当前位置: 仪器信息网 > 行业主题 > >

氨气化学吸附分析仪

仪器信息网氨气化学吸附分析仪专题为您提供2024年最新氨气化学吸附分析仪价格报价、厂家品牌的相关信息, 包括氨气化学吸附分析仪参数、型号等,不管是国产,还是进口品牌的氨气化学吸附分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨气化学吸附分析仪相关的耗材配件、试剂标物,还有氨气化学吸附分析仪相关的最新资讯、资料,以及氨气化学吸附分析仪相关的解决方案。

氨气化学吸附分析仪相关的论坛

  • 全自动六站化学吸附仪ChemiSorb HTP

    全自动六站化学吸附仪ChemiSorb HTP优化设计和高效利用催化剂需要彻底了解催化材料表面结构和表面化学特性。在设计生产阶段,以及后期使用阶段,化学吸附分析提供大量所需的信息来评估催化剂材料。ChemiSorb HTP是一个完全自动化高测试量化学吸附分析仪,可测定催化剂材料的金属分散度、活性金属表面积、活性粒子,表面酸度。仪器包含六个独立经营分析站。可同时运行,也可单独运行,节省时间以及实验室空间。分析测试量大,带有六个独立分析站最多可同时进行六个化学分析每个分析站带有独立的加热炉,设定范围:10℃到700℃石英样品反应器带溢流道设计,可用于各种尺寸的颗粒和粉体全自动分析无需人看守即可得到高分辨率吸附等温线分析站可同时运行,也可独立运行最多可同时连接多达12种不同的气体 Windows®操作界面

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • 吸附分离技术

    吸附分离技术一、吸附分离技术概论1.吸附:是指物质从气体或液体浓缩到固体表面从而达到分离的过程。 2.吸附的机理3.吸附的分类物理吸附l 分子间力(范德华力)引起l 没有选择性l 吸附速度快、解吸容易 化学吸附l 化学反应,形成牢固的化学键l 有选择性l 吸附慢、不易解吸 4.吸附分离技术的特点n 操作简便、设备简单、价廉、安全;n 常用于从大体积料液(稀溶液)中提取含量较少的目的物;n 不用或少用有机溶剂,吸附和洗脱过程中pH变化小,较少引起生物活性物质的变性失活; n 选择性较差,收率低(人工合成的大孔网状聚合物吸附剂性能有很大改进)。5.吸附分离技术的应用方式n 如果需要的组分较易(或较牢固地)被吸附,可在吸附后除去不吸附或较不易吸附的杂质,然后再将样品洗脱; 二、吸附剂1.传统吸附剂(1)活性炭n 活化:使用前应加热烘干,以除去大部分气体。对于一般的活性炭可在160℃加热干燥4~5小时;锦纶活性炭受热易变形,可于100℃干燥4~5小时。(2)硅胶n 适用对象: 可用于萜类、固醇类、生物碱、酸性化合物、磷脂类、脂肪类、氨基酸类等的吸附分离。n 活化: 硅胶一般于105~110℃加热干燥1~2小时后使用。活化后的硅胶应马上使用,如当时不用,则要贮存在干燥器或密闭的瓶中,但时间不宜过长。(3)氧化铝n 适用对象:特别适用于亲脂性成分的分离,广泛应用在醇、酚、生物碱、染料、苷类、氨基酸、蛋白质以及维生素、抗生素等物质的分离。 n 种类:n 活化:在使用前150℃下加热干燥2小时,除去水分以使其活化。 2.大孔吸附树脂 大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型吸附剂,是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。在实际应用中对一些与其骨架结构相近的分子具很强的吸附能力。 (1)大孔吸附树脂的特点n 选择性好,解吸容易,机械强度好,可反复使用和流体阻力小;n 其孔隙大小、骨架结构和极性,可按照需要,选择不同的原料和合成条件而改变,因此可适用于各种有机化合物;n 使用时无需考虑盐类的存在。 (2)大孔吸附树脂的类型n 非极性大孔吸附树脂 XAD-1?? XAD-5n 中等极性大孔吸附树脂 XAD-6?? XAD-7n 极性大孔吸附树脂 XAD-9~ XAD-12和XE(3)大孔吸附树脂的选择n 吸附物的极性 非极性吸附剂易吸附非极性物质(从极性溶剂如水中);极性吸附剂易吸附极性物质(从非极性溶剂中);中等极性的吸附剂则对上述两种情况都具有吸附能力 三、影响吸附的因素1.吸附剂的性质 (1)比表面积:与吸附容量有关(2)孔径:与吸附速度有关(3)极性大小:与吸附力的强弱有关 表面具含氧官能团如-COOH、-OH等,有助于对极性分子的吸附。 2.吸附质的性质(1)溶质从较易溶解的溶剂中被吸附时,吸附量较少。所以极性物质适宜在非极性溶剂中被吸附,非极性物质适宜在极性溶剂中被吸附。 3.操作条件的影响作业1.常用的吸附剂有哪些?使用前如何活化?2.如何选用活性炭?3.大孔吸附树脂和传统的吸附剂比有何优越性?4.选择大孔吸附树脂应考虑哪些因素?

  • 化学吸附仪定量环校正

    化学吸附仪定量环校正,根据定量环校正的标准程序,需要手动注射3次,再自动进样3次,但测试过程中,没有提示手动注射,记录不了信号,这是什么问题?

  • 【求助】(已解决)化学吸附结果反常

    [em06] 用的康塔的Autosorb-1做Pd/HZSM5的化学吸附 方法是500度下H2还原1小时,40度下H2吸附问题:测得的结果表明随着Pd担载量的增加,Pd的颗粒越来越小,分散度(有人说用表面暴露度更好)越来越大,这个结果和一般的结果是矛盾的。用同一个方法做了一系列的8个样品,结果都是这个规律很奇怪,不知道哪里出错了,因为H2吸附时候的溢流造成的吗?虽然说用CO吸附更好一点,但是也有人用H2做Pd的吸附啊会是哪里出问题了呢?求救求救

  • 国产物理/化学吸附仪被蔑视了

    物理吸附仪是用于研究颗粒类材料的比表面积和孔结构数值的重要测试仪器,在对煤的结构研究中,为了更好的对比不同的煤的结构参数,需要较高的测量精度和测量真实性。进口物理吸附仪相比于国产,精密度和智能化程度更高,通过对原始信息的数字处理,更好地排除了外部干扰对信息影响,提高了产品的耐环境性、测量的真实性和精确性。进口仪器加热炉和控制器能够控制温度至450℃,国产仪器相应温度只能达到350℃,不利于高温实验的进行。因此需要采购进口的物理吸附仪。  化学吸附仪可进行程序升温还原( TPR )、程序升温脱附( TPD )、程序升温氧化( TPO )、程序升温表面反应( TPSR )以及脉冲滴定等实验,用于材料对于物质的吸、脱附性能研究。还可对材料的酸性、表面金属分散度、金属与载体的相互作用等进行研究。除了常规(常压)的 COx 、 NOx 、 NH 3 、 H 2 、 O2 等的吸脱附实验外,还可进行吡啶、苯、甲醛等有机物的吸脱附实验,具有真空、加压、负温等多种可选配的实验条件。根据我们的调研,目前国产设备不能满足使用要求。因此需采购进口化学吸附仪用于科研工作。

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

  • 【原创】大昌华嘉“吸附仪在新材料上的应用”全国巡讲

    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。 在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。 日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116423.jpg 会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 物理吸附同步连接XRD、GC、磁悬浮天平 化学吸附仪链接质谱、红外、低温脉冲和TPR 高压吸附仪在储氢材料的应用   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116575.jpg

  • 煤气分析仪在煤气化行业的应用

    我国是以煤炭为主要一次能源的国家,一次能源消费中煤炭的占比达到62%。但我国的煤炭利用技术总体上是落后的,在煤炭的转化利用过程中普遍存在效率低、污染严重等问题。随着能源问题的日益突出,洁净煤技术越来越多地应用于实际生产过程中,其中大规模煤气化、煤气化多联产技术成为了煤炭综合应用的主要方向之一。“十一五”期间,煤气化属于国家鼓励项目,其中明确指出新型煤化工领域将重点开发和实施煤的焦化技术、大型煤气化技术和以煤气化为核心的“多联产”技术。2. 煤气化原理煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]反应。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。煤气化工艺根据气化炉内煤料与气化剂的接触方式不同可区分为固定床(移动床)、流化床、气流床,此外还有地下煤气化工艺。3. 煤气分析仪的原理和技术特点近年来红外煤气分析仪越来越多地应用于实际煤气化煤气分析当中。 红外煤气分析仪采用红外传感器测量煤气成分中的CO、CO2、CH4、CnHm的浓度,使用热导传感器测量H2的浓度,使用电化学传感器测量O2浓度,同时根据测量成分的浓度,计算得到煤气的理论热值。红外煤气分析仪取代了奥氏气体分析仪的人工取样和人工分析环节,可实现自动化测量,避免了人工误差;同时预处理系统和仪器相对燃烧法热值仪具有结构简单,操作维护方便的特点,更加适合煤气化实时在线的分析要求。红外煤气分析仪具备H2测量补偿功能,保证了H2浓度的准确测量。热导传感器用于测量多种混合气体时,必然要考虑到煤气中其他气体的影响因素。煤气主要成分中CO、O2 与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2 、CH4 对H2测量影响明显。通过理论分析及实验表明,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2含量,应对H2浓度进行CO2 、CH4的浓度校正。煤气分析仪对煤气的各气体成分进行分析,并将各种气体的相互影响进行了浓度修正和补偿,消除煤气中其他成分对H2的影响,保证了H2测量值的准确性。此外 煤气分析仪采用了旁流扩散式的热导检测池,流量在0.3―1.5L/min的范围内变化对热导的测量没有影响,减少了因流量波动造成H2测量的误差影响。煤气化过程中产生的煤气中的碳氢化合物除了CH4外,还有少量的CnHm,大多数红外分析仪仅以CH4为测试对象,折合成碳氢化合物总量计算热值。根据红外吸收原理,如图1,乙烷等碳氢化合物在甲烷的特征波长3.3um左右有明显吸收干扰。当煤气中其他碳氢化合物含量较大时,CH4的测试值会明显偏大,导致热值测试不准,其热值测试值也无法保证精度。甲烷、乙烷、丙烷、丁烷的红外吸收光谱图1:甲烷、乙烷、丙烷、丁烷的红外吸收光谱红外煤气分析仪采用了特殊的气体滤波技术,可实现无干扰的CH4测量,准确反应混合煤气中CH4和CnHm成分的实际变化,有利于热值的准确分析。4. 煤气分析仪在煤气化中的应用根据煤气化应用领域的不同,煤气分析仪可实现煤气热值分析和煤气成分分析两种用途。通常的应用如下:4.1 工业燃气应用作为工业燃气,一般热值要求为1100-1350大卡热的煤气,可采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。实际应用中通常需要控制加热温度,以达到工艺或质量控制目的,燃气的热值稳定性就尤为重要。红外煤气分析仪针对H2和CH4的测量采用了测量补偿技术,可保证实际热值测试结果的准确性,为燃气的燃烧测控提供了有效有力的数据依据。4.2 民用煤气应用民用煤气的热值一般在3000-3500大卡,同时还要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。 红外煤气分析仪测试煤气热值可知道气化站的煤气混合,保证燃气热值;同时可测得CO、H2、CH4的实际浓度,有效控制CO浓度,保证燃气安全。4.3 冶金还原气应用煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。 红外煤气分析仪可实时有效测量CO或H2浓度,指导调整气化工艺,保证产气效率。4.4 化工合成原料气随着新型煤化工产业的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐、二甲醚等。化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。若煤气成分中CO2浓度过高,直接会影响合成工序压缩机的运行效率(一般降低10%左右),必然造成电耗和压缩机维修费用增加。红外煤气分析仪用于CO、CO2、H2等气体的浓度测量,用于指导合成气工艺控制,可保证化工产品的产量和质量,同时可达到节能的目的。4.5 煤制氢应用氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。实际应用中由于CO含量的增加,必然会导致变换工序中变换炉的负荷增加。它不但会使催化剂的使用寿命缩短,而且使变换炉蒸汽消耗增加。红外煤气分析仪用于煤气成分分析,提供煤气中各气体成分的浓度数据,指导气化和转换工艺的控制,可起到节能增效的作用。此外, 红外煤气分析仪还可在煤气化多联产的应用中提高化工生产效率,提供清洁能源,改进工艺过程,以达到效益大化,有助于提升产业技术水平。5. 结论随着煤气化技术在国内的应用和发展,对于煤气化过程的监测和控制提出了更高的要求。 红外煤气分析仪集成了红外、热导和电化学三种气体传感器技术,可实现对煤气的成分分析和热值分析。在实际应用中解决了H2测量补偿和CH4测量抗干扰的问题,更广泛地应用于工业燃气、民用煤气、冶金、化工等行业,可指导工艺控制和改善,并达到节能增效的作用,有利于促进煤气化技术的提升。

  • 【原创大赛】如何测量比表面及孔径?一文带你了解气体吸附仪

    测量比表面和孔径分析的方法包括:气体吸附法、压汞法、电子显微镜法(SEM 或 TEM)、小角 X 光散射(SAXS)和小角中子散射(SANS)、电声电振法、核磁共振法、图像法大孔分析技术等。其中气体吸附法是常见的分析方法。气体吸附法孔径测量范围从 0.35nm~ 100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约 0.35nm到1mm 的范围。气体吸附法也是测量所有表面的最佳方法(不规则的表面和开孔内部的面积)。使用气体吸附法进行分析的仪器常用来测定物质的比表面及孔径特征,也可以直接测量物质的吸附特性,因此也常统称为吸附仪。从实际用途来看,主要包含:比表面及孔径分析仪、多组分气体吸附仪、高压吸附仪、蒸汽吸附仪、真密度仪、化学吸附仪等。气体吸附法原理:当固体表面的原子所处的环境与体相原子不同,它受到一个不平衡的力的作用;因此,当气体与清洁固体表面接触时,将与固体表面发生相互作用;气体在固体表面上出现累积,其浓度高于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],这种现象称为吸附现象。吸附气体的固体物质成为吸附剂,被吸附的气体成为吸附质。依据吸附剂和吸附质之间的不同作用力,气体吸附分为物理吸附仪和化学吸附仪。物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力(范德华力)所引起,吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸附;利用物理吸附原理测量的仪器被称为物理吸附仪。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。物理吸附的特点是:吸附热小,吸附速度快,无选择性,可逆,通常是发生在接近气体液化点的温度,一般是多层吸附。物理吸附仪可以测定物质的比表面积、平均孔径和孔径分布等,此外也可以直接测试物质吸附性能。化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,利用化学吸附原理进行测量的仪器被称为化学吸附仪。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。与物理吸附相比化学吸附具有吸附力强、对吸附气体有选择性、单层吸附、通常不可逆,样品不可回收再利用等特点,常用于测定催化剂酸碱活性位、活性金属表面积、金属分散度等。

  • 【原创】谁帮我解决这个电化学吸附问题,我送CASTEP中文教程还有GAUSSIAN03软件

    我是想做黄铁矿的电化学吸附,黄铁矿是经过机械活化的,我的想法是先将黄铁矿做成电极,再在有机电解质中做吸附。现在的问题是:我对电化学不是很懂,1:我不知这电极要怎么做才好,2:做吸附的装置用什么装置好,3:用什么做黄铁矿的吸附物,4:直接用装置在电化学工作站上可做么,5:应查一些什么方面的资料和文章,有这方面资料的能发给我一些么。 只要能指点下的,不是全部都行,留下你的邮箱。 想给我发资料的我的邮箱是:lu.zhibin@yahoo.com.cn

  • 【分享】重量分析技术在吸附研究中的应用

    英国Hiden公司设计的智能重量法吸附分析仪IGA是目前重量分析仪中功能最全的商业化仪器。在全世界的吸附研究领域有着广泛的用户。他们利用IGA对自己的研究实验进行分析表征,取得了辉煌成绩。在Nature和Science上均有多偏文章发表.ps :重量分析技术是新东西吗?什么时候出来的,期待回答!!

  • 如何正确使用化学滤毒盒

    防毒面具是有毒作业常用的个体呼吸防护设备,它所使用的化学滤毒盒,能将吸入空气中的有害气体或蒸气滤除,或将其浓度降低,保护使用者的身体健康。根据我国的标准,通常将滤毒盒分为防有机气体、防氨气、防汞蒸气和防酸性气体(如氯气、氯化氢和二氧化硫等)。了解滤毒盒如何工作,能帮助人们在作业中正确使用,非常重要。滤毒盒盒体内装填有吸附剂,吸附剂具有多孔状结构,通常为活性炭,如煤质炭或椰壳炭。多孔结构使活性炭有巨大的内表面积,每克活性炭的表面积可达一千平方米左右,对许多气体和蒸气具有很高的吸附性。气体是常温常压下呈气态存在的物质,如氯气、一氧化碳气体等,蒸气是常温常压下以液态存在的物质蒸发产生的气体,如苯、丙酮等。吸附是气体分子被吸引到活性炭表面,进而从空气中被分离出的过程,这种吸引力比较弱,是弱的物理作用,也称物理吸附,强度与有机蒸气的性质有密切关系。为使滤毒盒对某些化学物质更具有选择性,用化学试剂浸渍活性炭后,某些特殊化学物质可与活性炭上的试剂发生化学反应,这类吸附也叫作化学吸附。多数滤毒盒依靠化学吸附(参见表1)。表1 滤毒盒种类和过滤机理滤毒盒种类过滤机理化学试剂举例有机蒸气物理吸附——氨气化学吸附氯化镍、钴盐、铜盐、酸酸性气体化学吸附碳酸盐、磷酸盐、氢氧化钾、铜盐汞蒸气化学吸附碘、硫化学吸附力是化学结合力,比单纯的物理吸附力强许多,且不可逆转,这类滤毒盒在使用中只要注意不发生穿透,及时更换滤毒盒,往往不会有特殊的问题。所谓穿透是活性炭已经吸附饱和,失去过滤作用,如不更换,有害气体将直接被使用者吸入。但对于有机滤毒盒来讲,情况比较复杂。首先,有机蒸气种类繁多,同一滤毒盒对不同种类物质吸附容量不同,难于统一确定更换时间。另一个突出问题是,由于物理吸附作用力弱,吸附过程可能发生逆转,出现解吸。解吸会在活性炭停止使用期间自然发生,也会因活性炭选择吸附与它亲和力更强的物质使已经吸附的物质被替代而发生,通常这类容易被替代的物质被称为易挥发性物质。在欧洲,把沸点低于65°C作为划分易挥发性物质的指导性界限,常见的如丙酮(沸点56.5°C)、二氯甲烷(沸点39.8°C)、汽油(沸点40-200°C)、石油醚(沸点40-80°C)、乙醚(沸点34.6°C)、乙醛(沸点20.8°C)等。对用于过滤这类物质的滤毒盒而言,在停止使用期间,即使滤毒盒内没有气流运动,原来吸附的物质也会解吸,解吸的物质从滤毒盒入口端炭层向后方扩散,直至弥漫整个滤毒盒,这个现象称为迁移,造成迁移的因素包括: ¾被吸附物质的挥发性,挥发性越强,越易产生迁移; ¾环境湿度,若大于50%,越易发生迁移;

  • 有哪些有环保认证的氨气逐出法氨氮分析仪,求推荐!!!

    概况现我国城市污水处理厂一般要求在进出水口安装氨氮在线分析仪。氨氮在线分析仪主要有纳氏试剂比色法、水杨酸比色法、流动注射比色法、氨气敏电极法、电导法、氨气逐出法等。其中氨气逐出法氨氮分析仪以其稳定性和重现性佳、适应性强、抗干扰能力强、操作维护简单、运行成本较低等特点,非常适合在市政污水的氨氮在线测量,其最大测量范围可达到0.2~1000.0mg/L之间。且量程范围还可以通过选择的不同试剂来调整,这样不仅提高测量的精度,而且增强了使用的灵活性。但是在使用过程中也出现了一些问题。其中主要问题是与实验室国标纳氏试剂法进行水样比对实验时,存在检测结果偏低的情况,在测量氨氮(NH3-N)0.5~2.0mg/L的低浓度水样时表现尤为明显。

  • 【原创大赛】如何用选择性化学吸附法测定负载型金属催化剂的分散度?

    [font=宋体]负载型金属催化剂是化学化工中广泛使用的一类催化剂,它的基本形式是活性组分[/font][font=宋体]/[font=宋体]载体,活性组分如[/font][font=Calibri]Pd\Au\Pt[/font][font=宋体]等在载体上有效分散,其分散程度会直接影响催化剂的活性、选择性和稳定性。因此,对负载型金属催化剂分散度的测定显得尤为重要。[/font][/font][font=宋体][font=宋体]金属在载体上的分散度是指分布在载体上的表面金属原子数和载体上总的金属原子数之比,一般用[/font]D[font=宋体]表示。现在通用的对分散度测定的方法包括选择性化学吸附法、[/font][font=Calibri]X[/font][font=宋体]射线光电子能谱法、透射电子显微镜法等,其中选择性化学吸附法是对催化剂表面具有催化活性的金属分散度进行测定,因而更易与催化剂的活性相关联。[/font][/font][font=宋体][font=宋体]所谓选择性化学性吸附是指某些气体对载体不发生化学吸附,而是选择性的吸附到活性金属的表面上,其中[/font]H[/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]、[/font]O[/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]、[/font]CO[font=宋体]等气体对活性金属的吸附具有明确的计量关系,因此实验中常通过对这几种气体的吸附量来计算金属在载体上的分散度。接下来我以[/font][font=Calibri]H[/font][/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]吸附法测定[/font]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]催化剂上金属[/font]Pd[font=宋体]的分散度为例来介绍一下如何[/font][/font][font=宋体]用选择性化学吸附法[/font][font=宋体]测定负载型[/font][font=宋体]金属[/font][font=宋体]催化剂[/font][font=宋体]的[/font][font=宋体]分散度[/font][font=宋体]。[/font][font=宋体][font=宋体]根据分散度定义,[/font]D=[font=宋体]催化剂表面活性[/font][font=Calibri]Pt[/font][font=宋体]的原子数[/font][font=Calibri]/[/font][font=宋体]催化剂中总的[/font][font=Calibri]Pt[/font][font=宋体]原子数[/font][font=Calibri]=2V/22.4*[(m*w)/M[/font][/font][sub][font=宋体]Pd[/font][/sub][font=宋体]][font=宋体],其中[/font][font=Calibri]V[/font][font=宋体]代表样品消耗[/font][font=Calibri]H2[/font][font=宋体]的总体积,[/font][font=Calibri]m[/font][font=宋体]为催化剂[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]的总质量,[/font]w[font=宋体]是催化剂中[/font][font=Calibri]P[/font][/font][font=宋体]t[/font][font=宋体][font=宋体]的质量分数。因此,要得到分散度[/font]D[font=宋体]的信息,必须测定[/font][font=Calibri]m[/font][font=宋体]质量的[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体](P[/font][font=宋体]t[/font][font=宋体][font=宋体]质量分数为[/font]w)[font=宋体]可以吸附多少体积的[/font][font=Calibri]H[/font][/font][sub][font=宋体]2[/font][/sub][font=宋体][font=宋体]。接下来,需要根据氢氧滴定的方法对[/font]V[font=宋体]进行测定:即先将催化剂[/font][/font][font=宋体]Pt/Al[/font][sub][font=宋体]2[/font][/sub][font=宋体]O[/font][sub][font=宋体]3[/font][/sub][font=宋体][font=宋体]运用氢气还原,再经过氧气滴定,最后再通氢气滴定,氢氧滴定中[/font]1[font=宋体]个[/font][font=Calibri]Pt[/font][font=宋体]原子消耗[/font][font=Calibri]3[/font][font=宋体]个氢原子,可以通过氢滴定的耗氢量来计算[/font][font=Calibri]V[/font][font=宋体]。[/font][/font]

  • 物理吸附表征内容及用途

    物理吸附表征内容及用途

    [img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453158294_7217_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453167774_606_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453176504_5804_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453187644_1453_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453197634_9209_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453207914_2001_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453213382_5685_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453223122_7380_3904283_3.jpg!w690x517.jpg[/img]

  • 【转贴】红外分光光度计--红外光谱研究吸附催化反应

    物理吸收电磁被附加分子以范德华力与吸附剂相结合。化学吸附则因被吸附分子和吸附剂间形成了离子键或共价键。这两种吸附情况,在红外光谱上的反映是不同的。物理吸附只看得谱带的位移、化学吸附由于形成了新的化学键,故出现新谱带。  (1)氮在低温多孔玻璃上的吸附是物理吸附。在未吸附氮分子的干燥多孔玻璃上,它的表面结构中羟基的倍频7326cm-1,引入氮分子后,它的倍频移到7257cm-1。并随时间的增加而加强。7326cm-1带则减弱,二十分钟后,7326cm-1源谱带完全消失。如加热到20℃ ,则7326cm-1带又出现了。这是因为加热使物理吸附的氮分子解吸了的缘故。     (2)乙烯催化加氢反应机理长久未能解决。最终还是用红外光谱解决了这个问题。有两种说法:①先打开双键CH2-CH2的缔合吸附再加氢。②先发生C-H断裂再加氢CH=CH+HM。      │  │              │ │      M  M              M M  由乙烯在镍上化学吸附后的红外光谱研究指出,这两种情况都有可能。而取决于实验条件——温度、压力、以及催化剂表面是否有一层预吸附层。如有预吸附层则为缔合吸附。这时在红外光谱上有2950-2880cm-1的饱和碳氢伸缩带及1465cm-1的亚甲基弯曲振动。  如催化剂表面无吸附层,则乙烯催化加氢的反应是离解型。红外光谱上有3030cm-1谱带出现,说明有v=CH伸缩振动带出现。

  • 物理化学蒸汽吸附

    能进行物理吸附、化学吸附和蒸汽吸附测试,如果需要联系电话:13235197591QQ:2405917320如此贴违反相关版规,望谅,请删除

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制