当前位置: 仪器信息网 > 行业主题 > >

北裕气相分子吸收仪

仪器信息网北裕气相分子吸收仪专题为您提供2024年最新北裕气相分子吸收仪价格报价、厂家品牌的相关信息, 包括北裕气相分子吸收仪参数、型号等,不管是国产,还是进口品牌的北裕气相分子吸收仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合北裕气相分子吸收仪相关的耗材配件、试剂标物,还有北裕气相分子吸收仪相关的最新资讯、资料,以及北裕气相分子吸收仪相关的解决方案。

北裕气相分子吸收仪相关的论坛

  • 仪器怪咖-气相分子吸收光谱

    之所以叫他怪咖是我之前确实没有接触过这种仪器,论坛真是无所不能,老兵提到了这个仪器,我就上百度扫扫盲,希望跟大家分享一下。大家多沟通交流。一.气相分子吸收光谱法的测定原理和特点1.测定原理气相分子吸收光谱法(以下简称GPMAS)是基于被测成分所分解成的气体对光的吸收强度与被测成分浓度的关系遵守比耳定律这一原则来进行定量测定的;根据吸收波长的不同,也可以确定被测成分而进行定性分析。对于液体(如水样)或固体(如化学肥料)样品的测定,其测定过程是将被测成分从液相分解成气体,用载气(空气)载入GPMAS仪器的测量系统测定吸光度;对于被测的流动气体样品,则在一定的压力下直接流入测量系统测定吸光度,然后测定已知浓度的标准溶液和标准气体的吸光度,进行比较而得出样品的测定结果。2.特点与常用的分光光度法相比较,GPMAS具有以下的分析特点:①测定速度快,对水样而言,一些成分,如NO2--N、NO3--N及硫化物,从取样到测定出分析结果,约2分钟就可完成。②测定手续简便,省时、省力,易操作、易掌握。所用玻璃器皿和化学试剂较少,样品的分析成本低。③方法不使用对人体有害的化学试剂,特别是易致癌的化学试剂,如有毒汞及N-(1-萘基)-乙二胺盐酸盐等试剂,无二次污染。④抗干扰性能强,被测成分分解成气体,从液相转入气相的同时就是一个简便快速分离干扰过程,所以一般不用复杂的化学分离手续,尤其不需要去除样品颜色和浑浊物的干扰。⑤测定结果准确可靠,一般水样的加标回收率在95-105%之间,重复测定(n=6)的相对标准偏差约2%。⑥ 测定成分浓度范围宽,低浓度和高浓度均可测定,测定下限0.05mg/L,测定上限达数百mg/L。GPMAS适合用于阴离子和一些酸根的测定。与离子色谱法相比,虽然不能对多组分(在各组分浓度相差不大时)进行连续测定,但GPMAS的检测灵敏度和测定浓度范围都高于离子色谱法,它对水样的清洁度要求不高,适用于测定污水样品。离子色谱法的色谱柱易堵塞,对污水样品须做清洁处理;色谱柱须精心维护,并要适时更新,色谱柱及整机离子色谱仪价格昂贵。总之与离子色谱法相比, GPMAS也不失为一种好方法。二.气相分子吸收光谱法的发展和应用现状气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段。1976年Gresser等人首先提出该法(Gas-Phase Molecular Absorption Spectrometry,简称GPMAS)Syty最先应用该法测定了SO2,此后分析家们成功地测定了腐蚀性、挥发性的气体,如I2和Br2、H2S、NOCL、HCN、NO2和NO,Rechikov等人测定了用于半导体工艺的惰性气体混合的氢化物气体中的B、N、P、As、Sb、Si、Ge、Sn的氢化物。在水质分析方面,人们也进行了许多研究,如NO2-的测定,利用NO2-在强酸性介质中易分解的特性,将其分解成对紫外光产生吸收的氮氧化物气体,测定了NO2-。由于仅依靠NO2-的自然分解,测定灵敏度非常低,对mg/L级的NO2-根本无法检出,因而未受到分析家的重视。Syty采用GPMAS测定了硫化物,并设计了吹气反应装置(图1),把溶液中的硫化物酸化后生成H2S气体,用氮气载入测量系统进行测定,但对干扰成分的消除考虑不够,方法实用性差。

  • 工业锅炉水质和气相分子吸收光谱仪

    各位老师们,想问下锅炉水检测项目和方法必须按照GB/T1576工业锅炉水质分析么,我们想检测金属铁、铜,可以用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]么。分析频次是按照每班一次就可以是么,脱盐水的分析方法需要跟锅炉水一致么,还有大家有没有推荐的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱仪除了北峪和安杰,谢谢各位老师

  • 【讨论】气相分子吸收光谱法

    请用过的说说以下测定原来的方法好还是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 凯氏氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 硝酸盐氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 亚硝酸盐氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱 水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法

  • 请教:气相分子吸收光谱法

    近日国家环保总局出了几个标准,采用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法测定氨氮、总氮、凯氏氮等项目,对此比较感兴趣。但是说来惭愧,对该方法以及所用仪器一无所知,有没有在使用该方法或对此比较熟悉的同行介绍一下相关知识,特别是仪器的生产厂商以及价格、使用情况等信息?谢谢!

  • 【求助】气相分子吸收光谱仪

    请问有谁用过[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱仪吗?哪个厂家的?感觉如何?除了做硝氮、亚硝氮、总氮、氨氮、硫化物、汞,还能做什么呢?可以做气样吗?

  • 【实战宝典】安杰科技气相分子吸收光谱法测量氨氮结果与纳氏试剂法有差异的原因

    [font=宋体][color=black]两者检测结果有一定的差异主要是方法的差异性导致的,检测结果有差异的浓度范围主要集中在[/color][/font][color=black]0.5mg/L[/color][font=宋体][color=black]以下的低浓度范围。深究其原因主要体现在以下两个方面:[/color][/font][color=black]1[/color][font=宋体][color=black])水体中的干扰源不同[/color][/font][font=宋体][color=black]纳氏试剂分光光度法的基本原理是分光比色法,该法具有灵敏度高,显色稳定的特点。但是水体中的色度、悬浮物、余氯、钙镁等金属离子、硫化物及有机物等都会对检测结果造成影响。虽然针对相应干扰物都有对应的处理办法,但是处理后依然难以完全消除干扰物的影响,而且在处理过程中添加相应的试剂也存在引入新干扰的风险。在实际工作中,也很难对每一种可能存在的干扰物都进行前处理,所以最终的检测结果从理论上分析都会有所偏高。这一点在低浓度的实际水样中,现象最明显。[/color][/font][font=宋体][color=black][url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法的核心是待测物质反应后进行气液分离,然后采用分子吸收光谱法进行测量。因为待测物质在水体中转变成气态分子,在这一过程中,水体中的色度、悬浮物、钙镁离子、氯离子等都残留在反应液中,不会随着气态分子进入检测系统,所以不会对检测结果造成影响。影响[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法检测结果的干扰物主要有哪些呢?主要分为以下两类:一是会伴随化学反应的过程生成会对检测结果造成的气体的物质,因为[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法检测氨氮采用的是次溴酸盐氧化法,次溴酸盐会把氨氮氧化为亚硝酸盐氮,所以水体中的亚硝酸盐氮以及会被次溴酸盐氧化的有机胺都会对检测结果造成正干扰。二是不参与化学反应,但是会随着气态分子进入检测系统的挥发性有机物也会对检测结果造成影响。[/color][/font][color=black]2[/color][font=宋体][color=black])试剂的干扰问题[/color][/font][font=宋体][color=black]纳氏试剂是含汞类试剂且不易配制,所以一般都是市售纳试剂包,所以有时也会遇到因为纳氏试剂的质量问题而导致的检测结果偏差的现象。[/color][/font]

  • 【实战宝典】安杰科技气相分子吸收光谱法为什么能够抗干扰?

    [font=宋体][color=black][url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法的基本原理是通过特定的化学反应,将待测物质转变成气体,然后将气体引入吸光管(吸收池)中进行吸光度测量。在待测物质从水体中转变成气体并进行气液分离的过程中,水体中的色度、悬浮物、钙镁离子、氯离子等都残留在反应液中,不会随着气态分子进入检测系统,所以不会对检测结果造成影响。[/color][/font]

  • 【求助】自吸收扣背景

    自吸收扣背景的电流和空心阴极灯电流怎么设置啊?各位专家指点一下!仪器是瑞利的,平常空心阴极灯的电流设置为2~3mA。

  • 最新发布9项国家生态环境标准:水质的气相分子吸收光谱法测定标准3项

    为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮、总氮和硫化物的测定方法,制定《水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》、《水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》和《水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》共3项标准。三项标准由生态环境部生态环境监测司、法规与标准司组织制订,[color=#ff0000]自 2024 年6月1日起实施,[/color]规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法。[color=#ff0000]《水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ 195—2023代替HJ/T 195—2005)[/color]《水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ/T195—2005)首次发布于2005 年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了氨氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中活饮用水、气液分离装置的描述、无氨水的制备等内容;③修改了试剂的配制、样品的采集和保存、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。[color=#ff0000]《水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ 199—2023代替HJ/T 199—2005)[/color]《水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ/T199—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站。本次为第一次修订,主要修订内容如下: ①增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容; ②删除了气液分离装置的描述、无氨水的制备等内容;③修改了方法适用范围、规范性引用文件、方法原理、试剂的配制、样品的采集和保存、校准曲线的类型和建立、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、试样的制备;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。[color=#ff0000]《水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ 200—2023代替HJ/T 200—2005)[/color]《水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》(HJ/T200—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了硫化物的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中生活饮用水、气液分离装置的描述、碱性除氧去离子水等内容;③修改了试剂的配制、絮凝沉淀分离法、样品的采集与保存以及结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境 监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。附件:[img]https://img1.17img.cn/17img/images/202101/pic/80056faa-b411-482e-9e52-14210fe10051.gif[/img][url=https://img1.17img.cn/17img/files/202312/attachment/f0a0317a-455e-4014-83b2-9115adb220b7.pdf][b]水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(HJ 195-2023代替HJT195-2005).pdf[/b][/url][b][img]https://img1.17img.cn/17img/images/202101/pic/80056faa-b411-482e-9e52-14210fe10051.gif[/img][/b][url=https://img1.17img.cn/17img/files/202312/attachment/7ba0aa7e-49dd-47af-9d87-a2a457410e32.pdf][b]水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(HJ 199-2023代替HJT199-2005).pdf[/b][/url][img]https://img1.17img.cn/17img/images/202101/pic/80056faa-b411-482e-9e52-14210fe10051.gif[/img][url=https://img1.17img.cn/17img/files/202312/attachment/f2781dd1-e0ab-4902-9c48-2d3b6c616b72.pdf][b]水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(HJ 200-2023代替HJT200-2005).pdf[/b][/url][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 对于这类紫外吸收弱的化合物如何进行液相分析?

    对于这类紫外吸收弱的化合物如何进行液相分析?

    各位坛友,最近我手上有个项目,反应过程如下:http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(01)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(02)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456762_1654054_3.jpg(03)因为这几个化合物的沸点偏高,所以不能选择气相色谱。我现在需要做的工作:建立合适的液相方法,去监测反应和中间体及成品的质量控制。我对样品进行了紫外扫描,结果与预期一样,吸收很弱。鉴于Boc对酸不稳定,所以我选择了中性流动相。我现在使用的方法:25cm的C18柱,流动相(水和乙腈),检测波长210nm,梯度洗脱。这种方法是可以看到色谱峰,但我总感觉要做成品的质量控制,有些不可靠。毕竟除了有微弱吸收的能被检出,还有一些紫外吸收更弱的不能出峰,这样报告出来的色谱纯度就有欺骗性。当然,做出来的成品我还会送去做1H NMR分析。可是NMR只能有个大概的结论,定量上还是没有色谱准确。例如,我的(03)成品送检NMR,与文献数据一致,这样我只能说样品纯度比较高,但我不能告诉别人我的样品纯度是多少。有几个问题向大家请教:(1)这类紫外吸收弱的化合物,用蒸发光检测器是不是更好一些?(2)在只有紫外检测器的情况下,如何让检测结果更可靠?(3)化合物(03)可以利用什么试剂衍生来增强紫外吸收吗?(4)关于这类化合物,大家都有什么比较好的经验?希望亲们不吝赐教,我和小伙伴们都在盼望着......http://simg.instrument.com.cn/bbs/images/default/em09506.gifhttp://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 如何有效消除原子吸收分析中的背景吸收干扰?

    背景干扰主要有以下几种:1. 分子吸收 2. 光散射 3. 火焰气体的吸收和介质中无机酸的吸收。这两种原子化过程中的背景吸收都具有明显的波长特性,有两种表现方式:一种是连续背景(分子吸收和光散射) ,另一种是随波长而明显变化的结构背景,它主要由分子内部电子跃迁所产生。1.分子吸收当光源辐射通过原子化过程中生成的氧化物,卤化物,氯化物等气体时,会产生分子吸收所引起的干扰。它们通过分子能级的电子振动,转动光谱所组成的带状光谱。不同分子具有不同的吸收带。如CaOH(554nm), SrO(670nm,690nm), 在火焰中可以测得不同的背景吸收曲线,不同波长的背景吸收曲线不同,随波长的不同而有很大的差异,所以具有明显的波长特性。FAAS 中分子吸收取决于该分子是否在火焰中的解离和解离度。如低温火焰中测定容易原子化的元素时,也存在与火焰气体生成难解离的氧化物,氯化物等。在高温下(还原性火焰) ,分子数明显下降,灵敏度提高。所以 FAAS 中背景干扰较少,采用氘灯扣背景就够了。2.光散射光散射背景是指原子化过程中产生的固体微粒对光源辐射光的散射而形成的假吸收。 当基体浓度过大而热量又不足的情况下, 不能使基体物质全部蒸发, 存在固体微粒, 这样产生光散射引起的背景干扰。3.火焰气体吸收FAAS 还存在火焰气体的吸收及溶液介质中各种酸引起的分子吸收,这种干扰在紫外段较大。因此在测定紫外段区元素时采用氩-氢气,空-氢气火焰较好,也可以用空白液调零来消除干扰。FAAS 法中,火焰稳定,时间长,主要以氘灯扣背景较好,在校正背景时要满足以下三点:① 必须在分析线同一波长处测量背景② 测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号时同时测定背景吸收信号③ 要求两个光束完全重叠。

  • 大家谈谈自己认为的"背景吸收"该是个如何的说法

    大家谈谈自己认为的"背景吸收"该是个如何的说法下面的主要是根据文献记载的不同背景吸收的说法 1.究竟是一种非选择性吸收(因为还有一种是选择性吸收---结构背景,是由基体成分或光源发射引起的背景吸收系数随波长而明显变化的.他是否也可以称为背景吸收).2.还是检测器测的待测物特征吸收以外的一切吸收信号,他包括各种分子吸收,光散射,光谱重叠干扰,集体原子对单色器通带内非待测元素特征辐射(连续辐射和光源其他辐射)的的吸收. 在AAS中,伴生物分子谱带重叠而引起的吸收与不挥发颗粒对辐射光的散射,实际上难以区分,并且采用同样的方法加以消除。通常将其并称为非特征衰减、非特征辐射损失或背景衰减,甚至叫做背景吸收(虽然散射不属于吸收现象)。从背景吸收的光谱特性来看,有两种表现形式:一种是连续背景,包括宽带分子吸收和光散射,虽有吸收峰,但在所采用的光谱通带范围内吸收值变化不大,它在AAS中更为常见;另一种是背景吸收系数随波长而明显变化的结构背景。这主要是由分子内部电子跃迁所产生的。另外,AAS中还存在着共存元素与分析元素谱线的重叠,以及基体对单色器通带内非待测元素特征辐射的吸收。由于这类光谱干扰通常叠加在背景吸收信号之上使表观吸光度增加,故有人在概念的实际使用时,将其也视为背景吸收,这在一定程度上引起了混淆。 FAAS中的分子吸收取决于该分子是否在火焰中解离及其解离度,如在较低温火焰中测定容易原子化的元素时,伴生物可能与火焰气体生成难分解的氧化物、氢氧化物或氰化物等。因此使用较高温度和还原性强的火焰,分子数目就会急剧下降。FAAS的背景吸收主要是气体分子颗粒散射所引起的,光散射服从瑞利散射定律,散射光的强度与单位体积内散射颗粒的数目和颗粒体积的平方成正比,与波长的4次方成反比。光散射在设计良好的预混合式燃烧器火焰中很少发生。因此总的说来FAAS中背景吸收干扰较少,而且主要是连续背景,所以除个别公司个别型号(如日立Z5000)以外,绝大多数仪器都采用氘灯连续光源校正FAAS背景,还有的采用了氘灯和自吸收法联合校正背景(如岛津AA6800)

  • 连续光源原子吸收仪器中的背景校正问题

    连续光源原子吸收仪器中的背景校正问题

    连续光源原子吸收信号本身就具有背景信息,利用这些信息可以进行背景校正,并不需要附加的装置。不过从近些时间论坛里一些讨论来看,许多朋友应该对这个问题并不太清楚。本人有一段时间研究过连续光源原子吸收系统,恰逢其会,写下一些文字加以简单说明,也为有志于深入探讨这项技术的朋友提供一些基础文字。和传统的线光源原子吸收(LSAAS)系统相比,连续光源原子吸收(CSAAS)最大的不同当然是光源,后者采用了氙气电弧灯,除了波长短于200nm以下的少数几条谱线强度较低外,这种光源能够覆盖整个原子吸收光谱谱域。然而这并不意味着仅仅是光源改变那么简单。在LSAAS系统中,由于空心阴极灯(HCL)发射的元素谱线宽度很窄,大约只有几个pm(1pm=0.001nm),因此,从单色器出射狭缝出来的辐射光的光谱成分也是很“单色”的,尽管单色器的光谱通带并不窄,通常不小于0.2nm,但依然相当于几个pm的光谱分辨率。当然,HCL还会产生其他的一些谱线,比如阴极共存元素的发射谱线、内部充入的少量惰性气体的发射谱线以及同一元素的次灵敏线和离子线。不过只要这些谱线和分析所选择的谱线距离大于光谱带宽,就不会影响对分析谱线的测定。连续光源的情况则不同,由于光源辐射整个谱域的光谱,所以常规原子吸收的光谱分辨率根本不能满足要求。这就是说,CSAAS必须使用高分率的色散系统。目前能够提供足够高的光谱分辨率的实用系统只有中阶梯光栅系统,这种系统以大的衍射谱级和大的衍射角获得很高的光谱分辨率,但问题是这种系统的衍射谱级一般在20~80之间,不同谱级的重叠部分很大,自由光谱区域(FSR)很小,因此需要采用谱级分离装置。在中阶梯光栅色散系统中,通常前置一个棱镜色散系统,后者的色散方向和前者相互垂直,起了谱级分离的作用。棱镜色散没有谱级干扰问题,正好用于这个目的。正交耦合的棱镜色散和中阶梯光栅色散系统产生的是一个二维衍射图,而不像常规光栅色散系统那样产生干涉条纹图。举个形象的例子加以说明:前者产生的是二维码图案,后者产生的仅仅是普通的条码图案。如果用固定的PMT来读取光谱信号,就得同时转动光栅和棱镜,由于棱镜色散的非线性,中阶梯光栅的高分辨率,都使得这样的调节机构变得十分复杂,且要求相当精密,因此目前为止没有人采用这种方法。第二种方法是把PMT装在一个可以二维移动的平台上,通过移动PMT读取需要的谱线信息。实际上早期的ICP发射光谱系统也有这样做的。随着半导体技术的发展,CCD图像检测器件的出现,中阶梯光栅耦合CCD器件的系统逐渐成为原子光谱全谱同时检测的主要方案,这种系统能够以很高的分辨率一次读取整个谱域内所有波长位置的信息,而不需要任何移动部件。显然,CSAAS系统意味着连续光源、中阶梯光栅色散系统以及CCD图像检测器,这与LSAAS完全不同。同时,LSAAS中经常使用的D2灯背景校正器、自吸效应背景校正器等以谱线为对象的背景校正方法也不再适用于CSAAS。理论上塞曼效应背景校正技术是可以用于CSAAS的,问题在于CSAAS获取的信息中已经包含了背景信息,因此就无需多次一举了。如附图所示。图中蓝线代表光源的辐射光谱,红线代表背景吸收,绿线代表某原子谱线(中间的一个峰)及其附近两条谱线的吸收光谱。由于原子吸收以吸光值为分析信号,所以要获得准确的元素吸光值信号,就必须测定图中谱线峰值位置(P点)的三个信号,即Ip0、Ipb及Ip,然后用lg(Ip0/Ip)-lg(Ipo/Ip)=lg(Ipb/Ip)=lg(Ipb)-lg(Ip)计算元素的峰值吸光值。Ipo可以在原子化前测定,Ip实时测定,问题是Ipb无法测定。不过因为原子吸收谱线很窄,因此背景吸收曲线(红线)可以看成一条直线,因此可以用谱线两侧的两点(例如图中的h1和h2点)的线性内插估算出Ipb。假设谱线的峰值波长为l0,h1为l1,h2为l2,那么如果测得h1和h2处的信号,就会有:lg(Ipb)=lg(Ih1)+(lg(Ih2)-lg(Ih1))*( l0- l1)/( l2- l1)。如果l0恰好在l1和l2的中间,公式还能简化成:lg(Ipb)=(lg(Ih2)+lg(Ih1))/2。(注:l0、l1、l2中的l为西腊字母lumda)很显然,CSAAS中的背景校正只需要测定谱线峰值处和两侧某两点的实时光信号,利用前述公式就可以扣除背景吸收,甚至不需要测定Ipo,并且这种方法还具有实时校正光源及检测器漂移的功能。所有这一切有个前提,即h1和h2不能被其他原子吸收谱线覆盖。如图中如果选择到侧翼的两个峰范围内,背景校正将会受到干扰,产生很大的误差。http://ng1.17img.cn/bbsfiles/images/2016/05/201605311155_595384_1189445_3.png

  • 关于公开征求《水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)》等五项国家生态环境标准意见的通知

    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法》等五项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2022年8月8日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411864611529.pdf]1.征求意见单位名单[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411864826661.pdf]2.水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411865500840.pdf]3.《水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)》编制说明[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411866876665.pdf]4.水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411867375824.pdf]5.《水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)》编制说明[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411868952147.pdf]6.水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411869528132.pdf]7.《水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法(征求意见稿)》编制说明[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411870788727.pdf]8.铜水质自动在线监测仪技术要求及检测方法(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411871306287.pdf]9.《铜水质自动在线监测仪技术要求及检测方法(征求意见稿)》编制说明[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411872209611.pdf]10.镍水质自动在线监测仪技术要求及检测方法(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220707411872759249.pdf]11.《镍水质自动在线监测仪技术要求及检测方法(征求意见稿)》编制说明[/url][align=right]  生态环境部办公厅[/align][align=right]  2022年7月4日[/align]  (此件社会公开)

  • 【分享】背景吸收的产生及消除背景吸收的方法

    背景吸收是由分子吸收和光散射引起。分子吸收指在原子化过程中生成的气体分子、氧化物、氢氧化物和盐类等分子对光源发出的辐射的吸收。在AAS中常见的分子吸收有:碱金属卤化物在紫外区的强分子吸收;无机酸的分子吸收;火焰气体或石墨炉保护气体(N2)的分子吸收。光散射指在原子化过程中固体微粒或液滴对光的散射,使吸光度增加。消除背景吸收的方法主要有:改用火焰;分离或转化共存物;背景扣除(用非吸收线扣除、用其它元素的吸收线扣除;氘灯背景校正法和蔡曼效应背景校正法。

  • 职位推荐|上海北裕分析仪器有限公司急聘售前/售后技术支持工程师、销售经理 坐标 上海、兰州、福州、乌鲁木齐

    公司简介:   上海北裕分析仪器有限公司(含全资子公司苏州北裕环保仪器制造有限公司)是一家专业从事气相分子吸收光谱仪及其配套产品研发、生产和销售的高科技公司,该产品主要用于检测各种含氮类化合物(如氨氮、总氮、硝酸盐、亚硝酸盐、凯式氮)及硫化物等。   上海北裕分析仪器有限公司现已发展成为气相分子吸收光谱仪细分行业的龙头企业,最近连续多年销售额占该细分行业的90%,同时也拥有本行业大部分有效专利,本行业迄今仅有的2项发明专利(截止到2015年,注:专利分为实用新型、发明及外观3种,发明专利价值最高)均属于我公司,目前也是该细分行业唯一一家的获得省级认定的高新技术企业,证书编号为CR201331000309。..... 售前/售后技术支持工程师:   职位描述:   1、主要负责仪器的售后技术服务(含新仪器调试及已售仪器维修等);   2、参与待售仪器的组装及调试等   3、配合销售人员做好产品市场推广;   4、工作地点:上海市呼兰路799号(离地铁一号线呼兰路站700米)   5、薪资待遇:月薪+出差每日补贴+出差奖励+年终奖   岗位要求:   1、本科以上学历,专业为化学、环境科学、环境监测等相关专业;   2、有3年以上相关工作经验   3、责任心强、能够适应频繁出差   4、待人诚实可信,具有亲和力,语言表达能力和动手能力强; 销售经理:   职位描述/要求:   1、负责甘肃、青海、宁夏相关地区产品销售及市场开拓;   2、建立和维护良好的客户关系,了解客户需求,提供满意的解决方案,善于创造和把握销售机会;   3、善于处理销售中各种关系和问题,完成销售任务;   4、熟悉环保、农业、高校、企业、水文、海洋、科研院所等行业分析仪器的销售;   5、3年以上分析仪器销售工作经验,有丰富的行业资源者优先;   6、熟悉所属行业的运作模式,具备丰富的行业销售经验;   7、适应频繁性出差。 http://www.instrument.com.cn/Show/NewsImags/images/2017228115430.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制