当前位置: 仪器信息网 > 行业主题 > >

保偏滤波片式耦合器

仪器信息网保偏滤波片式耦合器专题为您提供2024年最新保偏滤波片式耦合器价格报价、厂家品牌的相关信息, 包括保偏滤波片式耦合器参数、型号等,不管是国产,还是进口品牌的保偏滤波片式耦合器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合保偏滤波片式耦合器相关的耗材配件、试剂标物,还有保偏滤波片式耦合器相关的最新资讯、资料,以及保偏滤波片式耦合器相关的解决方案。

保偏滤波片式耦合器相关的资讯

  • Nanoscribe微纳3D打印技术应用于光子集成芯片到光纤的3D对接耦合器研发
    光子集成电路 (Photonic Integrated Circuit,PIC) 与电子集成电路类似,但不同的是电子集成电路集成的是晶体管、电容器、电阻器等电子器件,而光子集成电路集成的是各种不同的光学器件或光电器件,比如激光器、电光调制器、光电探测器、光衰减器、光复用/解复用器以及光放大器等。集成光子学可广泛应用于各种领域,例如数据通讯,激光雷达系统的自动驾驶技术和医疗领域中的移动感应设备等。而光子集成电路这项关键技术,尤其是微型光子组件应用,可以大大缩小复杂光学系统的尺寸并降低成本。光子集成电路的关键技术还在于连接接口,例如光纤到芯片的连接,可以有效提高集成度和功能性。类似于这种接口的制造非常具有挑战性,需要权衡对准、效率和宽带方面的种种要求。针对这些困难,科学家们提出了宽带光纤耦合概念,并通过Nanoscribe的双光子微纳3D打印设备而制造的3D耦合器得以实现。该3D自由曲面耦合器利用全内反射,结合Nanoscribe的3D微加工技术可直接在光子芯片上进行3D打印制作。该新型技术可应用于例如光通信技术,计算机传感器等领域,并且科学家们已经在微型光谱仪上验证了光纤到芯片的键合技术,用于便携式传感技术和芯片实验室(微流控芯片技术)。连接芯片到光纤的3D对接耦合器 来自德国明斯特大学物理研究所,CeNTech纳米技术中心,马克思伯恩研究所和柏林洪堡大学的多学科研究团队提出了这个全新概念并共同研发了连接芯片到光纤的3D聚合物耦合器。该3D耦合器基于全内反射的原理直接在光子集成电路上进行3D打印。这种新颖的方法旨在于可见光波长范围内实现低损耗和宽带光纤到芯片的耦合。该设计由模式转换器,全反射平面和一个充当将光速聚集到光纤端面上的透镜球体所组成。这项研究的成果证明耦合可扩展性的概念可通过3D微纳加工技术得以实现。 LEFT:SEM of a freeform 3D fiber-to-chip coupler printed by means of Nanoscribe’s Photonic Professional GT system and connected to a silicon nitride waveguide.RIGHT: Close-up view of the 3D-printed coupler on total internal reflection for fiber-to-chip coup领.Image: H. Gehring, W. Hartmann, W. Pernice et al., University of Münster3D微纳加工实现光子封装 通常,在一个微纳芯片上组装各种光子和光学组件需要多个步骤来完成操作,例如组装、对准、拾取和放置或固定等一系列操作步骤。而利用3D微纳加工技术则可以轻松地在光子集成电路上直接打印高精度自由曲面的微纳组件。因此,3D打印可以大大节省光子封装过程中的设备成本和时间成本。SEM of a photonic chip with several devices illustrating scalable fabrication of hybrid 3D-planar photonic circuits.Image: W. Hartmann, H. Gehring, W. Pernice et al., University of Münste近年来,随着光学、光电子、纳米光子和仿生等领域中各种微纳器件的广泛开发,与之相应的3D微纳加工技术逐渐成为加工技术中的重要一环。 凭借着独有的3D微纳加工技术,Nanoscribe参与了各种研究项目,以开发基于集成光子学新技术。例如,在MiLiQuant研究项目中,Nanoscribe与科学以及工业领域的合作伙伴一起开发了具有微型化,稳定频率和功率的二极管激光器。该项目旨在为医疗诊断产业应用,自动驾驶传感器和基于量子的成像方法制造合适的辐射源。 此外,Nanoscribe还在今年年初加入了欧盟资助的研究项目Handheld OCT。这是由来自不同大学、研究机构和科技公司的科学家和工程师们所组成的研究团队,旨在开发用于眼科检查的便携式成像设备。该新型设备可以拓展基于光学相干断层扫描技术(OCT)的应用,实现从现在的固定眼科临床使用扩展到即时眼科移动护理中。更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 灰度光刻微纳打印设备
  • 物理所实现空气耦合的MHz频段高灵敏度超声波探测
    高灵敏度、小型化的超声探测器在诸多方面发挥着重要应用,例如医学诊断、光声成像、无损检测等。目前,商用的超声波探测器主要采用压电换能器,但为了实现较高的灵敏度,往往需要较大的尺寸,其传感器的典型尺寸一般为毫米到厘米。   近些年来,随着微纳光电技术的发展,在硅芯片上微加工制备得到的光学超声波探测器可同时实现较高的灵敏度和空间分辨率。其中,微腔光力系统由于其高灵敏度、宽带宽、低功耗和易于集成等优越特性,引起越来越多的关注。由于微腔光力系统中的较强光力相互作用,微腔的机械位移可以通过光学共振信号来敏感读出。由于机械共振增强了响应,且光学共振可增强读出灵敏度,因此微腔光力系统已被证实是位移、质量、力、加速度、磁场和声波等物理量的高灵敏探测理想平台。   前期工作中,研究人员已在各种体系的光学微腔中实现超声波/声波的探测,例如二氧化硅微腔、聚合物微腔、硅微腔等。多数超声波探测是在液体环境中实现的。而在空气环境中,由于超声波吸收损耗大,且声源/空气界面处的阻抗失配大,高灵敏度的超声波探测依然颇具挑战。前期工作中,空气耦合的超声波探测只在1 MHz以下频段实现。空气耦合的超声波探测在一些特定场景中具有重要应用,例如气体光声光谱和非接触式超声医学成像等。   为了提高空气耦合的超声波探测灵敏度,并拓展探测频率范围,近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究人员使用微芯圆环腔演示了在MHz频率范围内的空气耦合高灵敏度超声波探测。 在该工作中,研究人员通过光刻、氢氟酸腐蚀、氟化氙刻蚀、二氧化碳激光回流的微加工工艺,制备了带有较细的硅基座的微芯圆环腔,从而减少来自衬底的机械运动的约束,获得了在2.56 MHz的一阶拍动模式下约700的高机械品质因子,同时光学品质因子达到107以上。凭借较高的光学和机械品质因子,以及与超声波具有较大空间重叠的2.56 MHz的一阶拍动模式,他们在机械模式附近0.6 MHz的频率范围内实现了仅受热噪声限制的灵敏度,在0.25-3.2 MHz的频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。此外,他们在机械共振频率下利用超声波驱动传感器时观察到了二阶和三阶机械边带,通过测量不同超声波压强(P)下的信噪比(SNR),发现一阶、二阶和三阶机械边带的分别与P、P2和P3大致成正比,三个机械边带上的测量强度与理论结果一致。这种非线性转换提供了一种扩展位移传感动态范围的方法。  该研究演示了一种基于微芯圆环腔的空气耦合高灵敏度MHz频段超声波探测方案,实现了宽带、高灵敏度超声检测。这项工作拓宽了使用微腔光力系统进行空气耦合的超声波探测的频率范围,并获得了较大频率范围的热噪声主导区域。相关研究成果以High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities为题于近日发表在Physical Review Applied上。相关研究工作得到国家重点研发计划、国家自然科学基金委项目和中科院基础前沿科学研究计划的支持。图1 (a) 微芯圆环腔的光学显微镜图。(b) 模拟的回音壁模式的基模光场分布。(c) 1550 nm附近微腔的透过率谱。(d) 超声波探测实验装置的示意图。图2 (a) 微腔超声波探测器的噪声功率谱(黑色实线)与在2.56 MHz频率处施加了超声波信号的响应谱(绿色实线),虚线为计算得到的理论噪声。(b) 微腔超声波探测器的系统响应,即微腔对不同频率的超声波的响应。(c) 微腔超声波探测器的压强(左轴)和力(右轴)灵敏度谱。图3 (a) 施加单频超声波后不同阶机械边带的响应。(b) 一阶、二阶、三阶机械边带的与超声波压强的关系。
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 应用案例 |吸收光谱优化基于深度学习网络的自适应Savitzky Golay滤波算法
    Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.近日,来自安徽大学、山东师范大学联合研究团队发表了一篇题为Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究论文。研究背景 Research BackgroundNitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.氮氧化物(NO2)是大气中的主要污染物,源自自然光照、排放和工业排放。长时间暴露于NO2与呼吸问题的风险增加有关。NO2在大气中产生的二次污染物可能导致光化学烟雾和酸雨。激光光谱学,如吸收光谱、荧光光谱和拉曼光谱,在物理学、化学、生物学和材料科学中发挥着日益重要的作用。它为追踪具有极高灵敏度、选择性和快速响应的气体分析提供了强大的平台。激光吸收光谱已被用于NO2的定量分析。然而,测得的气体吸收光谱数据通常受到各种噪声的污染,如随机和相干噪声,这可能扭曲有效吸收光谱并影响检测灵敏度。The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple multivariate thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.最近,Savitzky-Golay(S-G)滤波算法因其参数较少、操作速度较快且保留了光谱的高度和形状而受到关注。此外,可以在一个简单的步骤中计算导数和平滑的光谱。Rivolo和Nagel开发了一种自适应S-G平滑算法,逐点选择最佳滤波参数。通过简单的多变量阈值方法,S-G滤波器可以去除连续葡萄糖监测(CGM)信号中的所有类型噪声,并进一步用于检测低血糖/高血糖事件。S-G平滑滤波器广泛用于平滑傅立叶变换红外光谱的光谱,可消除随机地震噪声、遥感图像融合和脉动波的处理。The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance. S–G 平滑滤波器的性能取决于多项式阶数和窗口大小的适当折中。然而,在实际应用中,噪声源和吸收光谱是未知的。在固定的窗口大小和多项式阶数下获得最佳的滤波效果是困难的。为解决这个问题,我们提出了一种优化的自适应S-G算法,将深度学习(DL)网络与传统的S-G滤波结合起来,以提高测量系统的性能。实验设置Experimental setupFig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube&trade , HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.图1展示了实验设置,包括光源、带有气体压力控制器的多通道吸收池、一系列镜子、探测器和计算机。Fig. 1. Experimental device diagram.宁波海尔欣光电科技有限公司为此项目提供了量子级联激光器(型号:QC-Qube&trade 全功能迷你量子级联激光发射头)。激光器由温度控制器控制,最大峰值输出功率为30 mW,由电流控制器控制,工作在~6.2 mm,通过钙氟化物(CaF2)镜子的辐射与追踪激光(可见红光,波长632.8 nm)共线,使用氧化锌硒(ZnSe)分束器。光束进入具有2 m有效光程的多通道池,通过流量控制器和气体池入口和出口的隔膜泵控制池中的压力。典型频率为100 Hz的三角波用作扫描信号。在296 K的温度下,波数从1630.1调至1630.42 cm-1。使用热电冷却的汞镉镓探测器进行信号检测,该探测器使用75 mm焦距的平凸透镜。DAQ卡探测器放置在探测器旁边,将数据传输到计算机,数据由LabVIEW程序进行实时分析。QC-Qube&trade , HealthyPhoton Co., Ltd.Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.结论ConclusionAn improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.在这项研究中,我们开发了一种改进的Savitzky-Golay(S-G)滤波算法,用于去噪氮氧化物(NO2)的吸收光谱。我们引入了深度学习(DL)网络到传统的S-G滤波算法中,以实时调整窗口大小和多项式阶数。DL网络的自适应和跟踪反馈能够有效解决数字信号处理中选择输入滤波器参数的盲目性。我们将优化后的自适应S-G滤波算法与多信号平均滤波(MAF)算法进行比较,以展示其性能。优化后的S-G滤波算法被用于检测氮氧化物在基于中量子级联激光器(QCL)的气体传感器系统中的应用。实验结果表明,该算法获得了5倍的灵敏度增强,表明新开发的算法可以生成高质量的气体吸收光谱,适用于大气环境监测和呼吸气检测等应用。reference参考来源:Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 上海光机所在高重频飞秒光学频率梳光源方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在高重频飞秒光学频率梳光源方向取得重要进展。该团队首次报道了一种基于腔内谐振滤波技术的GHz低噪声九字腔掺铒光频梳。相关研究成果以GHz figure-9 Er-doped optical frequency comb based on nested fiber ring resonators为题,发表在《激光与光子学评论》(Laser Photonics Reviews)上。   九字腔光纤光频梳是目前技术成熟度最高的光频梳技术之一,广泛应用于车载、星载、外场等非实验室环境,推动了光频梳相关应用的发展。重复频率近GHz的光频梳在双梳测距、光谱检测以及天文频标等领域有着重要应用。然而,目前九字腔光纤光频梳的重频一般小于250MHz,其重频的提升仍然面临技术挑战。由于非线性放大环镜(NALM)锁模技术需要一定长度的光纤来积累足够的非线性相移差以启动锁模,传统的短谐振腔方案难以适用于九字腔的结构。   针对上述问题,该团队采用嵌套腔结构(图1),由两个光纤耦合器熔接构成的Fabry–Pérot(F-P)腔对外部NALM谐振腔进行模式滤波。当内、外腔的自由光谱范围精确匹配时,可将九字腔光纤光频梳的重频倍增至GHz。实验结果表明,该激光器具备优异的脉冲自启动性能和长期稳定性(图2)。区别于高次谐波锁模,嵌套腔方案可通过合理的内腔参数设计,配合增益竞争机制,来有效抑制超模噪声,实现高相干、低噪声的GHz重频光频梳。实验通过对该光频梳的载波包络相位偏移频率的测量,验证了其频率梳齿分量间的高相干性(图3)。该GHz重频九字腔光纤光频梳在激光雷达、双梳测距、光谱检测等领域颇具应用前景。   研究工作得到中国科学院青年创新促进会、国家自然科学基金和上海市自然科学基金的支持。图1. 基于嵌套光纤环形谐振腔的9字腔光频梳装置图图2. 单孤子状态连续运行90分钟的稳定性:(a)测量光谱的时间演变,色条表示光功率谱密度;(b)重复频率的变化;(c)典型光谱和(d)80分钟时的射频频谱;(e)输出脉冲的典型自相关信号。图3. (a)基于f-to-2f的载波包络偏移频率检测;(b)在10 kHz RBW下自由运行ceo拍频信号。
  • 我国高温超导滤波系统实现规模商业应用
    记者10月22日从在清华大学召开的高温超导滤波技术成果鉴定会上获悉,我国自主研制、拥有完全自主知识产权的高温超导滤波系统首批产品订货已完成生产并交付用户使用,在全国16个省市区的通信装备上投入长期实际应用。这是我国高温超导应用研究的重大突破,标志着我国高温超导在通信领域已进入规模商业应用和产业化阶段。鉴定会专家对项目成果给予高度评价,鉴定意见指出,项目总体技术达到国际先进水平,为采用高温超导技术提高通信装备的抗带外干扰性能和电磁兼容性奠定了坚实的技术基础,为我国通信现代化作出了重大贡献。  据该项目负责人、清华大学物理系教授曹必松介绍,自1986年高温超导材料发现至今,26年来我国投入大量人力物力进行应用研究和技术攻关,其最终目的就是要实现高温超导材料的大规模商业应用。“这次高温超导滤波系统由最终用户采购,在全国16个省市区批量供货投入运行,与一般的研究或以试验为目的的应用完全不同,标志着经过长期不懈的研究,我国高温超导研究已经从实验室研究阶段发展到了面向最终用户的大规模商业应用。高温超导真正的实际应用已经成为现实。”  据了解,在微波频段,高温超导材料的电阻比普通金属低2—3个数量级,用超导薄膜材料制备的滤波器带内损耗小、带边陡峭、带外抑制好,具有常规滤波器无法比拟的、近于理想的滤波性能。“但是高温超导材料必须在其转变温度Tc以下才能实现其超导零电阻特性,所以高温超导滤波系统的研发难度非常大。我们和综艺超导科技有限公司共同研发的超导滤波系统是由超导滤波器、在零下200摄氏度工作的低噪声放大器和小型制冷机等部件组成的,具有极低的噪声和极好的频率选择性,可应用于各种无线通信装备,同时大幅提高灵敏度和选择性、提高抗干扰能力和探测距离等。”曹必松说。  2005年,在国家科研经费支持下,该项目组在北京建成了超导滤波系统移动通信应用示范基地,实现了小批量长期应用。为实现超导滤波系统在我国的规模化商业应用,在国家相关部门和各级领导支持下,清华大学和综艺超导科技有限公司的研究团队十余年如一日,艰苦奋斗,攻克了高性能超导滤波器和低温低噪声放大器设计制备技术、多通道超导滤波器性能一致性研制技术、满足装备苛刻使用要求的环境适应性技术和超导滤波系统集成技术等一系列技术难题,获得超导滤波技术授权发明专利10多项,于2009年12月完成了超导滤波系统产品样机的研制。  2010年1月至11月,在国家主管部门的组织下,由7个专业测试单位对超导滤波系统产品进行了全面性能测试,包括电性能测试,满足通信装备高低温、冲击、振动、低气压、盐雾、霉菌、湿热等苛刻使用要求的环境适应性试验,通信装备加装超导滤波系统前后的性能对比试验和用户长期试用等。  试验结果表明,超导滤波系统的全部性能都达到或超过了通信装备实际应用的技术要求。在通信装备上加装超导滤波系统前后的性能对比试验表明,超导滤波系统使重度干扰下原本无法工作的通信装备恢复了正常工作,使中度干扰下装备最大作用距离比原装备平均增加了56%。自2010年10月起,超导滤波系统在该型通信装备上投入长期运行,至今已连续无故障运行2年以上。  2011年1月19日,超导滤波系统通过了国家主管部门组织的技术鉴定,获得了在我国通信装备实际应用的许可。同年8月,综艺超导公司获得了首批5种型号超导滤波系统产品的订货合同,在全国10多个省市区推广应用。其他型号超导滤波系统产品也将在未来几年内陆续投入市场。  据介绍,综艺超导科技有限公司由江苏综艺股份有限公司等股东投资、在2006年成立的高新技术企业,公司设在北京中关村科技园区。目前,综艺超导已建成一流水平的超导滤波系统生产基地,并且已经顺利完成首批高温超导滤波系统批量生产和用户交付。  曹必松说,高温超导滤波技术在移动通信、重大科学工程和国防领域具有广阔的应用前景。为进一步推广超导滤波技术的应用,还需要攻克适应于各种不同通信装备应用要求的高难度的超导滤波系统设计、制备技术、适应于各种应用环境的环境适应性技术等研究难题。  与会专家认为,经过未来几年的努力,该技术将在更多无线通信领域获得大规模应用,并带动超导薄膜、制冷机、专用微波元器件等相关产业链的形成和发展,在我国形成一个全新的高温超导高技术产业,为我国通信技术的升级换代提供一种全新的、性能优异的解决方案。
  • 又双叒叕升级啦!新版气体吸收池支持光纤耦合输入、输出
    继锁相放大器升级之后,昕虹光电另一个明星产品长光程气体池也进行了功能上的升级!我们在原有HPHC系列长光程气体吸收池的基础上,增加了预对准的输入光纤耦合和输出光纤耦合。 图 使用光纤耦合输入的HPHC长光程气体池 相较于电信号,使用光纤传输的光信号更能抗电磁干扰,并且不会产生电火花,在较为复杂的环境(例如工业生产)、或是需要防爆的场景中是不可或缺的工具。虎年升级的新功能将使得广大用户在使用气体池的场景选择下更加灵活。 HPHC系列长光程气体吸收池技术参数:型号HPHC-AHPHC-B有效光程14.5m3.3m光束直径3.5mm气体容积0.84L(一个标准大气压)0.05L(一个标准大气压)外围尺寸0.35(L)×0.17(W)×0.15(H)m³0.15(L)×0.08(W)×0.07(H)m³工作气压10Pa 至 102kPa镜片镀层氧化层镀膜金属(反射率可达 98%)波长范围0.2 至 12μm窗口材料无镀膜或镀膜 CaF₂/ZnSe主体材料特制铝合金、不锈钢气体接口外径φ6mm 快插 可选配置:l 光纤耦合输入、输出;l 集成光线准直器;l 集成光电探测器;l 集成气压显示;l 集成温度显示;l 窗片材料升级,镀增透膜(石英、蓝宝石、BaF2,特殊另议);l 加热套件定制(保温套、加热带、温控器、继电器、传感器)。 若您有相关需求,欢迎联系我们!
  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 159万!清华大学单细胞电感耦合等离子体质谱分析系统采购项目
    项目编号:清设招第2022186号项目名称:单细胞电感耦合等离子体质谱分析系统预算金额:159.0000000 万元(人民币)采购需求: 包号名称数量是否允许进口产品投标01单细胞电感耦合等离子体质谱分析系统1套是 设备用途介绍 :ICP-MS可以分析元素周期表中所有金属元素,检出限在1ppt以下。同时可以分析绝大部分非金属元素,例如As、Se、P、S、Si、Te等,检出限低于1ppb。实验室可完成现有重金属参数的检测,还能开展单细胞元素分布分析、重金属形态分析、纳米颗粒分析等应用。简要技术指标 :★1. 为了能够在碰撞或反应模式中引入质量筛选功能以实现更有效的多原子离子干扰去除效果,实现对复杂基体样品的准确分析,仪器供应商所提供的产品应具有两套可实现质量筛选功能的四极杆。★2. 雾化室:为了减少基体溶剂的引入量,抑制多原子离子干扰物的产率,同时消除温度波动对稳定性的影响,产品配备具有半导体制冷功能的小体积旋流型雾化室,制冷能力应小于-8℃,且制冷温度越低越好。提供证明文件。合同履行期限:交货时间:合同签订后3个月内本项目( 不接受 )联合体投标。
  • Physical Review Applied |利用片上光学微腔实现空气耦合的MHz频段高灵敏度超声波探测
    高灵敏度、小型化的超声探测器在诸多方面发挥着重要应用,例如医学诊断、光声成像、无损检测等。目前,商用的超声波探测器主要采用压电换能器,但为了实现较高的灵敏度,往往需要较大的尺寸,其传感器的典型尺寸一般为毫米到厘米。近些年来,随着微纳光电技术的发展,在硅芯片上微加工制备得到的光学超声波探测器可同时实现较高的灵敏度和空间分辨率。其中,微腔光力系统由于其高灵敏度、宽带宽、低功耗和易于集成等优越特性,从而引起越来越多的关注。由于微腔光力系统中的较强的光力相互作用,微腔的机械位移可以通过光学共振信号来敏感读出。由于机械共振增强了响应,且光学共振可增强读出灵敏度,因此微腔光力系统已被证实是位移、质量、力、加速度、磁场和声波等物理量的高灵敏探测的理想平台。前期工作中,研究人员已在各种体系的光学微腔中实现超声波/声波的探测,例如二氧化硅微腔、聚合物微腔、硅微腔等。多数超声波探测是在液体环境中实现的。而在空气环境中,由于超声波吸收损耗大,且声源/空气界面处的阻抗失配大,高灵敏度的超声波探测依然较为挑战。前期工作中,空气耦合的超声波探测只在1 MHz以下频段实现。空气耦合的超声波探测在一些特定场景中具有重要应用,例如气体光声光谱和非接触式超声医学成像等。为了提高空气耦合的超声波探测灵敏度,并拓展探测频率范围,最近,中国科学院物理研究所/北京凝聚态物理国家研究中心的博士生杨昊、胡志刚等人在李贝贝副研究员的指导下,使用微芯圆环腔演示了在MHz频率范围内的空气耦合高灵敏度超声波探测。在这项工作中,他们通过光刻、氢氟酸腐蚀、氟化氙刻蚀、二氧化碳激光回流的微加工工艺,制备了带有较细的硅基座的微芯圆环腔,从而减少来自衬底的机械运动的约束,获得了在2.56 MHz的一阶拍动模式下约700的高机械品质因子,同时光学品质因子达到107以上。凭借较高的光学和机械品质因子,以及与超声波具有较大空间重叠的2.56 MHz的一阶拍动模式,他们在机械模式附近0.6 MHz的频率范围内实现了仅受热噪声限制的灵敏度,在0.25-3.2 MHz的频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。此外,他们在机械共振频率下利用超声波驱动传感器时观察到了二阶和三阶机械边带,通过测量不同超声波压强(P )下的信噪比(SNR),发现一阶、二阶和三阶机械边带的分别与P、P2和P3大致成正比,三个机械边带上的测量强度与理论结果一致。这种非线性转换提供了一种扩展位移传感动态范围的方法。本项研究演示了一种基于微芯圆环腔的空气耦合高灵敏度 MHz频段超声波探测方案,实现了宽带、高灵敏度超声检测,这项工作拓宽了使用微腔光力系统进行空气耦合的超声波探测的频率范围,并获得了较大频率范围的热噪声主导区域。相关研究成果以“High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities”为题于2022年9月14日在Physical Review Applied上发表。第一作者为博士生杨昊,通讯作者为李贝贝副研究员。上述研究工作得到了国家重点研发计划(2021YFA1400700)、国家自然科学基金委项目(91950118,12174438,11934019)和中国科学院基础前沿科学研究计划(ZDBS-LY-JSC003)的大力支持。文章链接:https://doi.org/10.1103/PhysRevApplied.18.034035 图1 (a) 微芯圆环腔的光学显微镜图。(b) 模拟的回音壁模式的基模光场分布。(c) 1550 nm附近微腔的透过率谱。(d) 超声波探测实验装置的示意图。图2 (a) 微腔超声波探测器的噪声功率谱(黑色实线)与在2.56 MHz频率处施加了超声波信号的响应谱(绿色实线),虚线为计算得到的理论噪声。(b) 微腔超声波探测器的系统响应,即微腔对不同频率的超声波的响应。(c) 微腔超声波探测器的压强(左轴)和力(右轴)灵敏度谱。图3 (a) 施加单频超声波后不同阶机械边带的响应。(b) 一阶、二阶、三阶机械边带的与超声波压强的关系。
  • 基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像
    转自于‘无机分析化学’公众号,版权归其所有引用格式:李冬月,郑令娜,常盼盼,等.基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像[J/OL].中国无机分析化学. https://kns.cnki.net/kcms/detail/11.6005.O6.20220328.1715.002.html壹研究背景“ 生物体内的微量元素虽然含量低,却参与许多重要的生理过程,还与多种疾病的发生密切相关。随着科学研究的深入,不但需要得到生物样品中元素总量和元素形态的信息,还要获得样品中元素的空间分布,这为分析化学提出了新的挑战。在LA-ICP-MS进行生物元素成像分析时,高能量激光微束轰击剥蚀池中的生物切片表面,产生的气溶胶由载气吹扫进入ICP-MS,检测得到剥蚀区域的元素信息,再将切片上每个剥蚀微区的结果重构,得到元素成像图。同时,新一代电感耦合等离子体飞行时间质谱(ICP-TOFMS)可以在不到50 μs的时间内得到从6Li-238U的全质谱图。随着新一代LA-ICP-MS的发展,需要发展与之匹配的成像方法,以实现快速的生物元素成像。贰研究进展“ 1. 优化快速成像条件LA-ICP-MS的元素成像可采用点剥蚀模式或线剥蚀模式(图1)。A为点剥蚀模式,使用低分散快速剥蚀池;B为线剥蚀模式,使用常规剥蚀池图1 两种剥蚀模式示意图使用的低分散快速激光剥蚀系统,配备了快速洗脱剥蚀池和气溶胶快速引入系统(ARIS),可以采用点剥蚀模式完成快速成像。优化剥蚀池载气流速,可以得到最佳的SPR。当内池He流量为0.4 L/min,外池He流量为0.2 L/min时,得到最佳SPR(20 ms±1 ms),此时可以实现每秒40像素的成像速度。理论上越小的激光光斑能获得更高的空间分辨率,但由于成像时间的限制,本文采用20 µ m的方形光斑。在点剥蚀模式下,样品台移动速度设为800 µ m/s(20 µ m×40 Hz)。LA-ICP-MS成像还要求质谱仪具有快速分析瞬时信号的能力,同时能消除谱学偏离(Spectral Skew)产生的结果偏差。顺序扫描的四级杆ICP-MS在测量时,每个核素测量需要毫秒量级的驻留时间(Dwell Time)和稳定时间(Settling Time),限制了其分析瞬时信号中核素的个数。与四级杆ICP-MS不同, 本文采用的ICP-TOFMS分析速度快,能够在46 μs得到一张全质谱图(即波形,waveform),适合分析瞬时信号。为了获得更好的信噪比,本文将516张质谱图叠加,这样每个像素点的采样时间为23.74 ms,与SPR时间匹配以得到最优的成像结果。此外,在全谱测量时,由于存在高浓度的基体离子,会造成ICP-TOFMS检测器的饱和。本文使用的ICP-TOFMS采用陷波技术(Notch Filter),选择将质荷比为28、32、40、80等四个质量数的基体离子去除,消除了基体离子的影响。2.LA-ICP-TOFMS小鼠肾脏的元素成像使用LA-ICP-MS对暴露AgNP的小鼠肾切片中Ag和其他多种生物微量元素快速成像,采用点剥蚀模式,以20 µ m的分辨率分析尺寸为14 mm× 7 mm的肾脏切片,分析时间约为2 h。与常规的LA-ICP-MS系统相比,成像速度提高了约一个数量级。图2 展示了19种元素成像图,其他元素由于含量低或基体离子干扰,没有得到清晰的成像结果。如果采用碰撞池技术,可以消除多原子离子的干扰,提高52Cr、56Fe、80Se等核素的成像效果。由图2可见,不同元素在肾切片中具有不同分布模式。P和S等主量元素,在肾脏切片基本呈均匀分布;Na在肾髓质中含量较高,这与Na+参与形成肾髓质高渗透压的结论相一致;Mn与Na的分布相反,在肾髓质和肾皮质的交界处含量较高,而在肾椎体中含量较低,呈现出中空的图像;由于肾皮质中血流量远远大于肾髓质,因此肾皮质的Fe含量(主要来自血细胞)较高。Ag并不是生命必需元素,在生物体内的背景很低,因此图2中Ag的信号可以认为来自于注射的AgNP。可以看出,AgNP在肾皮质及肾皮质与肾髓质交界区域含量较高,特别是在肾皮质和肾髓质交界处的含量高于肾皮质区,而在肾椎体中含量很低。图2 小鼠肾组织切片元素成像图图3是P、Mn和Ag三种元素合并图,可以直观地看出不同元素在肾切片中的不同分布。总之,元素成像可以得到微量元素及金属纳米颗粒在不同微区的原位分布,为微量元素的微区代谢、金属纳米材料吸收、分布和转运等生物医学研究提供了直观可靠的分析手段。 图3 肾组织切片中P、Mn和Ag叠加元素成像图叁创新点“ 使用低分散激光剥蚀系统与电感耦合等离子体飞行时间质谱联用,建立了新的基于点剥蚀的成像模式,实现了对小鼠肾脏切片的快速、高分辨的多元素成像。LA-ICP-TOFMS成像方法为原位研究生物体内元素提供了直观可靠的手段,有望在生物医学研究中得到更广泛的应用。专家介绍竺云,女,天津师范大学物理与材料科学副教授。2002年6月毕业于武汉大学物理系,2007年6月毕业于中国科学院物理研究所,获博士学位。2007年7月至2008年9月在香港理工大学做博士后,2008年9月到天津师范大学物理与材料科学学院任职。2018年1月至2018年12月在美国休斯顿大学任访问学者。主要从事磁记录介质材料薄膜的制备和性能研究、反常霍尔效应的应用等研究。王萌,男,中国科学院高能物理研究所副研究员。2000年7月本科毕业于南京大学化学化工学院,2008年3月在中国科学院高能物理研究所获理学博士学位。现在主要从事微量元素的化学形态、生物效应及相关分析方法学的研究。主持和参与过国家重点研发计划、国家自然科学基金、中国博士后基金等科研项目。已发表SCI论文50多篇,H-index为23。
  • 药厂检测药用铝箔的质量需要用到的检测仪器
    药包材“大家庭"的又一成员药用铝箔是使用范围zui广泛的一种片剂、口服固体药品的包装材料,对药品起着长期的保护作用。为了确保药品的品质,药厂检测药用铝箔的质量需要用到哪些检测仪器呢?1.针孔度测试仪:取长400 mm.宽250 mm (当宽小于250 mm时,取卷幅宽)试样10片,逐张置于针孔检查台(800 mmx600 mmx300 mm或适当体积的木箱,木箱内安装30W日光灯,木箱上面放一块玻璃板,玻璃板衬黑纸并留有400 mmx250 mm空间以检查试样的针孔)上,在暗处检查其针孔,不应有密集的、连续性的、周期性的针孔:每一平方米中,不得有直径大于0.3 mm的针孔:直径为0.1 ~0.3 mm的针孔数不得过1个。 PAHT-30铝箔针孔度测试仪2.阻隔性能:水蒸气透过量照水蒸气透过量测定法(YBB00092003- 2015) 第- -法试验条件B或第二法试验条件B或第四法试验条件2测定,试验时热封面向低湿度侧,不得过0.5 g/ (m2.24 h)。 WVTR-RC6水蒸气透过率测试仪3.热合强度测试仪:热合强度:取100 mmx100 mm的本品2片,另取100 mmx 100 mm的聚氯乙烯固体药用硬片(符合YBB00212005- 2015) 或聚氯乙烯/聚偏二氯乙烯固体药用复合硬片(符合000022005- 2015) 2片,将试样的黏合层面向PVC面(或PVC/PVDC复合硬片的PVDC面)进行叠合,置于热封仪进行热合,热合条件为:温度155 C士5C,压力0.2MPa,时间I秒,热合后取出放冷,裁取成15 mm宽的试样,取中间3条试样,照热合强度测定法( YBB00122003- 2015) 测定,试验速度为200 mm/min士20 mm/min,将PVC (或PVDC)片夹在试验机的上夹,铝箔夹在试验机的下夹,开动拉力试验机进行180*角方向剥离,热合强度平均值不得低于7.0 N/I5 mm (PVC). 6.0 N/15 mm ( PVDC)。 ETT-AM电子拉力试验机4.破裂强度测试仪:取40 mmx40 mm本品3片,分别置破裂强度测定仪上测定,均不得低于98 kPa. PR-01耐破强度测试仪5.荧光物质取100 mmx100 mm本品5片,分别置于紫外灯下,在254 nm和365 nm波长处观察,其保护层及黏合层均不得有片状荧光。 UAT-02暗箱式紫外分析仪
  • 可用于医疗诊断或药效检测的新技术“波长诱导频率滤波”
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。这种传感器还可以用于检测肿瘤细胞死亡的分子特征。除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 青岛能源所发布首台单细胞拉曼分选及测序耦合系统
    p  10月20日,在第二十届全国分子光谱学学术会议暨2018年光谱年会上,中国科学院青岛生物能源与过程研究所发布了自主研发的单细胞拉曼分选及测序耦合系统(RACS-SEQ)。该系统无需标记即可获知细胞种系发生、生理状态及所处的微环境变化等关键表型,并在单细胞水平精度对接表型组与基因组。/pp  RACS-SEQ通过拉曼组(Ramanome)分析原理、拉曼光镊液滴单细胞分选(RAGE)、流式微液滴单细胞拉曼分选(RADS)等关键器件的创新,在单细胞水平实现了非标记式拉曼表型识别与功能分选,为单细胞生物学研究提供了崭新的整体解决方案。该系统以免标多维的表型组识别、精准快捷的单细胞获取,以及高效低噪的核酸扩增等为三大特色,具有单细胞拉曼成像、表型组识别、功能分选以及测序文库制备等四大功能。此外,系统还包括拉曼光镊液滴单细胞分选芯片、单细胞全基因组扩增试剂盒、单细胞拉曼耐药性快检试剂盒等附件。/pp  RACS-SEQ搭载了自主研发的“拉曼组分析三部曲”智能信息系统。拉曼组自动化采集反馈软件(RamLIS)可快速、准确、智能化地获取单细胞拉曼光谱信息 智能化拉曼组分析统计软件(RamEX)可一站式完成在线数据处理与挖掘 高性能拉曼组数据库与搜索引擎(RamDB)通过多层次/易扩展的多维表型组数据库及拉曼组搜索引擎,实现了全景式、自动化、高通量的细胞功能识别。在此基础上,通过耦合独创的RAGE分选模块,直接对接单细胞测序。RAGE在溶液中的拉曼测量与分选,不仅充分保留了细胞活性,还大幅提高了基因组文库的质量(单个细菌细胞全基因组覆盖度可达95%以上)。/pp  RACS-SEQ对不同尺寸与形状的细胞具良好兼容性,而且操作便捷。该系统将服务于微生态大健康、海洋资源与监测、生物安全、工业生物技术等广泛领域的研究与应用。br//pp style="text-align: center "img title="W020181023318107646929.jpg" alt="W020181023318107646929.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/0ccfab4e-e684-4f48-b1da-a473c088dbd9.jpg"//pp style="text-align: center "  青岛能源所发布首台单细胞拉曼分选及测序耦合系统/pp/p
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 岩土介质温度-渗流-应力-化学耦合多功能试验仪研制
    p style="line-height: 1.75em "  岩土介质温度-渗流-应力-化学耦合多功能试验仪是中国科学院武汉岩土力学研究所自主研制和开发的多功能试验仪。该所科研人员自2013年起经过反复试验和调试,2014年获得研制成功,并取得多项发明专利,已配合完成多项国家级科研课题及设计院委托科研项目,各试验结果已发表在国际学术期刊上。该实验系统具有优异的技术性能,达到了国际同类岩石力学试验仪器的主流水平,并且具有较高的性价比,得到了国内同行的认可,已推广应用到中国石油大学(华东)、湖北工业大学、山东科技大学、河海大学、南昌大学、中国矿业大学(徐州)等多家高等院校。/pp style="line-height: 1.75em "  岩土介质温度-渗流-应力-化学耦合多功能试验仪可进行温度-应力-渗流-化学腐蚀(THMC)全耦合的岩石三轴流变试验,也可进行THMC全耦合或局部耦合条件下的岩石常规三轴力学试验。该试验仪具有以下特点:1、多物理场耦合:温度、应力、渗流和化学腐蚀全耦合或局部耦合 2、多功能:大尺寸单轴压缩试验、变角剪切试验、巴西劈裂试验 3、高精度闭环伺服电机控制:耗能低,静音,适合长时间试验 4、结构简单:适合试验操作 5、大吨位高刚度反力框架。/pp style="line-height: 1.75em "  该试验仪由围压室、大吨位偏压加载框架、高精度围压伺服控制模块、高精度偏压伺服模块、高精度孔压伺服控制模块、变形测量模块、温控模块和油路旁路过滤模块等10部分组成。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/b0292a17-412b-4e9e-94da-8903de45742e.jpg" title="W020160421397808361989.jpg"//pp style="line-height: 1.75em text-align: center "  中国石油大学(华东)试验仪照片/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/a49162de-e660-4dc7-b8c7-ff029f7b61d2.jpg" title="W020160421397808373820.jpg"//pp style="line-height: 1.75em text-align: center "  采集控制系统/ppbr//p
  • 近红外光谱的柔性生命力——Norris导数滤波浅说
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  导读:近红外(NIR)光谱分析是融合样本、变量和模型三个多维空间的建模体系。它具有直接快速的分析优势,同时,也对方法学提出了挑战。光谱预处理是一项基本技能,在信息提取、去噪,模型维护及传递中扮演重要角色。由于对象、条件和测量方式的多样化,预处理模式通常需要个性化优选。Norris导数滤波(NDF)包含导数阶数、平滑点数和差分间隔三个可变参数,是多模式的算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。本文以近红外玉米粗蛋白分析为例,分享对Norris导数滤波的理解。在材料制作前期,惊闻Karl H. Norris博士病逝!谨以此文悼念Dr. Karl H. Norris!/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 319px " src="https://img1.17img.cn/17img/images/201908/uepic/dd11b712-09f6-4b18-87b6-a00f0bd3234f.jpg" title="微信图片_20190819100830.jpg" alt="微信图片_20190819100830.jpg" width="300" height="319" border="0" vspace="0"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong暨南大学光电工程系 潘涛教授/strong/span/ppspan style="color: rgb(0, 176, 80) "strong  引 言/strong/span/pp  众所周知,近红外(NIR)光谱是典型的多维信息数据。近红外光谱分析是融合样本、变量和模型三个多维空间的建模体系,化学计量学是核心技术。相对于其他分析手段,近红外光谱具有快速简便的优势,它可以不进行化学或物理的前处理,直接进行测量。例如,采用漫反射法直接测量固体样品(如粉末,颗粒,纤维等)、透射法直接测量多种组分的复杂液体样品(如血液,牛奶,酒类等)。同时,它也对方法学提出了挑战。例如,需要处理光谱基线漂移和倾斜等光谱扰动。光谱预处理是非常必要的,但由于样品和测量方法的多样性,预处理模式通常需要个性化优选。/ppspan style="color: rgb(0, 176, 80) "strong  1. 几类常见光谱预处理方法/strong/span/pp  span style="color: rgb(0, 176, 80) "strong标准正态变量变换/strong/span(standard normal variate transformation, SNV)是常用的光谱预处理方法。它在每一条光谱内进行横向标准化处理,提升光谱之间的差异度,提高模型稳健性和预测能力sup[1, 2]/sup。用于消除固体颗粒大小、表面散射以及光程变化对NIR漫反射光谱的影响sup[3]/sup。最近,我们将SNV方法应用于水稻种子鉴别、种子纯度定量的近红外分析sup[4, 5]/sup。/pp  span style="color: rgb(0, 176, 80) "strong多元散射校正/strong/span(multiplicative scatter correction, MSC)是另一种常用的光谱预处理方法sup[6~9]/sup。它与SNV基本相同,主要是消除颗粒分布不均匀及颗粒大小产生的散射影响,在固体漫反射和浆状物透(反)射光谱中应用较为广泛sup[3]/sup。MSC假设样品光谱与平均光谱整体线性相关,并以全谱区为窗口来校正所有波长的吸光度。然而,在宽谱段的情形,难以对局部相关性差的波长实现满意的校正效果,这会影响光谱的整体预测能力。/pp  文献[10]提出的span style="color: rgb(0, 176, 80) "strong分段多元散射校正/strong/span(piecewise multiplicative scatter correction, PMSC)是一种分段线性校正方法。PMSC方法允许可变的校正窗口(p+1+q),从算法上覆盖MSC。校正窗口参数的优化是必须的sup[11]/sup,然而,受限于当时的计算机水平,相应的参数优化平台尚未建立,影响了PMSC方法的应用。最近,本团队提出移动窗口相关系数谱,用于描述光谱之间的局部相关性,构建了基于PLS回归的PMSC参数优化平台,取得了显著优于MSC的预测效果,应用于水稻种子纯度、土壤有机质的近红外分析sup[12]/sup。/pp  上述基础性的光谱预处理方法,通常需要和平滑、求导法进行联用。平滑用于消除弱噪声而保留光谱轮廓,一阶导数用于校正光谱的基线漂移(additive baseline),二阶导数用于校正光谱的线性基线漂移(linear baseline)等噪声sup[11]/sup。/pp  span style="color: rgb(0, 176, 80) "strongSavitzky-Golay平滑/strong/span(SG smoothing)是一种十分优雅的产生导数光谱的预处理方法sup[13]/sup。它采用平滑窗口波长数(2m + 1)、多项式次数(n)和导数阶数(s)作为参数。在平滑窗口内,对中心波长的光谱数据进行多项式校正,再通过移动窗口方式实现全谱的校正。不同的参数组合对应不同的平滑模式,计算公式也各不相同。功能各异的参数的融合,提升了近红外光谱的柔性生命力,可满足多样性光谱预处理的个性化需求。本团队构建了三维参数(m,n,s)遍历的偏最小二乘(PLS)算法平台,实现了SG平滑模式的大范围参数优化,应用于近红外光谱的血糖分析sup[14]/sup、土壤检测sup[15,16]/sup、转基因甘蔗育种筛查sup[17]/sup、糖化血红蛋白分析sup[18]/sup、地中海贫血筛查sup[19,20]/sup、血粘度测定sup[21,22]/sup等方面。/pp  span style="color: rgb(0, 112, 192) "Norris导数滤波(Norris derivative filter, NDF)是另一个著名的光谱预处理方法。它由被誉为“近红外光谱之父”的Karl H. Norris博士等人提出sup[23, 24]/sup。但是,Norris当时只简单的描述了算法的框架,后面的应用文献中也未看到详细描述。我们在褚小立的专著sup[3]/sup中找到了稍微具体的公式,但是严格的方法体系,特别是多参数融合方法仍需完善。在从事近红外光谱的长期工作中,我们深感到Norris导数滤波的柔性生命力。/span/ppspan style="color: rgb(0, 112, 192) "  最近,仪器信息网和中国仪器仪表学会近红外光谱分会计划开设的《近红外光谱新技术/应用进展》网络专题,并向我约稿。由此,萌发了写一篇小文介绍Norris导数滤波的想法。/span/ppspan style="color: rgb(0, 176, 80) "strong  2. Norris导数滤波(NDF)/strong/span/pp  NDF是一个基于多个可变参数的多模式光谱预处理算法群,在近红外分析中有广泛应用。它包括移动平均平滑和差分求导两个环节,使用三个参数:平滑点数(s),导数阶数(d)和差分间隔(g)。功能各异的参数组合,提供了多样性的光谱预处理方式,可以满足不同对象的近红外分析的个性化需求。/pp  最近,我们构建了三维NDF参数(d,s,g)遍历的PLS算法平台,实现了NDF模式的大范围参数优化,应用于玉米粗蛋白分析和血清尿素氮分析sup[25, 26]/sup。/ppspan style="color: rgb(0, 176, 80) "strong  【移动平均平滑】/strong/span/pp  移动平均平滑法选择一个具有奇数个波长的平滑窗口(s),用窗口内的全体测量值的平均值代替中心波长的测量值,自左至右移动窗口,完成对所有点的平滑(左右半宽带的波长除外)。设全谱段的波长总数为Nsub0/sub,s是一个可变的奇数,s = 1, 3, … ,S。理论上,S可以取不超过Nsub0/sub的最大奇数。由于关联性低,采用太宽的平滑窗口是不合理的,本文设平滑点数上限S=99。特别地,s=1代表不进行移动平均平滑,即,原光谱。/pp  设光谱的第k个波长的吸光度为xsubk/sub,在以k为中心,宽度为s的对称波长窗口内,对中心波长吸光度进行平滑,如下:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 124px " src="https://img1.17img.cn/17img/images/201908/uepic/60849de6-dced-4490-8f63-649d3cee9496.jpg" title="01.png" alt="01.png" width="600" height="124" border="0" vspace="0"//pp  值得注意的是,对于最左边或最右边的img src="https://img1.17img.cn/17img/images/201908/uepic/b8cea792-9064-4cd0-862c-f9fafaf26e44.jpg" title="微信图片_20190826114304.png" alt="微信图片_20190826114304.png" style="text-align: center max-width: 100% max-height: 100% "/个波长,由于该点左边或者右边的点数小于 img src="https://img1.17img.cn/17img/images/201908/uepic/d295318f-2ca9-492e-859f-c3beef9935bd.jpg" title="微信图片_20190826114304.png" alt="微信图片_20190826114304.png" style="text-align: center max-width: 100% max-height: 100% "/,不能进行对称平滑。考虑到数据的连续性,对于最左边的img src="https://img1.17img.cn/17img/images/201908/uepic/fe38ef55-a973-4f74-93fc-0302a031f2e2.jpg" title="微信图片_20190826114304.png" alt="微信图片_20190826114304.png" style="text-align: center max-width: 100% max-height: 100% "/span style="text-align: center "个波长,我们提出近似平滑,如下:/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 122px " src="https://img1.17img.cn/17img/images/201908/uepic/0fc41379-50ef-4a45-bdb2-ab12d1f348c4.jpg" title="02.png" alt="02.png" width="600" height="122" border="0" vspace="0"//pp  对于最右边的波长,吸光度的平滑方法类似于公式(2),如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/98199654-339d-4808-ac8b-b9678b723566.jpg" title="03.png" alt="03.png"//pp  上述处理,使得光谱边界数据自然过渡,更为合理。/ppspan style="color: rgb(0, 176, 80) "strong  【差分求导】/strong/span/pp  为了避免差分求导产生传递误差,通常需要经过移动平均平滑光谱后,再进行中心差分法求导。由于近红外光谱比较平坦,不同对象的光谱分辨率不尽相同。光谱采集的数据间隔不一定适用于差分间隔。Norris导数采用一个可变的波长间隔数作为导数的差分间隔(g),g = 1, 2, … ,G。由于关联性低,太大的差分间隔是不合理的,本文设差分间隔的上限G=50。/pp  对于第k个波长的吸光度xsubk/sub,采用基于差分间隔g的中心差分,计算吸光度的一阶导数,自左至右移动,得到所有点的导数值(左右半宽带的波长除外)。如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f4858970-26bd-4911-84b4-a7eec9998e8d.jpg" title="04.png" alt="04.png"//pp  值得注意的是,对于最左边或最右边的g个波长,由于该点左边或者右边的点数小于g,不能执行中心差分法求导。考虑到数据的连续性,对于最左边的g个波长,我们提出前向差分法计算一阶导数,如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/88f4e45a-9f52-40cb-889c-3b57efab9059.jpg" title="05.png" alt="05.png"//pp  对于最右边的g波长,则可通过后向差分法计算一阶导数,如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/01dbdd54-82d4-49fc-bafa-7dc511a8f3bd.jpg" title="06.png" alt="06.png"//pp  二阶导数,可由上面的一阶导数再求导获得,编程实现简单,不再赘述。strong考虑到3阶以上的高阶导数的绝对量值小,光谱信息含量低,一般不建议采用3阶以上的导数。/strong本文设导数阶数为d = 0, 1, 2。特别地,d=0代表不进行差分求导,即,只进行移动平均平滑。/ppspan style="color: rgb(0, 176, 80) "strong  【参数联合优化】/strong/span/pp  对于任意一个参数组合(d, s, g),都对应一个Norris导数模式。对于d = 0, 1, 2;s = 1, 3, … , 99;g = 1, 2, … , 50,共有50+2× 50× 50=5050个模式。三个功能各异的参数的变化,使得Norris导数谱比原谱更为灵活、柔性、多样化,适用性宽。下面,提出一种基于PLS的Norris参数的联合优选方法。为提高参数选择合理性,采用基于随机性、相似性、稳定性的定标-预测-检验的多划分建模设计sup[27, 28]/sup。/pp  建立所有Norris导数谱的PLS模型,称为Norris-PLS模型。计算每一组样品划分的预测均方根误差(SEP)和预测相关系数(RsubP/sub)。进一步,计算所有划分的平均值(SEPsubAve/sub,RsubP,Ave/sub)和标准偏差(SEPsubSD/sub,RsubP,SD/sub)。并基于综合预测效果:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 41px " src="https://img1.17img.cn/17img/images/201908/uepic/10c59c4b-f073-4ce9-a25a-09c90ec33c1a.jpg" title="7.png" alt="7.png" width="600" height="41" border="0" vspace="0"//pp  优选具有稳定性的全局最优Norris参数,如下:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 62px " src="https://img1.17img.cn/17img/images/201908/uepic/4e15c028-35d0-4198-b122-f5bc4e751221.jpg" title="8.png" alt="8.png" width="600" height="62" border="0" vspace="0"//pp  此外,对应导数阶数d=0, 1, 2,可以计算两类单参数局部最优解,如下:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 95px " src="https://img1.17img.cn/17img/images/201908/uepic/fb7412b2-80aa-4b3b-871d-21148c32e7e3.jpg" title="9.png" alt="9.png" width="600" height="95" border="0" vspace="0"//pp  可得到,关于平滑点数s的三条建模效果曲线SEPsup+/sup(0, s),SEPsup+/sup(1, s),SEPsup+/sup(2, s)和关于差分间隔数g的两条建模效果曲线SEPsup+/sup(1, g),SEPsup+/sup(2, g)。通过它们可以分析Norris参数的适应性。/ppspan style="color: rgb(0, 176, 80) "strong  3. 实例—近红外玉米粗蛋白分析/strong/span/ppspan style="color: rgb(0, 176, 80) "strong  【材料】/strong/span/pp  玉米颗粒样品156份,研磨并过筛(1.0mm)为粉末样品(未干燥),采用凯氏定氮法测量样品粗蛋白。最小值、最大值、平均值、标准差分别为7.31、12.1、9.46、0.92(%)。/ppspan style="color: rgb(0, 176, 80) " strong 【近红外光谱仪器】/strong/span/pp  NexussupTM/sup 870 FT-NIR光谱仪(Thermo Nicolet Corporation,MA,USA);漫反射附件;波数范围:9997~3996 cmsup-1/sup;分辨率:32 cmsup-1/sup。/pp  strongspan style="color: rgb(0, 176, 80) "【定标-预测-检验的多划分建模】/span/strong/pp  从156个样品随机选取56个为检验集,余下100个为建模集;进一步将建模集随机划分为定标集(50个)和预测集(50个),共10次。对所有划分建立PLS模型,确定平均预测效果(SEPsubAve/sub,RsubP,Ave/sub,SEPsubSD/sub,RsubP,SD/sub,SEPsup+/sup)。/ppspan style="color: rgb(0, 176, 80) "  strong【分析】/strong/span/pp  strong先来观察玉米粉末样品的近红外光谱及其Norris导数谱的特征。/strong/pp  以一个玉米粉末样品为例,采用不同平滑点数(s = 1~49,奇数),首先计算移动平均平滑谱,如图1所示。其中,s = 1为原光谱。观察到:随着平滑点数增大,主吸收峰右移,且渐趋平坦。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1dd5ef51-7b05-4b16-be80-4c924cd44302.jpg" title="图1.png" alt="图1.png"//pp style="text-align: center "strong图1 玉米粉末样品的移动平均平滑谱随平滑点数的演变图/strong/pp  在移动平均平滑谱(s = 13)的基础上,采用不同差分间隔数(g = 1~30),进一步计算Norris导数谱(一、二阶导数),如图2所示。观察到:主吸收峰翻转为波谷,同时出现新的特征峰。随着差分间隔增大,波谱幅度逐渐减小。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 232px " src="https://img1.17img.cn/17img/images/201908/uepic/edc64a8e-9c8f-4b57-b4f2-d76bbd2da356.jpg" title="图2.png" alt="图2.png" width="600" height="232" border="0" vspace="0"//pp style="text-align: center "strong图2 玉米粉末样品的Norris导数谱随差分间隔的演变图: (a)一阶导数 (b)二阶导数/strong/pp strong 再展示相关的建模效果。/strong/pp  首先,未经预处理的直接PLS模型的平均建模效果,汇总在表1中。/pp  在所有5050个Norris-PLS模型中,全局最优模型的参数(NDF模式)为d =2,g =3和s=13,相应的建模效果,也汇总在表1中。观察到:所有预测效果的指标均有显著的改善。/pp style="text-align: center "strong表1 玉米粗蛋白分析的建模预测效果(%)/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 104px " src="https://img1.17img.cn/17img/images/201908/uepic/9539dcc6-2f95-46ae-8caa-c25937062f19.jpg" title="表1.png" alt="表1.png" width="600" height="104" border="0" vspace="0"//pp  strong进一步观察Norris参数的适应性。/strong采用单参数局部最优解,分析建模效果曲线。其中,SEPsup+/sup(2, s)、SEPsup+/sup(2, g),参见图3。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 208px " src="https://img1.17img.cn/17img/images/201908/uepic/26a55fc2-210b-4561-8367-75081383a9db.jpg" title="图3.png" alt="图3.png" width="600" height="208" border="0" vspace="0"//pp style="text-align: center "strong图3 单参数局部最优Norris-PLS模型的建模效果:(a)平滑点数,(b)差分间隔数/strong/pp  在所有二阶的Norris导数谱中(d=2),不同平滑点数对应于局部最优模型的SEPsup+/sup,如图4(a)所示;不同差分间隔数对应于局部最优模型的SEPsup+/sup,如图4(b)所示。观察到:不同参数的建模效果差异颇大。/pp  结果表明:(1)不同的Norris参数,建模预测效果明显不同;(2)参数的设置,不能凭经验设定,针对具体情况进行全局优化是必要的。/ppstrong  后 语/strong/pp  Norris导数滤波是一种执行良好的光谱预处理算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。Norris模式的优化选择是必要的。/ppspan style="color: rgb(0, 112, 192) "  这里分享的,可能是近红外的一个小话题。但,近红外光谱分析就是由多个这样的小话题组成的。从2006年第一届全国近红外光谱会议召开,到近红外分会成立十周年的现在,我们见证了我国近红外事业的发展壮大。祝福它!这里的内容可能有点艰涩,但我们相信它是有趣的。谢谢大家的阅读,恳请提出宝贵意见!/span/ppspan style="font-family: " times="" new=""strong  参考文献/strong/span/pp  [1] R.J. Barnes, M.S. Dhanoa, Susan J. Lister., Appl Spectrosc, 1989, 43(5): 772–777/pp  [2] M.S. Dhanoa, S.J. Lister, R. Sanderson, R.J. Barnes, J Near Infrared Spec, 1994, 2(1): 43-47./pp  [3] 褚小立,化学计量学方法与分子光谱分析技术,北京:化学工业出版社,2011/pp  [4] J.M. Chen, M.L. Li, T. Pan, L.W. Pang, L.J. Yao, J. Zhang, Spectrochim Acta A, 2019, 219: 179-185/pp  [5] J. Zhang, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Comput Electron Agr, 2019, 164: 104882/pp  [6] P. Geladi, D. MacDougall, H. Martens, Appl Spectrosc, 1985, 39:491-500./pp  [7] T. Isaksson, T. Næ s, Appl Spectrosc, 1988, 42:1273-1284/pp  [8] K.E. Kramer, R.E. Morris, S.L. Rose-Pehrsson, Chemometr Intell Lab, 2008, 92:33-43./pp  [9] A Rinnan, F. van den Berg, S.B. Engelsen, Trends Anal Chem, 2009, 28:1201-1222./pp  [10] T. Isaksson, B. Kowalski, Appl Spectrosc, 1993, 47:702-709./pp  [11] T. Næ s, T. Isaksson, T. Feaern, T. Davies, A User Friendly Guide to Multivariate Calibration and Classification, Chichester, UK: NIR Publications, 2002/pp  [12] F.F. Lei, Y.H. Yang, J. Zhang, J. Zhong, L.J. Yao, J.M. Chen, T. Pan, Chemometr Intell Lab, 2019, 191(15):158-167/pp  [13] A. Savitzky, M.J.E. Golay, Anal Chem, 1964, 36(8): 1627-1639/pp  [14] 谢军,潘涛,陈洁梅,陈华舟,任小焕,分析化学,2010,38(3): 342-346/pp  [15] H.Z. Chen, T. Pan, J.M. Chen, Q.P. Lu, Chemometr Intell Lab, 2011, 107: 139-146/pp  [16] 潘涛,吴振涛,陈华舟,分析化学,2012,40(6): 920-924/pp  [17] H.S. Guo, J.M. Chen, T. Pan, J.H. Wang, G. Cao, Anal Methods, 2014, 6: 8810-8816/pp  [18] Y. Han, J.M. Chen, T. Pan, G.S. Liu, Chemometr Intell Lab, 2015, 145: 84-92/pp  [19] J.M. Chen, L.J. Peng, Y. Han, L.J. Yao, J. Zhang, T. Pan, Spectrochim Acta A, 2018, 193: 499-506/pp  [20] L.J. Yao, W.Q. Xu, T. Pan, J.M. Chen, J Innov Opt Heal Sci, 2018, 11(2): 1850005/pp  [21] J.M. Chen, Z.W. Yin, Y. Tang, T. Pan, Anal Bioanal Chem, 2017, 409(10): 2737-2745/pp  [22] J. Zhang, F.F. Lei, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Spectrochim Acta A, 2019, 219:427–435/pp  [23] K.H. Norris, P.C. Williams, Cereal Chem, 1984, 61(2): 158-165/pp  [24] P.C. Williams, K.H. Norris, Near-infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA, 1987/pp  [25] J. Zhang, L.J. Yao, Y.H. Yang, J.M. Chen, Tao Pan, 19th International Council for NIR Spectroscopy Meting (NIR2019), 2019, Gold Coast, Australia/pp  [26] Y.H. Yang, F.F. Lei, J. Zhang, L.J. Yao, J.M. Chen, T. Pan, J Innov Opt Heal Sci, 2019, 1950018/pp  [27] T. Pan, J.M. Liu, J.M. Chen, G.P. Zhang, Y. Zhao, Anal Methods, 2013, 5: 4355-4362/pp  [28] T. Pan, M.M. Li, J.M. Chen, Appl Spectrosc, 2014, 68(3): 263-271/pp style="text-align: right " strongspan style="font-family: 楷体, 楷体_GB2312, SimKai " (暨南大学光电工程系 潘涛,张静,施小文 供稿)/span/strong/p
  • 卡外国“脖子”,大量仪器技术限制出口
    近日,中华人民共和国商务部关于《中国禁止出口限制出口技术目录》修订公开征求意见。为加强技术进出口管理,根据《对外贸易法》和《技术进出口管理条例》相关规定,商务部会同科技部等部门对《中国禁止出口限制出口技术目录》(包括商务部、科技部2008年第12号令和商务部、科技部2020年第38号公告,以下简称《目录》)进行了修订。本次修订拟删除技术条目32项,修改36项,新增7项,修订后《目录》共139项,其中,禁止出口技术24项,限制出口技术115项。此次修订对《目录》进行较大幅度删减,细化部分技术条目控制要点,为加强国际技术合作创造积极条件。值得注意的是,本次《目录》中涉及大量仪器与检测技术并限制出口。部分仪器技术如下:行业领域技术名称技术名称通信设备、计算机及其他电子设备制造业空间仪器及设备制造技术1. 通道数500的遥感成像光谱仪制造技术2. 空间环境专用器件设计和工艺、评价方法和设备、空间润滑方法和润滑件;3. 高分辨率合成孔径雷达技术的总体技术方案和主要技术指标;4. 高分辨率可见光、红外成像技术的总体方案及指标;5. 毫米波、亚毫米波天基空间目标探测技术的总体方案及指标无人机技术1. 不同级别的固定翼和旋翼类无人机中的微型任务载荷,自主导航、自适应控制、感知与规避、高可靠通信及空域管理等关键技术2. 无人机制造中所涉及的惯性测量单元、倾角传感器、大气监测传感器、电流传感器、磁传感器、发动机流量传感器等集中类型传感器的关键技术3. 电磁干扰射线枪等反无人机技术4. 无人机任务载荷关键技术(光电/红外传感器、合成孔径雷达及激光雷达的制造技术等)5. 无人机飞行控制系统(自主导航、路径及避障规划等相关的算法及软件)激光技术利用自主研发的KBBF单晶体制造深紫外固体激光器的关键技术激光雷达系统车载激光探测及测距系统技术传感器制造技术1. 电子对撞机谱仪用霍尔探头的设计制造与标定技术2. 远场涡流测试探头的设计与制造技术微波技术高功率(百兆瓦级)微波技术1. 脉冲功率技术与强流电子束加速技术2. 爆炸磁压缩技术仪器仪表制造业热工量测量仪器、仪表制造技术同时具有下列指标的双涡街流量计制造技术1. 用于管道直径50~2,000mm2. 测量精度高于0.5%3. 流速≥0.2m /s4. 管道介质为水与温度≤300℃蒸汽机械量测量仪器、仪表制造技术高精度圆度仪1. 大尺寸(Ф250~Ф1,000)圆度与圆柱度在线测量技术2. 为提高主轴回转精度和测量精度(±0.017μm)的误差分离与误差补偿技术无损探伤技术探伤用驻波电子直线加速器用加速管的制造技术材料试验机与仪器制造技术1. 贴片光弹性在线、动态、同步检测技术2. 液氢高速(>4万转/分)轴承试验机设计技术(1)主轴低温(低于-240℃)变形控制技术(2)热传导及热隔离技术(3)加载系统计时仪器制造技术1. CCD(光电耦合器件)终点摄象计时及判读专用设备中成象传感技术及控制方式2. 游泳(蹼泳)成套计时记分专用设备中的触摸板传感方式及制作工艺精密仪器制造技术1. 高精度(在5.1mm处分辨率20μm)反射式声显微镜(1)声镜制造技术(2)声镜成象和V(Z)曲线原理和阴影成象法2. 柴油机振型现代激光光测研究(1)非球面透镜设计和制造技术(2)二路光路系统设计结构技术3. 四坐标探针位移机构技术(1)四坐标位移机构的设计及制造工艺(2)高频率响应(≥20kHz)压力探针的设计制造工艺地图制图技术1.我国地理信息系统的关键算法和系统中具有比例尺1:100万的地形及地理坐标数据2. 直接输出比例尺≥1:10万地形要素的应用技术地震观测仪器生产技术1. 观测频带到直流,灵敏度≥1,000Vs/m的地震计生产技术2. 井孔径130mm,周期1s,灵敏度≥500Vs/m的井下三分向地震计生产技术玻璃与非晶无机非金属材料生产技术1. 镀膜机多头小离子源制造技术(1)离子束辅助蒸发工艺(2)离子束斑合成技术2. 制作坩埚用F1强化铂的成份及其制作技术专业技术服务业海洋环境仿真技术1. 海洋环境仿真、背景干扰仿真2. 内插滤波技术和模拟通道时延误差的修正技术3. 建模大地测量技术我国大地控制网整体平差方法及软件技术精密工程测量技术我国重点工程精密测量的技术和方法真空技术真空度<10-9mPa的超高真空获取技术声学工程技术1. 专门设计用于航空、航天、船舶、火车的有源噪声控制的系统设计技术和算法软件2. 声功率>10,000W的气动声源设计技术和制造工艺计量测试技术1. 六氟化硫微量含水量测量技术(1)检测限十万分之三(体积分数)的传感器制造技术2. 氯化钠温度定点技术(1)相平衡态时氯化钠密度值(2)密封腔改善热传导技术和防腐蚀技术(3)定点黑体防泄漏技术地质勘查业地球物理勘查技术地磁场测定灵敏度≤0.01nT(包括单光系、多光系)氦光泵磁力仪探头制造技术医药制造业组织工程医疗器械产品的制备和加工技术1. 组织细胞分离和培养技术2. 组织细胞培养基的配方技术3. 材料支架的加工技术4. 组织工程产品的培养加工技术5. 组织工程产品的保存技术6. 医用诊断器械及设备制造技术(包括国产新一代基因检测仪、第三代单分子测序仪)附件:中国禁止出口限制出口技术目录.doc
  • 爱丁堡荧光高端耦合及其应用分析探讨在西安交大成功举办
    2019年11月08日,西安交通大学分析测试中心以及天美公司主办的第22期分析测试技术论坛——爱丁堡荧光高端耦合及其应用分析探讨在西安交大成功举行。  会议由西安交通大学分析测试共享中心副主任孟令杰教授主持开始。随后,天美公司产品经理张轩分别从稳态瞬态荧光光谱技术的原理功能、联用和应用、测试技巧、结果分析方法等方向进行了分享。理论分享内容结束后,他还演示了实际上机操作仪器的完整流程,讲解了测试时需要注意的细节,使得大家对爱丁堡稳态瞬态荧光光谱仪有了更深一步的认识。     本次会议吸引了来自西安各大高校30余师生参与。会议期间,大家就日常实验操作过程中遇到的问题进行了讨论,很多问题都在这次会议期间得到了解决,并且不同用户之间也进行了很好的交流。天美公司每年都会通过举办应用技术研讨会加强与用户之间的沟通交流,我们会以不懈的努力真正了解客户的需求,解决客户的问题!关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • SCIEX发布SCIEX声波激发耦合质谱系统(Echo MS 系统)新品
    声波激发耦合质谱系统(Echo MS 系统)以其超高通量筛选能力重新定义化合物高通量定量研究迅捷 每秒可以分析三个样品声波激发与质谱耦合系统 (Acoustic Ejection Mass Spectrometry , AEMS) 是一款超高通量的样品分析系统,具有超快速,规模化和高稳定性特点同时提供理想的数据质量。 声波激发耦合质谱系统(Echo MS 系统) 采用SCIEX先进的定量质谱技术提供了高灵敏度的解决方案,将重新定义您当前和未来的高通量工作流程。比传统LC-MS/MS分析速度快50倍的超快速分析速度: 每秒可以分析三个样品,比传统LC-MS/MS进行定量分析速度快50倍。规模化: 项目时间表从几周减少到几天完成,同时获得准确且信息丰富的结果,使您更快地做出决策。重现性: 先进的定量标准,对复杂基质样品进行定量研究,仍然具有稳定且精确的重现性。开启非接触进样的新时代声波激发耦合质谱系统(Echo MS 系统) 能够显著缩短分析时间,同时降低对样品制备的要求,无需液相色谱分离声波激发直接进样。2020年6月2日 弗雷明翰市,美国马萨诸塞州 — 作为生命科学分析技术领域的创新者,SCIEX在2020年美国质谱年会上“云”直播(ASMS Reboot 2020)发布了声波激发耦合质谱系统(Echo MS 系统)。更多详情,敬请期待关于SCIEXSCIEX 致力于用创新和精准的科学理念,整合可靠解决方案,促进人类科学认知,改善和提高人们的健康、安全。我们在质谱技术领域拥有50年的创新经验。从1981年成功推出第一台商业化的三重四极质谱系统开始,我们一直致力于开发突破性的技术和解决方案,从而影响和推进可以改善人们生活的科学研究和成果。今天,SCIEX作为全球生命科学和技术创新者的丹纳赫集团(Danaher)一员,我们将继续在质谱和毛细管电泳技术领域开发稳健的解决方案。 我们可以帮助客户监测环境危害因子并做出迅速响应;更好的理解疾病和疾病标志物,改善疾病的临床治疗,助力相关药物研发上市;保证食物更健康和更安全。这就是世界各地的科学家们愿意选择SCIEX 产品的原因,我们帮助您获得可靠的结果,以便您做出更好的关键决策,从而改善人们的生活。创新点:声波激发耦合质谱系统(Echo MS 系统)以其超高通量筛选能力重新定义化合物高通量定量研究。1)开启非接触进样的新时代:Echo MS系统能够显著缩短分析时间,同时降低对样品制备的要求,无需液相色谱分离声波激发直接进样。2)速度: 每秒可以分析三个样品,比传统LC-MS/MS进行定量分析速度快50倍。3)规模化: 项目时间表从几周减少到几天完成,同时获得准确且信息丰富的结果,使您更快地做出决策。4)重现性: 先进的定量标准,对复杂基质样品进行定量研究,仍然具有稳定且精确的重现性。SCIEX声波激发耦合质谱系统(Echo MS 系统)
  • 400um光纤耦合千瓦半导体激光器
    成果名称400um光纤耦合千瓦半导体激光器单位名称北京工业大学联系人李强联系邮箱ncltlq@bjut.edu.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:  400&mu m光纤耦合千瓦半导体激光头实物图 400&mu m光纤耦合千瓦半导体激光器整机实物图本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。应用前景:输出激光光强分布图半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。知识产权及项目获奖情况:本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。专利情况:(1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A(2)激光二极管电极连接装置,专利号:CN100527532C
  • 检标委将举办《电感耦合等离子体发射光谱法测定汽油中的氯和硅》标准宣贯培训班
    为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国质量监管重点产品检验方法标准化技术委员会决定于近期举办GB/T 33465-2016《电感耦合等离子体发射光谱法测定汽油中的氯和硅》标准宣贯培训班,由标准主要起草人进行系统标准宣讲,有关事项通知如下:
  • 全球首个完全可配置多光谱成像仪问世
    上海2011年8月19日电 海洋薄膜全新的研发平台推出了SpectroCamTM多光谱成像仪(MSI),该平台融合了科研级电荷耦合器件阵列和精密的旋转式光学滤光片转盘,创造出世界上第一个完全可配置的多光谱成像仪。应用领域包括水质测量、产品筛选、机器视觉、医疗成像、监控以及验证。SpectroCamTM多光谱成像仪  SpectroCam 成像仪通过添加新的光谱测量量纲来补充单点光谱。利用单点光谱仪,用户可以分析不同样本上光谱的差别。然后选择差异最显著的光谱区域内以及周边的离散滤波器,之后用户可使用SpectroCam成像仪创造一幅生动的样品差异图。  SpectroCam成像仪的中心是一个宽频带电荷耦合器件,该器件对于穿过近红外光谱的可视物很敏感。系统的精密滤光片转盘以及光学器件可定制以满足各种应用需求。成像速度为满分辨率下20fps,标准的F-Mount配置可兼容一系列的镜头、焦距和视野。每套系统包括一个镜头、八个标准可互换式滤光片以及软件。  海洋薄膜与微型光谱仪领军企业海洋光学合作发明了这套设备,从大学研究人员到具备强大生产能力的原始设备制造商,让多光谱成像仪走进每个人的生活。互换式光学滤光片和持续旋转滤光片转盘克服了许多棱镜多光谱成像系统会遇到的问题。有了可互换式滤光片,用户可以尝试多种滤光片,经过对比之后对最好的滤光片进行缩窄处理,极大减少了研发时间以及客户产品的市场投放时间。  SpectroCam平台可方便与多种原始设备制造系统相整合,经过改良可符合特殊的机械和环境要求。  关于海洋薄膜公司和豪迈:  海洋薄膜公司(OTF)总部设在美国,设计和生产精密光学涂层、元件和组件,可广泛用于多种产品和定制应用领域。基于在开发薄膜涂层方面的全面知识,我们的团队提供专家级的设计支持,用于合作式的定制工艺解决方案,通过大量合约生产,提供快速样品。OTF 是英国豪迈集团(HALMA p.l.c.-www.halma.cn)光电部旗下子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约36家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 新研究展示自旋-轨道耦合的拉比振荡行为
    近日,暨南大学研究员陈振强团队揭示了自旋-轨道光学拉比振荡现象,首次在理论和实验上同时展示了自旋-轨道耦合的拉比振荡行为。相关研究论文发表于Light:Science & Applications。陈振强带领的光场调控科研团队研究无发散结构光场与人工晶体相互作用,在高阶光学体系下构建赝自旋-1/2模型,分别在强、弱耦合条件下实现自旋-轨道拉比振荡。此外,通过外场调控等效磁场,实现拓扑荷可调的角动量光场。研究结果有望在经典和量子光学中找到应用。拉比振荡是二能级量子波包在外磁场驱动下发生周期性振荡的现象,是物理学中重要的基本物理效应之一,已在诸多领域得到应用,如核磁共振成像。目前,拉比振荡已逐渐扩展到其它物理体系,包括原子分子物理、声学、凝聚态物理、光学等。在现有研究工作中,拉比振荡只涉及两种独立的振荡形式:自旋态振荡和轨道态振荡。如何在高阶物理体系实现自旋-轨道耦合的拉比振荡?针对这一基本问题,研究人员通过类比量子力学自旋1/2系统,利用左、右旋圆偏振涡旋光场构建高阶光学体系的赝自旋1/2系统,并导出相应的等效磁场模型。在等效磁场的作用下,高阶赝自旋态(结构光场模式)在两“能级”间发生周期性振荡。研究人员进一步利用外电场调控等效磁场,操控拉比振荡光场的演化行为。在电场的驱动下,实现不同拉比振荡模式的切换,这一现象为光场多维调控提供新的技术原理。上述研究得到国家自然科学基金项目、广东省重点项目、广州市科技计划项目、珠江人才计划项目等的支持。
  • 中科院能源所利用单细胞拉曼分选-测序耦合系统 首次精确到一个细菌细胞的环境菌群scRACS-Seq
    摘要:2021年5月,中国科学院青岛生物能源与过程研究所荆晓艳博士等人应用星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节)在美国微生物学会会刊《mSystems》在线发表题为“One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE)”的文章。单细胞拉曼分选耦合测序(RACS-Seq)是剖析环境菌群功能机制的重要手段,但拉曼分选后单个细菌细胞基因组的覆盖度通常低于10%,极大限制了其应用。近日,中国科学院青岛生物能源与过程研究所单细胞中心基于星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),首次实现了精确到一个细菌细胞、全基因组覆盖度达93%的环境菌群scRACS-Seq,为环境微生物组原位代谢功能研究提供了一个强有力的新工具。土壤是地球上最重要的生态系统之一,土壤微生物组的代谢活动支撑着农业与畜牧业,也在地球元素循环、全球气候变化中起着关键性作用。同时,土壤菌群也是地球上最多样与最复杂的微生物组之一,而其中大部分微生物尚难以培养,因此,单个细胞精度的拉曼分析-分选-测序(Single-cell RACS-Seq,简称scRACS-Seq)策略,是剖析土壤等环境菌群之代谢机制的重要手段。然而针对环境菌群的scRACS-Seq一直以来存在两大瓶颈,一是难以无损、快速地获取具有特定拉曼表型的单个细胞;二是难以获得高覆盖度的单细胞基因组数据。这已经成为scRACS-Seq技术体系在复杂菌群中得以广泛应用的关键瓶颈。针对这一业界共性难点问题,单细胞中心荆晓艳、公衍海和徐腾等组成的联合攻关小组,基于前期发明的RAGE-Seq技术(Raman-activated Gravity-driven Encapsulation and Sequencing Xu, et al, Small, 2020,点击查看),从液相拉曼分析稳定同位素底物饲喂的土壤菌群出发,将特定拉曼表型的细菌单细胞精准分离并包裹到皮升级液滴中,进而耦合下游基因组测序。结果表明:(i)土壤菌群中细胞代谢活跃的低丰度物种(如Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp. 和 Pseudomonas spp.等)可经耦合重水饲喂与标记的RAGE-Seq精准地识别和分选,其单细胞基因组覆盖率可高达〜93%;(ii)同样,基于RAGE-Seq,含类胡萝卜素的土壤微生物细胞(如Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., 和Pedobacter spp.等)能实现单个细胞分辨率、高基因组覆盖度的代谢重建,从而完整、深入地挖掘其类胡萝卜素合成途径;(iii)这些“原位”合成类胡萝卜素的土壤微生物细胞中,既有代谢活跃的,也相当部分是惰性的,表明基于纯培养的策略势必错失这些代谢惰性的功能微生物,因此“原位”、单细胞精度的功能细胞识别和分离,对于全面、客观的菌群功能剖析和资源挖掘具有重要意义。精确到一个细胞的拉曼分析-分选-测序(scRACS-Seq)此外,该工作还通过组分与状态均精确可控的人工菌群,建立了系统且严格的scRACS-Seq质量评价与控制体系。基于该体系,发现该技术能将不同拉曼表型的细菌单细胞从菌群中快速、精准分离,在保证单细胞拉曼光谱质量的同时,分选准确性达100%。此外,以来自于靶标细胞周围水相的空液滴为阴性对照,发现靶标细胞序列中被菌群中其他细胞DNA污染的概率极低。上述工作定量证明了scRACS-Seq的灵敏度、特异性和可靠性。借助星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),scRACS-Seq可以在复杂菌群中以单个微生物细胞的分辨率建立新陈代谢与基因组的联系,从而精确回答“谁在做什么,为什么”。该系统广谱适用于细菌、古菌、真菌和动植物细胞,正服务于涵盖各种复杂生态系统的研究和应用。
  • 俄乌战场惊现国产手持分析仪器,性能还很惊艳
    自俄乌战争爆发以来,全球目光聚焦于那些参战的兵器和设备。在战场上,一件引起关注的装备是中国广东生产的SA6型频谱分析仪,它在俄军的配备中起到了不可忽视的作用。根据社交媒体上流传的最新视频,俄军士兵目前正在使用中国广东某企业生产的SA6型手持频谱分析仪,在战场环境下进行快速的射频环境分析,以探测附近是否有乌克兰军队的无人机行动。经过笔者检索发现,该仪器在网上公布的价格为1490元人民币。发货地为广东深圳。在另一个平台显示的价格为371.95€。据介绍,SA6是一款简单的便携式频谱分析仪和信号范围,旨在显示 35 至 6200 MHz 频率范围内的信号频谱。频谱分析仪可以处理来自所有广泛使用的技术的信号:Wi-Fi、2G、3G、4G、LTE、CDMA、DCS、GSM、GPRS、GLONASS等。另一个重要特点是跟踪发生器的附加功能,可以测量无源或有源设备(如滤波器或放大器)的频率响应。该软件允许测量驻波比和回波损耗模块。这需要一个外部定向耦合器和一套校准措施。专场链接:#频谱分析仪-厂商-品牌-仪器信息网 (instrument.com.cn)#
  • 8523.1万!中国矿大获批“深地工程多场耦合动力灾变试验仪”重大仪器项目
    近日,据中国矿业大学网站消息,中国矿业大学作为依托单位申报的“深地工程多场耦合动力灾变试验仪”国家重大科研仪器研制项目(部门推荐)正式立项,获资助直接经费8523.1万元。这是中国矿业大学首次获批国家重大科研仪器研制项目(部门推荐),是中国矿业大学迄今作为依托单位获批经费额度最大的国家级科技项目,是中国矿业大学发挥能源行业龙头高校责任担当、聚焦国家需求、聚力基础研究、提升源头供给、打造国之重器方面的又一项重大历史性突破。该项目由中国矿业大学煤矿瓦斯治理国家工程研究中心主任袁亮院士作为负责人,安全工程学院王恩元教授、刘晓斐教授和矿业工程学院窦林名教授作为核心骨干参与,联合山东大学、安徽理工大学、中国科学院声学研究所和中国地震局地质研究所共同申报,历经教育部推荐、同行评审、基金委科学部评审、基金委专家组评审、现场考察和基金委委务会审批后,正式获得国家自然科学基金委员会批准立项资助。面向深地工程科学前沿和国家重大需求,该项目拟突破多场耦合环境原态模拟、深部地层相似原性重构、动态多元信息原值测定和动力灾变演化原场再现等原理与技术,研制世界首套深地工程多场耦合动力灾变试验仪。该仪器装置可为深地工程岩体多场耦合动力学特性、多物理场响应及动力灾害预警防控体系的科学研究提供强有力的仪器支撑,对于推动建立深地工程岩体致灾动力学理论,保障我国深部资源能源安全开发和深地工程安全,引领世界深地工程岩体致灾动力学及测试分析技术发展,具有重要现实意义和科学价值。依托该项目,中国矿业大学将进一步打造深部能源资源及地下工程安全开发领域创新研究和人才汇聚高地,产出具有国际影响力的原创成果,助力学校建设能源资源特色世界一流大学。关于2022年度国家重大科研仪器研制项目据悉,国家重大科研仪器研制项目(部门推荐)是国家自然科学基金委员会资助力度最大的单体项目,每年全国仅立项5项左右。据统计,截至目前,今年已有5个国家重大科研仪器制项目(部门推荐)官宣:北京理工大学“分布孔径长时相参行星雷达测量仪”、上海交通大学“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”、中国科学院上海技术物理研究所“面向红外芯片的光谱与界面功能关系研究的多尺度表征系统”、自然资源部第二海洋研究所“智能敏捷海洋立体观测仪”、中国矿业大学“深地工程多场耦合动力灾变试验仪”。《2022年度国家自然科学基金项目指南》显示,国家重大科研仪器研制项目包括部门推荐和自由申请两个亚类,其中,国家重大科研仪器研制项目(部门推荐)直接费用预算大于或等于1000万元/项。本文内容整理自:中国矿业大学、软科
  • 450万!山东大学激光剥蚀电感耦合等离子体三重四极杆质谱仪采购项目
    项目编号:SDDX-SDLC-GK-2022032项目名称:山东大学激光剥蚀电感耦合等离子体三重四极杆质谱仪购置预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:激光剥蚀电感耦合等离子体三重四极杆质谱仪,亟需购置,具体内容详见招标文件。标段划分:划分为1包合同履行期限:质保期进口设备1年,国产设备3年本项目( 不接受 )联合体投标。20230106山东大学激光剥蚀电感耦合等离子体三重四极杆质谱仪购置招标文件(定稿).docx
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制