲参数表示 Q:周期 Ton:脉冲导通时间 Toff:脉冲关断时间 f:频率 Jp: 脉冲电流密度 Jm:平均电流密度 r%:占空比(导通时间与周期之比的百分数) 2.常用计算公式 ①占空比:r%=(Ton/Q)×100% =[Ton/(Ton+Toff)]×100% ②平均电流密度:Jm=Jp×r% =Jp×[Ton/(Ton+Toff)]×100% ③频率:f=1/Q=1/×(Ton+Toff) ④平均电流密度:Jm=Jp×r% 3.脉冲参数的选择 ⑴脉冲导通时间Ton选择: 脉冲导通时间Ton是由阴极脉动扩散层建立的速率或由金属离子在阴极表面消耗的速率Jp来确定。如果Jp大,金属离子在阴极表面消耗得快,那么,脉动扩散层也建立得快,则Ton可短些,反之则取长。但无论Ton取长或短,只要大于tc(电容效应产生的放电常数)即可。 ⑵脉冲关断时间Toff选择: 脉冲关断时间Toff是受特定离子迁移率控制的阴极脉动扩散层的消失速率来确定。如果将扩散层向脉动扩散层补充金属离子使之消失得快,则Toff可取短些,反之则长,但Toff只要大于tcd(电容效应产生的时间常数)即可。 ⑶脉冲电流密度Jp的选择: 脉冲电流密度Jp是脉冲电镀时金属离子在阴极表面的最大沉积速度,它的大小受Ton、Toff、Jm的制约,在选定Ton和Toff,并保持Jm/Jgg≤0.5这个比值,则希望Jp越大越好。 ⑷脉冲占空比r%选择: 脉冲占空比是由Ton和Toff及Q决定的,一般脉冲电镀贵重金属时,占空比选取10~50%为最佳,脉冲电镀普通金属时,占空比选取25~70%。占空比的真正选择要在实际试验后得到最佳结果。 五、脉冲电镀电源使用须知 1.脉冲电镀电源与镀槽之间的距离 为了确保脉冲电流波形引入镀槽时不畸变,且衰减小,希望在安装时,脉冲电镀电源与镀槽的间距2~3m为佳,否则对脉冲电流波形的后沿(下降沿)影响较大,电镀将不能达到预期效果。 2.阴、阳极的导线连接方式 直流电源的导线连接方式,不适合脉冲电源的连接,脉冲电镀电源的输出连接,希望两根导线的极间电容能够抵消导线的传输电感效应,因此阴、阳极导线最好的方法就是双绞交叉后,引送到镀槽边,从而保持脉冲波形不变。 总之,采用高频脉冲整流机,总体效益提高20%左右,符合现代企业清洁生产与可持续发展之要求,这是淘汰硅整流和可控硅整流机的必然优势。

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 【白皮书】数字信号与脉冲序列调理

    【白皮书】数字信号与脉冲序列调理

    数字信号与脉冲序列调理数字IO接口数字信号采用数字信号进行通信是计算机和外设、仪器以及其他电子设备之间最常见的通信方式,因为这是计算机工作的基本元素。任何信号,都必须转换为数字信号之后,才能输入计算机,并进行处理。数字信号流入或流出系统时,或是单个信号,或是一串脉冲,可以只经过单一端口,也可以经过多个并行端口,并行端口上每根信号线代表字符中的一个bit。计算机的数字输出信号线往往用于控制继电器,以间接控制其他设备的开关。类似地,数字输入信号线可以代表某个传感器或开关的两种状态之一,而一串脉冲序列可以指示某个设备的当前位置或瞬时速度。输入信号可能来自继电器或其他固态设备。大电流、高电压数字IO通过继电器,可控制超出计算机内部处理范围的电压或电流,但信号或状态的响应速度受限于线圈的频率响应和触点移动。同时,当电感负载由闭合切换至断开时,两端的反向自感电动势必须被抑制,可将续流二极管反接在负载两端,为脉冲电流提供通路,以释放能量。如果没有这个二极管,继电器两端的电弧会缩短自身使用寿命(见图11.01)。[img=,315,349]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514034446_4291_3859729_3.jpg!w315x349.jpg[/img]TTL和CMOS设备通常用于连接高速低压信号,例如速度或位置传感器的输出信号。但是在需要用计算机去激励继电器线圈的应用中,TTL或CMOS设备也许无法满足电压和电流需求。因此需要在TTL信号和继电器之间接入一级缓冲,以提供30V,100mA的驱动能力。 [img=,315,323]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514151811_8384_3859729_3.jpg!w315x323.jpg[/img]这种系统的一个例子是用于数字IO仪器的板卡,板载放大/衰减单元,由一个PNP晶体管、一个续流二极管和一个电阻组成(见图11.02)。为了控制标准的24V继电器,需要从外部引入24V电源。内部TTL输出高电平时,三极管导通,输出低电平(约0.7V);TTL输出低电平时,三极管进入截止区,输出被拉到24V。因为继电器线圈是感性负载,所以需要反接一个续流二极管,用于在开关切换时保护继电器。图11.03演示了高压数字输入的降压电路。这使得TTL电路可以处理高达48V的电压。高压信号接入电阻分压电路,得到衰减。选取一个阻值适当的电阻R,用于处理不同程度的高压信号。图11.04中的表格提供一些常用方案。[img=,368,288]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517039909_4386_3859729_3.jpg!w368x288.jpg[/img][img=,351,168]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517036364_4408_3859729_3.jpg!w351x168.jpg[/img]数字输入计算机处理数字输入的方法各种各样,有难有易。这一章节简要讨论软件触发,单字节读取;硬件控速,数字输入;外部触发,数字输入。数字输入的异步读取当计算机周期性的采样数字引脚时,需要使用软件触发的异步读取方式。有时,读取数字输入的速度和时机至关重要,但是采用软件触发的单字节读取方式,读取间隔很难保持稳定,尤其是当应用程序运行在多任务操作系统下的时候,例如在PC机上运行。原因是读取间隔受计算机的运行速度和其他并发任务的影响。读取间隔的不稳定可用软件定时器进行补偿,但是小于10ms的时间分辨率在PC上很难得到保证。数字输入的同步读取有些系统提供硬件控速的数字输入读取方式,用户可以设置数字输入端口的读取频率。例如,某系统能够以100kHz的频率读取16位IO口,某些系统可以达到1MHz的速度。硬件控制的读取,最大优点就是可以做到比软件快得多的速度。最后,此类设备可以在读取模拟输入的同时读取数字输入,使得模拟输入和数字输入的数据具有紧密的关联性。数字输入的外部触发读取某些外部设备以独立于数据采集系统的速率,产生以比特、字节或字为单位的数据。只有当新数据可读时才进行读数,并非以预先设置好的速率读数。因此,这些外部设备通常采用信号交换技术进行数据传输。当新的事件发生,例如外部数据就绪或门控信号输入时,外部设备在单独一根信号线上产生电平翻转。为了与这些设备交互,数据采集系统必须具备可被外部信号控制的输入锁存功能。这样,一个逻辑信号会提交到主控计算机,提示新数据准备就绪,可从锁存器中读取。举例来说,一个以此方式工作的设备,在其6根控制信号线中有一根线用来通知外部设备主机正在读取输入锁存器中的数据。这个动作使外部设备能够保持住新数据,直到本次读取完成。数字隔离由于多种原因,数字信号往往需要被隔离,比如保护系统一端免受另一端随时可能出现的高压信号的损害、使得不共地的两个设备之间正常通信或保证医学应用中用户的安全。常见的隔离方案是光耦。光耦包含一个用于发射数字信号的LED或激光二极管,和一个用于接收信号的光电二极管或光电三极管(见图11.05)。光耦体积虽小,但可以隔离500V高压,这种技术还可以用于控制并监控不共地的设备。[img=,554,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517178877_2957_3859729_3.jpg!w554x221.jpg[/img]脉冲序列信号调理在许多测量频率的应用中,脉冲信号被计数或与某个固定的时基单元做比较。脉冲也可作为一种数字信号,因为只有上升沿或下降沿会被计数。在很多情况下,脉冲序列甚至可能来自模拟信号源,比如电磁拾波器(magnetic pickup)。举例来说,数据采集系统中应用广泛的频率采集卡,提供4路频率输入通道,并包含2个独立的前端电路,一个用于数字信号输入,另一个用于模拟信号输入。采集卡将数字输入划分为不同逻辑状态,将模拟输入转换成一个随时间变化的纯净的数字脉冲序列。图11.06演示了原理框图:总共模拟输入和信号调理两部分。前端RC网络提供交流耦合,允许高于25Hz的信号通过。衰减比例可调的衰减器降低了波形的整体幅度,削弱了不必要的低压噪声的影响。当需要使用来自继电器闭合时的脉冲序列时,此电路单元为用户提供了软件可配置去抖时间的功能。数字电路监控着被调节的脉冲序列,保持高电平或低电平。如果没有去抖动环节,信号中额外的边沿将导致过高的、不稳定的频率读数。[img=,378,240]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517366706_1103_3859729_3.jpg!w378x240.jpg[/img]大量传感器输出调频信号,而不是调幅信号。比如用于测量转动和流体流速的传感器,通常属于这一类。光电倍增管(photomultiplier tubes)和带电粒子探测器(charged-particle detectors)常用于测量领域,并输出频率信号。原则上,这些信号也可以用AD采集,但这个方法将产生大量冗余数据,使得分析工作难以进行。直接进行频率测量效率则高得多。频率 - 电压转换数据采集系统可通过多种途径测量频率:对连续的AC信号或脉冲序列做积分,产生与频率成比例关系的DC电压,或用AD将交流电压转换成二进制的数字信号,或对数字脉冲计数。[img=,382,294]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517493299_2073_3859729_3.jpg!w382x294.jpg[/img]脉冲序列积分一种常见的用于单通道的转换技术,模块化的信号调节:对输入脉冲做积分,并输出与频率成比例的电压信号。首先, AC信号经过一系列电容耦合,滤除超低频和DC分量,此输入信号每次经过零点,比较器产生一个恒定宽度的脉冲,脉冲再经过积分电路,如低通滤波器,然后输出一个变化缓慢的信号,信号电压将正比于输入信号频率(见图11.08)。[img=,387,297]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518092778_237_3859729_3.jpg!w387x297.jpg[/img]频压转换器的响应时间比较慢,约为低通滤波器截止频率的倒数。截止频率必须远低于待测信号频率,又要足够高,以保证所需的响应时间。若待测信号频率接近于截止频率,明显的纹波将会成为一个严重的问题,如图11.09所示。[img=,379,238]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518237403_2408_3859729_3.jpg!w379x238.jpg[/img]外部电容决定了专用频压转换的IC时间常数,使得电路可测量较宽频率范围内的信号,但频率改变时,电容也必须随之改变。不幸的是,这种频压转换器在频率低于100Hz时,表现得很差,因为截止频率低于10Hz的低通滤波器需要超级电容器。数字脉冲计数另一种用于测量数字脉冲或AC耦合模拟信号频率的技术。可输出正比于输入信号频率的DC电压,类似上面提到的积分法,只不过这里的DC电压来源于DAC。前端电路将输入的模拟或数字信号转换成纯净的脉冲序列,使其在进入DAC之前,不会带有来自继电器的毛刺,高频噪声以及其他多余信号(见图11.10)。[img=,554,257]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518331462_5120_3859729_3.jpg!w554x257.jpg[/img]举例来说,一个标准的带有频率输入的数据采集卡,模拟输入通道前置低通滤波器,截止频率可设置为100kHz、300Hz或30Hz,测频范围1Hz至100kHz,信号峰峰值50mV至80V。数字输入部分直流耦合至TTL电平的施密特触发器,可测量0.001Hz至950kHz,±15VDC的信号。采集卡通常具有上拉电阻,用于继电器或开关应用。微控制器准确测量几个脉冲的周期之和,频率分辨率取决于用户可配置的最小脉冲宽度。从测得的周期数据中可换算出频率,再根据频率值,控制DAC向数据采集系统输出相应的模拟信号,信号流入DC调理电路,最后,软件再将此电压转换成频率值。这种方法可以测量幅值和频率范围很宽的信号,且响应迅速。程序可控的频率量程可以最佳匹配ADC的量程,提高测量性能。DAC输出范围±5V,用户配置的最低频率对应-5V,最高频率对应+5V。实际上,用户可任意配置频带范围,如500Hz-10kHz、59.5Hz-60.5Hz。但ADC固定为12位分辨率,不管频宽如何,-5V至+5V的电压都会被按比例划分为4096个等级,所以设置的频宽越窄,频率分辨率越高。例如1Hz的频宽划分为4096份,分辨率高达1/4096Hz(0.00244Hz),而100Hz的频宽,分辨率则降至24.41Hz。虽然不同量程下,分辨率都是固定的12位,但测量速度却有所不同。从1Hz至自定义的频率上限,电压转换时间2至4ms,最长不超过输入信号的周期。0至10kHz范围内的信号,更新速率2至4ms;0至60Hz,则需要16.6ms。随着输入量程越来越窄,例如49至51Hz,12位分辨率去处理2Hz的带宽,消耗时间越来越长,转换时间大约59ms。除了低通滤波器,内置的迟滞功能也可防止由于高频噪声导致的错误计数。去抖时间可被软件配置为0.6ms至10ms,用于处理机电设备,如开关、继电器等切换状态时会产生毛刺的设备。基于门控脉冲计数的频率测量门控脉冲计数相对于频压转换法精准度更高。门控脉冲计数法记录在指定时间内出现的脉冲个数,除以计数时间即频率值,频率误差可以低至计数时间的倒数,例如以2s作为计数时间,频率误差低至0.5Hz。许多数据采集系统包含TTL电平兼容的计数器/定时器IC,可以产生门控脉冲、测量数字输入,然而并不适用于未经调理的模拟信号。所幸多数频率输出设备可以输出TTL电平。有些产品上的一个计数器/定时器IC,包含了5个计数器/定时器,而且通常使用数据采集系统的内部晶振,或外部晶振。这些IC通常使用多个通道配合完成计数功能,每路通道都包含一个输入部分,一个门控部分和一个输出部分。最简单的计数只需使用输入部分,PC以一定的周期读取计数值并复位计数器,这种方法的不足之处是读取周期不确定,函数执行过程中突然出现的情况可能随时启动或停止计数。另外,延时函数,例如延时50ms,依赖于不精确的软件定时器。这两点原因致使计数时间较短的频率测量毫无意义,但是,这种技术足以应对计数时间超过1秒的频率测量。门控信号控制着计数时间,所以改变门控信号可以获得更高的精准度。这样,频率测量就变得与软件方面的时间问题无关。可以配置门控信号,在其高电平时才进行脉冲计数。同样的,也可以配置成在检测到一个脉冲时开始计数,检测到另一个脉冲时停止计数。这种方法的一个缺点是需要额外的计数器用于控制。但在多通道频率采集的应用中,一个计数器可以控制多个通道。例如在5个通道的系统中,4通道用于计数,1通道用于控制。计时应用计数器/定时器同样可用于需要计时/定时的应用场合。将连接至输入通道的时钟信号作为门控信号是不错的选择,当信号为高电平时,使能计数。同样的方法可用于测量两个脉冲之间的时间间隔,只需配置成在第一个脉冲到来时开始计数,下一个脉冲到来时停止计数。由于16位计数器在计数到65535时,即将发生溢出,所以以1MHz的时钟频率计数时,可测脉宽不超过65.535ms,更宽的脉冲将会导致计数器溢出,除非降低时钟频率。如需了解更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等,并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 用超微距成像测量分析仪测量面膜的透光率

    用超微距成像测量分析仪测量面膜的透光率

    1.打开一张面膜均匀地铺在一块300*200*3mm的透明玻璃板上,在上面盖一块同样的透明玻璃板,把面膜压平排除气泡和水分。2.打开超微距成像测量分析仪侧盖,把两块玻璃夹得面膜平整地放入测量池中,操作电脑上的软件,根据需求的分辨率拍出高质量的灰度图片,一般在10MB左右还可以到1G左右(属计算机大数据范畴)。3用Image Pro Plus软件或ImageJ软件计算出光密度的平均值或积分光密度值。点击打开链接点击打开链接http://ng1.17img.cn/bbsfiles/images/2015/08/201508280906_563273_3024149_3.jpg

  • 【求助】分析一个谱图: 脉冲序列图

    大家好,我是专门设计编写核磁共振脉冲序列得,现在我编写了一个脉冲序列,样品是碳标记的丙氨酸,做的是C谱,我把氢去偶完全了,在作用了我的脉冲学列之后,本来应该在三个碳上个出现一条峰,可是作用了脉冲序列后,却发现和在热平衡态上加一个硬的读脉冲出现的谱图一样,即2,4,2条峰,大家帮我看看是怎么回事呢?脉冲序列经过积算符推倒应该是没有问题的。经过我得脉冲序列作用后,没加硬的读脉冲前,其积算府是:I1z+I2z+I3z+2I1zI2z+2I2zI3z+2I1zI3z+4I1zI2zI3z.谢谢大家一起讨论一下

  • 脉冲信号发生器

    脉冲信号发生器QA2系列函数信号发生器拥有比传统函数发生器更杰出的性能。稳定的输出频率,低失真度和微小的频率解析度都是这个系列产品的优秀特性。QA2系列系列包含有QA212D和QA206D产品两种,其中QA212D标准输出120MHz正弦波,25MHz脉冲波和方波,其他波形均为1MHz;QA206D标准输出60MHz正弦波,12MHz脉冲波和方波,其他波形均为0.5MHz。1. 采用DDS和可编程逻辑器件技术,双通道,实时500MSa/s采样率,16bits垂直分辨率,独特功能可以提高测试效率和测量置信度。2. 晶体振荡基准,频率精度高,分辨率高,任意模拟标量调制信号,矢量调制信号,逻辑信号产生。3. 多种内置函数信号产生(包括正弦,三角,锯齿, 方波,脉冲, 噪声, 直流等)。4. 优越的小失真,方便的存贮调用功能,可以设置精确的方波占空比及斜波对称度。5. 1ppm信号频率高度稳定,-120dBc/Hz相位噪声低达,波形失真小。6. 波形存储深度达56K样本/通道。7. USB连接PC端GUI界面,操控简洁自如。8.具备扫描和猝发脉冲模式,可调整扫描时间和扫描宽度。9.丰富的模拟和数字调制能力,以及图形显示功能。(AM,MASK,FM,MFSK,PM,MPSK调制和外部计频功能。) 10. 体积小(20*12.8*4.4CM),重量轻(0.9KG),方便携带。支持的波形有如下所示:非调制波形:周期波:正弦波,方波,三角波,脉冲波,斜波,直流,伪随机二进制序列,高斯白噪声,任意波:高斯脉冲,心电图,指数下降,指数上升,半正失曲线,D洛伦兹曲线,洛伦兹曲线,Sinc函数,负斜波,用户自定义波形调制波形:AM调幅,MASK幅移键控,FM调频,MFSK 频移键控,PM 调相,MPSK相移键控[/s

  • LIBS元素分析测量系统介绍

    LIBS元素分析测量系统介绍

    LIBS元素分析测量系统http://www.gzbiaoqi.com/UploadFiles/877265200815566_1.gif概要LIBS2000+宽带光谱仪是一套探测系统,用于实时分析固态、液态和气态物质中的元素组成,这个高分辨率的系统提供从200-980nm的全光谱分析,分辨率为~0.1 nm(FWHM),特别适用于元素鉴定、材料分析、环境监测和军事。http://www.gzbiaoqi.com/UploadFiles/877265200815566_2.gifLIBS2000+光谱仪LIBS2000+光谱仪是一套定性和定量测量固体及液体、气体中的元素的实时探测系统。这套宽带、高分辨率系统可提供波长200-980nm的光谱分析,分辨率为0.1nm(FWHM),灵敏度可为十亿分之几和皮克等级。LIBS2000+系统基本配置低于3万美元。LIBS2000+采用7个HR2000高分辨率光谱仪,每个光谱仪都配有2048象素的CCD探测器阵列,这个多通道光谱仪系统通过一个USB口和PC相连。所有7个光谱仪同时进行数据采集,软件同时显示结果。标配的激光器是一台Big Sky公司提供的50mJ的激光器,配有一个电源适配器。信号通过600 μm芯径的UV-VIS光纤束收集,每根光纤的末端都安装了准直透镜。样品室配有一个远程激光安全锁。工作原理一束高亮度脉冲Nd:YAG激光聚焦在测试样品上,并距样品几个厘米至一米远。一个10纳秒脉宽的激光脉冲即可激活测试样品。激光发射后,激光束的高温会产生等离子体。在等离子体冷却湮灭的过程中,等离子体束中被激活的原子会发射出与元素有关的特性光谱。所有元素的发射光谱都在200-980nm的波长范围内。LIBS2000+的优点传统的激光诱导分解光谱仪(LIBS)的测量光谱范围都很小,LIBS2000+是世界上第一个可提供宽带光谱分析(200-980nm)的系统。您可在恶劣的环境中进行实时测量--几乎不用或完全不需要样品准备--LIBS2000+可广泛应用于材料分析、环境检测、刑事侦破和医学研究、艺术品修补后的分析、军事及安全应用等。应用LIBS技术可广泛应用于多种不同领域 • 环境检测 (土壤污染、粉尘等) • 材料分析 (金属材料、塑料等) • 医学与生物研究 (牙齿、骨骼等成分分析) • 军事及安全应用 (炸药成分、生化武器成分分析 等) • 艺术保存品成分分析 (色料、远古金属等)其它特点LIBS2000+外壳为标准3U机柜,使用方便。LIBS2000+通过USB接口直接与计算机相连,使用非常方便。其它配件LIBS2000+由七通道光谱仪系统和所有必要的线缆组成。您可用任何一个能量大于等于30mJ的Q开关脉冲激光器来激光测试样品。厂家推荐产品为Big Sky Laser公司的超短脉冲Nd:YAG激光器。另外,我们可提供样品腔和OOILIBS运行软件(用于运行LIBS2000+及开启激光)。测量OOILIBS软件允许用户进行一些参数设置,例如激光Q开关延时(介于激光发射和开始数据采集之间的时间)和对激光脉冲信号的平均。配置1. LIBS2000+ 激光诱导击穿光谱仪2. LIBS-FIBER-BUN 3. LIBS-LASER Nd:YAG 50 mJ激光器(由Big Sky激光公司提供)4. LIBS-SC 样品室5. OOILIBS 软件LIBS2000+[font=

  • 漂移校正脉冲锁定

    求教各位大侠:漂移校正样强度与首次测量下降比较多,漂移校正脉冲锁定是怎么回事?会造成什么结果?如何处理?

  • 氧化锆氧气含量分析仪寿命怎么样提高

    安徽天康集团专业生产气体在线监测仪---氧化锆氧气含量分析仪,生产CY-2C型氧化锆氧分析仪、CE-2C型氧化锆氧分析仪、ZO型氧化锆氧量分析仪、ZOY-4型氧化锆氧分析仪下边是经过多年总结出来的经验。    1、氧气分析仪在焙烧炉燃烧烟气氧含量测量中起着至关重要的作用,它为氧化铝生产控制指标提供科学有效的技术保障,同时为工艺控制的稳定运行提供安全保障。氧化锆氧气含量分析仪核心元件上氧化锆锆管,由于多方面的原因,生产中氧气分析仪探头的故障率高、使用寿命过短,增加了仪表设备消耗成本。氧化锆锆管也是极易损坏,如震动。    2、探头频繁更换的主要原因    (1)氧化锆元件的工作环境十分复杂,炉内烟气中含有大量高温流动的氧化铝粉尘颗粒,此处炉体温差波动幅度在300~500℃,震动较大,且夏季环境温度会达220℃左右。由于长期冲涮腐蚀,导致氧化锆元件的磨损,甚至断裂。    (2)夏季天气炎热环境温度过高,端子盒离炉体很近,容易使端子盒变形。    (3)探头安装在炉体的最顶层,炉体自身的震动以及工艺正常运转时产生共振,严重影响探头的可靠稳定运行,时常导致示值波动,甚至探头损坏断裂。    (4)当探头出现故障时,我们有的同志对基本的技能了解认识不够,一旦出现问题就更换探头,客观上掩盖了故障原因,无法找出症结所在。由于故障判断能力的不足,误认为探头损坏,更换探头,人为的增加了消耗成本。例如校准气导管被磨透,仪表出现大范围波动。按照原来一惯的处理办法就是更换探头。    3、改进措施    (1)增加不锈钢材质的保护罩和不锈钢材质的保护环针对物料冲涮对氧化锆元件的磨损,可以在探头顶端增加不锈钢材质的保护罩或保护环,保护罩可保护元件和套管部分免受高温物料正面直接冲涮。保护环只保护元件部分免受高温物料正面直接冲涮。    (2)加长安装法兰到端子盒的长度由于炉体表面的温度很高,尽管有炉体表面有石棉保温层,但热辐射仍然十分严重,探头安装时间不长,塑料接线端子变形损坏。通过加长安装法兰到端子盒的长度,减少热辐射剂量。    (3)增加弹簧垫圈及密封垫片为避免震动给仪表带来的危害,在法兰安装罗纹上增加了弹簧垫圈,用以减少仪表自身的震动;同时更换探头时在安装法兰与烟道固定法兰之间必须填密封垫片,紧固螺丝,确保密封良好,避免外界空气被吸入炉体,影响测量结果。    (4)提高人员技术水平为了维护人员更准确地判断故障,增加技术培训内容,详细拆解氧化锆分析仪探头各个部分的检测、安装、修理;同时结合典型故障案例,对氧化锆分析仪做了一次全面细致的技术知识讲座,排解维护中遇到的疑难问题。例如对于原因中提到的故障,我们经过分析发现,除了校准气导管破损外,氧化锆传感器内有明显的积灰,而传感器并没有损坏的迹象,清理传感器后将参比气体输入口堵住,重新安装后进行测试,工作正常。说明校准气导管的破损会影响传感器内的氧浓差,而传感器负极侧的积灰会直接影响氧化锆的测量灵敏度。为此排除盲目更换探头,有效地延长了探头的使用寿命。

  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”

    [b]导读:[/b]中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。[b]正文:[/b]在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。[b][color=#ff0000]以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:[/color][/b][color=#ff6428][/color][align=center][img]https://5-img.bokecc.com/comimage/D9180EE599D5BD46/2024-02-26/80AAE928A6F7E3C83F35109F9F77F2A8-1.jpg[/img][/align][back=url(&][/back][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]00:00[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]/[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]05:50[/color][/size][/font][back=url(&]B[/back][font=web][size=24px][color=#ffffff]T[/color][/size][/font][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]高清[/back][/color][/size][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]正常[/back][/color][/size][font=&]以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6601160.html]STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][font=&]以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6795239.html]STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][b]结论[/b]:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制